JP2007239805A - Liquefied gas storage tank - Google Patents

Liquefied gas storage tank Download PDF

Info

Publication number
JP2007239805A
JP2007239805A JP2006060313A JP2006060313A JP2007239805A JP 2007239805 A JP2007239805 A JP 2007239805A JP 2006060313 A JP2006060313 A JP 2006060313A JP 2006060313 A JP2006060313 A JP 2006060313A JP 2007239805 A JP2007239805 A JP 2007239805A
Authority
JP
Japan
Prior art keywords
liquefied gas
tank
inner tank
heat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060313A
Other languages
Japanese (ja)
Inventor
Daigoro Mori
大五郎 森
Norihiko Hatsugawa
徳彦 秡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006060313A priority Critical patent/JP2007239805A/en
Publication of JP2007239805A publication Critical patent/JP2007239805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquefied gas storage tank capable of inhibiting generation of BOG. <P>SOLUTION: The liquefied gas storage tank includes an inner tank 10 capable of storing liquefied gas, an outer tank 12 for covering around an outer side of the inner tank, a heat insulating layer 14 provided between the inner tank 10 and the outer tank 12, a thermal penetration source 16 connected to the inner tank 10 and a baffle plate 18, placed above a position where the thermal penetration source 16 of the inner tank 10 is coupled and extending a heat transfer distance from a position where the thermal penetration source 16 is coupled to a liquid level of the liquefied gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体水素等の液化ガスを貯蔵する液化ガス貯蔵タンクに関する。   The present invention relates to a liquefied gas storage tank for storing a liquefied gas such as liquid hydrogen.

一般に、液体水素等の液化ガスを貯蔵するタンクには、外部からの侵入熱によるガス(ボイルオフガス;BOG)の発生を防ぐために液化ガスを貯留可能な内槽と、この内槽の外側周囲を覆う外槽との間に断熱層が設けられている。   In general, a tank for storing liquefied gas such as liquid hydrogen has an inner tank capable of storing liquefied gas to prevent generation of gas (boil-off gas; BOG) due to intrusion heat from the outside, and an outer periphery of the inner tank. A heat insulating layer is provided between the outer tank to be covered.

例えば、液化ガス貯蔵タンクが燃料電池自動車に搭載される場合、液化ガス貯蔵タンクの内槽には、液化ガス(液体水素)の供給・取り出しのための配管が接続される。また、衝撃に備えて液化ガス貯蔵タンクの内槽を直接車体に接合する必要がある。これらの配管や接合部が熱侵入源となり、BOGが発生して液化ガスの貯蔵効率が悪化する。   For example, when a liquefied gas storage tank is mounted on a fuel cell vehicle, a pipe for supplying and taking out liquefied gas (liquid hydrogen) is connected to the inner tank of the liquefied gas storage tank. Moreover, it is necessary to join the inner tank of a liquefied gas storage tank directly to a vehicle body in preparation for an impact. These pipes and joints become heat intrusion sources, BOG is generated, and the storage efficiency of the liquefied gas is deteriorated.

そのため、BOGである水素ガスを有効利用するための提案が行われており、例えば、液体水素タンクのBOGを水素吸蔵合金でトラップして冷凍サイクルにて冷却して該液体水素タンクに戻す水素蒸発抑制装置が開示されている(例えば、特許文献1参照。)。   For this reason, proposals have been made to effectively use hydrogen gas as BOG. For example, hydrogen evaporation that traps BOG in a liquid hydrogen tank with a hydrogen storage alloy, cools it in a refrigeration cycle, and returns it to the liquid hydrogen tank. A suppression device is disclosed (for example, refer to Patent Document 1).

得開2000−213697号公報Tokukai 2000-213697

しかし、BOGの量が多いと水素蒸発抑制装置を大型化する必要が生ずる。   However, if the amount of BOG is large, it is necessary to enlarge the hydrogen evaporation suppression device.

本発明は、上記従来の問題点に鑑みてなされたものであり、BOGの発生を抑制可能な液化ガス貯蔵タンクを提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquefied gas storage tank capable of suppressing the generation of BOG.

