JP2007243964A - Pulse generating circuit, semiconductor integrated circuit and method of testing them - Google Patents

Pulse generating circuit, semiconductor integrated circuit and method of testing them Download PDF

Info

Publication number
JP2007243964A
JP2007243964A JP2007098049A JP2007098049A JP2007243964A JP 2007243964 A JP2007243964 A JP 2007243964A JP 2007098049 A JP2007098049 A JP 2007098049A JP 2007098049 A JP2007098049 A JP 2007098049A JP 2007243964 A JP2007243964 A JP 2007243964A
Authority
JP
Japan
Prior art keywords
circuit
delay
signal
pulse
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007098049A
Other languages
Japanese (ja)
Other versions
JP4295790B2 (en
Inventor
Yukihiro Shimamoto
行博 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007098049A priority Critical patent/JP4295790B2/en
Publication of JP2007243964A publication Critical patent/JP2007243964A/en
Application granted granted Critical
Publication of JP4295790B2 publication Critical patent/JP4295790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Pulse Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse generating circuit which begins delay test quickly through scan pass method and permits high-speed and high-accuracy execution. <P>SOLUTION: The pulse generating circuit is provided with: delay circuit units 51, 52 for regulating the delay time from an input clock of a second delay signal CLK2 or later one between two delay signals; a monostable multivibrator 53; a control circuit 55 which is a positive feedback loop, wherein the output signal of the monostable multivibrator returns to the input thereof, while making control for forming individually two cases of going through a signal delay route from the input clock in the delay circuit unit to a second delay signal and not going therethrough, and for adjusting the delay time of the delay circuit unit; an oscillation frequency measuring circuit 60 for measuring the oscillation frequency of the positive feedback loop; and a pulse producing circuit 56 for producing a pulse signal CLK3, having at least two times of leading edge or trailing edge, wherein the time difference becomes equal to the delay time from the input clock of the second delay signal within a single period of input clock, from the input clock and two delay signals. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スキャンパス法によるディレイテストを実行可能な半導体集積回路、及び、そのテスト方法に関する。   The present invention relates to a semiconductor integrated circuit capable of executing a delay test by a scan path method, and a test method therefor.

〈背景技術1〉
高速画像処理等の分野では、ジッタの少ない高精度なクロック信号を用いてデータを高速に転送する要求が強くなってきている。例えば、携帯電話では400Mbpsで画像データを通信するデバイスが要求されている。一方、当該高速データ通信用のクロック信号を発生する回路として、基準クロックを逓倍して高速クロックを発生するPLL(Phase Locked Loop)回路が広く利用されているが、PLL回路で発生されるクロック信号には、ジッタ(クロック信号の揺らぎ)が発生するため、当該高速データ通信用のクロック信号のタイミング精度は、PLL回路のタイミング精度に依存することになる。
<Background Technology 1>
In fields such as high-speed image processing, there is an increasing demand for high-speed data transfer using a highly accurate clock signal with little jitter. For example, a mobile phone is required to have a device that communicates image data at 400 Mbps. On the other hand, as a circuit that generates a clock signal for high-speed data communication, a PLL (Phase Locked Loop) circuit that generates a high-speed clock by multiplying a reference clock is widely used. Since jitter (fluctuation of the clock signal) occurs, the timing accuracy of the clock signal for high-speed data communication depends on the timing accuracy of the PLL circuit.

従って、当該高速データ通信におけるタイミング精度を保証するためには、それに用いるPLL回路のタイミング精度を、例えば、100ps或いは50ps以下の高精度でテストする必要がある。PLL回路のジッタ等のタイミング精度の測定には、高性能のアナログLSIテスタや計測機器等の外付けの測定手段を使用するのが一般的であるが、当該外付けの測定手段では、100ps或いは50ps以下の高精度でテストするには、測定精度が不十分であった。そこで、下記の特許文献1では、ロジック回路のみの構成で、PLL回路のジッタ等を高精度にテスト可能なテスト回路及びテスト方法を提案している。   Therefore, in order to guarantee the timing accuracy in the high-speed data communication, it is necessary to test the timing accuracy of the PLL circuit used therein with a high accuracy of, for example, 100 ps or 50 ps or less. Generally, external measurement means such as a high-performance analog LSI tester or measurement equipment is used to measure the timing accuracy such as jitter of the PLL circuit. However, with the external measurement means, 100 ps or Measurement accuracy was insufficient to test with high accuracy of 50 ps or less. Therefore, Patent Document 1 below proposes a test circuit and a test method that can test jitter and the like of a PLL circuit with high accuracy by using only a logic circuit.

特許文献1に開示されているテスト回路は、図34(特許文献1の図8に相当)を参照すれば、遅延時間を可変制御可能な可変遅延回路(Base DelayとAdjustable Delayで構成されている。)が、テスト回路内部に組み込まれ、PLL回路が備えるVCO(電圧制御発振器)の出力信号を可変遅延回路により1周期遅延させた信号と、VCOの信号のタイミング差を検出することで、VCOの出力直後のジッタ計測が可能な回路構成となっている。また、可変遅延回路によりVCOの出力信号を半周期遅延させた信号と、VCOの信号のタイミング差を検出することで、VCOの出力信号の立ち上がりから立ち下がりまでの区間、または、立ち下がりから立ち上がりまでの区間のジッタ測定も可能な回路構成となっている。更に、VCOの出力のデューティ比率も回路構成を変えることなく、ジッタ測定結果の値を基に算出可能となっている。   Referring to FIG. 34 (corresponding to FIG. 8 of Patent Document 1), the test circuit disclosed in Patent Document 1 is composed of a variable delay circuit (Base Delay and Adjustable Delay) capable of variably controlling the delay time. .) Is incorporated in the test circuit, and the VCO (voltage controlled oscillator) output signal of the PLL circuit is delayed by one cycle by the variable delay circuit, and the VCO signal timing difference is detected, thereby detecting the VCO The circuit configuration is capable of measuring jitter immediately after output. In addition, by detecting the timing difference between the VCO output signal and the VCO signal delayed by a half-cycle delay by the variable delay circuit, the interval from the rise to the fall of the VCO output signal, or the rise from the fall The circuit configuration is also capable of measuring jitter in the interval up to. Further, the duty ratio of the output of the VCO can be calculated based on the value of the jitter measurement result without changing the circuit configuration.

上記ジッタ計測では、可変遅延回路の遅延時間は、設定値ではなく実測値を使用することで正確な計測が可能となるため、測定の最終段階で、可変遅延回路への入力を、セレクタによりVCOの出力信号から可変遅延回路の出力に切り替えることで、可変遅延回路とセレクタによる負帰還回路を形成し、リング発振動作を実施し、その発振周波数を周波数カウンタにて測定して、その発振周波数から可変遅延回路の遅延時間の実測値を導出している。   In the jitter measurement, the delay time of the variable delay circuit can be accurately measured by using the actual measurement value instead of the set value. Therefore, at the final stage of the measurement, the input to the variable delay circuit is input to the VCO by the selector. By switching from the output signal to the output of the variable delay circuit, a negative feedback circuit is formed by the variable delay circuit and the selector, the ring oscillation operation is performed, the oscillation frequency is measured with a frequency counter, and the oscillation frequency is The measured value of the delay time of the variable delay circuit is derived.

〈背景技術2〉
LSI(大規模集積回路)のテスト手法の一つとしてスキャンパス法によるディレイテストが知られている。先ず、スキャンパス法の概要を説明する。
<Background Technology 2>
A delay test based on a scan path method is known as one of LSI (large scale integrated circuit) test methods. First, the outline of the scan path method will be described.

スキャンパス法を行うLSIには、LSI内の複数のフリップフロップをシフトレジスタ状に連結するテスト回路が挿入されている。以下、この連結されたフリップフロップを「スキャンチェーン」と称す。スキャンパス法によるテストを行う際には、先ず、スキャンチェーンをシフトモードにし、外部端子からスキャンチェーンを介してテストパターンを入力して全てのフリップフロップにデータをセットした後に、被テスト回路を実動作モードで動作させ、その後にスキャンチェーンをシフトモードに戻し、スキャンチェーンを介して被テスト回路の動作結果を読み出すことによって、被テスト回路をテストする。   A test circuit that connects a plurality of flip-flops in the LSI in a shift register shape is inserted in the LSI that performs the scan path method. Hereinafter, the connected flip-flops are referred to as “scan chains”. When performing a test using the scan path method, first, the scan chain is set to the shift mode, a test pattern is input from the external terminal via the scan chain, data is set in all flip-flops, and then the circuit under test is implemented. The circuit under test is tested by operating in the operation mode and then returning the scan chain to the shift mode and reading the operation result of the circuit under test via the scan chain.

近年、スキャンパス法によるディレイテスト技術が研究及び開発されている。スキャンパス法によるディレイテストでは、通常のスキャンパス法と同様、1)外部端子からスキャンチェーンを介してテストパターンを入力する、2)被テスト回路を実動作モードで動作させる、3)スキャンチェーンを介して被テスト回路の動作結果を読み出す、という3つの動作でテストが実行される。しかし、被テスト回路を実動作モードで動作させる第2部分のみ通常のスキャンパス法とは異なる。通常のスキャンパス法によるテストでは、外部端子からスキャンチェーンを介してテストパターンを入力して全てのフリップフロップにデータをセットし、そのデータで被テスト回路を動作させるのに対して、ディレイテストでは全てのフリップフロップにデータをセットした後に、被テスト回路を1回動作させ(ラウンチ動作)、その結果としてフリップフロップに格納されるデータを基に、被テスト回路を更にもう1回動作させて、その結果をフリップフロップに格納する(キャプチャー動作)。このラウンチ動作とキャプチャー動作間で信号の伝播が正しく行われたかどうかをテストすることで、信号の伝播が所定の時間以内に終了することをテストするのが、スキャンパス法によるディレイテストである。   In recent years, a delay test technique using a scan path method has been researched and developed. In the delay test using the scan path method, as in the normal scan path method, 1) a test pattern is input from the external terminal via the scan chain, 2) the circuit under test is operated in the actual operation mode, and 3) the scan chain is Thus, the test is executed by three operations of reading out the operation result of the circuit under test. However, only the second part for operating the circuit under test in the actual operation mode is different from the normal scan path method. In a test using the normal scan path method, a test pattern is input from an external terminal via a scan chain, and data is set in all flip-flops. After setting data in all flip-flops, operate the circuit under test once (launch operation), and as a result, based on the data stored in the flip-flop, operate the circuit under test once more, The result is stored in a flip-flop (capture operation). A delay test based on the scan path method tests whether or not the signal propagation is correctly performed between the launch operation and the capture operation to test whether the signal propagation is completed within a predetermined time.

スキャンパス法によるディレイテストでは、ラウンチ動作とキャプチャー動作を被テスト回路に実行させるのに必要なのはクロックの入力のみであることが大きな特徴となっている。これは、被テスト回路の全てのフリップフロップがクロックの立ち上がりエッジを基点に動作をし、また全てのフリップフロップが立ち上がりエッジを基点にデータの取り込みをすることに起因している。この特徴により、ディレイテストではラウンチ動作を励起するラウンチクロックとキャプチャー動作を励起するキャプチャークロックのタイミングを正確に生成することが必要条件となる。また、ラウンチクロックとキャプチャークロックさえ正確に生成できれば、所望のディレイテストが可能となることが特徴となる。   The delay test by the scan path method is characterized in that only the clock input is required to cause the circuit under test to execute the launch operation and the capture operation. This is because all the flip-flops of the circuit under test operate based on the rising edge of the clock, and all the flip-flops take in data based on the rising edge. Due to this feature, in the delay test, it is necessary to accurately generate the timing of the launch clock that excites the launch operation and the capture clock that excites the capture operation. In addition, if a launch clock and a capture clock can be generated accurately, a desired delay test can be performed.

ここで、近年のLSIの高速化に伴い、ディレイテストに求められるクロックも高速及び高精度を要求されるようになってきている。しかし、LSIテスタによるクロック波形発生には、その性能上の壁が存在しており、LSIテスタから高速で高精度のラウンチ・キャプチャークロックを印加することは困難になりつつあるという課題がある。   Here, with the recent increase in LSI speed, the clock required for the delay test is also required to be high speed and high accuracy. However, the performance of the clock waveform generation by the LSI tester has its performance barrier, and there is a problem that it is becoming difficult to apply a high-speed, high-precision launch / capture clock from the LSI tester.

この課題に対して、例えば内蔵するPLLのクロックを基準にラウンチ・キャプチャークロックを生成する回路をLSI自体に持たせることが提唱されている(下記の特許文献2または特許文献3を参照)。   In response to this problem, for example, it has been proposed that the LSI itself has a circuit that generates a launch / capture clock based on a built-in PLL clock (see Patent Document 2 or Patent Document 3 below).

特開2003−121505号公報JP 2003-121505 A 特開2006−38743号公報JP 2006-38743 A 特開2000−266819号公報JP 2000-266819 A 特開2001−94403号公報JP 2001-94403 A 特開平6−43220号公報JP-A-6-43220

〈背景技術1に対する課題〉
上記従来技術では、測定の最終段階において、可変遅延回路をリング発振動作させ、その発振周波数を測定する事で測定結果を得るという工程が存在する。ここで、特許文献1の段落番号“0042”の記載に「ここで、必ず発振動作を行うようにするため、Base‐Delay6とAdjustable‐Delay7を合わせた回路が、奇数段のインバータ回路となるようにしておく」とあることから分かるように、負帰還によるリング発振動作が実施されている。
<Problems for Background Art 1>
In the above-described prior art, there is a step of obtaining a measurement result by causing the variable delay circuit to perform ring oscillation operation and measuring the oscillation frequency at the final stage of measurement. Here, the description of paragraph number “0042” of Patent Document 1 states that “a circuit combining Base-Delay 6 and Adjustable-Delay 7 is an odd-numbered inverter circuit so that an oscillation operation is always performed. As can be seen from the above, a ring oscillation operation by negative feedback is performed.

以下、説明のために、立ち上がりエッジが可変遅延回路(Base‐DelayとAdjustable‐Delayを合わせた回路)を通過するのに要する時間をDre、立ち下がりエッジが可変遅延回路を通過するのに要する時間をDfeとすると、負帰還によるリング発振動作の発振周期Tnfは、下記の数1で示すように、上記2つの遅延時間DreとDfeの和で与えられる。   Hereinafter, for the sake of explanation, the time required for the rising edge to pass through the variable delay circuit (the circuit combining Base-Delay and Adjustable-Delay) is Dre, and the time required for the falling edge to pass through the variable delay circuit. If Dfe is Dfe, the oscillation period Tnf of the ring oscillation operation by negative feedback is given by the sum of the two delay times Dre and Dfe, as shown in the following equation (1).

(数1)
Tnf=Dre+Dfe
(Equation 1)
Tnf = Dre + Dfe

一方、上記従来技術のジッタ計測でパラメータとして必要なのは可変遅延回路の一方の遅延時間(図34に示す測定回路では、立ち上がりエッジが可変遅延回路を通過するのに要する時間Dre)のみである。ここで、特許文献1の段落番号“0046”の記載に「Base‐Delay6とAdjustable‐Delay7による遅延量は、リングオシレータ周期の1/2となることより」とある。これは、上記2つの遅延時間DreとDfeが擬似的に等しい(Dre≒Dfe)と仮定して、一方の遅延時間Dreが、下記の数2により擬似的に導出していることを意味している。   On the other hand, only one delay time of the variable delay circuit (a time Dre required for the rising edge to pass through the variable delay circuit in the measurement circuit shown in FIG. 34) is required as a parameter in the jitter measurement of the above prior art. Here, the description of paragraph number “0046” of Patent Document 1 states that “the delay amount by Base-Delay 6 and Adjustable-Delay 7 is ½ of the ring oscillator period”. This means that the above two delay times Dre and Dfe are pseudo-equal (Dre≈Dfe), and one of the delay times Dre is pseudo-derived by the following formula 2. Yes.

(数2)
Dre≒(Dre+Dfe)/2=Tnf/2
(Equation 2)
Dre≈ (Dre + Dfe) / 2 = Tnf / 2

図35(特許文献1の図7に相当)を参照して説明すると、実際のジッタの計算では、PLL回路が出力するクロック信号の周期ジッタJは、下記の数3(特許文献1の段落番号“0046”中の式2に相当)で与えられる。ここで、数3において、Dmaxは、図35のC点における可変遅延回路の遅延時間であり、Dminは、図35のA点における可変遅延回路の遅延時間である。   Referring to FIG. 35 (corresponding to FIG. 7 of Patent Document 1), in actual jitter calculation, the periodic jitter J of the clock signal output from the PLL circuit is expressed by the following equation 3 (paragraph number of Patent Document 1). (Corresponding to Equation 2 in “0046”). Here, in Equation 3, Dmax is the delay time of the variable delay circuit at the point C in FIG. 35, and Dmin is the delay time of the variable delay circuit at the point A in FIG.

(数3)
J=Dmax−Dmin
(Equation 3)
J = Dmax−Dmin

従って、2つの遅延時間Dmax,Dminを測定すれば、ジッタJを数3より導出できる。ここで、2つの遅延時間Dmax,Dminを測定するために、可変遅延回路を負帰還回路としてリング発振動作させ、その発振周波数を測定している。以下、具体的に、図36を参照して説明する。   Therefore, the jitter J can be derived from Equation 3 by measuring the two delay times Dmax and Dmin. Here, in order to measure the two delay times Dmax and Dmin, the variable delay circuit is operated as a negative feedback circuit in a ring oscillation operation, and the oscillation frequency is measured. Hereinafter, this will be specifically described with reference to FIG.

1)可変遅延回路の設定値を図36のA点の状態に設定して、リング発振動作を開始する。
2)その発振周期を測定し、Tminとする。
3)計算によりDminを求める(Dmin=Tmin/2)。
4)同様に、可変遅延回路の設定値を図36のC点の状態に設定して、リング発振動作を開始する。
5)その発振周期を測定し、Tmaxとする。
6)計算によりDmaxを求める(Dmax=Tmax/2)。
7)数3により、3)と6)で求めたDmaxとDminからジッタJを求める。
1) The set value of the variable delay circuit is set to the state of point A in FIG. 36, and the ring oscillation operation is started.
2) Measure the oscillation period and set it as Tmin.
3) Obtain Dmin by calculation (Dmin = Tmin / 2).
4) Similarly, the set value of the variable delay circuit is set to the state of point C in FIG. 36, and the ring oscillation operation is started.
5) Measure the oscillation period and set it as Tmax.
6) Dmax is obtained by calculation (Dmax = Tmax / 2).
7) Jitter J is obtained from Dmax and Dmin obtained in 3) and 6) according to Equation 3.

以上の手順で、可変遅延回路の遅延時間を、設定値から実測値への変換を実施している。ところが、2つの遅延時間DreとDfeに差がある場合(Dre≠Dfe)には、その差の2分の1(|Dre−Dfe|/2)が、測定誤差としてジッタ計測の測定結果に影響を与える。図37及び図38を参照して当該測定誤差について説明する。図37は、可変遅延回路の遅延時間をそのリング発振動作状態の発振周期から導出するための測定回路の模式図であり、負帰還ループを形成するためのインバータが、可変遅延回路の入力ノードN1と出力ノードN2の間に挿入されている。図38は、リング発振動作状態における可変遅延回路の入力ノードN1と出力ノードN2における発振波形を示す電圧波形図である。図38において、可変遅延回路の立ち上がりエッジに対する入出力ノードN1,N2間の伝播遅延時間Dre、立ち下がりエッジ対する入出力ノードN1,N2間の伝播遅延時間Dfe、負帰還によるリング発振動作状態の発振周期Tnf、可変遅延回路の入力ノードN1での発振パルスの高レベル期間Twhと低レベル期間Twlが、夫々図示されている。これらの各時間については、以下の数4の関係が成立する。   With the above procedure, the delay time of the variable delay circuit is converted from the set value to the actually measured value. However, when there is a difference between the two delay times Dre and Dfe (Dre ≠ Dfe), one half of the difference (| Dre−Dfe | / 2) affects the measurement result of jitter measurement as a measurement error. give. The measurement error will be described with reference to FIGS. FIG. 37 is a schematic diagram of a measurement circuit for deriving the delay time of the variable delay circuit from the oscillation period of the ring oscillation operation state. The inverter for forming the negative feedback loop is an input node N1 of the variable delay circuit. And the output node N2. FIG. 38 is a voltage waveform diagram showing oscillation waveforms at input node N1 and output node N2 of the variable delay circuit in the ring oscillation operation state. 38, the propagation delay time Dre between the input / output nodes N1 and N2 with respect to the rising edge of the variable delay circuit, the propagation delay time Dfe between the input and output nodes N1 and N2 with respect to the falling edge, and oscillation in the ring oscillation operation state due to negative feedback A period Tnf, a high level period Twh and a low level period Twl of the oscillation pulse at the input node N1 of the variable delay circuit are respectively shown. For each of these times, the following equation 4 holds.

(数4)
Tnf=Twh+Twl=Dre+Dfe
(Equation 4)
Tnf = Twh + Twl = Dre + Dfe

ここで、上記従来技術では、2つの遅延時間DreとDfeが擬似的に等しい(Dre≒Dfe)と仮定して、上記数2の計算式で、擬似的に立ち上がりエッジ伝播遅延時間Dreを導出していた。しかし、この計算では、2つの遅延時間DreとDfeに差がある場合(Dre≠Dfe)には、下記の数5に示す誤差の生じていることが分かる。   Here, in the above prior art, assuming that the two delay times Dre and Dfe are pseudo-equal (Dre≈Dfe), the rising edge propagation delay time Dre is derived in a pseudo manner using the formula (2). It was. However, in this calculation, when there is a difference between the two delay times Dre and Dfe (Dre ≠ Dfe), it can be seen that an error shown in the following Equation 5 occurs.

(数5)
(Dre+Dfe)/2−Dre=(Dre−Dfe)/2
(Equation 5)
(Dre + Dfe) / 2-Dre = (Dre-Dfe) / 2

ここで、図36に戻って、可変遅延回路のC点での立ち上がりエッジ伝搬時間をDmaxr、可変遅延回路のA点での立ち上がりエッジ伝搬時間をDminr、可変遅延回路のC点での立ち下がりエッジ伝搬時間をDmaxf、可変遅延回路のA点での立ち下がりエッジ伝搬時間をDminf、可変遅延回路のC点での設定時におけるリング発振動作の発振周期をTmax(=Dmaxr+Dmaxf)、可変遅延回路のA点での設定時におけるリング発振動作の発振周期をTmin(=Dminr+Dminf)、上記従来技術で計測される誤差を含むジッタをJ1、及び、本来測定すべき実際のジッタをJ0と、夫々定義すると、J1とJ0は、下記の数6と数7で表される。   Returning to FIG. 36, the rising edge propagation time at point C of the variable delay circuit is Dmaxr, the rising edge propagation time at point A of the variable delay circuit is Dminr, and the falling edge at point C of the variable delay circuit. The propagation time is Dmaxf, the falling edge propagation time at point A of the variable delay circuit is Dminf, the oscillation period of the ring oscillation operation at the time of setting at point C of the variable delay circuit is Tmax (= Dmaxr + Dmaxf), and A of the variable delay circuit When the oscillation period of the ring oscillation operation at the time of setting at the point is defined as Tmin (= Dminr + Dminf), the jitter including the error measured by the above-described conventional technique is defined as J1, and the actual jitter to be originally measured is defined as J0. J1 and J0 are expressed by the following equations 6 and 7.

(数6)
J1=(Tmax/2)−(Tmin/2)
=(Dmaxr+Dmaxf)/2−(Dminr+Dminf)/2
(数7)
J0=Dmaxr‐Dminr
(Equation 6)
J1 = (Tmax / 2)-(Tmin / 2)
= (Dmaxr + Dmaxf) / 2- (Dminr + Dminf) / 2
(Equation 7)
J0 = Dmaxr−Dminr

従って、両ジッタの差で求まる誤差Δは、下記の数8で与えられる。   Therefore, the error Δ obtained by the difference between both jitters is given by the following equation (8).

(数8)
Δ=J1−J0
=(Dmaxr+Dmaxf)/2−(Dminr+Dminf)/2
−(Dmaxr‐Dminr)
=(Dmaxf−Dmaxr)/2−(Dminf−Dminr)/2
(Equation 8)
Δ = J1-J0
= (Dmaxr + Dmaxf) / 2- (Dminr + Dminf) / 2
− (Dmaxr−Dminr)
= (Dmaxf-Dmaxr) / 2- (Dminf-Dminr) / 2

この結果、可変遅延回路のC点での立ち上がりエッジ伝搬時間と立ち下がりエッジ伝搬時間の差|Dmaxr−Dmaxf|と可変遅延回路のA点での立ち上がりエッジ伝搬時間と立ち下がりエッジ伝搬時間の差|Dminr−Dminf|に依存した誤差が生じることが分かる。   As a result, the difference between the rising edge propagation time and the falling edge propagation time at the point C of the variable delay circuit | Dmaxr−Dmaxf | and the difference between the rising edge propagation time and the falling edge propagation time at the point A of the variable delay circuit | It can be seen that an error depending on Dminr−Dminf | occurs.

これらの伝搬時間の差は、通常に設計された可変遅延回路の場合には、数10ps〜数100ps程度の値であり、遅延時間の設定値の違いによって差が生じないように工夫して設計すれば、当該伝搬時間の差は測定に影響を与えないレベルであった。しかし、近年の通信デバイスに使用されるPLL回路のジッタの保証範囲は数10psの保証を求められる程に小さくなっている。つまり、昨今の状況の変化により、従来は無視できたレベルの上記誤差が無視できなくなってきており、上記誤差の問題が大きくなってきている。   In the case of a normally designed variable delay circuit, the difference in these propagation times is a value of about several tens of ps to several hundreds of ps, and is designed so as not to cause a difference due to a difference in delay time setting values. Thus, the difference in propagation time was at a level that did not affect the measurement. However, the guaranteed range of jitter of PLL circuits used in recent communication devices is so small that a guarantee of several tens of ps is required. In other words, due to recent changes in the situation, the above-mentioned error at a level that could be ignored in the past can no longer be ignored, and the problem of the above-mentioned error has become large.

ところで、可変遅延回路の立ち上がりエッジ伝搬時間と立ち下がりエッジ伝搬時間の差が問題となる背景には、これらの遅延時間を求めるに当たり、負帰還によるリング発振動作を行い、その発振周期が、立ち上がりエッジ伝搬時間と立ち下がりエッジ伝搬時間の合計で求まる点に帰着する。   By the way, the background of the difference between the rising edge propagation time and the falling edge propagation time of the variable delay circuit is a problem. In obtaining these delay times, a ring oscillation operation by negative feedback is performed, and the oscillation period is determined by the rising edge. This results in a point determined by the sum of the propagation time and the falling edge propagation time.

そこで、上記従来技術において、負帰還によるリング発振動作が使用され、正帰還によるリング発振動作が使用されない理由について説明する。   Therefore, the reason why the ring oscillation operation by negative feedback is used and the ring oscillation operation by positive feedback is not used in the prior art will be described.

負帰還によるリング発振動作は、可変遅延回路を含む負帰還ループでの発振動作であることから、例えば、可変遅延回路の入力ノードの信号レベル(高レベルまたは低レベルで、2値論理レベル1,0に対応する)が負帰還ループを一巡して同じ入力ノードに信号レベルが反転して戻ってくるため、入力ノードの信号レベルが安定せずに自発的に発振動作を開始する。これに対し、正帰還によるリング発振動作は、可変遅延回路を含む正帰還ループでの発振動作であることから、例えば、可変遅延回路の入力ノードの信号レベルが帰還ループを一巡して同じ入力ノードに同じ信号レベルで戻ってくるため、信号レベルが高レベルまたは低レベルの何れか一方に安定するため、当該安定状態においては自発的に発振動作を開始しないという第1の問題があり、更に、一旦発振動作を開始しても、直ぐに、上記何れかの安定状態に達して発振が停止するという第2の問題がある。従って、リング発振動作には、通常負帰還ループが使用される。   Since the ring oscillation operation by negative feedback is an oscillation operation in a negative feedback loop including a variable delay circuit, for example, the signal level of the input node of the variable delay circuit (high level or low level, binary logic level 1, (Corresponding to 0) goes around the negative feedback loop and the signal level is inverted and returned to the same input node, so that the signal level at the input node is not stabilized and the oscillation operation starts spontaneously. On the other hand, the ring oscillation operation by the positive feedback is an oscillation operation in the positive feedback loop including the variable delay circuit. For example, the signal level of the input node of the variable delay circuit goes around the feedback loop and the same input node. Therefore, since the signal level is stabilized at either the high level or the low level, there is a first problem that the oscillation operation does not start spontaneously in the stable state. Even if the oscillation operation is once started, there is a second problem that any one of the above stable states is reached and the oscillation stops. Therefore, a negative feedback loop is usually used for the ring oscillation operation.

次に、正帰還によるリング発振動作における上記2つの問題について、図39と図40を参照して説明する。図39は、可変遅延回路の遅延時間をそのリング発振動作状態の発振周期から導出するための測定回路の模式図であり、正帰還ループを形成するため、可変遅延回路の入力ノードN1に出力ノードN2が直接接続されている。図40は、正帰還によるリング発振動作状態における可変遅延回路の入力ノードN1と出力ノードN2における発振波形を示す電圧波形図である。   Next, the above two problems in the ring oscillation operation by positive feedback will be described with reference to FIG. 39 and FIG. FIG. 39 is a schematic diagram of a measurement circuit for deriving the delay time of the variable delay circuit from the oscillation period of the ring oscillation operation state. In order to form a positive feedback loop, the output node is connected to the input node N1 of the variable delay circuit. N2 is directly connected. FIG. 40 is a voltage waveform diagram showing oscillation waveforms at the input node N1 and the output node N2 of the variable delay circuit in the ring oscillation operation state by positive feedback.

つまり、図39の可変遅延回路の入力ノードN1における信号レベルと出力ノードN2における信号レベルが正帰還であることから一致している。入力ノードN1(出力ノードN2)の信号レベルが発振せずに停止していると、その停止状態は安定的に継続し、その安定状態から自発的に発振を開始することはない。   That is, the signal level at the input node N1 and the signal level at the output node N2 of the variable delay circuit of FIG. When the signal level of the input node N1 (output node N2) is stopped without oscillating, the stopped state continues stably, and oscillation does not start spontaneously from the stable state.

ここで、何らかの外的擾乱を加えて、例えば、入力ノードN1に可変遅延回路の遅延時間より短いパルス幅のパルス信号を強制的に入力した場合を想定する。その入力されたパルス信号は、出力ノードN2へ伝播して入力ノードN1に正帰還して、更に、出力ノードN2へ伝播することで、一旦は、正帰還による発振動作を開始する。ここで、可変遅延回路の立ち上がりエッジに対する入出力ノードN1,N2間の伝播遅延時間Dreと、立ち下がりエッジ対する入出力ノードN1,N2間の伝播遅延時間Dfeが等しくない場合(Dre≠Dfe)には、当初入力されたパルス信号のパルス幅が、正帰還ループを一巡する毎に、2つの遅延時間DreとDfeの差|Dre−Dfe|だけ短く或いは長くなり、最終的にパルス幅は0となるか、可変遅延回路の遅延時間より長くなってパルスが消滅して、リング発振動作が停止する。従って、正帰還によるリング発振動作が安定的に継続するためには、立ち上がりエッジと立ち下がりエッジ対する2つの遅延時間を正確に等しくする必要があり、遅延回路だけの正帰還ループではリング発振動作は、理論上は可能でも実際上は不可能である。   Here, it is assumed that some external disturbance is applied and, for example, a pulse signal having a pulse width shorter than the delay time of the variable delay circuit is forcibly input to the input node N1. The input pulse signal propagates to the output node N2, positively feeds back to the input node N1, and further propagates to the output node N2, thereby once starting an oscillation operation by positive feedback. Here, when the propagation delay time Dre between the input / output nodes N1, N2 with respect to the rising edge of the variable delay circuit is not equal to the propagation delay time Dfe between the input / output nodes N1, N2 with respect to the falling edge (Dre ≠ Dfe). Each time the pulse width of the initially input pulse signal goes through the positive feedback loop, it becomes shorter or longer by the difference | Dre−Dfe | between the two delay times Dre and Dfe. As a result, the pulse disappears after the delay time of the variable delay circuit, and the ring oscillation operation stops. Therefore, in order for the ring oscillation operation by positive feedback to continue stably, it is necessary to make the two delay times for the rising edge and the falling edge exactly equal. In the positive feedback loop with only the delay circuit, the ring oscillation operation is It is theoretically possible but not practical.

〈背景技術2に対する課題〉
特許文献2に開示された従来技術では、ラウンチ・キャプチャークロックの生成にLSIに内蔵されるPLL回路のクロックを利用している。具体的には、クロック生成回路によりPLL回路の高速なクロックから2発のクロックのみを取り出してきて、夫々ラウンチクロック・キャプチャークロックとして供給する回路が提案されている。しかし、ラウンチ・キャプチャークロック生成にPLL回路を利用していることで、以下の3つの問題が惹起される。
<Problems for Background Technology 2>
In the prior art disclosed in Patent Document 2, a clock of a PLL circuit built in an LSI is used to generate a launch / capture clock. Specifically, a circuit has been proposed in which only two clocks are extracted from a high-speed clock of a PLL circuit by a clock generation circuit and supplied as a launch clock and a capture clock, respectively. However, using the PLL circuit for generating the launch / capture clock causes the following three problems.

1)第1に、PLL回路がロックするまで待たないとテストが開始できないという問題がある。PLLの出力が所定の周波数で安定した状態になることを、「PLL回路がロックする」という。通常、PLL回路は動作開始から数100ps〜数ms程度の間ロックしていない状態が存在する。これはPLL回路の動作原理上避けられない待ち時間である。これをディレイテストに利用する場合にもPLL回路がロックするまでディレイテストの開始を待つ必要がある。   1) First, there is a problem that the test cannot be started unless the PLL circuit is locked. That the output of the PLL becomes stable at a predetermined frequency is referred to as “the PLL circuit is locked”. Usually, the PLL circuit is not locked for about several hundreds ps to several ms from the start of operation. This is an inevitable waiting time due to the operating principle of the PLL circuit. Even when this is used for the delay test, it is necessary to wait for the start of the delay test until the PLL circuit is locked.

2)第2に、PLL回路のロック状態を維持するために、全てのディレイテスト完了までクロックを停止することができないという問題がある。PLL回路はリファレンスクロックを基準に、その整数倍のクロックを生成するという動作を行う。そのため、PLL回路をロック状態で維持するためには、リファレンスクロックを入力し続けることが必要である。PLL回路をディレイテストに利用する場合にも同じであり、テストの開始から終了までリファレンスクロックを入力し続ける必要がある。しかし、例えば複数のテストパターンを実行する場合等に、パターンとパターンの間にはリファレンスクロックを印加できないタイミングが発生する。その結果、PLL回路はロック状態を維持できなくなり、上述の第1の問題により、再度ロック状態となるまでの待ち時間が必要となる。   2) Secondly, there is a problem that the clock cannot be stopped until all delay tests are completed in order to maintain the locked state of the PLL circuit. The PLL circuit performs an operation of generating a clock that is an integral multiple of the reference clock. Therefore, in order to maintain the PLL circuit in the locked state, it is necessary to continue inputting the reference clock. The same applies to the case where the PLL circuit is used for the delay test, and it is necessary to continue inputting the reference clock from the start to the end of the test. However, for example, when a plurality of test patterns are executed, a timing at which the reference clock cannot be applied occurs between the patterns. As a result, the PLL circuit cannot maintain the locked state, and due to the above-described first problem, a waiting time is required until the PLL circuit is again locked.

3)第3に、PLL回路のクロックのクロックエッジを基に、ラウンチ・キャプチャークロックのタイミングを生成するため、PLL回路のクロック周期の整数倍の設定しかできないという問題がある。PLL回路のクロックに基づいて生成されたラウンチ・キャプチャークロックよりディレイテストを実施すると、タイミングを決めるのはPLL回路の出力するクロックのエッジのみなので、ラウンチクロックとキャプチャークロック間のタイミングは、PLL回路の出力クロック周期の整数倍の値にしか設定できない。例えば、3ns、3.5ns、4nsの3つのタイミング条件でディレイテストを実行しようとすると、PLL回路は2GHzでクロックを発生可能であることが必要となる。また、ディレイテスト用パルス発生回路自体も局所的にではあるが、2GHzでの動作保証をする必要がある。   3) Thirdly, since the timing of the launch / capture clock is generated based on the clock edge of the clock of the PLL circuit, there is a problem that only an integer multiple of the clock period of the PLL circuit can be set. When a delay test is performed from the launch / capture clock generated based on the clock of the PLL circuit, the timing is determined only by the edge of the clock output from the PLL circuit, so the timing between the launch clock and the capture clock is the same as that of the PLL circuit. Can only be set to an integer multiple of the output clock period. For example, if a delay test is to be executed under three timing conditions of 3 ns, 3.5 ns, and 4 ns, the PLL circuit needs to be able to generate a clock at 2 GHz. Further, although the delay test pulse generation circuit itself is locally, it is necessary to guarantee the operation at 2 GHz.

そこで、特許文献2に開示された従来技術の問題点を回避するために、PLL回路のクロックを利用せず、例えば、特許文献3に開示されているように、キャプチャークロックを、可変遅延回路を用いて発生することが考えられる。この回路では、PLL回路のクロックを利用していないので、上述の特許文献2で問題となった3つの問題は発生しないが、以下の第4及び第5の問題が生じる。   Therefore, in order to avoid the problems of the prior art disclosed in Patent Document 2, the clock of the PLL circuit is not used. For example, as disclosed in Patent Document 3, the capture clock is replaced with the variable delay circuit. It is thought that it occurs by using. Since this circuit does not use the clock of the PLL circuit, the three problems that have been problems in the above-mentioned Patent Document 2 do not occur, but the following fourth and fifth problems occur.

4)第4に、可変遅延回路の遅延時間を求めることができないという問題がある。特許文献3の明細書の段落番号“0041”に「同期回路1の動作時間を、バッファ1段あたりの遅延時間を単位として求めることができる」と記載されている。この記載は、そのまま「バッファ1段あたりの遅延時間が既知でない場合に、その時間が分からない」ということを意味している。   4) Fourth, there is a problem that the delay time of the variable delay circuit cannot be obtained. The paragraph number “0041” in the specification of Patent Document 3 describes that “the operation time of the synchronization circuit 1 can be obtained in units of delay time per buffer stage”. This description simply means that “when the delay time per buffer stage is not known, the time is unknown”.

5)第5に、外部から入力されるパルス幅以下にラウンチクロックとキャプチャークロックの時間差を制御できないという問題がある。ラウンチクロック自体を可変遅延回路にて遅延させることでキャプチャークロックを生成している関係上、外部から入力されるパルス幅以下に遅延時間を制御することは不可能である。もし、遅延時間を外部から入力されるパルス幅以下に設定すると、ラウンチクロックの立下りよりも前にキャプチャークロックが立ち上がることになり、回路が正しく動作せずディレイテストができない。   5) Fifth, there is a problem that the time difference between the launch clock and the capture clock cannot be controlled within the pulse width inputted from the outside. Since the capture clock is generated by delaying the launch clock itself by the variable delay circuit, it is impossible to control the delay time to be equal to or less than the pulse width inputted from the outside. If the delay time is set to be less than or equal to the pulse width inputted from the outside, the capture clock rises before the fall of the launch clock, and the circuit does not operate correctly and the delay test cannot be performed.

ここで、上記第4の問題点に対して、可変遅延回路の遅延時間が分かれば、回路の動作時間が分かる。可変遅延回路の遅延時間を求める方法、或いは、可変遅延回路を所定の遅延時間に調整する方法が、上記特許文献4において提案されている。   Here, with respect to the fourth problem, if the delay time of the variable delay circuit is known, the operation time of the circuit can be known. A method for obtaining the delay time of the variable delay circuit or a method for adjusting the variable delay circuit to a predetermined delay time has been proposed in Patent Document 4.

上記特許文献4に開示されている従来技術では、リング発振器に負帰還回路を使用している。この場合、以下の第6の問題が生じる。   In the prior art disclosed in Patent Document 4, a negative feedback circuit is used for the ring oscillator. In this case, the following sixth problem occurs.

6)可変遅延回路の立ち上がりエッジの伝播時間と立下りエッジの伝播時間が異なる場合に、その伝播時間の差が測定誤差になる。   6) When the propagation time of the rising edge and the propagation time of the falling edge of the variable delay circuit are different, the difference between the propagation times becomes a measurement error.

この第6の問題で生じる測定誤差は、上述の〈背景技術1に対する課題〉において、数5で示される誤差と同じであり、その重複する説明は割愛する。   The measurement error caused by the sixth problem is the same as the error expressed by Equation 5 in the above-mentioned <Problem with respect to the background art 1>, and the redundant description is omitted.

ここで、数5で示される立ち上がりエッジ伝播遅延時間Dreと立ち下がりエッジ伝播遅延時間Dfeの差(Dre−Dfe)は、通常にデザインされた場合には数10ps〜数100ps程度の範囲であり、個々で差を生じないように工夫して設計すれば測定に影響を与えないレベルであった。しかし、近年のLSIの動作周波数は100MHz〜数GHzと高速化の傾向にあり、斯かる高速化された回路に対するディレイテストに要求されるクロックエッジの精度も数10psの保証を求められる程に小さくなっており、この誤差が無視できなくなってきたという状況の変化が第6の問題を更に大きくしている。   Here, the difference (Dre−Dfe) between the rising edge propagation delay time Dre and the falling edge propagation delay time Dfe expressed by Equation 5 is in the range of several tens ps to several hundreds ps when designed normally. It was a level that would not affect the measurement if it was devised so as not to make a difference individually. However, the operating frequency of LSIs in recent years has tended to increase from 100 MHz to several GHz, and the accuracy of the clock edge required for a delay test for such a high-speed circuit is so small that a guarantee of several tens of ps is required. The change in the situation that this error can no longer be ignored further exacerbates the sixth problem.

また、上記第4の問題に関連して、上記特許文献5に開示されている従来技術では、基本的に1本の可変遅延回路をリング発振状態にし、その周波数を測定することで可変遅延回路の遅延時間を調整するという手法を採用している。このことが、上記第6の問題に加えて以下の第7の問題を惹起する。   In relation to the fourth problem, the conventional technique disclosed in Patent Document 5 basically sets one variable delay circuit in a ring oscillation state, and measures the frequency to change the variable delay circuit. The method of adjusting the delay time is adopted. This causes the following seventh problem in addition to the sixth problem.

7)遅延時間を短く設定したい場合に、その遅延時間に相当する周波数のクロックを計数できる回路を用意する必要がある。例えば、500psの遅延時間を設定する場合には1GHzで動作する計数回路を用意する必要がある。   7) When it is desired to set the delay time short, it is necessary to prepare a circuit capable of counting clocks having a frequency corresponding to the delay time. For example, when setting a delay time of 500 ps, it is necessary to prepare a counting circuit that operates at 1 GHz.

特許文献5の明細書の段落番号“0021”に「一方、可変遅延回路VDの出力信号は、選択信号DMCによって上記選択回路S2を切り換えることにより、インバータINVによって反転された信号が可変遅延回路VDの入力側に帰還され、リングオシレータのような発振回路が構成されるようになっている。(後略)」との記載がある。つまり、上記特許文献4に開示されている従来技術と同様に、リング発振器に負帰還回路が使用されていることが分かる。この場合も、リング発振器の発振周期Tnfは、数4に示すように、立ち上がりエッジ伝播遅延時間Dreと立ち下がりエッジ伝播遅延時間Dfeの和(Dre+Dfe)で表されるので、仮に各伝播遅延時間が500psとすれば、発振周期Tnfは1nsとなる。つまり、リング発振器は1GHzで発振することになる。従って、このリング発振器から出力されるクロック信号が伝播する範囲の回路は1GHzでの動作を保証して設計する必要がある。LSIに対して高速・高精度な測定を求めると、内部の回路に要求されるスペックは上昇することになる。   In the paragraph number “0021” of the specification of Patent Document 5, “On the other hand, the output signal of the variable delay circuit VD is switched by the selection signal DMC so that the signal inverted by the inverter INV is changed to the variable delay circuit VD. And an oscillation circuit such as a ring oscillator is configured. (Omitted). That is, it can be seen that a negative feedback circuit is used for the ring oscillator, as in the prior art disclosed in Patent Document 4 above. Also in this case, the oscillation period Tnf of the ring oscillator is expressed by the sum (Dre + Dfe) of the rising edge propagation delay time Dre and the falling edge propagation delay time Dfe as shown in Equation 4, so that each propagation delay time is assumed. If 500 ps, the oscillation period Tnf is 1 ns. That is, the ring oscillator oscillates at 1 GHz. Therefore, it is necessary to design a circuit in a range in which the clock signal output from the ring oscillator propagates while guaranteeing an operation at 1 GHz. If high-speed and high-precision measurement is required for an LSI, the specifications required for the internal circuit will increase.