上記目的を達成するための本発明の液化ガス貯蔵タンクは、液化ガスを貯留可能な内槽と、前記内槽の外側周囲を覆う外槽と、前記内槽と前記外槽との間に設けられた断熱層と、前記内槽に連結した熱侵入源と、前記内槽の前記熱侵入源が連結した箇所の上方に位置し前記熱侵入源が連結した箇所から前記液化ガス液面への伝熱距離を延長するバッフル板と、を有する。   In order to achieve the above object, the liquefied gas storage tank of the present invention is provided between an inner tank capable of storing liquefied gas, an outer tank covering the outer periphery of the inner tank, and the inner tank and the outer tank. The heat insulation layer formed, the heat penetration source connected to the inner tub, and the location where the heat penetration source of the inner tub is connected to the liquefied gas liquid surface from the location where the heat penetration source is connected. A baffle plate extending the heat transfer distance.

BOGの発生量は、液化ガス液面の温度に依存する。液化ガス液面の温度を下げることによりBOGの発生量を抑制することが可能となる。   The amount of BOG generated depends on the temperature of the liquefied gas liquid surface. The amount of BOG generated can be suppressed by lowering the temperature of the liquefied gas liquid surface.

本発明の液化ガス貯蔵タンクは、液化ガスを貯留可能な内槽とこの内槽の外側周囲を覆う外槽との間に断熱層を備えるため、外部からの侵入熱の大部分は内槽の熱侵入源が連結した箇所から侵入する。   Since the liquefied gas storage tank of the present invention includes a heat insulating layer between the inner tank capable of storing liquefied gas and the outer tank covering the outer periphery of the inner tank, most of the intrusion heat from the outside is in the inner tank. It enters from the place where the heat intrusion source is connected.

本発明の液化ガス貯蔵タンクでは、上述の構成をとることにより、内槽の熱侵入源が連結した箇所の上方に熱侵入源が連結した箇所から液化ガス液面への伝熱距離を延長するバッフル板が位置する。そのため、内槽の熱侵入源が連結した箇所から液化ガス表面への伝熱速度を遅らせることができる。その結果として液化ガス表面の温度上昇を抑制し、BOGの発生を減少することができる。   In the liquefied gas storage tank of the present invention, by adopting the above-described configuration, the heat transfer distance from the location where the heat penetration source is connected above the location where the heat penetration source is connected to the liquefied gas liquid surface is extended. A baffle plate is located. Therefore, the heat transfer rate from the location where the heat penetration source of the inner tank is connected to the surface of the liquefied gas can be delayed. As a result, the temperature rise on the surface of the liquefied gas can be suppressed and the generation of BOG can be reduced.

また、バッフル板の存在により熱侵入源が連結した箇所付近で暖められた液化ガスの液面方向への対流が妨げられるため、液化ガス下部(熱侵入源が連結した箇所付近)の温度を液化ガス上部(液面付近)の温度と比較して高く保つことができる。液化ガス下部の温度を高く保つことができれば、外界からの熱流束を小さくできる(外界からの熱の流入を少なくすることができる)。その結果として内槽内の温度上昇を抑制しBOG量を減少することができる。   In addition, the presence of the baffle plate prevents the convection in the liquid surface direction of the liquefied gas heated near the location where the heat intrusion source is connected, so the temperature at the bottom of the liquefied gas (near the location where the heat intrusion source is connected) liquefies It can be kept high compared to the temperature at the top of the gas (near the liquid level). If the temperature of the lower part of the liquefied gas can be kept high, the heat flux from the outside can be reduced (inflow of heat from the outside can be reduced). As a result, the temperature rise in the inner tank can be suppressed and the BOG amount can be reduced.

本発明の液化ガス貯蔵タンクにおいては、バッフル板を液化ガス液面に対して略水平に設けることができる。   In the liquefied gas storage tank of the present invention, the baffle plate can be provided substantially horizontally with respect to the liquefied gas liquid surface.

本発明における熱侵入源としては、断熱層よりも熱伝導性の大きい支持体であってもよい。   The heat intrusion source in the present invention may be a support having a higher thermal conductivity than the heat insulating layer.