本発明は、上記負帰還によるリング発振動作に起因する問題点、及び、従来のスキャンパス法によるディレイテストにおける問題点に鑑みてなされたものであり、その目的は、安定的に継続して正帰還によるリング発振動作可能なリング発振回路を利用した、立ち上がりエッジまたは立ち下がりエッジ対する遅延時間を正確に測定可能な遅延時間測定回路及び方法を提供し、当該遅延時間測定回路及び方法を応用して、スキャンパス法によるディレイテストを迅速に開始できるとともに高速且つ高精度な実行が可能なパルス発生回路及び半導体集積回路を提供する点にある。   The present invention has been made in view of the problems caused by the ring oscillation operation by the negative feedback and the problems in the delay test by the conventional scan path method. Provided is a delay time measuring circuit and method that can accurately measure a delay time with respect to a rising edge or a falling edge using a ring oscillation circuit capable of ring oscillation operation by feedback, and applying the delay time measuring circuit and method Another object of the present invention is to provide a pulse generation circuit and a semiconductor integrated circuit capable of quickly starting a delay test by the scan path method and capable of executing at high speed and high accuracy.

上記目的を達成するための本発明に係るパルス発生回路の基礎となるリング発振回路は、遅延回路と単安定マルチバイブレータを備えてなり、前記遅延回路の出力が前記単安定マルチバイブレータの入力に接続し、前記単安定マルチバイブレータの出力が前記遅延回路の入力に接続し、前記遅延回路と前記単安定マルチバイブレータが正帰還ループを構成していることを第1の特徴とする。   In order to achieve the above object, a ring oscillation circuit as a basis of a pulse generation circuit according to the present invention includes a delay circuit and a monostable multivibrator, and an output of the delay circuit is connected to an input of the monostable multivibrator. The first characteristic is that the output of the monostable multivibrator is connected to the input of the delay circuit, and the delay circuit and the monostable multivibrator form a positive feedback loop.

更に、上記第1の特徴のリング発振回路は、発振起動用のトリガー信号の入力を受け付けて発振を起動する発振起動回路を、前記正帰還ループ上に備えることを第2の特徴とする。   Further, the ring oscillation circuit of the first feature has a second feature of including an oscillation start circuit on the positive feedback loop for receiving an input of a trigger signal for starting oscillation and starting the oscillation.

更に、上記第1または第2の特徴リング発振回路は、前記単安定マルチバイブレータの出力するパルス信号のパルス幅が、前記正帰還ループでのリング発振動作の1周期より短いことを第3の特徴とする。更に、前記遅延回路の立ち上がりエッジ伝播時間と立下りエッジ伝播時間の伝播時間差により、前記遅延回路に入力した前記単安定マルチバイブレータの出力するパルス信号のパルス幅が減少する場合は、前記パルス幅が前記伝播時間差より長いことを特徴とし、逆に、当該パルス幅が増大する場合は、前記パルス幅と前記伝播時間差の合計が前記正帰還ループでのリング発振動作の1周期より短いことを特徴とする。   Further, in the first or second feature ring oscillation circuit, a third feature is that a pulse width of a pulse signal output from the monostable multivibrator is shorter than one cycle of the ring oscillation operation in the positive feedback loop. And Further, when the pulse width of the pulse signal output from the monostable multivibrator input to the delay circuit decreases due to the propagation time difference between the rising edge propagation time and the falling edge propagation time of the delay circuit, the pulse width is It is characterized in that it is longer than the propagation time difference, and conversely, when the pulse width increases, the sum of the pulse width and the propagation time difference is shorter than one cycle of the ring oscillation operation in the positive feedback loop, To do.

上記特徴のリング発振回路によれば、一旦リング発振動作が開始すれば、単安定マルチバイブレータによって一定パルス幅のパルス信号が出力され、遅延回路の入力に供給され、更に、遅延回路を経由して単安定マルチバイブレータに供給されるため、遅延回路の立ち上がりエッジまたは立ち下がりエッジ対する遅延時間に差があっても、正帰還ループを一巡する毎に、単安定マルチバイブレータで発振パルスのパルス幅が一定に規制されるため、一定のパルス幅で安定的に正帰還によるリング発振動作を継続することができる。特に、第2の特徴のリング発振回路によれば、リング発振動作の起動が容易化される。   According to the ring oscillation circuit having the above characteristics, once the ring oscillation operation starts, a pulse signal having a constant pulse width is output by the monostable multivibrator, supplied to the input of the delay circuit, and further via the delay circuit. Since it is supplied to the monostable multivibrator, the pulse width of the oscillation pulse is constant in the monostable multivibrator every time it goes through the positive feedback loop even if there is a difference in the delay time with respect to the rising edge or falling edge of the delay circuit Therefore, the ring oscillation operation by positive feedback can be stably continued with a constant pulse width. In particular, according to the ring oscillation circuit of the second feature, the activation of the ring oscillation operation is facilitated.

また、負帰還によるリング発振動作では、発振周期が、負帰還ループを一巡する立ち上がりエッジ及び立ち下がりエッジ対する夫々の遅延時間の合計となるため、発振周期の測定だけでは、帰還ループを一巡する立ち上がりエッジまたは立ち下がりエッジ対する遅延時間を個別に正確に測定することはできず、当該2つの遅延時間差の2分の1に相当する誤差が生じるが、正帰還によるリング発振動作では、発振周期が、正帰還ループを一巡する立ち上がりエッジまたは立ち下がりエッジ対する何れか一方の遅延時間と単安定マルチバイブレータの遅延時間(応答時間)の合計となるため、単安定マルチバイブレータの遅延時間が既知であれば、遅延回路の遅延時間を発振周期から正確に導出できる。   In the ring oscillation operation using negative feedback, the oscillation period is the sum of the delay times for the rising and falling edges that make a round of the negative feedback loop. The delay time for the edge or the falling edge cannot be accurately measured individually, and an error corresponding to one half of the difference between the two delay times occurs. However, in the ring oscillation operation by positive feedback, the oscillation period is Since it is the sum of the delay time (response time) of either the rising edge or falling edge that makes a round of the positive feedback loop and the monostable multivibrator, if the delay time of the monostable multivibrator is known, The delay time of the delay circuit can be accurately derived from the oscillation period.

ここで、正帰還とは、帰還ループ上の任意のノードにおいて、当該ノードの信号レベルが帰還ループを一巡して同位相(同じ論理レベル)で帰還する場合を言う。従って、遅延回路の入力と出力が必ずしも同位相である必要はなく、遅延回路の入力と出力が逆位相(論理レベルが逆)の場合は、単安定マルチバイブレータが逆位相のパルス出力をすればよい。   Here, the positive feedback refers to a case where the signal level of the node returns in the same phase (same logic level) through the feedback loop at an arbitrary node on the feedback loop. Therefore, the input and output of the delay circuit do not necessarily have the same phase. If the input and output of the delay circuit are in reverse phase (logical levels are opposite), the monostable multivibrator can output a pulse with the reverse phase. Good.

上記目的を達成するための本発明に係るパルス発生回路の基礎となる遅延時間測定回路は、被測定回路の遅延時間を測定する遅延時間測定回路であって、単安定マルチバイブレータと発振周波数測定回路を備えてなり、前記単安定マルチバイブレータの入力が、前記被測定回路の出力と接続可能で、前記単安定マルチバイブレータの出力が、前記被測定回路の入力と接続可能で、前記単安定マルチバイブレータの入力と出力が、前記被測定回路の出力と入力と夫々接続することにより、前記被測定回路と前記単安定マルチバイブレータが正帰還ループを構成し、前記発振周波数測定回路が前記正帰還ループによるリング発振動作の発振周波数の測定時に前記正帰還ループと接続可能に構成されていることを特徴とする。   In order to achieve the above object, a delay time measuring circuit as a basis of a pulse generating circuit according to the present invention is a delay time measuring circuit for measuring a delay time of a circuit under test, comprising a monostable multivibrator and an oscillation frequency measuring circuit. The input of the monostable multivibrator can be connected to the output of the circuit under test, the output of the monostable multivibrator can be connected to the input of the circuit under test, and the monostable multivibrator Are connected to the output and input of the circuit under test, respectively, so that the circuit under test and the monostable multivibrator form a positive feedback loop, and the oscillation frequency measurement circuit is based on the positive feedback loop. It is configured to be connectable to the positive feedback loop when measuring the oscillation frequency of the ring oscillation operation.

上記目的を達成するための本発明に係るパルス発生回路の基礎となる遅延時間測定方法は、上記特徴の遅延時間測定回路を用いた被測定回路の遅延時間を測定する遅延時間測定方法であって、前記単安定マルチバイブレータの入力を前記被測定回路の出力と接続し、前記単安定マルチバイブレータの出力を前記被測定回路の入力と接続することにより、正帰還によるリング発振動作を起こし、前記発振周波数測定回路により前記正帰還によるリング発振動作の発振周波数を測定し、前記発振周波数測定回路の測定結果に基づいて、前記被測定回路の遅延時間を測定することを第1の特徴とする。   In order to achieve the above object, a delay time measuring method as a basis of a pulse generation circuit according to the present invention is a delay time measuring method for measuring a delay time of a circuit under test using the delay time measuring circuit having the above characteristics. Connecting the input of the monostable multivibrator to the output of the circuit to be measured, and connecting the output of the monostable multivibrator to the input of the circuit to be measured, thereby causing a ring oscillation operation by positive feedback, and the oscillation A first characteristic is that an oscillation frequency of the ring oscillation operation by the positive feedback is measured by a frequency measurement circuit, and a delay time of the circuit to be measured is measured based on a measurement result of the oscillation frequency measurement circuit.

更に、上記第1の特徴の遅延時間測定方法は、前記被測定回路の遅延時間として、立ち上がりエッジ伝播時間を測定する場合は、前記単安定マルチバイブレータは、入力信号の立ち上がりエッジまたは立ち下がりエッジに対して一定のパルス幅の立ち上がりパルス信号を出力する単安定マルチバイブレータを使用し、前記被測定回路の遅延時間として、立ち下がりエッジ伝播時間を測定する場合は、前記単安定マルチバイブレータは、入力信号の立ち下がりエッジまたは立ち上がりエッジに対して一定のパルス幅の立ち下がりパルス信号を出力する単安定マルチバイブレータを使用することを第2の特徴とする。   Further, in the delay time measuring method according to the first feature, when the rising edge propagation time is measured as the delay time of the circuit under test, the monostable multivibrator is set at the rising edge or falling edge of the input signal. On the other hand, when using a monostable multivibrator that outputs a rising pulse signal with a constant pulse width and measuring the falling edge propagation time as the delay time of the circuit under test, the monostable multivibrator A second feature is to use a monostable multivibrator that outputs a falling pulse signal having a constant pulse width with respect to the falling edge or rising edge of the first and second rising edges.

上記特徴の遅延時間測定回路または遅延時間測定方法によれば、被測定回路と単安定マルチバイブレータで構成される正帰還ループによるリング発振動作の発振周波数の逆数で規定される発振周期が、被測定回路の遅延時間と単安定マルチバイブレータの遅延時間の合計で表されるため、単安定マルチバイブレータの遅延時間が既知であると、測定された発振周期から被測定回路の遅延時間を直接求めることができる。この結果、被測定回路の立ち上がりエッジ伝播時間と立ち下がりエッジ伝播時間に差があっても、夫々個別に精度良く測定することができる。   According to the delay time measuring circuit or the delay time measuring method having the above characteristics, the oscillation period defined by the reciprocal of the oscillation frequency of the ring oscillation operation by the positive feedback loop composed of the circuit to be measured and the monostable multivibrator is measured. Since the delay time of the monostable multivibrator is known, the delay time of the circuit under test can be obtained directly from the measured oscillation period. it can. As a result, even if there is a difference between the rising edge propagation time and the falling edge propagation time of the circuit under test, it is possible to measure each individually with high accuracy.

上記目的を達成するための本発明に係るパルス発生回路は、入力クロック信号に対して少なくとも2つの異なる遅延信号を出力するとともに、前記2つの異なる遅延信号の内の遅い方の第2遅延信号の前記入力クロック信号からの遅延時間が調整可能に構成されている遅延回路部と、単安定マルチバイブレータと、前記単安定マルチバイブレータの出力信号が、前記遅延回路部内の前記入力クロック信号から前記第2遅延信号に至る信号遅延経路を経由して、前記単安定マルチバイブレータの入力に帰還する第1の正帰還ループと、前記単安定マルチバイブレータの出力信号が、前記信号遅延経路を経由せずに、前記単安定マルチバイブレータの入力に帰還する第2の正帰還ループを、個別に形成するための信号接続を制御するとともに、前記遅延回路部の遅延時間の調整を行う制御回路と、前記第1の正帰還ループ及び前記第2の正帰還ループの何れか一方が個別に形成されている状態で、形成されている前記何れか一方の正帰還ループの発振周波数を測定する発振周波数測定回路と、前記入力クロック信号と前記2つの異なる遅延信号から、前記入力クロック信号の1周期内に少なくとも2回の立ち上がりエッジまたは立ち下がりエッジを有し、前記2回の立ち上がりエッジまたは立ち下がりエッジ間の時間差が前記第2遅延信号の前記入力クロック信号からの遅延時間と同等となるパルス信号を生成するパルス生成回路と、を備えてなることを第1の特徴とする。   In order to achieve the above object, a pulse generation circuit according to the present invention outputs at least two different delay signals with respect to an input clock signal, and the second delay signal, which is the slower one of the two different delay signals. A delay circuit unit configured to be capable of adjusting a delay time from the input clock signal, a monostable multivibrator, and an output signal of the monostable multivibrator are transmitted from the input clock signal in the delay circuit unit to the second A first positive feedback loop that feeds back to the input of the monostable multivibrator via a signal delay path leading to a delay signal, and an output signal of the monostable multivibrator does not pass through the signal delay path, In addition to controlling the signal connection for individually forming a second positive feedback loop that feeds back to the input of the monostable multivibrator, Any one of the control circuit that adjusts the delay time of the delay circuit unit, and any one of the first positive feedback loop and the second positive feedback loop formed separately. An oscillation frequency measurement circuit that measures the oscillation frequency of one positive feedback loop, and at least two rising edges or falling edges within one cycle of the input clock signal from the input clock signal and the two different delay signals. And a pulse generation circuit that generates a pulse signal in which a time difference between the two rising edges or falling edges is equal to a delay time of the second delay signal from the input clock signal. Is the first feature.

更に、上記第1の特徴のパルス発生回路は、前記遅延回路部が、少なくとも一方が遅延時間を調整可能な可変遅延回路である2つの遅延回路を縦続接続して形成され、前記2つの遅延回路が前記2つの異なる遅延信号を各別に出力することを第2の特徴とする。   Further, in the pulse generation circuit of the first feature, the delay circuit section is formed by cascading two delay circuits, at least one of which is a variable delay circuit capable of adjusting a delay time, and the two delay circuits The second feature is that the two different delay signals are output separately.

更に、上記第1の特徴のパルス発生回路は、前記遅延回路部が、少なくとも一方が遅延時間を調整可能な可変遅延回路である2つの遅延回路を並列に備えて形成され、前記2つの遅延回路が、同じ前記入力クロック信号を入力して、前記2つの異なる遅延信号を各別に出力することを第3の特徴とする。   Further, in the pulse generation circuit of the first feature, the delay circuit section is formed by including two delay circuits in parallel, at least one of which is a variable delay circuit capable of adjusting a delay time, and the two delay circuits However, the third feature is that the same input clock signal is inputted and the two different delay signals are outputted separately.

更に、上記第1または第2の特徴のパルス発生回路は、前記2つの遅延回路の一方が、遅延時間が固定の固定遅延回路であることを第4の特徴とする。   Furthermore, the pulse generation circuit according to the first or second feature is characterized in that the one of the two delay circuits is a fixed delay circuit with a fixed delay time.

更に、上記第1乃至第4の何れかの特徴のパルス発生回路は、外部制御信号の入力に応じて前記パルス信号と前記入力クロック信号を択一的に選択して出力する選択回路を備えることを第5の特徴とする。   Furthermore, the pulse generation circuit having any one of the first to fourth features includes a selection circuit that selectively selects and outputs the pulse signal and the input clock signal in accordance with an input of an external control signal. Is the fifth feature.

更に、上記第5の特徴のパルス発生回路は、前記2つの異なる遅延信号の内の早い方の第1遅延信号と前記外部制御信号から、前記選択回路が前記パルス信号を選択している期間に同期して出力される第2パルス信号を生成する第2パルス生成回路を備えることを第6の特徴とする。   Further, the pulse generating circuit of the fifth feature is characterized in that the selection circuit selects the pulse signal from the earlier first delay signal of the two different delay signals and the external control signal. A sixth feature is that a second pulse generation circuit for generating a second pulse signal output in synchronization is provided.

上記特徴のパルス生成回路によれば、パルス生成回路で生成されたパルス信号の2回の立ち上がりエッジまたは立ち下がりエッジを、スキャンパス法によるディレイテストに使用するラウンチ動作とキャプチャー動作の各クロックエッジと使用することができる。この場合、ラウンチクロックエッジとキャプチャークロックエッジ間の時間差が、遅延回路部の第2遅延信号の入力クロック信号からの調整可能な遅延時間と同等であり、また、当該遅延時間が、発振周波数測定回路で測定される単安定マルチバイブレータを経由する第1及び第2の正帰還ループの各発振周波数から求まる発振周期の差に相当するため、ディレイテストのタイミングを高速且つ高精度に測定及び調整可能となる。   According to the pulse generation circuit having the above characteristics, two rising edges or falling edges of the pulse signal generated by the pulse generation circuit are used as the launch edge used for the delay test by the scan path method and the clock edges of the capture operation. Can be used. In this case, the time difference between the launch clock edge and the capture clock edge is equivalent to an adjustable delay time from the input clock signal of the second delay signal of the delay circuit unit, and the delay time is determined by the oscillation frequency measuring circuit. This corresponds to the difference between the oscillation periods obtained from the oscillation frequencies of the first and second positive feedback loops that pass through the monostable multivibrator measured in step 1. Therefore, the delay test timing can be measured and adjusted with high speed and high accuracy. Become.

ここで、上記特徴のパルス生成回路は、パルス信号の生成にPLL回路を使用していないため、上記背景技術2に対する課題で指摘した問題点1)〜3)が解消され、更に、可変遅延回路を使用しているものの、その遅延時間の測定が可能であるため、同問題点4)が解消され、また、可変遅延回路の遅延時間を調整することで、ラウンチクロックエッジとキャプチャークロックエッジ間の時間差を調整できるので、同問題点5)が解消され、更に、遅延時間の測定に使用するリングオシレータが単安定マルチバイブレータを使用した正帰還ループであるので、同第6及び第7の問題点も解消される。   Here, since the pulse generation circuit having the above characteristics does not use a PLL circuit for generating a pulse signal, the problems 1) to 3) pointed out in the problem with respect to the background art 2 are solved, and further, a variable delay circuit is provided. However, since the delay time can be measured, the same problem 4) is solved, and by adjusting the delay time of the variable delay circuit, the launch clock edge and the capture clock edge can be measured. Since the time difference can be adjusted, the same problem 5) is solved. Further, since the ring oscillator used for measuring the delay time is a positive feedback loop using a monostable multivibrator, the sixth and seventh problems are the same. Is also resolved.

特に、第5の特徴のパルス生成回路によれば、選択回路から出力される信号を、入力クロック信号が選択されている場合には、ディレイテストの対象となる被テスト回路の実動作用のクロック信号として、パルス信号が選択されている場合には、被テスト回路のディレイテストのラウンチクロックとキャプチャークロックとして、外部制御信号の入力に応じて切り換えて使用することができる。   In particular, according to the pulse generation circuit of the fifth feature, when the input clock signal is selected, the signal output from the selection circuit is the clock for actual operation of the circuit under test to be subjected to the delay test. When a pulse signal is selected as a signal, it can be used by switching according to the input of an external control signal as a launch clock and a capture clock for a delay test of the circuit under test.

特に、第6の特徴のパルス生成回路によれば、第2パルス生成回路で生成される第2パルス信号をディレイテストの対象となる被テスト回路のスキャンイネーブル信号として使用することができる。   In particular, according to the pulse generation circuit having the sixth feature, the second pulse signal generated by the second pulse generation circuit can be used as a scan enable signal of a circuit under test to be subjected to a delay test.

更に、上記目的を達成するための本発明に係る半導体集積回路は、スキャンパス法によるディレイテストを実行可能に構成された半導体集積回路であって、上記第5の特徴のパルス発生回路を内蔵し、前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用することを第1の特徴とする。   Furthermore, a semiconductor integrated circuit according to the present invention for achieving the above object is a semiconductor integrated circuit configured to be able to perform a delay test by a scan path method, and incorporates the pulse generating circuit of the fifth feature. The first feature is that a signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method.

更に、本発明に係る半導体集積回路は、スキャンパス法によるディレイテストを実行可能に構成された半導体集積回路であって、上記第6の特徴のパルス発生回路を内蔵し、前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用し、前記第2パルス生成回路から出力される前記第2パルス信号を、前記被テスト回路のスキャンイネーブル信号として使用することを第2の特徴とする。   Furthermore, a semiconductor integrated circuit according to the present invention is a semiconductor integrated circuit configured to be able to execute a delay test by a scan path method, and has a built-in pulse generation circuit having the sixth feature, which is output from the selection circuit. Is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method, and the second pulse signal output from the second pulse generation circuit is used as a scan enable signal of the circuit under test. The second feature is to be used as

上記特徴の半導体集積回路によれば、上記第5または第6特徴のパルス発生回路を内蔵しているので、上記背景技術2に対する課題で指摘した問題点1)〜7)が全て解消され、高速且つ高精度にスキャンパス法によるディレイテストを実行可能な半導体集積回路を実現できる。   According to the semiconductor integrated circuit of the above feature, since the pulse generation circuit of the fifth or sixth feature is incorporated, all of the problems 1) to 7) pointed out in the problem with respect to the background art 2 are solved, and high speed is achieved. In addition, a semiconductor integrated circuit capable of performing a delay test by the scan path method with high accuracy can be realized.

更に、上記目的を達成するための本発明に係る半導体集積回路のテスト方法は、半導体集積回路に対しスキャンパス法によるディレイテストを実行するテスト方法であって、上記第5の特徴のパルス発生回路を使用し、前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用することを第1の特徴とする。   Furthermore, a semiconductor integrated circuit test method according to the present invention for achieving the above object is a test method for executing a delay test by a scan path method on a semiconductor integrated circuit, wherein the pulse generating circuit according to the fifth feature is provided. The first feature is that a signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method.

更に、本発明に係る半導体集積回路のテスト方法は、半導体集積回路に対しスキャンパス法によるディレイテストを実行するテスト方法であって、上記第6の特徴のパルス発生回路を使用し、前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用し、前記第2パルス生成回路から出力される前記第2パルス信号を、前記被テスト回路のスキャンイネーブル信号として使用することを第2の特徴とする。   Furthermore, a test method for a semiconductor integrated circuit according to the present invention is a test method for executing a delay test by a scan path method on a semiconductor integrated circuit, wherein the selection circuit uses the pulse generation circuit of the sixth feature. Is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method, and the second pulse signal output from the second pulse generation circuit is used as the clock pulse of the circuit under test. The second feature is that it is used as a scan enable signal.

上記特徴の半導体集積回路のテスト方法によれば、上記第5または第6特徴のパルス発生回路を使用するので、上記背景技術2に対する課題で指摘した問題点1)〜7)が全て解消され、半導体集積回路に対するスキャンパス法によるディレイテストを高速且つ高精度に実行できる。   According to the semiconductor integrated circuit test method of the above feature, since the pulse generation circuit of the fifth or sixth feature is used, all the problems 1) to 7) pointed out in the problem with respect to the background art 2 are solved, A delay test by a scan path method for a semiconductor integrated circuit can be executed at high speed and with high accuracy.

以下、本発明に係るパルス発生回路、及び、半導体集積回路とそのテスト方法の実施形態を図面に基づいて説明する。先ず、本発明に係るパルス発生回路、及び、半導体集積回路とそのテスト方法の基礎となるリング発振回路、遅延時間測定回路と遅延時間測定方法について、第1及び第2実施形態において説明する。   Embodiments of a pulse generation circuit, a semiconductor integrated circuit, and a test method thereof according to the present invention will be described below with reference to the drawings. First, a pulse generation circuit, a semiconductor integrated circuit and a ring oscillation circuit, a delay time measuring circuit and a delay time measuring method which are the basis of the test method according to the present invention will be described in the first and second embodiments.

〈第1実施形態〉
図1に、本発明の基礎となる正帰還によるリング発振回路1の構成例を示す。図1に示すように、リング発振回路1は、遅延回路2と単安定マルチバイブレータ3と発振起動回路4を一巡する正帰還ループによって構成されている。図1に示す構成例では、遅延回路2の出力が単安定マルチバイブレータ3の入力に接続し、単安定マルチバイブレータ3の出力が、発振起動回路4を介して遅延回路2の入力に接続している。遅延回路2は、入力端と出力端の間で信号遅延を生じる回路であれば、その回路構成は何でも構わない。特に、入力数や出力数は複数であっても構わない。正帰還ループを構成する条件は、遅延回路2の入力に立ち上がりエッジまたは立ち下がりエッジの信号が入力して、遅延回路2と単安定マルチバイブレータ3と発振起動回路4を一巡して遅延回路2の入力に戻ってくる信号が同相の立ち上がりエッジまたは立ち下がりエッジの信号であるように、遅延回路2と単安定マルチバイブレータ3と発振起動回路4の各回路の入出力間の信号の位相関係を備えることである。例えば、各回路の入出力間の信号の位相関係が同相、つまり、立ち上がりエッジの信号入力に対して立ち上がりエッジの信号を出力する関係である。或いは、遅延回路2と単安定マルチバイブレータ3と発振起動回路4の内の2つの回路が、入出力間の信号の位相関係が逆相、つまり、立ち上がり(または立ち下がり)エッジの信号入力に対して立ち下がり(または立ち上がり)エッジの信号を出力する関係であってもよい。
<First Embodiment>
FIG. 1 shows an example of the configuration of a ring oscillation circuit 1 based on positive feedback which is the basis of the present invention. As shown in FIG. 1, the ring oscillation circuit 1 is configured by a positive feedback loop that goes around the delay circuit 2, the monostable multivibrator 3, and the oscillation starting circuit 4. In the configuration example shown in FIG. 1, the output of the delay circuit 2 is connected to the input of the monostable multivibrator 3, and the output of the monostable multivibrator 3 is connected to the input of the delay circuit 2 via the oscillation starting circuit 4. Yes. The delay circuit 2 may have any circuit configuration as long as it generates a signal delay between the input terminal and the output terminal. In particular, there may be a plurality of inputs and outputs. The condition for forming the positive feedback loop is that a signal of a rising edge or a falling edge is input to the input of the delay circuit 2, and the delay circuit 2, the monostable multivibrator 3, and the oscillation starter circuit 4 make a round. The phase relationship of the signals between the input and output of each circuit of the delay circuit 2, the monostable multivibrator 3, and the oscillation start circuit 4 is provided so that the signal returning to the input is a signal having a rising edge or a falling edge having the same phase. That is. For example, the phase relationship of signals between the input and output of each circuit is in phase, that is, a relationship in which a rising edge signal is output with respect to a rising edge signal input. Alternatively, two of the delay circuit 2, the monostable multivibrator 3, and the oscillation starting circuit 4 are configured so that the phase relationship of the signals between the input and output is opposite, that is, with respect to the rising edge (or falling edge) signal input. Thus, a relationship of outputting a falling (or rising) edge signal may be used.

図1では、発振起動回路4は2入力の排他的論理和回路で構成されている。一方の入力がリング発振動作の起動信号Initである。発振起動回路4は、必ずしも独立した回路である必要はなく、遅延回路2または単安定マルチバイブレータ3の内部に組み込まれていても構わない。従って、発振起動回路4は、遅延回路2または単安定マルチバイブレータ3の一部として扱うことができる。   In FIG. 1, the oscillation starting circuit 4 is composed of a 2-input exclusive OR circuit. One input is a ring oscillation operation start signal Init. The oscillation starting circuit 4 is not necessarily an independent circuit, and may be incorporated in the delay circuit 2 or the monostable multivibrator 3. Therefore, the oscillation starting circuit 4 can be handled as a part of the delay circuit 2 or the monostable multivibrator 3.

図2に、単安定マルチバイブレータ3の回路動作例を示す。図2に示す動作例では、入力信号の立ち上がりエッジに応答して回路固有の一定期間のパルス幅の立ち上がりパルスを出力する。単安定マルチバイブレータとしては、上記の動作以外に、入力信号の立ち下がりエッジに応答して立ち下がりパルスを出力する動作、入力信号の立ち上がりエッジに応答して立ち下がりパルスを出力する動作、入力信号の立ち下がりエッジに応答して立ち上がりパルスを出力する動作があり、後の2動作は、入出力間の位相関係が逆相になる。以下の説明において、図1に示す単安定マルチバイブレータ3としては、入力信号の立ち上がりエッジに応答して立ち上がりパルスを出力するものを想定する。   FIG. 2 shows a circuit operation example of the monostable multivibrator 3. In the operation example shown in FIG. 2, a rising pulse having a pulse width of a certain period specific to the circuit is output in response to the rising edge of the input signal. In addition to the above operations, the monostable multivibrator operates to output a falling pulse in response to the falling edge of the input signal, to output a falling pulse in response to the rising edge of the input signal, and to the input signal. There is an operation of outputting a rising pulse in response to the falling edge of the signal, and in the latter two operations, the phase relationship between the input and output is reversed. In the following description, it is assumed that the monostable multivibrator 3 shown in FIG. 1 outputs a rising pulse in response to a rising edge of an input signal.

図3に、入力信号の立ち上がりエッジに応答して立ち上がりパルスを出力する単安定マルチバイブレータの回路例を示す。また、図4に、図3に示す単安定マルチバイブレータの信号波形を示す。図3に示す単安定マルチバイブレータは、D型フリップフロップ5と偶数段のインバータ列6と2入力排他的論理和回路7で構成されており、入力信号INがD型フリップフロップ5のクロック入力CKに入力し、D型フリップフロップ5の反転データ出力QBがD型フリップフロップ5のデータ入力Dに接続している。リセット信号RST#が高レベル時に単安定マルチバイブレータが活性化して、入力信号INの立ち上がりエッジに応答して立ち上がりパルスOUTを出力する。   FIG. 3 shows a circuit example of a monostable multivibrator that outputs a rising pulse in response to a rising edge of an input signal. FIG. 4 shows signal waveforms of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 3 includes a D-type flip-flop 5, an even number of inverter rows 6, and a 2-input exclusive OR circuit 7, and an input signal IN is a clock input CK of the D-type flip-flop 5. The inverted data output QB of the D-type flip-flop 5 is connected to the data input D of the D-type flip-flop 5. When the reset signal RST # is at a high level, the monostable multivibrator is activated and outputs a rising pulse OUT in response to the rising edge of the input signal IN.

図5及び図6を参照して、単安定マルチバイブレータを用いた正帰還によるリング発振動作を説明する。図5は、本発明の基礎となるリング発振回路1の模式図であり、リング発振回路1の発振周期を測定する周波数測定回路8の入力が、正帰還ループ上の遅延回路2の出力ノードN2に接続している。図6は、図5に示すリング発振回路1の発振動作中の遅延回路2の入力ノードN1と出力ノードN2における信号波形を示したものである。図5に示すリング発振回路1では、入力信号の立ち上がりエッジに応答して立ち上がりパルスを出力する単安定マルチバイブレータ3を使用している。   A ring oscillation operation by positive feedback using a monostable multivibrator will be described with reference to FIGS. FIG. 5 is a schematic diagram of the ring oscillation circuit 1 that is the basis of the present invention. The input of the frequency measurement circuit 8 that measures the oscillation period of the ring oscillation circuit 1 is the output node N2 of the delay circuit 2 on the positive feedback loop. Connected to. FIG. 6 shows signal waveforms at the input node N1 and the output node N2 of the delay circuit 2 during the oscillation operation of the ring oscillation circuit 1 shown in FIG. The ring oscillation circuit 1 shown in FIG. 5 uses a monostable multivibrator 3 that outputs a rising pulse in response to a rising edge of an input signal.

遅延回路2の入力ノードN1に印加された立ち上がりパルスは、遅延回路2の遅延時間後に出力ノードN2に同相の立ち上がりパルスとして出力する。この出力ノードN2の立ち上がりパルスの立ち上がりエッジが単安定マルチバイブレータ3を作動させて、単安定マルチバイブレータ3で規定される一定パルス幅の立ち上がりパルスを出力させ、入力ノードN1に印加する。更に、単安定マルチバイブレータ3から印加された立ち上がりパルスが、遅延回路2の遅延時間経過後に出力ノードN2に同相で到達し、単安定マルチバイブレータ3を作動させるという循環動作を繰り返すことにより、正帰還によるリング発振動作を実行する。   The rising pulse applied to the input node N1 of the delay circuit 2 is output as an in-phase rising pulse to the output node N2 after the delay time of the delay circuit 2. The rising edge of the rising pulse of the output node N2 activates the monostable multivibrator 3 to output a rising pulse having a constant pulse width defined by the monostable multivibrator 3, and applies it to the input node N1. Furthermore, the rising pulse applied from the monostable multivibrator 3 reaches the output node N2 in phase after the delay time of the delay circuit 2 elapses, and repeats the cyclic operation of operating the monostable multivibrator 3, thereby positive feedback. Execute ring oscillation operation by.

ここで、立ち上がりパルスが入力ノードN1から出力ノードN2へ伝搬する際に、立ち上がりエッジに対する伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差により立ち上がりパルスのパルス幅(高レベル期間)が伸縮する。つまり、伝播遅延時間Dreの方が伝播遅延時間Dfeより長いとパルス幅は短くなり、逆に、伝播遅延時間Dreの方が伝播遅延時間Dfeより短いとパルス幅は長くなる。   Here, when the rising pulse propagates from the input node N1 to the output node N2, the pulse width (high level period) of the rising pulse expands or contracts due to the time difference between the propagation delay time Dre with respect to the rising edge and the propagation delay time Dfe with respect to the falling edge. To do. That is, if the propagation delay time Dre is longer than the propagation delay time Dfe, the pulse width becomes shorter. Conversely, if the propagation delay time Dre is shorter than the propagation delay time Dfe, the pulse width becomes longer.

しかし、本発明の基礎となるリング発振回路1では、単安定マルチバイブレータ3が、出力ノードN2からパルス幅の変化した立ち上がりパルスが入力する毎に、一定のパルス幅Tpwの立ち上がりパルスを入力ノードN1に出力するため、従来の単安定マルチバイブレータを使用しない正帰還ループのリング発振動作において伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差によってパルス幅が正帰還ループを一巡する毎に変化してパルス信号が消滅するという問題が回避できる。つまり、本発明の基礎となるリング発振回路1では、単安定マルチバイブレータ3が、伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差によるパルス幅が単調且つ累積的に変化するのを抑止して、パルス幅を一定に保つ役割を果たしている。   However, in the ring oscillation circuit 1 which is the basis of the present invention, every time the monostable multivibrator 3 receives a rising pulse whose pulse width has changed from the output node N2, the rising pulse having a constant pulse width Tpw is input to the input node N1. In the ring oscillation operation of the positive feedback loop that does not use the conventional monostable multivibrator, the pulse width changes every time it makes a round of the positive feedback loop due to the time difference between the propagation delay time Dre and the propagation delay time Dfe with respect to the falling edge. Thus, the problem that the pulse signal disappears can be avoided. That is, in the ring oscillation circuit 1 which is the basis of the present invention, the monostable multivibrator 3 prevents the pulse width due to the time difference between the propagation delay time Dre and the propagation delay time Dfe with respect to the falling edge from changing monotonously and cumulatively. Thus, the pulse width is kept constant.

ここで、正帰還ループがリング発振動作を保持するためには、単安定マルチバイブレータ3が発生する出力パルスを遅延回路2に入力した時の遅延回路2の出力パルスが、再度単安定マルチバイブレータ3を起動できることが条件となる。単安定マルチバイブレータ3の出力パルスの立ち上がりエッジが遅延回路2に入力する前に、1周期前の出力パルスが立ち下っている必要がある。つまり、単安定マルチバイブレータ3の出力パルスの一定のパルス幅は、リング発振動作の1周期より短く設定する必要がある。更に、伝播遅延時間Dreの方が伝播遅延時間Dfeより長い(Dre>Dfe)場合には、単安定マルチバイブレータ3の出力パルス幅は、遅延回路2を通過すると伝播遅延時間差(Dre−Dfe)だけ短くなるため、出力パルス幅は伝播遅延時間差(Dre−Dfe)より長く設定する。また、伝播遅延時間Dreの方が伝播遅延時間Dfeより短い(Dre<Dfe)場合には、単安定マルチバイブレータ3の出力パルス幅が遅延回路2を通過すると伝播遅延時間差(Dfe−Dre)だけ長くなるため、出力パルス幅と伝播遅延時間差(Dfe−Dre)の合計は、リング発振動作の1周期より短く設定する。正帰還によるリング発振動作の周期Tpfは、下記の数9に示すように、遅延回路2の立ち上がりエッジに対する伝播遅延時間Dreと単安定マルチバイブレータ3の入力の立ち上がりエッジから出力パルスの立ち上がりエッジまでの遅延時間Dmrrの合計となる。   Here, in order for the positive feedback loop to maintain the ring oscillation operation, the output pulse of the delay circuit 2 when the output pulse generated by the monostable multivibrator 3 is input to the delay circuit 2 is again changed to the monostable multivibrator 3. It is a condition that can be started. Before the rising edge of the output pulse of the monostable multivibrator 3 is input to the delay circuit 2, the output pulse of one cycle before needs to fall. That is, the constant pulse width of the output pulse of the monostable multivibrator 3 needs to be set shorter than one cycle of the ring oscillation operation. Further, when the propagation delay time Dre is longer than the propagation delay time Dfe (Dre> Dfe), the output pulse width of the monostable multivibrator 3 is only the propagation delay time difference (Dre−Dfe) when passing through the delay circuit 2. Therefore, the output pulse width is set longer than the propagation delay time difference (Dre-Dfe). When the propagation delay time Dre is shorter than the propagation delay time Dfe (Dre <Dfe), the output pulse width of the monostable multivibrator 3 passes through the delay circuit 2 and is longer by the propagation delay time difference (Dfe−Dre). Therefore, the sum of the output pulse width and the propagation delay time difference (Dfe−Dre) is set to be shorter than one cycle of the ring oscillation operation. The period Tpf of the ring oscillation operation by positive feedback is as follows from the propagation delay time Dre with respect to the rising edge of the delay circuit 2 and the rising edge of the input of the monostable multivibrator 3 to the rising edge of the output pulse, as shown in Equation 9 below. This is the sum of the delay times Dmrr.

(数9)
Tpf=Dre+Dmrr
(Equation 9)
Tpf = Dre + Dmrr

入力信号の立ち上がりエッジに応答して回路固有の一定期間のパルス幅の立ち上がりパルスを出力する単安定マルチバイブレータ3を使用して遅延回路2を含む正帰還ループを構成すると、遅延回路2の立ち上がりエッジに対する伝播遅延時間Dreを数9の関係式より導出することができる。つまり、伝播遅延時間Dreは、正帰還によるリング発振動作の周期Tpfから単安定マルチバイブレータ3の遅延時間Dmrrを減算して求めることができる。従って、任意の遅延回路の立ち上がりエッジに対する伝播遅延時間Dreを直接測定可能な遅延時間測定回路を構成するには、被測定回路である遅延回路2と単安定マルチバイブレータ3を、正帰還ループを構成するように接続し、つまり、図1または図5に示すように接続し、正帰還によるリング発振動作を起こし、発振周波数測定回路8により正帰還によるリング発振動作の発振周波数またはその逆数である発振周期Tpfを測定し、発振周波数測定回路8の測定結果、つまり、発振周波数または発振周期Tpfより、伝播遅延時間Dreを測定するようにすればよい。   When a positive feedback loop including the delay circuit 2 is configured using the monostable multivibrator 3 that outputs a rising pulse having a pulse width of a certain period specific to the circuit in response to the rising edge of the input signal, the rising edge of the delay circuit 2 is obtained. The propagation delay time Dre with respect to can be derived from the relational expression (9). That is, the propagation delay time Dre can be obtained by subtracting the delay time Dmrr of the monostable multivibrator 3 from the period Tpf of the ring oscillation operation by positive feedback. Therefore, in order to construct a delay time measuring circuit capable of directly measuring the propagation delay time Dre with respect to the rising edge of an arbitrary delay circuit, the delay circuit 2 and the monostable multivibrator 3 which are the circuits to be measured are configured as a positive feedback loop. 1 or FIG. 5 to cause a ring oscillation operation by positive feedback, and an oscillation frequency measurement circuit 8 that oscillates at an oscillation frequency of the ring oscillation operation by positive feedback or its inverse. The period Tpf is measured, and the propagation delay time Dre may be measured from the measurement result of the oscillation frequency measurement circuit 8, that is, the oscillation frequency or the oscillation period Tpf.

図7に、被測定回路である遅延回路2を通常動作モードと遅延時間測定モードを切り替えて使用可能にする遅延時間測定回路の回路構成の一例を示す。図7に示す回路構成例では、通常動作モードと遅延時間測定モードで遅延回路2に入力する信号を切り替える信号切替回路10が設けられている。   FIG. 7 shows an example of a circuit configuration of a delay time measurement circuit that enables the delay circuit 2 to be measured to be used by switching between the normal operation mode and the delay time measurement mode. In the circuit configuration example shown in FIG. 7, a signal switching circuit 10 that switches a signal input to the delay circuit 2 in the normal operation mode and the delay time measurement mode is provided.

次に、図8に、図1に例示した発振起動回路4の機能を内蔵した単安定マルチバイブレータ3の回路構成例を示す。また、図9に、図8に示す単安定マルチバイブレータの信号波形を示す。図8に示す単安定マルチバイブレータは、D型フリップフロップ5の反転データ出力QBとデータ入力Dの接続点の後段に、2入力排他的論理和回路9を挿入し、2入力排他的論理和回路9の一方の入力をD型フリップフロップ5の反転データ出力QBに、他方の入力をリセット信号RST#に接続し、出力を2入力排他的論理和回路7の一方の入力とインバータ列6の入力に接続している。その他の回路構成は、図3に示す単安定マルチバイブレータと同様である。図8に示す単安定マルチバイブレータは、リセット信号RST#が起動信号として機能し、リセット信号RST#の立ち上がり時(初期化完了時点)に、起動用の立ち上がりパルスを1回出力する回路構成となっている。この初回のパルスがリング発振動作を開始するトリガー信号となって、リセット解除と同時にリング発振動作を開始させることができる。この単安定マルチバイブレータを使用すると、従来の正帰還によるリング発振動作における上述した2つの問題、つまり、「自発的に発振動作を開始しない」点と「一旦発振動作を開始しても、直ぐに、安定状態に達して発振が停止する」点を同時に解決できる単安定マルチバイブレータを構成することが可能となり、別途、発振起動回路を正帰還ループ上に独立して備える必要がなくなる。   Next, FIG. 8 shows a circuit configuration example of the monostable multivibrator 3 incorporating the function of the oscillation starting circuit 4 illustrated in FIG. FIG. 9 shows a signal waveform of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 8 includes a 2-input exclusive OR circuit 9 inserted after the connection point between the inverted data output QB of the D-type flip-flop 5 and the data input D, and a 2-input exclusive OR circuit. 9 is connected to the inverted data output QB of the D-type flip-flop 5, the other input is connected to the reset signal RST #, and the output is one input of the 2-input exclusive OR circuit 7 and the input of the inverter train 6 Connected to. Other circuit configurations are the same as those of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 8 has a circuit configuration in which the reset signal RST # functions as a start signal and outputs a start-up rising pulse once when the reset signal RST # rises (at the completion of initialization). ing. This first pulse becomes a trigger signal for starting the ring oscillation operation, and the ring oscillation operation can be started simultaneously with the release of the reset. When this monostable multivibrator is used, the above-mentioned two problems in the ring oscillation operation by the conventional positive feedback, that is, the point that “the oscillation operation does not start spontaneously” and “the oscillation operation once started immediately, It is possible to configure a monostable multivibrator that can simultaneously solve the point that oscillation is stopped upon reaching a stable state, and it is not necessary to separately provide an oscillation starting circuit on the positive feedback loop.

〈第2実施形態〉
次に、入力信号の立ち下がりエッジに応答して立ち下がりパルスを出力する単安定マルチバイブレータを使用したリング発振回路について説明する。図10に、立ち下がりエッジに応答して動作する単安定マルチバイブレータ13を使用したリング発振回路11を示す。リング発振回路11は、遅延回路12と単安定マルチバイブレータ13と発振起動回路14を一巡する正帰還ループによって構成されている。回路構成自体は、図1に示す回路構成と同じであるので、重複する説明は割愛する。
Second Embodiment
Next, a ring oscillation circuit using a monostable multivibrator that outputs a falling pulse in response to a falling edge of an input signal will be described. FIG. 10 shows a ring oscillation circuit 11 using a monostable multivibrator 13 that operates in response to a falling edge. The ring oscillation circuit 11 is configured by a positive feedback loop that goes around the delay circuit 12, the monostable multivibrator 13, and the oscillation starting circuit 14. Since the circuit configuration itself is the same as the circuit configuration shown in FIG. 1, redundant description is omitted.