また、本発明における熱侵入源としては、内槽へ液化ガスを注入するため又は内槽から液化ガスを取り出すための、断熱層よりも熱伝導性の大きい配管であってもよい。   Further, the heat intrusion source in the present invention may be a pipe having higher thermal conductivity than the heat insulating layer for injecting the liquefied gas into the inner tank or taking out the liquefied gas from the inner tank.

本発明によれば、BOGの発生を抑制可能な液化ガス貯蔵タンクを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquefied gas storage tank which can suppress generation | occurrence | production of BOG can be provided.

以下、本発明の液化ガス貯蔵タンクの実施の形態の一例を図面に基づき詳細に説明する。本実施の形態は車載用の液体水素貯蔵タンクに本発明の液化ガス貯蔵タンクを適用したものである。なお、同様の機能を有する部材には、全図面を通じて同じ符合を付与し、その説明を省略することがある。   Hereinafter, an example of an embodiment of a liquefied gas storage tank of the present invention will be described in detail with reference to the drawings. In this embodiment, the liquefied gas storage tank of the present invention is applied to an on-vehicle liquid hydrogen storage tank. In addition, the same code | symbol is provided to the member which has the same function throughout all drawings, and the description may be abbreviate | omitted.

<第一実施形態>
図1は、第一実施形態に係る液体水素貯蔵タンクの概略構成を示す一部破断図である。第一実施形態に係る液体水素貯蔵タンクは、液化ガスである液体水素を貯留可能な内槽10と、内槽10の外周周囲を覆う外槽12と、内槽10と外槽12との間に設けられた断熱層14とを有し、内槽10は液体水素貯蔵タンクの下部に設けられた4つの支持体16を介して不図示の車体本体に固定されている。支持体16は、内槽10を車体本体に固定するための連結具として機能する。なお、図1では、説明の都合上液体水素及び4つの支持体16のうちの一つの図示を省略している。
<First embodiment>
FIG. 1 is a partially cutaway view showing a schematic configuration of a liquid hydrogen storage tank according to the first embodiment. The liquid hydrogen storage tank according to the first embodiment includes an inner tank 10 that can store liquid hydrogen that is a liquefied gas, an outer tank 12 that covers the outer periphery of the inner tank 10, and an inner tank 10 and an outer tank 12. The inner tank 10 is fixed to a vehicle body body (not shown) via four supports 16 provided at the lower part of the liquid hydrogen storage tank. The support body 16 functions as a connector for fixing the inner tank 10 to the vehicle body. In FIG. 1, illustration of liquid hydrogen and one of the four supports 16 is omitted for convenience of explanation.

不図示の車体本体に内槽10を固定する支持体16は断熱層14よりも熱伝導性の大きい部材から構成される。そのため、支持体16は内槽10内への熱侵入源となる。   A support 16 for fixing the inner tub 10 to a vehicle body (not shown) is composed of a member having a higher thermal conductivity than the heat insulating layer 14. Therefore, the support 16 becomes a heat penetration source into the inner tank 10.

内槽10の支持体16が連結した箇所の上方には、支持体16が連結した箇所から液体水素の液面への伝熱距離を延長するために液体水素の液面に対して水平なバッフル板18が設けられている。   Above the portion of the inner tank 10 where the support 16 is connected, a baffle that is horizontal to the liquid level of liquid hydrogen in order to extend the heat transfer distance from the location where the support 16 is connected to the liquid level of liquid hydrogen. A plate 18 is provided.

断熱層14としては、多層インシュレーション(MLI)を用いることができる。MLIは、反射率の高い薄膜状の放射シールド材とシールド材間の熱伝導を防ぐスペーサ材とを交互に積層することにより構成される。シールド材としては片面あるいは両面アルミ蒸着されたポリエステルフィルム等が、スペーサ材としてはガラス繊維の布や紙、ナイロンネット等が用いられる。MLIは、シールド材をN枚挿入すると輻射による進入熱量を1/(N+1)に減少させることができる。   As the heat insulating layer 14, multilayer insulation (MLI) can be used. The MLI is configured by alternately laminating a thin-film radiation shield material having a high reflectance and a spacer material for preventing heat conduction between the shield materials. As the shield material, a single-sided or double-sided aluminum-deposited polyester film or the like is used, and as the spacer material, glass fiber cloth, paper, nylon net, or the like is used. The MLI can reduce the amount of heat entering due to radiation to 1 / (N + 1) when N shield materials are inserted.