図11に、単安定マルチバイブレータ13の回路動作例を示す。図11に示す動作例では、入力信号の立ち下がりエッジに応答して回路固有の一定期間のパルス幅の立ち下がりパルスを出力する。   FIG. 11 shows a circuit operation example of the monostable multivibrator 13. In the operation example shown in FIG. 11, a falling pulse having a pulse width of a certain period inherent to the circuit is output in response to the falling edge of the input signal.

図12に、入力信号の立ち下がりエッジに応答して立ち下がりパルスを出力する単安定マルチバイブレータの回路例を示す。また、図13に、図12に示す単安定マルチバイブレータの信号波形を示す。図12に示す単安定マルチバイブレータは、D型フリップフロップ15と偶数段のインバータ列16と2入力排他的論理和回路17とインバータ18で構成されており、入力信号IN#がインバータ18で反転してD型フリップフロップ15のクロック入力CKに入力し、D型フリップフロップ15の反転データ出力QBがD型フリップフロップ15のデータ入力Dに接続している。リセット信号RST#が高レベル時に単安定マルチバイブレータが活性化して、入力信号IN#の立ち下がりエッジに応答して立ち下がりパルスOUT#を出力する。   FIG. 12 shows a circuit example of a monostable multivibrator that outputs a falling pulse in response to a falling edge of an input signal. FIG. 13 shows signal waveforms of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 12 includes a D-type flip-flop 15, an even number of inverter rows 16, a 2-input exclusive OR circuit 17, and an inverter 18, and an input signal IN # is inverted by the inverter 18. The inverted data output QB of the D-type flip-flop 15 is connected to the data input D of the D-type flip-flop 15. When the reset signal RST # is at a high level, the monostable multivibrator is activated and outputs a falling pulse OUT # in response to the falling edge of the input signal IN #.

図14及び図15を参照して、入力信号の立ち下がりエッジに応答して動作する単安定マルチバイブレータ13を用いた正帰還によるリング発振動作を説明する。図14は、本発明の基礎となるリング発振回路11の模式図であり、リング発振回路11の発振周期を測定する周波数測定回路8の入力が、正帰還ループ上の遅延回路12の出力ノードN2に接続している。図15は、図14に示すリング発振回路11の発振動作中の遅延回路12の入力ノードN1と出力ノードN2における信号波形を示したものである。図14に示すリング発振回路11では、入力信号の立ち下がりエッジに応答して立ち下がりパルスを出力する単安定マルチバイブレータ13を使用している。   A ring oscillation operation by positive feedback using the monostable multivibrator 13 that operates in response to the falling edge of the input signal will be described with reference to FIGS. FIG. 14 is a schematic diagram of the ring oscillation circuit 11 which is the basis of the present invention. The input of the frequency measurement circuit 8 for measuring the oscillation period of the ring oscillation circuit 11 is the output node N2 of the delay circuit 12 on the positive feedback loop. Connected to. FIG. 15 shows signal waveforms at the input node N1 and the output node N2 of the delay circuit 12 during the oscillation operation of the ring oscillation circuit 11 shown in FIG. The ring oscillation circuit 11 shown in FIG. 14 uses a monostable multivibrator 13 that outputs a falling pulse in response to a falling edge of an input signal.

遅延回路12の入力ノードN1に印加された立ち上がりパルスは、遅延回路12の遅延時間後に出力ノードN2に同相の立ち下がりパルスとして出力する。この出力ノードN2の立ち下がりパルスの立ち下がりエッジが単安定マルチバイブレータ13を作動させて、単安定マルチバイブレータ13で規定される一定パルス幅の立ち下がりパルスを出力させ、入力ノードN1に印加する。更に、単安定マルチバイブレータ13から印加された立ち下がりパルスが、遅延回路12の遅延時間経過後に出力ノードN2に同相で到達し、単安定マルチバイブレータ13を作動させるという循環動作を繰り返すことにより、正帰還によるリング発振動作を実行する。   The rising pulse applied to the input node N1 of the delay circuit 12 is output as an in-phase falling pulse to the output node N2 after the delay time of the delay circuit 12. The falling edge of the falling pulse of the output node N2 operates the monostable multivibrator 13 to output a falling pulse having a constant pulse width defined by the monostable multivibrator 13 and applies it to the input node N1. Further, the falling pulse applied from the monostable multivibrator 13 reaches the output node N2 in phase after the delay time of the delay circuit 12 elapses, and repeats the cyclic operation of activating the monostable multivibrator 13, thereby repeating the normal operation. Performs ring oscillation by feedback.

ここで、立ち下がりパルスが入力ノードN1から出力ノードN2へ伝搬する際に、立ち上がりエッジに対する伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差により立ち上がりパルスのパルス幅(低レベル期間)が伸縮する。つまり、伝播遅延時間Dreの方が伝播遅延時間Dfeより長いとパルス幅は短くなり、逆に、伝播遅延時間Dreの方が伝播遅延時間Dfeより短いとパルス幅は長くなる。   Here, when the falling pulse propagates from the input node N1 to the output node N2, the pulse width (low level period) of the rising pulse is caused by the time difference between the propagation delay time Dre with respect to the rising edge and the propagation delay time Dfe with respect to the falling edge. It expands and contracts. That is, if the propagation delay time Dre is longer than the propagation delay time Dfe, the pulse width becomes shorter. Conversely, if the propagation delay time Dre is shorter than the propagation delay time Dfe, the pulse width becomes longer.

しかし、本発明の基礎となるリング発振回路11では、単安定マルチバイブレータ13が、出力ノードN2からパルス幅の変化した立ち下がりパルスが入力する毎に、一定のパルス幅Tpwの立ち下がりパルスを入力ノードN1に出力するため、従来の単安定マルチバイブレータを使用しない正帰還ループのリング発振動作において伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差によってパルス幅が正帰還ループを一巡する毎に変化してパルス信号が消滅するという問題が回避できる。つまり、本発明の基礎となるリング発振回路11では、単安定マルチバイブレータ13が、伝播遅延時間Dreと立ち下がりエッジ対する伝播遅延時間Dfeの時間差によるパルス幅が単調且つ累積的に変化するのを抑止して、パルス幅を一定に保つ役割を果たしている。   However, in the ring oscillation circuit 11 which is the basis of the present invention, the monostable multivibrator 13 inputs a falling pulse having a constant pulse width Tpw every time a falling pulse whose pulse width has changed is input from the output node N2. In order to output to the node N1, every time the pulse width makes a round of the positive feedback loop due to the time difference between the propagation delay time Dre and the propagation delay time Dfe with respect to the falling edge in the ring oscillation operation of the positive feedback loop without using the conventional monostable multivibrator It is possible to avoid the problem that the pulse signal disappears due to the change. That is, in the ring oscillation circuit 11 which is the basis of the present invention, the monostable multivibrator 13 prevents the pulse width due to the time difference between the propagation delay time Dre and the propagation delay time Dfe with respect to the falling edge from changing monotonically and cumulatively. Thus, the pulse width is kept constant.

ここで、正帰還ループがリング発振動作を保持するためには、単安定マルチバイブレータ13が発生する出力パルスを遅延回路12に入力した時の遅延回路12の出力パルスが、再度単安定マルチバイブレータ13を起動できることが条件となる。単安定マルチバイブレータ13の出力パルスの立ち下がりエッジが遅延回路12に入力する前に、1周期前の出力パルスが立ち上っている必要がある。つまり、単安定マルチバイブレータ13の出力パルスの一定のパルス幅は、リング発振動作の1周期より短く設定する必要がある。正帰還によるリング発振動作の周期Tpfは、下記の数10に示すように、遅延回路12の立ち下がりエッジに対する伝播遅延時間Dfeと単安定マルチバイブレータ13の入力の立ち下がりエッジから出力パルスの立ち下がりエッジまでの遅延時間Dmffの合計となる。   Here, in order for the positive feedback loop to maintain the ring oscillation operation, the output pulse of the delay circuit 12 when the output pulse generated by the monostable multivibrator 13 is input to the delay circuit 12 is again changed to the monostable multivibrator 13. It is a condition that can be started. Before the falling edge of the output pulse of the monostable multivibrator 13 is input to the delay circuit 12, the output pulse of one cycle before needs to rise. That is, the constant pulse width of the output pulse of the monostable multivibrator 13 needs to be set shorter than one cycle of the ring oscillation operation. The period Tpf of the ring oscillation operation by positive feedback is as shown in the following formula 10. The propagation delay time Dfe with respect to the falling edge of the delay circuit 12 and the falling edge of the output pulse from the falling edge of the input of the monostable multivibrator 13 This is the total delay time Dmff until the edge.

(数10)
Tpf=Dfe+Dmff
(Equation 10)
Tpf = Dfe + Dmff

入力信号の立ち下がりエッジに応答して回路固有の一定期間のパルス幅の立ち下がりパルスを出力する単安定マルチバイブレータ13を使用して遅延回路12を含む正帰還ループを構成すると、遅延回路12の立ち下がりエッジに対する伝播遅延時間Dfeを数10の関係式より導出することができる。つまり、伝播遅延時間Dfeは、正帰還によるリング発振動作の周期Tpfから単安定マルチバイブレータ13の遅延時間Dmffを減算して求めることができる。従って、任意の遅延回路の立ち下がりエッジに対する伝播遅延時間Dfeを直接測定可能な遅延時間測定回路を構成するには、被測定回路である遅延回路12と単安定マルチバイブレータ13を、正帰還ループを構成するように接続し、つまり、図10または図14に示すように接続し、正帰還によるリング発振動作を起こし、発振周波数測定回路8により正帰還によるリング発振動作の発振周波数またはその逆数である発振周期Tpfを測定し、発振周波数測定回路の測定結果、つまり、発振周波数または発振周期Tpfより、伝播遅延時間Dfeを測定するようにすればよい。   When a positive feedback loop including the delay circuit 12 is configured using the monostable multivibrator 13 that outputs a falling pulse having a pulse width of a certain period specific to the circuit in response to the falling edge of the input signal, the delay circuit 12 The propagation delay time Dfe for the falling edge can be derived from the relational expression (10). That is, the propagation delay time Dfe can be obtained by subtracting the delay time Dmff of the monostable multivibrator 13 from the period Tpf of the ring oscillation operation by positive feedback. Therefore, in order to construct a delay time measurement circuit capable of directly measuring the propagation delay time Dfe with respect to the falling edge of an arbitrary delay circuit, the delay circuit 12 and the monostable multivibrator 13 which are circuits to be measured are connected to a positive feedback loop. 10 or FIG. 14, the ring oscillation operation by the positive feedback is caused, and the oscillation frequency of the ring oscillation operation by the positive feedback is obtained by the oscillation frequency measuring circuit 8 or the reciprocal thereof. The oscillation period Tpf is measured, and the propagation delay time Dfe may be measured from the measurement result of the oscillation frequency measurement circuit, that is, the oscillation frequency or the oscillation period Tpf.

次に、図16に、図10に例示した発振起動回路14の機能を内蔵した単安定マルチバイブレータ13の回路構成例を示す。また、図17に、図16に示す単安定マルチバイブレータの信号波形を示す。図16に示す単安定マルチバイブレータは、D型フリップフロップ15の反転データ出力QBとデータ入力Dの接続点の後段に、2入力排他的論理和回路19を挿入し、2入力排他的論理和回路19の一方の入力をD型フリップフロップ15の反転データ出力QBに、他方の入力をリセット信号RST#に接続し、出力を2入力排他的論理和回路17の一方の入力とインバータ列16の入力に接続している。その他の回路構成は、図12に示す単安定マルチバイブレータと同様である。図16に示す単安定マルチバイブレータは、リセット信号RST#が起動信号として機能し、リセット信号RST#の立ち上がり時(初期化完了時点)に、起動用の立ち下がりパルスを1回出力する回路構成となっている。この初回のパルスがリング発振動作を開始するトリガー信号となって、リセット解除と同時にリング発振動作を開始させることができる。この単安定マルチバイブレータを使用すると、従来の正帰還によるリング発振動作における上述した2つの問題、つまり、「自発的に発振動作を開始しない」点と「一旦発振動作を開始しても、直ぐに、安定状態に達して発振が停止する」点を同時に解決できる単安定マルチバイブレータを構成することが可能となり、別途、発振起動回路を正帰還ループ上に独立して備える必要がなくなる。   Next, FIG. 16 shows a circuit configuration example of the monostable multivibrator 13 incorporating the function of the oscillation starting circuit 14 illustrated in FIG. FIG. 17 shows a signal waveform of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 16 includes a 2-input exclusive OR circuit 19 inserted after the connection point between the inverted data output QB of the D-type flip-flop 15 and the data input D. One input of 19 is connected to the inverted data output QB of the D-type flip-flop 15, the other input is connected to the reset signal RST #, and the output is input to one input of the 2-input exclusive OR circuit 17 and the input of the inverter string 16. Connected to. Other circuit configurations are the same as those of the monostable multivibrator shown in FIG. The monostable multivibrator shown in FIG. 16 has a circuit configuration in which the reset signal RST # functions as an activation signal and outputs a falling pulse for activation once when the reset signal RST # rises (at the completion of initialization). It has become. This first pulse becomes a trigger signal for starting the ring oscillation operation, and the ring oscillation operation can be started simultaneously with the release of the reset. When this monostable multivibrator is used, the above-mentioned two problems in the ring oscillation operation by the conventional positive feedback, that is, the point that “the oscillation operation does not start spontaneously” and “the oscillation operation once started immediately, It is possible to configure a monostable multivibrator that can simultaneously solve the point that oscillation is stopped upon reaching a stable state, and it is not necessary to separately provide an oscillation starting circuit on the positive feedback loop.

〈第3実施形態〉
次に、第3実施形態において、半導体集積回路のスキャンパス法によるディレイテスト用のパルス信号を生成する本発明に係るパルス発生回路、及び、本発明に係るパルス発生回路を内蔵した半導体集積回路について説明する。パルス信号は、連続して発生する2つのパルスの立ち上がりエッジによって、ラウンチ動作とキャプチャー動作が順番に起動されるラウン・キャプチャークロックとして利用される。本発明に係るパルス発生回路は、ラウンチ・キャプチャークロックのラウンチ動作パルスとキャプチャー動作パルスの各立ち上がりエッジ間の時間差を調整するとともに、第1または第2実施形態において説明した正帰還によるリング発振回路を応用して、調整した時間差を正確に測定可能な制御回路を備えた構成となっている。
<Third Embodiment>
Next, in a third embodiment, a pulse generation circuit according to the present invention for generating a pulse signal for delay test by a scan path method of a semiconductor integrated circuit, and a semiconductor integrated circuit incorporating the pulse generation circuit according to the present invention explain. The pulse signal is used as a round / capture clock in which a launch operation and a capture operation are sequentially activated by rising edges of two pulses generated in succession. The pulse generation circuit according to the present invention adjusts the time difference between the rising edges of the launch operation pulse and the capture operation pulse of the launch / capture clock, and the ring oscillation circuit by the positive feedback described in the first or second embodiment. It has a configuration equipped with a control circuit that can accurately measure the adjusted time difference.

図18に、本発明に係るパルス発生回路50の回路構成、及び、本発明に係る半導体集積回路61の概略構成を示すブロック図である。図18に示すように、本発明に係るパルス発生回路50は、2つの可変遅延回路51,52からなる遅延回路部と、単安定マルチバイブレータ53と、固定遅延回路54と、制御回路55と、パルス生成回路56と、3つの信号選択回路57,58,59と、発振周波数測定回路60と、を備えて構成される。また、本発明に係る半導体集積回路61は、本発明に係るパルス発生回路50によるスキャンパス法によるディレイテストの対象となる被テスト回路62を含む構成となっており、パルス発生回路50と被テスト回路62以外の回路部(例えば、メモリ回路や非同期回路等)を含んでいても構わない。   FIG. 18 is a block diagram showing a circuit configuration of a pulse generation circuit 50 according to the present invention and a schematic configuration of a semiconductor integrated circuit 61 according to the present invention. As shown in FIG. 18, the pulse generation circuit 50 according to the present invention includes a delay circuit unit composed of two variable delay circuits 51 and 52, a monostable multivibrator 53, a fixed delay circuit 54, a control circuit 55, A pulse generation circuit 56, three signal selection circuits 57, 58 and 59, and an oscillation frequency measurement circuit 60 are provided. The semiconductor integrated circuit 61 according to the present invention includes a circuit under test 62 to be subjected to a delay test by the scan path method by the pulse generating circuit 50 according to the present invention. A circuit unit other than the circuit 62 (for example, a memory circuit or an asynchronous circuit) may be included.

遅延回路部は、2つの可変遅延回路51,52を縦続接続してなる。具体的には、前段の可変遅延回路51には、入力クロック信号CLKinと固定遅延回路54の出力を選択する信号選択回路57の出力信号CLK0を入力し、後段の可変遅延回路52には、前段の可変遅延回路51の出力信号CLK1を入力し、各可変遅延回路51,52からは、遅延回路部への入力信号である出力信号CLK0から2つの異なる遅延時間の第1遅延信号CLK1と第2遅延信号CLK2が各別に出力される。各可変遅延回路51,52の遅延時間は、夫々、制御回路55からの遅延時間調整用の制御信号CD1,CD2で調整可能となっている。各可変遅延回路51,52は、例えば、複数のインバータを縦続接続したインバータ列で構成され、そのインバータ列の一部または全部のインバータが、制御信号CD1またはCD2によって、各出力ノードの充電電流または放電電流の少なくとも何れか一方の電流量を増減可能に構成されている。電流量の調整方式によって、制御信号CD1,CD2はアナログ信号の場合もあれば、複数ビットのディジタル信号の場合もある。尚、本実施形態では、2つの遅延信号CLK1,CLK2の各遅延時間は夫々調整可能な構成となっているが、後述する理由より、少なくとも遅い方の第2遅延信号CLK2の遅延時間が独立して調整可能であればよい。   The delay circuit unit is formed by cascading two variable delay circuits 51 and 52. Specifically, an input clock signal CLKin and an output signal CLK0 of a signal selection circuit 57 for selecting the output of the fixed delay circuit 54 are input to the preceding variable delay circuit 51, and the preceding variable delay circuit 52 is connected to the preceding variable delay circuit 52. The output signal CLK1 of the variable delay circuit 51 is input, and from each of the variable delay circuits 51 and 52, the first delay signal CLK1 and the second delay signal CLK2 having two different delay times from the output signal CLK0 that is an input signal to the delay circuit unit. Delay signal CLK2 is output separately. The delay times of the variable delay circuits 51 and 52 can be adjusted by control signals CD1 and CD2 for adjusting the delay time from the control circuit 55, respectively. Each of the variable delay circuits 51 and 52 is constituted by, for example, an inverter train in which a plurality of inverters are connected in cascade, and a part or all of the inverter trains are charged with the charging current of each output node by the control signal CD1 or CD2. The current amount of at least one of the discharge currents can be increased or decreased. Depending on the current amount adjustment method, the control signals CD1 and CD2 may be analog signals or multi-bit digital signals. In the present embodiment, each delay time of the two delay signals CLK1 and CLK2 is adjustable, but for the reason described later, at least the delay time of the later second delay signal CLK2 is independent. Can be adjusted.

単安定マルチバイブレータ53は、本実施形態では、入力信号の立ち上がりエッジに応答して回路固有の一定期間のパルス幅の立ち上がりパルスを出力する単安定マルチバイブレータを使用する。従って、第1実施形態において説明した図3または図8に示す構成ものが使用できる。   In this embodiment, the monostable multivibrator 53 uses a monostable multivibrator that outputs a rising pulse having a pulse width of a certain period specific to a circuit in response to a rising edge of an input signal. Therefore, the configuration shown in FIG. 3 or 8 described in the first embodiment can be used.

制御回路55は、遅延時間調整モードにおいて、可変遅延回路51,52に対して遅延時間調整用の制御信号CD1,CD2を出力して各遅延信号CLK1,CLK2の遅延時間を変更するとともに、各遅延信号CLK1,CLK2の遅延時間測定のために、2つの信号選択回路57,58の信号選択を、信号選択信号S4,S5を用いて制御して、単安定マルチバイブレータ53と固定遅延回路54を経由する3つの正帰還ループを個別に形成する。具体的には、遅延時間測定時において、信号選択信号S4により信号選択回路57の信号選択を固定遅延回路54の出力側に切り替える。また、信号選択信号S5によって、3つの正帰還ループの形成を切り替える。つまり、信号選択回路58が可変遅延回路52から出力される第2遅延信号CLK2を選択して形成される第1の正帰還ループと、信号選択回路58が信号選択回路57の出力信号CLK0を選択して形成される第2の正帰還ループと、信号選択回路58が可変遅延回路51から出力される第1遅延信号CLK1を選択して形成される第3の正帰還ループの3つの正帰還ループが個別に形成可能な構成となっている。尚、固定遅延回路54は、各正帰還ループにおける単安定マルチバイブレータ53を使用したリング発振動作において、リング発振周波数を調整するために挿入されている。   In the delay time adjustment mode, the control circuit 55 outputs control signals CD1 and CD2 for adjusting the delay time to the variable delay circuits 51 and 52 to change the delay times of the delay signals CLK1 and CLK2 and In order to measure the delay time of the signals CLK1 and CLK2, the signal selection of the two signal selection circuits 57 and 58 is controlled using the signal selection signals S4 and S5, and passes through the monostable multivibrator 53 and the fixed delay circuit 54. The three positive feedback loops are individually formed. Specifically, at the time of measuring the delay time, the signal selection of the signal selection circuit 57 is switched to the output side of the fixed delay circuit 54 by the signal selection signal S4. Further, the formation of three positive feedback loops is switched by the signal selection signal S5. That is, the first positive feedback loop formed by the signal selection circuit 58 selecting the second delay signal CLK2 output from the variable delay circuit 52, and the signal selection circuit 58 selects the output signal CLK0 of the signal selection circuit 57. And the third positive feedback loop formed by the signal selection circuit 58 selecting the first delay signal CLK1 output from the variable delay circuit 51. Can be formed individually. The fixed delay circuit 54 is inserted in order to adjust the ring oscillation frequency in the ring oscillation operation using the monostable multivibrator 53 in each positive feedback loop.

また、制御回路55は、遅延時間調整モードにおいて各正帰還ループを形成すると、単安定マルチバイブレータ53を起動する信号RST#を出力して、単安定マルチバイブレータ53に1回目のパルスを出力させ、その後、正帰還によるリング発振を継続的に行わせる。尚、各正帰還ループにおける単安定マルチバイブレータ53を使用したリング発振動作については、第1実施形態において既に説明してあるので、重複する説明は省略する。更に、制御回路55は、単安定マルチバイブレータ53を起動すると、発振周波数測定回路60を活性化して正帰還ループのリング発振周波数を測定し、その測定結果を記憶し、その測定結果に基づいて、各遅延信号CLK1,CLK2の遅延時間を算出する。   In addition, when each positive feedback loop is formed in the delay time adjustment mode, the control circuit 55 outputs a signal RST # for starting the monostable multivibrator 53 and causes the monostable multivibrator 53 to output the first pulse, Thereafter, ring oscillation by positive feedback is continuously performed. Since the ring oscillation operation using the monostable multivibrator 53 in each positive feedback loop has already been described in the first embodiment, a redundant description is omitted. Further, when the monostable multivibrator 53 is activated, the control circuit 55 activates the oscillation frequency measurement circuit 60 to measure the ring oscillation frequency of the positive feedback loop, stores the measurement result, and based on the measurement result, The delay time of each delay signal CLK1, CLK2 is calculated.

パルス生成回路56は、信号選択回路57の出力信号CLK0と第1遅延信号CLK1と第2遅延信号CLK2から、出力信号CLK0の1周期内に2回の立ち上がりエッジを有し、当該2回の立ち上がりエッジ間の時間差が第2遅延信号CLK2の前記入力クロック信号からの遅延時間と同等となるパルス信号CLK3を生成する。ここで、信号選択回路57は、スキャンパス法によるディレイテスト時の実動作モードでは、入力クロック信号CLKinを選択して、出力信号CLK0として出力するので、出力信号CLK0は入力クロック信号CLKinと略同じである。   The pulse generation circuit 56 has two rising edges within one cycle of the output signal CLK0 from the output signal CLK0, the first delay signal CLK1, and the second delay signal CLK2 of the signal selection circuit 57, and the two rising edges. A pulse signal CLK3 in which the time difference between the edges is equal to the delay time of the second delay signal CLK2 from the input clock signal is generated. Here, since the signal selection circuit 57 selects the input clock signal CLKin and outputs it as the output signal CLK0 in the actual operation mode during the delay test by the scan path method, the output signal CLK0 is substantially the same as the input clock signal CLKin. It is.

信号選択回路59は、外部制御信号SEに応じて、実動作モードにおけるシフト動作時には入力クロック信号CLKinを選択し、実動作モードにおけるラウンチ及びキャプチャー動作時にはパルス生成回路56から出力されるパルス信号CLK3を選択して、出力クロック信号CLKoutとして出力する。この出力クロック信号CLKoutは、実動作モード時に被テスト回路62のクロックパルスとして使用される。   In response to the external control signal SE, the signal selection circuit 59 selects the input clock signal CLKin during the shift operation in the actual operation mode, and receives the pulse signal CLK3 output from the pulse generation circuit 56 during the launch and capture operations in the actual operation mode. Select and output as an output clock signal CLKout. This output clock signal CLKout is used as a clock pulse of the circuit under test 62 in the actual operation mode.

本発明に係るパルス発生回路50は、実動作モードと遅延時間調整モードの2つの動作モードを有している。次に、パルス発生回路50の実動作モードと遅延時間調整モードの各動作について説明する。先ず、実動作モードの動作を説明する。   The pulse generation circuit 50 according to the present invention has two operation modes: an actual operation mode and a delay time adjustment mode. Next, each operation in the actual operation mode and the delay time adjustment mode of the pulse generation circuit 50 will be described. First, the operation in the actual operation mode will be described.

図19に、図18のパルス発生回路50の中の実動作モードで動作する実動作回路部分を抽出して示す。また、図20は、図19に示す実動作回路部分の内部信号波形を模式的に示すタイミング波形図である。実動作モードでは、2つの可変遅延回路51,52とパルス生成回路56、及び、信号選択回路59が動作する。尚、信号選択回路57は、入力クロック信号CLKinを選択した状態で固定されるので、図19には含まれていない。   FIG. 19 shows an actual operation circuit portion that operates in the actual operation mode in the pulse generation circuit 50 of FIG. FIG. 20 is a timing waveform diagram schematically showing internal signal waveforms of the actual operation circuit portion shown in FIG. In the actual operation mode, the two variable delay circuits 51 and 52, the pulse generation circuit 56, and the signal selection circuit 59 operate. The signal selection circuit 57 is not included in FIG. 19 because it is fixed in a state where the input clock signal CLKin is selected.

実動作モードでは、シフト動作時(外部制御信号SEが高レベル時)に信号選択回路59が入力クロック信号CLKinを選択して、出力クロック信号CLKoutとして出力する。このシフト動作時の出力クロック信号CLKoutは、被テスト回路62においてスキャンパスのシフトクロックとして使用される。ラウンチ及びキャプチャー動作時(外部制御信号SEが低レベル時)には、信号選択回路59がパルス信号CLK3を出力クロック信号CLKoutとして出力する。パルス信号CLK3は、クロック信号CLK0の立ち上がりエッジで立ち上がり、第1遅延信号CLK1の立ち上がりエッジで立ち下がるラウンチ動作パルスP1と、第2遅延信号CLK2の立ち上がりエッジで立ち上がり、第2遅延信号CLK2の立ち下がりエッジで立ち下がるキャプチャー動作パルスP2を、入力クロック信号CLKinの1周期内に連続して発生する。具体的には、パルス信号CLK3は、パルス生成回路56において、クロック信号CLK0と第1遅延信号CLK1の排他的論理和(ExOR)と第2遅延信号CLK2の論理和(OR)として生成される。従って、入力クロック信号CLKinの立ち上がりエッジを基準に、ラウンチ動作パルスP1の立ち上がりエッジと立ち下がりエッジ、キャプチャー動作パルスP2の立ち上がりエッジが連続して順番に発生する。ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δtは、クロック信号CLK0の立ち上がりエッジから第2遅延信号CLK2の立ち上がりエッジまでの遅延時間、つまり、2つの可変遅延回路51,52の立ち上がりエッジの総遅延時間に等しい。ラウンチ及びキャプチャー動作時の出力クロック信号CLKoutは、被テスト回路62においてスキャンパスのラウンチ・キャプチャークロックとして使用される。   In the actual operation mode, the signal selection circuit 59 selects the input clock signal CLKin and outputs it as the output clock signal CLKout during the shift operation (when the external control signal SE is at a high level). The output clock signal CLKout during the shift operation is used as a scan path shift clock in the circuit under test 62. During the launch and capture operation (when the external control signal SE is at a low level), the signal selection circuit 59 outputs the pulse signal CLK3 as the output clock signal CLKout. The pulse signal CLK3 rises on the rising edge of the clock signal CLK0, rises on the rising edge of the first delay signal CLK1, rises on the rising edge of the second delay signal CLK2, and falls on the second delay signal CLK2 The capture operation pulse P2 falling at the edge is continuously generated within one cycle of the input clock signal CLKin. Specifically, the pulse signal CLK3 is generated in the pulse generation circuit 56 as the exclusive OR (ExOR) of the clock signal CLK0 and the first delay signal CLK1 and the OR (OR) of the second delay signal CLK2. Accordingly, the rising edge and falling edge of the launch operation pulse P1, and the rising edge of the capture operation pulse P2 are sequentially generated in order with respect to the rising edge of the input clock signal CLKin. The time difference Δt between the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2 is a delay time from the rising edge of the clock signal CLK0 to the rising edge of the second delay signal CLK2, that is, two variable delay circuits 51, Equal to the total delay time of 52 rising edges. The output clock signal CLKout during launch and capture operation is used as a launch / capture clock for the scan path in the circuit under test 62.

ここで、ディレイテストにおいて管理が必要となるのは、ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δtであり、2つの可変遅延回路51,52の総遅延時間である。更に言えば、前段の可変遅延回路51の立ち上がりエッジ遅延時間は、クロック信号CLK0の立ち上がりエッジから第1遅延信号CLK1の立ち上がりエッジまでの遅延時間であり、ラウンチ動作パルスP1のパルス幅(高レベル期間)を規定している。また、後段の可変遅延回路52の立ち上がりエッジ遅延時間は、第1遅延信号CLK1の立ち上がりエッジから第2遅延信号CLK2の立ち上がりエッジまでの遅延時間であり、ラウンチ動作パルスP1とキャプチャー動作パルスP2の間のパルス間隔(低レベル期間)を規定している。   Here, what needs to be managed in the delay test is the time difference Δt between the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2, and is the total delay time of the two variable delay circuits 51 and 52. . Furthermore, the rising edge delay time of the variable delay circuit 51 in the previous stage is the delay time from the rising edge of the clock signal CLK0 to the rising edge of the first delay signal CLK1, and the pulse width (high level period) of the launch operation pulse P1. ). Further, the rising edge delay time of the variable delay circuit 52 in the subsequent stage is a delay time from the rising edge of the first delay signal CLK1 to the rising edge of the second delay signal CLK2, and is between the launch operation pulse P1 and the capture operation pulse P2. Pulse interval (low level period).

スキャンパス法によるディレイテストではパルス信号CLK3のパルス幅(高レベル期間)とパルス間隔(低レベル期間)自体は測定には影響せず、ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δtのみが測定に影響を与える。従って、本実施形態では、2つの可変遅延回路51,52の遅延時間を各別に独立して調整可能な構成としているが、図21に示すように、2つの可変遅延回路51,52を同時に1つの遅延時間調整用の制御信号CD1で調整するようにしても良い。更に、キャプチャー動作パルスP2のパルス幅(高レベル期間)も、第2遅延信号CLK2のパルス幅(高レベル期間)と同じである必要はなく、キャプチャー動作パルスP2は、第2遅延信号の立ち上がりエッジで立ち上がり、クロック信号CLK0または第1遅延信号CLK1の立ち下がりエッジで立ち下がるように生成されても構わない。この場合、パルス生成回路56の回路構成は、図18に示す構成ではなく、例えば、図21に示すように、第1遅延信号CLK1と第2遅延信号CLK2の排他的否定論理和(ExNOR)とクロック信号CLK0の論理積(AND)として生成される構成のパルス生成回路56’であっても良い。ところで、図21に示すパルス発生回路50の別回路構成では、後述するように、時間差Δtの調整には第3の正帰還ループを使用しないため、信号選択回路58は、信号選択回路57の出力信号CLK0と第2遅延信号CLK2の何れか一方を選択する2入力の信号選択回路として図示している。   In the delay test by the scan path method, the pulse width (high level period) and pulse interval (low level period) of the pulse signal CLK3 itself do not affect the measurement, and the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2 Only the time difference between them affects the measurement. Therefore, in this embodiment, the delay times of the two variable delay circuits 51 and 52 can be adjusted independently of each other. However, as shown in FIG. The adjustment may be made by using one control signal CD1 for adjusting the delay time. Further, the pulse width (high level period) of the capture operation pulse P2 need not be the same as the pulse width (high level period) of the second delay signal CLK2, and the capture operation pulse P2 is the rising edge of the second delay signal. May be generated so as to fall at the falling edge of the clock signal CLK0 or the first delay signal CLK1. In this case, the circuit configuration of the pulse generation circuit 56 is not the configuration shown in FIG. 18, but, for example, as shown in FIG. 21, an exclusive negative logical sum (ExNOR) of the first delay signal CLK1 and the second delay signal CLK2 The pulse generation circuit 56 ′ may be configured to be generated as a logical product (AND) of the clock signal CLK0. By the way, in the other circuit configuration of the pulse generation circuit 50 shown in FIG. 21, as will be described later, the third positive feedback loop is not used to adjust the time difference Δt, so that the signal selection circuit 58 outputs the output of the signal selection circuit 57. It is illustrated as a two-input signal selection circuit that selects either the signal CLK0 or the second delay signal CLK2.

ところで、2つの可変遅延回路51,52の遅延時間が未調整のままでは、遅延時間が不明であるので、生成されるパルス信号CLK3の上記時間差Δtは不明の状態である。斯かる不明状態を解消するために、実動作モードで出力クロック信号CLKoutを使用する前に、予め遅延時間調整モードにて、2つの可変遅延回路51,52の遅延時間を調整し、パルス信号CLK3の上記時間差Δtが所定値になるように調整する。   By the way, if the delay times of the two variable delay circuits 51 and 52 are not adjusted, the delay time is unknown, so the time difference Δt of the generated pulse signal CLK3 is unknown. In order to eliminate such an unknown state, before using the output clock signal CLKout in the actual operation mode, the delay time of the two variable delay circuits 51 and 52 is adjusted in advance in the delay time adjustment mode, and the pulse signal CLK3 The time difference Δt is adjusted to a predetermined value.

遅延時間調整モードは、2つの可変遅延回路51,52の遅延時間を調整するためのモードである。本実施形態では、上述の3つの正帰還ループの内の第1の正帰還ループと第2の正帰還ループを用いて、時間差Δtの調整を行う。図22に、図18のパルス発生回路50の中の遅延時間調整モードで動作する調整動作回路部分を抽出して示す。また、図23に、図22の調整動作回路部分の中の2つの可変遅延回路51,52を含まない第2の正帰還ループ形成時に動作する第2調整動作回路部分を示す。また、図24に、図22の調整動作回路部分の中の2つの可変遅延回路51,52を含む第1の正帰還ループ形成時に動作する第1調整動作回路部分を抽出して示す。尚、信号選択回路57は、固定遅延回路54の出力側を選択した状態で固定されるので、図22〜図24には含まれていない。また、信号選択回路58は、第1及び第2の各正帰還ループ形成時には、対応する帰還信号を選択した状態に固定されるので、図23及び図24には含まれていない。   The delay time adjustment mode is a mode for adjusting the delay times of the two variable delay circuits 51 and 52. In the present embodiment, the time difference Δt is adjusted using the first positive feedback loop and the second positive feedback loop among the three positive feedback loops described above. FIG. 22 shows an extracted portion of the adjustment operation circuit that operates in the delay time adjustment mode in the pulse generation circuit 50 of FIG. FIG. 23 shows a second adjustment operation circuit portion that operates when forming a second positive feedback loop that does not include the two variable delay circuits 51 and 52 in the adjustment operation circuit portion of FIG. Further, FIG. 24 shows an extracted first adjustment operation circuit portion that operates when the first positive feedback loop including the two variable delay circuits 51 and 52 in the adjustment operation circuit portion of FIG. 22 is formed. The signal selection circuit 57 is not included in FIGS. 22 to 24 because it is fixed with the output side of the fixed delay circuit 54 selected. Further, the signal selection circuit 58 is not included in FIGS. 23 and 24 because it is fixed in a state in which the corresponding feedback signal is selected when the first and second positive feedback loops are formed.

図25に、遅延時間調整モードでの時間差Δtを調整するためのアルゴリズムを示す。調整動作手順としては、先ず、制御回路55は、図23に示す2つの可変遅延回路51,52を含まない第2の正帰還ループを形成し、上述の要領でリング発振動作を開始し、そのリング発振周波数を発振周波数測定回路60を用いて測定し、その逆数である発振周期T2を算出して、制御回路55内のレジスタに格納しておく(ステップ#1)。次に、2つの可変遅延回路51,52に対して遅延時間調整用の制御信号CD1,CD2を出力して各遅延時間の初期値を設定する(ステップ#2)。引き続き、図24に示す2つの可変遅延回路51,52を含む第1の正帰還ループを形成し、上述の要領でリング発振動作を開始し、そのリング発振周波数を発振周波数測定回路60を用いて測定し、その逆数である発振周期T1を算出して、制御回路55内のレジスタに格納しておく(ステップ#3)。次に、制御回路55内の演算回路にて遅延時間差(T1−T2=Δt)を算出する(ステップ#4)。この遅延時間差Δtが、ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δtになる。   FIG. 25 shows an algorithm for adjusting the time difference Δt in the delay time adjustment mode. As the adjustment operation procedure, first, the control circuit 55 forms a second positive feedback loop that does not include the two variable delay circuits 51 and 52 shown in FIG. 23, and starts the ring oscillation operation as described above. The ring oscillation frequency is measured by using the oscillation frequency measurement circuit 60, and the oscillation period T2, which is the reciprocal thereof, is calculated and stored in the register in the control circuit 55 (step # 1). Next, control signals CD1 and CD2 for adjusting the delay time are output to the two variable delay circuits 51 and 52, and initial values of the respective delay times are set (step # 2). Subsequently, the first positive feedback loop including the two variable delay circuits 51 and 52 shown in FIG. 24 is formed, the ring oscillation operation is started in the above-described manner, and the ring oscillation frequency is measured using the oscillation frequency measuring circuit 60. The oscillation period T1, which is the inverse of the measurement, is calculated and stored in a register in the control circuit 55 (step # 3). Next, a delay time difference (T1−T2 = Δt) is calculated by an arithmetic circuit in the control circuit 55 (step # 4). This delay time difference Δt becomes a time difference Δt between the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2.

算出された時間差Δtが所定の設定範囲内にあるか否かを制御回路55にて判定し(ステップ#5)、所定の設定範囲内にあれば(ステップ#5でYES分岐)、遅延時間調整モードを終了する。所定の設定範囲内にない場合は(ステップ#5でNO分岐)、算出された時間差Δtが所定の設定範囲より長いか否かを判定し(ステップ#6)、短い場合には(ステップ#6でNO分岐)、2つの可変遅延回路51,52の遅延時間の設定値を、制御信号CD1,CD2によって大きくし(ステップ#7)、逆に、設定範囲よりよりも長い場合には(ステップ#6でYES分岐)、2つの可変遅延回路51,52の遅延時間の設定値を小さくして(ステップ#8)、ステップ#3に戻って、再度、第1の正帰還ループを形成し、上述の要領でリング発振動作を開始し、そのリング発振周波数を発振周波数測定回路60を用いて再測定し、その逆数である発振周期T1を再算出して、制御回路55内のレジスタに格納しておく。ステップ#3以降の動作を、ステップ#5の判定で算出された時間差Δtが所定の設定範囲内に収まるまで繰り返すことで、遅延時間調整モードを終了する。ここで、所定の設定範囲内に収まった時間差Δtを制御回路55内のレジスタに格納しておく。実動作モード時には、この時間差Δtを読み出して使用することで、本発明に係るパルス発生回路50が、所定の時間差Δtの立ち上がりエッジ間隔のラウンチ・キャプチャークロックを発生する回路として機能し、所望のディレイテストが可能となる。   The control circuit 55 determines whether or not the calculated time difference Δt is within a predetermined setting range (step # 5), and if it is within the predetermined setting range (YES branch at step # 5), delay time adjustment Exit mode. If it is not within the predetermined setting range (NO branch at step # 5), it is determined whether or not the calculated time difference Δt is longer than the predetermined setting range (step # 6). If it is shorter (step # 6). NO branch), the set values of the delay times of the two variable delay circuits 51 and 52 are increased by the control signals CD1 and CD2 (step # 7), and conversely, if they are longer than the set range (step # 7) 6), the delay time set values of the two variable delay circuits 51 and 52 are decreased (step # 8), the process returns to step # 3, and the first positive feedback loop is formed again. Then, the ring oscillation operation is started, the ring oscillation frequency is measured again using the oscillation frequency measuring circuit 60, the reciprocal oscillation period T1 is recalculated, and stored in the register in the control circuit 55. deep. The delay time adjustment mode is terminated by repeating the operations after step # 3 until the time difference Δt calculated in the determination of step # 5 falls within a predetermined setting range. Here, the time difference Δt within the predetermined setting range is stored in a register in the control circuit 55. In the actual operation mode, by reading and using this time difference Δt, the pulse generation circuit 50 according to the present invention functions as a circuit that generates a launch / capture clock having a predetermined rising edge interval of the time difference Δt, and a desired delay time. Test is possible.

ここで、本発明に係るパルス発生回路50の特徴を整理しておく。第1の特徴個所は、遅延時間調整モードで使用する正帰還ループに単安定マルチバイブレータ53が使用されている点である。これにより、可変遅延回路51,52の立ち上がりエッジ伝播特性と立下りエッジ伝播特性が異なっていても、それが測定誤差にならない回路となっている。パルス発生回路50が発生するパルス信号CLK3は、ディレイテスト時に立ち上がりエッジ間隔のみが重要であることから、単安定マルチバイブレータ53が入力の立ち上がりエッジに応答して一定のパルス幅の立ち上がりパルスを出力する構成であるため、可変遅延回路51,52の立ち上がりエッジ伝播特性だけを正確に測定可能な構成となっている。   Here, the features of the pulse generation circuit 50 according to the present invention will be summarized. The first characteristic point is that the monostable multivibrator 53 is used in the positive feedback loop used in the delay time adjustment mode. As a result, even if the rising edge propagation characteristics and the falling edge propagation characteristics of the variable delay circuits 51 and 52 are different, the circuit does not cause a measurement error. In the pulse signal CLK3 generated by the pulse generation circuit 50, only the rising edge interval is important during the delay test, so that the monostable multivibrator 53 outputs a rising pulse having a constant pulse width in response to the rising edge of the input. Because of this configuration, only the rising edge propagation characteristics of the variable delay circuits 51 and 52 can be accurately measured.

第2の特徴個所は、2つの可変遅延回路51,52を含む第1の正帰還ループの発振周期T1と、2つの可変遅延回路51,52の総遅延時間が、必ずしも1対1に対応していない点である。正帰還ループで構成される各リング発振回路に、リング発振周波数調整用の固定遅延回路54を挿入してリング発振周波数を低下させているのが理由である。従来の負帰還ループによるリング発振回路では、リング発振回路自体に余計な遅延が存在すると正確な測定ができなくなるという問題があったが、次に示す第3の特徴により、本発明に係るパルス発生回路50では、ラウンチ・キャプチャークロックの立ち上がりエッジ間隔を遅延回路部のクロックエッジを相対的に使用して規定することで、リング発振回路全体の絶対値的な遅延時間には測定が影響されない回路構成となっている。   The second feature is that the oscillation period T1 of the first positive feedback loop including the two variable delay circuits 51 and 52 and the total delay time of the two variable delay circuits 51 and 52 always correspond to each other one to one. That is not the point. This is because the ring oscillation frequency is lowered by inserting a fixed delay circuit 54 for adjusting the ring oscillation frequency into each ring oscillation circuit constituted by a positive feedback loop. In the conventional ring oscillation circuit using a negative feedback loop, there is a problem that accurate measurement cannot be performed if there is an extra delay in the ring oscillation circuit itself. However, according to the third feature described below, the pulse generation according to the present invention is performed. In the circuit 50, the rising edge interval of the launch / capture clock is defined by relatively using the clock edge of the delay circuit unit, so that the measurement is not affected by the absolute delay time of the entire ring oscillation circuit. It has become.