断熱層14として、MLI以外にもグラスウール等を用いることができる。   In addition to MLI, glass wool or the like can be used as the heat insulating layer 14.

また、内槽10と外槽12との間は真空ポンプにより真空引きされることで真空とされる。これにより更なる断熱効果が得られる。   The space between the inner tank 10 and the outer tank 12 is evacuated by a vacuum pump. Thereby, the further heat insulation effect is acquired.

外槽12、内槽10及びバッフル板18としては、SUS又はステンレス製のタンク等を用いることができるがこれに限定されるものではない。内槽10には、超低温状態で強度があるステンレス鋼が一般に用いられる。   As the outer tub 12, the inner tub 10, and the baffle plate 18, a SUS or stainless steel tank can be used, but is not limited thereto. The inner tank 10 is generally made of stainless steel that has strength in an ultra-low temperature state.

次に、バッフル板18の作用について説明する。図2は、図1の液体水素貯蔵タンクのA−A線断面を示す図である。内槽10は、断熱層14により覆われているため、支持体16と内槽10とが連結した箇所以外の箇所からの熱侵入が抑制されている。   Next, the operation of the baffle plate 18 will be described. FIG. 2 is a cross-sectional view taken along line AA of the liquid hydrogen storage tank of FIG. Since the inner tank 10 is covered with the heat insulating layer 14, the heat intrusion from places other than the place where the support 16 and the inner tank 10 are connected is suppressed.

支持体16を介して内槽10内に侵入した熱により、支持体16と内槽10とが連結した箇所付近の液体水素20は加熱される。加熱された液体水素20は対流して液面に向けて上昇する。しかし、内槽10の支持体16が連結した箇所の上方には、液体水素20の液面への伝熱距離を延長するバッフル板18が設けられているため、液体水素20液面の温度上昇が抑制される。その結果として、BOGの発生が減少する。   The liquid hydrogen 20 near the location where the support 16 and the inner tank 10 are connected is heated by the heat that has entered the inner tank 10 via the support 16. The heated liquid hydrogen 20 convects and rises toward the liquid level. However, since the baffle plate 18 that extends the heat transfer distance of the liquid hydrogen 20 to the liquid surface is provided above the portion where the support 16 of the inner tank 10 is connected, the temperature of the liquid hydrogen 20 liquid surface rises. Is suppressed. As a result, the occurrence of BOG is reduced.

また、バッフル板18が支持体16と内槽10とが連結した箇所の上方に位置するため、内槽10の底面とバッフル板18とで囲まれる領域で、図2中矢印で示すような液体水素20の対流が起こる。これにより液面付近の液体水素20の温度と比較して内槽10の底面とバッフル板18とで囲まれる領域における液体水素20の温度が高くなる。液体水素20の温度が高くなると外界(本実施形態においては車体本体)との温度差が小さくなる。外界との温度差が小さくなると熱流束が小さくなるため内槽10内の温度上昇を抑制することができ、その結果としてBOGの発生を抑制することができる。   Further, since the baffle plate 18 is located above the place where the support 16 and the inner tub 10 are connected, a liquid as indicated by an arrow in FIG. 2 is a region surrounded by the bottom surface of the inner tub 10 and the baffle plate 18. Hydrogen 20 convection occurs. Thereby, the temperature of the liquid hydrogen 20 in the region surrounded by the bottom surface of the inner tank 10 and the baffle plate 18 is higher than the temperature of the liquid hydrogen 20 near the liquid level. As the temperature of the liquid hydrogen 20 increases, the temperature difference from the outside world (the vehicle body in the present embodiment) decreases. When the temperature difference from the outside becomes small, the heat flux becomes small, so that the temperature rise in the inner tank 10 can be suppressed, and as a result, the generation of BOG can be suppressed.

次に、本実施形態の変形例について説明する。図3は、本実施形態に係る液体水素貯蔵タンクの変形例に係るバッフル板18の要部拡大断面図である。バッフル板18は、図3(A)に示すように、先端が内槽10の底部に向かって折れ曲