第3の特徴個所は、ラウンチ・キャプチャークロックの立ち上がりエッジ間隔を遅延回路部のクロックエッジを相対的に使用して規定する点である。本発明に係るパルス発生回路50では、入力クロック信号CLKinの立ち上がりエッジとその立ち上がりエッジを可変遅延回路51,52により遅延させた第2遅延信号CLK2の立ち上がりエッジのみを使用して、ディレイテストに必要となるタイミング(ラウンチ・キャプチャークロックの立ち上がりエッジ間隔)を規定する回路構成を採用している。この結果、2つの可変遅延回路51,52を含む第1の正帰還ループで構成されるリング発振回路上に固定の遅延時間を持つ固定遅延回路等が挿入されていても、ラウンチ・キャプチャークロック全体がシフトする場合はあるが、ラウンチ・キャプチャークロックの立ち上がりエッジ間隔は設定値を維持することが可能となっている。当該効果について、図26及び図27を参照して説明する。図26は、図19の実動作回路部分の前段の可変遅延回路51の入力側に固定遅延回路62を追加した回路構成を示すブロック図で、図27は、その内部信号波形を模式的に示したタイミング波形図である。図27に示すように、固定遅延回路62の遅延時間により出力クロック信号CLKoutのタイミングは全体に右側(遅め)にシフトしているが、ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δt(エッジ間隔)はそのまま保持されていることが分かる。また、この固定遅延回路62の追加により、リング発振周波数が低下し、実動作回路部分全体を高速動作可能に設計する必要がなくなっている。   The third characteristic point is that the rising edge interval of the launch / capture clock is defined by relatively using the clock edge of the delay circuit unit. In the pulse generation circuit 50 according to the present invention, only the rising edge of the input clock signal CLKin and the rising edge of the second delay signal CLK2 obtained by delaying the rising edge by the variable delay circuits 51 and 52 are used for the delay test. The circuit configuration that defines the timing (the rising edge interval of the launch / capture clock) is adopted. As a result, even if a fixed delay circuit or the like having a fixed delay time is inserted on the ring oscillation circuit including the first positive feedback loop including the two variable delay circuits 51 and 52, the entire launch / capture clock is provided. However, the rising edge interval of the launch / capture clock can maintain the set value. The effect will be described with reference to FIGS. 26 and 27. FIG. 26 is a block diagram showing a circuit configuration in which a fixed delay circuit 62 is added to the input side of the variable delay circuit 51 in the previous stage of the actual operation circuit portion of FIG. 19, and FIG. 27 schematically shows the internal signal waveform thereof. FIG. As shown in FIG. 27, the timing of the output clock signal CLKout is shifted to the right (slower) as a whole due to the delay time of the fixed delay circuit 62, but the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2 It can be seen that the time difference Δt (edge interval) between the edges is maintained as it is. Further, the addition of the fixed delay circuit 62 reduces the ring oscillation frequency, and it is not necessary to design the entire actual operation circuit portion so that it can operate at high speed.

第4の特徴個所は、少なくとも2つの正帰還ループ(本実施形態では、第1及び第2の正帰還ループ)による異なる発振周波数のリング発振回路を有することである。この2つのリング発振回路の相違部分が、ラウンチ動作パルスP1の立ち上がりエッジとキャプチャー動作パルスP2の立ち上がりエッジ間の時間差Δtの調整に利用する可変遅延回路51,52となるように回路構成する。これにより、この2つの可変遅延回路51,52の総遅延時間を2つのリング発振回路の発振周期T1及びT2の差から算出することができる。この方法を採用することによって、回路全体の中で特定の2点間(本実施形態では、可変遅延回路51,52の入力端子から出力端子まで)の伝播時間を正確に求めることができる。   A fourth characteristic point is that a ring oscillation circuit having different oscillation frequencies by at least two positive feedback loops (in this embodiment, the first and second positive feedback loops) is provided. The circuit configuration is such that the difference between the two ring oscillation circuits is the variable delay circuits 51 and 52 used for adjusting the time difference Δt between the rising edge of the launch operation pulse P1 and the rising edge of the capture operation pulse P2. Thus, the total delay time of the two variable delay circuits 51 and 52 can be calculated from the difference between the oscillation periods T1 and T2 of the two ring oscillation circuits. By adopting this method, the propagation time between two specific points in the entire circuit (in this embodiment, from the input terminal to the output terminal of the variable delay circuits 51 and 52) can be accurately obtained.

〈第4実施形態〉
次に、第4実施形態において、第3実施形態で示した本発明に係るパルス発生回路50の別実施形態について説明する。
<Fourth embodiment>
Next, in the fourth embodiment, another embodiment of the pulse generation circuit 50 according to the present invention shown in the third embodiment will be described.

図28に、本発明に係るパルス発生回路70の回路構成、及び、本発明に係る半導体集積回路71の概略構成を示すブロック図である。図28に示すように、本発明に係るパルス発生回路70は、2つの可変遅延回路51,52からなる遅延回路部と、単安定マルチバイブレータ53と、固定遅延回路54と、制御回路55と、パルス生成回路56’と、3つの信号選択回路57,58,59と、発振周波数測定回路60と、第2パルス生成回路63を備えて構成される。また、本発明に係る半導体集積回路71は、本発明に係るパルス発生回路70によるスキャンパス法によるディレイテストの対象となる被テスト回路62を含む構成となっており、パルス発生回路70と被テスト回路62以外の回路部(例えば、メモリ回路や非同期回路等)を含んでいても構わない。   FIG. 28 is a block diagram showing a circuit configuration of a pulse generation circuit 70 according to the present invention and a schematic configuration of a semiconductor integrated circuit 71 according to the present invention. As shown in FIG. 28, the pulse generation circuit 70 according to the present invention includes a delay circuit unit composed of two variable delay circuits 51 and 52, a monostable multivibrator 53, a fixed delay circuit 54, a control circuit 55, A pulse generation circuit 56 ′, three signal selection circuits 57, 58 and 59, an oscillation frequency measurement circuit 60, and a second pulse generation circuit 63 are provided. The semiconductor integrated circuit 71 according to the present invention includes a circuit under test 62 to be subjected to a delay test by the scan path method by the pulse generating circuit 70 according to the present invention. A circuit unit other than the circuit 62 (for example, a memory circuit or an asynchronous circuit) may be included.

第4実施形態の本発明に係るパルス発生回路70と、第3実施形態の本発明に係るパルス発生回路50の相違点は、第4実施形態において、第2パルス生成回路63が追加されている点だけで、その他の回路構成は、第3実施形態と同じであるので、重複する説明は省略する。但し、パルス発生回路70では、図21の回路構成と同様に、信号選択回路58は、信号選択回路57の出力信号CLK0と第2遅延信号CLK2の何れか一方を選択する2入力の信号選択回路として図示している。   The difference between the pulse generation circuit 70 according to the present invention of the fourth embodiment and the pulse generation circuit 50 according to the present invention of the third embodiment is that a second pulse generation circuit 63 is added in the fourth embodiment. In other respects, the other circuit configuration is the same as that of the third embodiment, and a duplicate description is omitted. However, in the pulse generation circuit 70, as in the circuit configuration of FIG. 21, the signal selection circuit 58 is a two-input signal selection circuit that selects either the output signal CLK0 of the signal selection circuit 57 or the second delay signal CLK2. As shown.

第2パルス生成回路63は、可変遅延回路51の出力である第1遅延信号CLK1と外部制御信号SEから、実動作モードにおけるラウンチ及びキャプチャー動作時に信号選択回路59がパルス信号CLK3を選択している期間に同期して出力される第2パルス信号SEoutを生成する。具体的には、第2パルス生成回路63は、第1遅延信号CLK1と、外部制御信号SEの否定論理(反転信号)の論理和(OR)を第2パルス信号SEoutとして出力する。従って、第4実施形態では、本発明に係るパルス発生回路70は、出力クロック信号CLKoutと第2パルス信号SEoutを出力する。   In the second pulse generation circuit 63, the signal selection circuit 59 selects the pulse signal CLK3 during the launch and capture operations in the actual operation mode from the first delay signal CLK1 that is the output of the variable delay circuit 51 and the external control signal SE. A second pulse signal SEout that is output in synchronization with the period is generated. Specifically, the second pulse generation circuit 63 outputs the logical sum (OR) of the first delay signal CLK1 and the negative logic (inverted signal) of the external control signal SE as the second pulse signal SEout. Therefore, in the fourth embodiment, the pulse generation circuit 70 according to the present invention outputs the output clock signal CLKout and the second pulse signal SEout.

第2パルス生成回路63は、実動作モードにおいて使用される回路であるので、遅延時間調整モードにおいては、本発明に係るパルス発生回路70の動作は、第3実施形態と全く同じである。本発明に係るパルス発生回路70の実動作モードにおける動作について説明する。   Since the second pulse generation circuit 63 is a circuit used in the actual operation mode, in the delay time adjustment mode, the operation of the pulse generation circuit 70 according to the present invention is exactly the same as in the third embodiment. The operation in the actual operation mode of the pulse generation circuit 70 according to the present invention will be described.

図29に、図28のパルス発生回路70の中の実動作モードで動作する実動作回路部分を抽出して示す。また、図30は、図29に示す実動作回路部分の内部信号波形を模式的に示すタイミング波形図である。実動作モードでは、2つの可変遅延回路51,52とパルス生成回路56、信号選択回路59、及び、第2パルス生成回路63が動作する。尚、信号選択回路57は、入力クロック信号CLKinを選択した状態で固定されるので、図29には含まれていない。   FIG. 29 shows an actual operation circuit portion that operates in the actual operation mode in the pulse generation circuit 70 of FIG. FIG. 30 is a timing waveform diagram schematically showing internal signal waveforms of the actual operation circuit portion shown in FIG. In the actual operation mode, the two variable delay circuits 51 and 52, the pulse generation circuit 56, the signal selection circuit 59, and the second pulse generation circuit 63 operate. The signal selection circuit 57 is not included in FIG. 29 because it is fixed in a state where the input clock signal CLKin is selected.

この実動作回路部分からは、出力クロック信号CLKoutと第2パルス信号SEoutの2つの信号が出力される。出力クロック信号CLKoutは、スキャンパス法によるディレイテストの対象となる被テスト回路62のシフト動作時、ラウンチ及びキャプチャー動作時のクロックとして使用され、出力クロック信号CLKoutの生成に関連する部分の回路構成は、第3実施形態と全く同じである。   From this actual operation circuit portion, two signals of an output clock signal CLKout and a second pulse signal SEout are output. The output clock signal CLKout is used as a clock at the time of shift operation, launch and capture operation of the circuit under test 62 to be subjected to the delay test by the scan path method, and the circuit configuration of the part related to generation of the output clock signal CLKout is as follows. This is exactly the same as in the third embodiment.

第2パルス生成回路63から出力される第2パルス信号SEoutは、出力クロック信号CLKoutと同様に、被テスト回路62のスキャンイネーブル信号として使用可能である。   The second pulse signal SEout output from the second pulse generation circuit 63 can be used as a scan enable signal for the circuit under test 62, similarly to the output clock signal CLKout.

図30に示すように、出力クロック信号CLKoutと第2パルス信号SEoutは、外部制御信号SEの立ち下がり後(シフト動作からラウンチ及びキャプチャー動作へ移行後)の入力クロック信号CLKinの立ち上がりエッジを基準に、出力クロック信号CLKoutの立ち上がり(ラウンチ動作パルスP1の発生)、第2パルス信号SEoutの立ち下がり(スキャンモードから実動作モードへの切り替り)、出力クロック信号CLKoutの立ち上がり(キャプチャー動作パルスP2の発生)と順番に生成され、ラストシフトモードと呼ばれるディレイテスト時に必要とされる信号が、パルス発生回路70によって生成可能となっている。また、第4実施形態のパルス発生回路70により、ブロードサイド方式のみならず、スキュードロード方式のディレイテストも実行可能なパルス発生回路は実現できる。   As shown in FIG. 30, the output clock signal CLKout and the second pulse signal SEout are based on the rising edge of the input clock signal CLKin after the falling of the external control signal SE (after shifting from the shift operation to the launch and capture operation). The rising edge of the output clock signal CLKout (generation of the launch operation pulse P1), the falling edge of the second pulse signal SEout (switching from the scan mode to the actual operation mode), and the rising edge of the output clock signal CLKout (generation of the capture operation pulse P2) ) In order, and a signal required for the delay test called the last shift mode can be generated by the pulse generation circuit 70. In addition, the pulse generation circuit 70 of the fourth embodiment can realize a pulse generation circuit capable of executing not only a broadside type but also a skewed load type delay test.

次に、本発明の別実施形態について説明する。   Next, another embodiment of the present invention will be described.

〈1〉上記第1及び第2実施形態では、遅延回路2,12の入出力間の位相関係が同相の場合における立ち上がりエッジに対する伝播遅延時間Dreと立ち下がりエッジに対する伝播遅延時間Dfeの遅延時間測定回路とその測定方法について説明した。遅延回路2,12の入出力間の位相関係が逆相の場合には、入力信号に対して出力信号の信号レベル(論理レベル)が反転するため、入力信号の立ち上がりエッジに対する伝播遅延時間Dreを測定する場合には、単安定マルチバイブレータとしては、立ち下がりエッジに応答して一定のパルス幅の立ち上がりパルスを出力する構成とし、逆に、入力信号の立ち下がりエッジに対する伝播遅延時間Dfe測定する場合には、単安定マルチバイブレータとしては、立ち上がりエッジに応答して一定のパルス幅の立ち下がりパルスを出力する構成とすることで、遅延回路2,12の入出力間の位相関係が逆相の場合に対応可能となる。   <1> In the first and second embodiments, the delay time measurement of the propagation delay time Dre for the rising edge and the propagation delay time Dfe for the falling edge when the phase relationship between the input and output of the delay circuits 2 and 12 is in phase. The circuit and its measurement method have been described. When the phase relationship between the input and output of the delay circuits 2 and 12 is reversed, the signal level (logic level) of the output signal is inverted with respect to the input signal, so that the propagation delay time Dre for the rising edge of the input signal is set. When measuring, the monostable multivibrator is configured to output a rising pulse having a constant pulse width in response to the falling edge, and conversely, when measuring the propagation delay time Dfe for the falling edge of the input signal. In the case where the monostable multivibrator is configured to output a falling pulse having a constant pulse width in response to the rising edge, the phase relationship between the input and output of the delay circuits 2 and 12 is reversed. It becomes possible to cope with.

〈2〉上記第1及び第2実施形態において、数9或いは数10の関係式より、被測定回路である遅延回路2,12の伝播遅延時間Dre,Dfeを求めるに際し、単安定マルチバイブレータ3,13の遅延時間Dmrr,Dmffが予め導出され既知である場合を想定したが、リング発振動作の周期Tpfの測定により単安定マルチバイブレータ3,13の遅延時間Dmrr,Dmffを導出するようにしてもよい。例えば、正帰還ループを形成する単安定マルチバイブレータ3,13の段数を、1段と複数段の2通りの正帰還ループを用意し、該2通りの正帰還ループにおけるリング発振動作の周期Tpfを夫々に求め、周期Tpfの差を単安定マルチバイブレータ3,13の段数差で除して、1段当たりの単安定マルチバイブレータ3,13の遅延時間Dmrr,Dmffを導出するようにしてもよい。   <2> In the first and second embodiments, when obtaining the propagation delay times Dre and Dfe of the delay circuits 2 and 12 which are the circuits to be measured from the relational expression of the formula 9 or the formula 10, the monostable multivibrator 3 Although it is assumed that the delay times Dmrr and Dmff of 13 are derived and known in advance, the delay times Dmrr and Dmff of the monostable multivibrators 3 and 13 may be derived by measuring the period Tpf of the ring oscillation operation. . For example, two positive feedback loops of one stage and a plurality of stages are prepared for the number of stages of the monostable multivibrators 3 and 13 forming the positive feedback loop, and the period Tpf of the ring oscillation operation in the two positive feedback loops is set. Alternatively, the delay times Dmrr and Dmff of the monostable multivibrators 3 and 13 per stage may be derived by dividing the difference in the period Tpf by the stage number difference of the monostable multivibrators 3 and 13.

〈4〉上記第3及び第4実施形態で示した本発明に係るパルス発生回路50,70において、2つの可変遅延回路51,52を縦続接続して遅延回路部を構成した実施形態を説明したが、遅延回路部の構成は、上記第3及び第4実施形態で例示した構成に限定されるものではない。   <4> The embodiment in which the delay circuit unit is configured by cascading two variable delay circuits 51 and 52 in the pulse generation circuits 50 and 70 according to the present invention shown in the third and fourth embodiments has been described. However, the configuration of the delay circuit unit is not limited to the configuration exemplified in the third and fourth embodiments.

例えば、図31に示すように、遅延回路部を2つの可変遅延回路64,65を並列に備え、信号選択回路57の出力信号CLK0を2つの可変遅延回路64,65に入力し、2つの可変遅延回路64,65から夫々2つの異なる遅延時間の第1遅延信号CLK1と第2遅延信号CLK2が各別に出力されるように構成するのも好ましい。この場合、遅延時間の長い方の可変遅延回路64,65の一方が、上記第3及び第4実施形態における縦続接続した2つの可変遅延回路51,52に相当し、遅延時間の短い方の可変遅延回路64,65の他方が、前段の可変遅延回路51に相当する。尚、第4実施形態においても同様の変更が可能である。   For example, as shown in FIG. 31, the delay circuit section includes two variable delay circuits 64 and 65 in parallel, and the output signal CLK0 of the signal selection circuit 57 is input to the two variable delay circuits 64 and 65, and two variable delay circuits 64 and 65 are input. It is also preferable that the first delay signal CLK1 and the second delay signal CLK2 having two different delay times are output from the delay circuits 64 and 65, respectively. In this case, one of the variable delay circuits 64 and 65 having the longer delay time corresponds to the two variable delay circuits 51 and 52 connected in cascade in the third and fourth embodiments, and the variable having the shorter delay time is variable. The other of the delay circuits 64 and 65 corresponds to the preceding variable delay circuit 51. Note that the same modification can be made in the fourth embodiment.

更に、図32に示すように、遅延回路部を構成する2つの可変遅延回路51,52の一方を遅延時間が制御回路55から調整できない固定された遅延時間の固定遅延回路66で置換しても構わない。尚、第4実施形態においても同様の変更が可能である。更に、図31に示す遅延回路部の構成においても、遅延時間の短い方の可変遅延回路64,65の他方を固定遅延回路で置換することが可能である。   Further, as shown in FIG. 32, one of the two variable delay circuits 51 and 52 constituting the delay circuit unit may be replaced with a fixed delay circuit 66 having a fixed delay time that cannot be adjusted from the control circuit 55. I do not care. Note that the same modification can be made in the fourth embodiment. Further, in the configuration of the delay circuit section shown in FIG. 31, the other of the variable delay circuits 64 and 65 having the shorter delay time can be replaced with a fixed delay circuit.

また、単安定マルチバイブレータ53の後段に設けた固定遅延回路54を、単安定マルチバイブレータ53の入力側に移動しても構わないし、更に、図33に示すように、信号選択回路57と遅延回路部の間に移動しても構わない。   Further, the fixed delay circuit 54 provided at the subsequent stage of the monostable multivibrator 53 may be moved to the input side of the monostable multivibrator 53. Further, as shown in FIG. You may move between parts.

〈5〉第4実施形態では、図28に示すように、第3実施形態の図21において例示したパルス生成回路56’を使用したが、第3実施形態の図18において例示したパルス生成回路56を使用しても構わない。また、パルス生成回路の回路構成は、図18及び図21に例示した回路構成に限定されるものではなく、入力クロック信号CLKinと第1遅延信号CLK1と第2遅延信号CLK2から、入力クロック信号CLKinの1周期内に少なくとも2回の立ち上がりエッジまたは立ち下がりエッジを有し、2回の立ち上がりエッジまたは立ち下がりエッジ間の時間差Δtが第2遅延信号CLK2の入力クロック信号CLKinからの遅延時間と同等となるパルス信号CLK3を生成する回路であれば、如何なる回路構成であっても良い。   <5> In the fourth embodiment, as shown in FIG. 28, the pulse generation circuit 56 ′ illustrated in FIG. 21 of the third embodiment is used. However, the pulse generation circuit 56 illustrated in FIG. 18 of the third embodiment. May be used. Further, the circuit configuration of the pulse generation circuit is not limited to the circuit configuration illustrated in FIGS. 18 and 21, and the input clock signal CLKin is determined from the input clock signal CLKin, the first delay signal CLK1, and the second delay signal CLK2. And having a rising edge or a falling edge at least twice in one cycle, and the time difference Δt between the two rising edges or the falling edge is equal to the delay time of the second delay signal CLK2 from the input clock signal CLKin. As long as the circuit generates the pulse signal CLK3, any circuit configuration may be used.

本発明に係るパルス発生回路、及び、半導体集積回路のテスト方法は、半導体集積回路のスキャンパス法によるディレイテストに利用でき、本発明に係る半導体集積回路は、スキャンパス法によるディレイテストを実行可能に構成された半導体集積回路に利用できる。   INDUSTRIAL APPLICABILITY The pulse generation circuit and the semiconductor integrated circuit test method according to the present invention can be used for a delay test by a scan path method of a semiconductor integrated circuit, and the semiconductor integrated circuit according to the present invention can execute a delay test by a scan path method It can be used for a semiconductor integrated circuit configured as described above.

本発明の基礎となる正帰還によるリング発振回路の一構成例を示すブロック図The block diagram which shows the example of 1 structure of the ring oscillation circuit by the positive feedback used as the foundation of this invention 単安定マルチバイブレータの回路動作例を示す信号波形図Signal waveform diagram showing circuit operation example of monostable multivibrator 入力信号の立ち上がりエッジに応答して立ち上がりパルスを出力する単安定マルチバイブレータの回路構成例を示す論理回路図Logic circuit diagram showing a circuit configuration example of a monostable multivibrator that outputs a rising pulse in response to the rising edge of the input signal 図3に示す単安定マルチバイブレータの信号波形図Signal waveform diagram of the monostable multivibrator shown in FIG. 本発明の基礎となる正帰還によるリング発振回路の概略のブロック構成を示すブロック図The block diagram which shows the schematic block configuration of the ring oscillation circuit by the positive feedback used as the foundation of this invention 図5に示すリング発振回路におけるリング発振動作状態における遅延回路の入力ノードと出力ノードにおける発振波形を示す電圧波形図Voltage waveform diagram showing oscillation waveforms at the input node and the output node of the delay circuit in the ring oscillation operation state in the ring oscillation circuit shown in FIG. 本発明の基礎となる遅延時間測定回路の一構成例を示すブロック図The block diagram which shows the example of 1 structure of the delay time measuring circuit used as the foundation of this invention 発振起動回路の機能を内蔵した単安定マルチバイブレータの回路構成例を示す論理回路図Logic circuit diagram showing a circuit configuration example of a monostable multivibrator with built-in oscillation starter function 図8に示す単安定マルチバイブレータの信号波形図Signal waveform diagram of monostable multivibrator shown in FIG. 本発明の基礎となる正帰還によるリング発振回路の概略のブロック構成を示すブロック図The block diagram which shows the schematic block configuration of the ring oscillation circuit by the positive feedback used as the foundation of this invention 図10に示すリング発振回路におけるリング発振動作状態における遅延回路の入力ノードと出力ノードにおける発振波形を示す電圧波形図Voltage waveform diagram showing oscillation waveforms at the input node and the output node of the delay circuit in the ring oscillation operation state in the ring oscillation circuit shown in FIG. 入力信号の立ち下がりエッジに応答して立ち下がりパルスを出力する単安定マルチバイブレータの回路構成例を示す論理回路図Logic circuit diagram showing a circuit configuration example of a monostable multivibrator that outputs a falling pulse in response to the falling edge of the input signal 図12に示す単安定マルチバイブレータの信号波形図Signal waveform diagram of monostable multivibrator shown in FIG. 本発明の基礎となる正帰還によるリング発振回路の概略のブロック構成を示すブロック図The block diagram which shows the schematic block configuration of the ring oscillation circuit by the positive feedback used as the foundation of this invention 図14に示すリング発振回路におけるリング発振動作状態における遅延回路の入力ノードと出力ノードにおける発振波形を示す電圧波形図Voltage waveform diagram showing oscillation waveforms at the input node and the output node of the delay circuit in the ring oscillation operation state in the ring oscillation circuit shown in FIG. 発振起動回路の機能を内蔵した単安定マルチバイブレータの回路構成例を示す論理回路図Logic circuit diagram showing a circuit configuration example of a monostable multivibrator with built-in oscillation starter function 図16に示す単安定マルチバイブレータの信号波形図Signal waveform diagram of monostable multivibrator shown in FIG. 本発明に係るパルス発生回路の一実施形態における回路構成、及び、本発明に係る半導体集積回路の一実施形態における概略構成を示す回路ブロック図1 is a circuit block diagram showing a circuit configuration in an embodiment of a pulse generation circuit according to the present invention and a schematic configuration in an embodiment of a semiconductor integrated circuit according to the present invention; 図18に示すパルス発生回路の中の実動作モードで動作する実動作回路部分を抽出して示す回路ブロック図18 is a circuit block diagram showing an actual operation circuit portion operating in the actual operation mode in the pulse generation circuit shown in FIG. 図19に示すパルス発生回路の実動作回路部分の内部信号波形を模式的に示すタイミング波形図FIG. 19 is a timing waveform diagram schematically showing the internal signal waveform of the actual operation circuit portion of the pulse generation circuit shown in FIG. 本発明に係るパルス発生回路の別実施形態における回路構成を示す回路ブロック図The circuit block diagram which shows the circuit structure in another embodiment of the pulse generator circuit which concerns on this invention 図18のパルス発生回路の中の遅延時間調整モードで動作する調整動作回路部分を抽出して示す回路ブロック図18 is a circuit block diagram showing an extracted adjustment operation circuit portion operating in the delay time adjustment mode in the pulse generation circuit of FIG. 図22に示す調整動作回路部分の中の2つの可変遅延回路を含まない第2の正帰還ループ形成時に動作する第2調整動作回路部分を示す回路ブロック図22 is a circuit block diagram showing a second adjustment operation circuit portion that operates when forming a second positive feedback loop that does not include two variable delay circuits in the adjustment operation circuit portion shown in FIG. 図22に示す調整動作回路部分の中の2つの可変遅延回路を含む第1の正帰還ループ形成時に動作する第1調整動作回路部分を抽出して示す回路ブロック図FIG. 22 is a circuit block diagram showing an extracted first adjustment operation circuit portion that operates when forming a first positive feedback loop including two variable delay circuits in the adjustment operation circuit portion shown in FIG. 本発明に係るパルス発生回路の一実施形態における遅延時間調整モードでのラウンチ・キャプチャークロックの立ち上がりエッジ間隔を調整するためのアルゴリズムを示すフローチャート6 is a flowchart showing an algorithm for adjusting the rising edge interval of the launch / capture clock in the delay time adjustment mode in an embodiment of the pulse generation circuit according to the present invention; 図19に示す実動作回路部分の前段の可変遅延回路の入力側に固定遅延回路を追加した回路構成を示す回路ブロック図FIG. 19 is a circuit block diagram showing a circuit configuration in which a fixed delay circuit is added to the input side of the variable delay circuit in the previous stage of the actual operation circuit portion shown in FIG. 図26に示す実動作回路部分の内部信号波形を模式的に示したタイミング波形図Timing waveform diagram schematically showing the internal signal waveform of the actual operation circuit portion shown in FIG. 本発明に係るパルス発生回路の別実施形態における回路構成、及び、本発明に係る半導体集積回路の別実施形態における概略構成を示す回路ブロック図The circuit block diagram which shows the circuit structure in another embodiment of the pulse generation circuit which concerns on this invention, and the schematic structure in another embodiment of the semiconductor integrated circuit which concerns on this invention 図28に示すパルス発生回路の中の実動作モードで動作する実動作回路部分を抽出して示す回路ブロック図28 is a circuit block diagram showing an actual operation circuit portion operating in the actual operation mode in the pulse generation circuit shown in FIG. 図29に示すパルス発生回路の実動作回路部分の内部信号波形を模式的に示すタイミング波形図FIG. 29 is a timing waveform diagram schematically showing the internal signal waveform of the actual operation circuit portion of the pulse generation circuit shown in FIG. 本発明に係るパルス発生回路の遅延回路部の構成が異なる別実施形態における回路構成を示す回路ブロック図The circuit block diagram which shows the circuit structure in another embodiment from which the structure of the delay circuit part of the pulse generator circuit which concerns on this invention differs 本発明に係るパルス発生回路の遅延回路部の構成が異なる他の別実施形態における回路構成を示す回路ブロック図The circuit block diagram which shows the circuit structure in other another embodiment from which the structure of the delay circuit part of the pulse generator circuit which concerns on this invention differs 本発明に係るパルス発生回路の遅延回路部の構成が異なる他の別実施形態における回路構成を示す回路ブロック図The circuit block diagram which shows the circuit structure in other another embodiment from which the structure of the delay circuit part of the pulse generator circuit which concerns on this invention differs 特許文献1に開示されているテスト回路を示すブロック図Block diagram showing a test circuit disclosed in Patent Document 1 特許文献1に開示されているテスト回路を用いたジッタの測定手法を説明する図The figure explaining the measuring method of the jitter using the test circuit currently indicated by patent documents 1 特許文献1に開示されているテスト回路を用いたジッタの測定手法をより具体的に説明する図The figure explaining the measurement method of the jitter using the test circuit currently indicated by patent documents 1 more concretely 従来の負帰還によるリング発振回路を用いて可変遅延回路の遅延時間を測定する測定回路の模式図Schematic diagram of a measurement circuit that measures the delay time of a variable delay circuit using a conventional ring oscillator with negative feedback 図37に示す従来の測定回路におけるリング発振動作状態における可変遅延回路の入力ノードと出力ノードにおける発振波形を示す電圧波形図Voltage waveform diagram showing oscillation waveforms at the input node and the output node of the variable delay circuit in the ring oscillation operation state in the conventional measurement circuit shown in FIG. 従来の正帰還によるリング発振回路を用いて可変遅延回路の遅延時間を測定する測定回路の模式図Schematic diagram of a measurement circuit that measures the delay time of a variable delay circuit using a conventional ring oscillator circuit with positive feedback 図39に示す従来の測定回路におけるリング発振動作状態における可変遅延回路の入力ノードと出力ノードにおける発振波形を示す電圧波形図Voltage waveform diagram showing oscillation waveforms at the input node and the output node of the variable delay circuit in the ring oscillation operation state in the conventional measurement circuit shown in FIG.

符号の説明Explanation of symbols

1,11: 本発明の基礎となる正帰還によるリング発振回路
2,12: 遅延回路
3,13,53: 単安定マルチバイブレータ
4,14,: 発振起動回路
5,15: D型フリップフロップ
6,16: インバータ列
7,9,17,19: 2入力排他的論理和回路
8,60: 発振周波数測定回路
10: 信号切替回路
18: インバータ
51,52,64,65: 可変遅延回路
30: クロック発生回路
31: 位相検出器
32: チャージポンプ回路
33: 電圧制御発振器(VCO)
34: 1/N分周器
50,70: 本発明に係るパルス発生回路
54,66: 固定遅延回路
55: 制御回路
56,56’: パルス生成回路
57,58,59: 信号選択回路
61,71: 本発明に係る半導体集積回路
62: スキャンパス法によるディレイテストの対象となる被テスト回路
63: 第2パルス生成回路
CD1,CD2: 遅延時間調整用の制御信号
CLKin: 入力クロック信号
CLKout: 出力クロック信号
CLK0: 遅延回路部の入力クロック信号
CLK1: 第1遅延信号
CLK2: 第2遅延信号
CLK3: パルス信号(ラウンチ・キャプチャークロック)
Dfe: 遅延回路の立ち下がりエッジに対する伝播遅延時間
Dre: 遅延回路の立ち上がりエッジに対する伝播遅延時間
Dmff: 単安定マルチバイブレータの立ち下がりエッジに対する遅延時間
Dmrr: 単安定マルチバイブレータの立ち上がりエッジに対する遅延時間
Init: 起動信号
N1: 遅延回路の入力ノード
N2: 遅延回路の出力ノード
P1: ラウンチ動作パルス
P2: キャプチャー動作パルス
RST#: リセット信号
S0: テスト対象のクロック信号
S1: 遅延クロック信号
S3: モード切替信号
S4,S5: 信号選択信号
SE: 外部制御信号
SEout: 第2パルス信号(スキャンイネーブル信号)
Tnf: 負帰還によるリング発振動作の周期
Tpf: 正帰還によるリング発振動作の周期
Tpw: 単安定マルチバイブレータの出力パルスのパルス幅
Twh: 発振パルスの高レベル期間
Twl: 発振パルスの低レベル期間
DESCRIPTION OF SYMBOLS 1,11: Ring oscillation circuit by positive feedback which is the basis of the present invention 2,12: Delay circuit 3,13,53: Monostable multivibrator 4,14: Oscillation starting circuit 5,15: D-type flip-flop 6, 16: Inverter train 7, 9, 17, 19: 2-input exclusive OR circuit 8, 60: Oscillation frequency measuring circuit 10: Signal switching circuit 18: Inverter 51, 52, 64, 65: Variable delay circuit 30: Clock generation Circuit 31: Phase detector 32: Charge pump circuit 33: Voltage controlled oscillator (VCO)
34: 1 / N frequency divider 50, 70: Pulse generation circuit according to the present invention 54, 66: Fixed delay circuit 55: Control circuit 56, 56 ′: Pulse generation circuit 57, 58, 59: Signal selection circuit 61, 71 : Semiconductor integrated circuit according to the present invention 62: Circuit under test to be subjected to a delay test by the scan path method 63: Second pulse generation circuit CD 1 and CD 2: Control signal for delay time adjustment CLKin: Input clock signal CLKout: Output clock Signal CLK0: Input clock signal of delay circuit section CLK1: First delay signal CLK2: Second delay signal CLK3: Pulse signal (launch / capture clock)
Dfe: Propagation delay time with respect to falling edge of delay circuit Dre: Propagation delay time with respect to rising edge of delay circuit Dmff: Delay time with respect to falling edge of monostable multivibrator Dmrr: Delay time with respect to rising edge of monostable multivibrator Init: Start signal N1: Delay circuit input node N2: Delay circuit output node P1: Launch operation pulse P2: Capture operation pulse RST #: Reset signal S0: Test target clock signal S1: Delay clock signal S3: Mode switching signal S4 S5: Signal selection signal SE: External control signal SEout: Second pulse signal (scan enable signal)
Tnf: Period of ring oscillation operation by negative feedback Tpf: Period of ring oscillation operation by positive feedback Tpw: Pulse width of output pulse of monostable multivibrator Twh: High level period of oscillation pulse Twl: Low level period of oscillation pulse

Claims (10)

入力クロック信号に対して少なくとも2つの異なる遅延信号を出力するとともに、前記2つの異なる遅延信号の内の遅い方の第2遅延信号の前記入力クロック信号からの遅延時間が調整可能に構成されている遅延回路部と、
単安定マルチバイブレータと、
前記単安定マルチバイブレータの出力信号が、前記遅延回路部内の前記入力クロック信号から前記第2遅延信号に至る信号遅延経路を経由して、前記単安定マルチバイブレータの入力に帰還する第1の正帰還ループと、前記単安定マルチバイブレータの出力信号が、前記信号遅延経路を経由せずに、前記単安定マルチバイブレータの入力に帰還する第2の正帰還ループを、個別に形成するための信号接続を制御するとともに、前記遅延回路部の遅延時間の調整を行う制御回路と、
前記第1の正帰還ループ及び前記第2の正帰還ループの何れか一方が個別に形成されている状態で、形成されている前記何れか一方の正帰還ループの発振周波数を測定する発振周波数測定回路と、
前記入力クロック信号と前記2つの異なる遅延信号から、前記入力クロック信号の1周期内に少なくとも2回の立ち上がりエッジまたは立ち下がりエッジを有し、前記2回の立ち上がりエッジまたは立ち下がりエッジ間の時間差が前記第2遅延信号の前記入力クロック信号からの遅延時間と同等となるパルス信号を生成するパルス生成回路と、
を備えてなることを特徴とするパルス発生回路。
At least two different delay signals are output with respect to the input clock signal, and the delay time from the input clock signal of the later second delay signal of the two different delay signals is adjustable. A delay circuit section;
A monostable multivibrator,
A first positive feedback in which the output signal of the monostable multivibrator is fed back to the input of the monostable multivibrator via a signal delay path from the input clock signal in the delay circuit unit to the second delay signal. A signal connection for individually forming a loop and a second positive feedback loop in which the output signal of the monostable multivibrator returns to the input of the monostable multivibrator without passing through the signal delay path. A control circuit for controlling and adjusting a delay time of the delay circuit unit;
Oscillation frequency measurement for measuring the oscillation frequency of one of the first positive feedback loops and the one of the second positive feedback loops formed separately. Circuit,
The input clock signal and the two different delay signals have at least two rising edges or falling edges within one cycle of the input clock signal, and a time difference between the two rising edges or falling edges is A pulse generation circuit for generating a pulse signal equivalent to a delay time from the input clock signal of the second delay signal;
A pulse generation circuit comprising:
前記遅延回路部が、少なくとも一方が遅延時間を調整可能な可変遅延回路である2つの遅延回路を縦続接続して形成され、
前記2つの遅延回路が前記2つの異なる遅延信号を各別に出力することを特徴とする請求項1に記載のパルス発生回路。
The delay circuit unit is formed by cascading two delay circuits, at least one of which is a variable delay circuit capable of adjusting a delay time,
2. The pulse generation circuit according to claim 1, wherein the two delay circuits output the two different delay signals separately.
前記遅延回路部が、少なくとも一方が遅延時間を調整可能な可変遅延回路である2つの遅延回路を並列に備えて形成され、
前記2つの遅延回路が、同じ前記入力クロック信号を入力して、前記2つの異なる遅延信号を各別に出力することを特徴とする請求項1に記載のパルス発生回路。
The delay circuit unit is formed by including two delay circuits in parallel, at least one of which is a variable delay circuit capable of adjusting a delay time,
2. The pulse generation circuit according to claim 1, wherein the two delay circuits receive the same input clock signal and output the two different delay signals separately.
前記2つの遅延回路の一方が、遅延時間が固定の固定遅延回路であることを特徴とする請求項2または3に記載のパルス発生回路。   4. The pulse generation circuit according to claim 2, wherein one of the two delay circuits is a fixed delay circuit having a fixed delay time. 外部制御信号の入力に応じて前記パルス信号と前記入力クロック信号を択一的に選択して出力する選択回路を備えることを特徴とする請求項1乃至4の何れか1項に記載のパルス発生回路。   5. The pulse generation according to claim 1, further comprising a selection circuit that selectively selects and outputs the pulse signal and the input clock signal according to an input of an external control signal. 6. circuit. 前記2つの異なる遅延信号の内の早い方の第1遅延信号と前記外部制御信号から、前記選択回路が前記パルス信号を選択している期間に同期して出力される第2パルス信号を生成する第2パルス生成回路を備えることを特徴とする請求項5に記載のパルス発生回路。   A second pulse signal that is output in synchronization with a period during which the selection circuit selects the pulse signal is generated from the earlier first delay signal of the two different delay signals and the external control signal. 6. The pulse generation circuit according to claim 5, further comprising a second pulse generation circuit. スキャンパス法によるディレイテストを実行可能に構成された半導体集積回路であって、
請求項5に記載のパルス発生回路を内蔵し、
前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用することを特徴とする半導体集積回路。
A semiconductor integrated circuit configured to be able to perform a delay test by the scan path method,
The pulse generation circuit according to claim 5 is incorporated,
A semiconductor integrated circuit, wherein a signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method.
スキャンパス法によるディレイテストを実行可能に構成された半導体集積回路であって、
請求項6に記載のパルス発生回路を内蔵し、
前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用し、
前記第2パルス生成回路から出力される前記第2パルス信号を、前記被テスト回路のスキャンイネーブル信号として使用することを特徴とする半導体集積回路。
A semiconductor integrated circuit configured to be able to perform a delay test by the scan path method,
A pulse generation circuit according to claim 6 is incorporated,
The signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method,
A semiconductor integrated circuit, wherein the second pulse signal output from the second pulse generation circuit is used as a scan enable signal of the circuit under test.
半導体集積回路に対しスキャンパス法によるディレイテストを実行するテスト方法であって、
請求項5に記載のパルス発生回路を使用し、
前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用することを特徴とする半導体集積回路のテスト方法。
A test method for performing a delay test by a scan path method on a semiconductor integrated circuit,
Using the pulse generation circuit according to claim 5,
A method of testing a semiconductor integrated circuit, wherein a signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method.
半導体集積回路に対しスキャンパス法によるディレイテストを実行するテスト方法であって、
請求項6に記載のパルス発生回路を使用し、
前記選択回路から出力される信号を、前記スキャンパス法によるディレイテストの対象となる被テスト回路のクロックパルスとして使用し、
前記第2パルス生成回路から出力される前記第2パルス信号を、前記被テスト回路のスキャンイネーブル信号として使用することを特徴とする半導体集積回路のテスト方法。
A test method for performing a delay test by a scan path method on a semiconductor integrated circuit,
Using the pulse generation circuit according to claim 6,
The signal output from the selection circuit is used as a clock pulse of a circuit under test to be subjected to a delay test by the scan path method,
A test method for a semiconductor integrated circuit, wherein the second pulse signal output from the second pulse generation circuit is used as a scan enable signal for the circuit under test.
JP2007098049A 2006-02-02 2007-04-04 Pulse generation circuit, semiconductor integrated circuit, and test method thereof Expired - Fee Related JP4295790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098049A JP4295790B2 (en) 2006-02-02 2007-04-04 Pulse generation circuit, semiconductor integrated circuit, and test method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006025188 2006-02-02
JP2007098049A JP4295790B2 (en) 2006-02-02 2007-04-04 Pulse generation circuit, semiconductor integrated circuit, and test method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006220184A Division JP2007235908A (en) 2006-02-02 2006-08-11 Ring oscillating circuit, delayed time measuring circuit, test circuit, clock signal generating circuit, image sensor, pulse generating circuit, semiconductor integrated circuit and its testing method

Publications (2)

Publication Number Publication Date
JP2007243964A true JP2007243964A (en) 2007-09-20
JP4295790B2 JP4295790B2 (en) 2009-07-15

Family

ID=38588950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098049A Expired - Fee Related JP4295790B2 (en) 2006-02-02 2007-04-04 Pulse generation circuit, semiconductor integrated circuit, and test method thereof

Country Status (1)

Country Link
JP (1) JP4295790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098696A (en) * 2008-10-20 2010-04-30 Toshiba Corp Communication terminal device
JP2015514211A (en) * 2012-03-28 2015-05-18 テラダイン・インコーポレーテッドTeradyne Incorporated Edge trigger calibration
CN110275061A (en) * 2019-07-02 2019-09-24 京信通信***(中国)有限公司 A kind of power detector and its control method, device, equipment, medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098696A (en) * 2008-10-20 2010-04-30 Toshiba Corp Communication terminal device
JP2015514211A (en) * 2012-03-28 2015-05-18 テラダイン・インコーポレーテッドTeradyne Incorporated Edge trigger calibration
JP2018054628A (en) * 2012-03-28 2018-04-05 テラダイン・インコーポレーテッドTeradyne Incorporated Edge-triggered calibration
CN110275061A (en) * 2019-07-02 2019-09-24 京信通信***(中国)有限公司 A kind of power detector and its control method, device, equipment, medium

Also Published As

Publication number Publication date
JP4295790B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP2007235908A (en) Ring oscillating circuit, delayed time measuring circuit, test circuit, clock signal generating circuit, image sensor, pulse generating circuit, semiconductor integrated circuit and its testing method
JP4298688B2 (en) Clock generation circuit and clock generation method
US20100039157A1 (en) Clock adjusting circuit and semiconductor integrated circuit device
US7400160B2 (en) Semiconductor integrated circuit device, measurement method therefore and measurement system for measuring AC characteristics thereof
JP4995325B2 (en) Clock transfer circuit and test apparatus using the same
JP2007017257A (en) Semiconductor tester
US6756827B2 (en) Clock multiplier using masked control of clock pulses
JP4874096B2 (en) Semiconductor test equipment with timing generator
JP3559785B2 (en) PLL circuit and phase difference detection circuit
JP4192228B2 (en) Data generator
JP4295790B2 (en) Pulse generation circuit, semiconductor integrated circuit, and test method thereof
JP5381001B2 (en) Semiconductor integrated circuit and method for testing semiconductor integrated circuit
KR20220096555A (en) Duty cycle correcting circuit including a referene clock generator
CN110198162B (en) Semiconductor device including clock generation circuit
JP2007053685A (en) Semiconductor integrated circuit device
CN105261382A (en) Output circuit
JP4772801B2 (en) Oscillation circuit, test apparatus, and electronic device
US7643580B2 (en) Signal generator circuit having multiple output frequencies
JP2013072797A (en) Semiconductor test circuit
JP2003163591A (en) Semiconductor integrated circuit and measurement method for its jitter
JP4940726B2 (en) Clock delay correction circuit
JP3391305B2 (en) Data clock synchronization circuit
JP2007198880A (en) Semiconductor integrated circuit and duty measurement/correction method using same
JP2011075333A (en) Semiconductor integrated circuit
JP2008022466A (en) Clock generating circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees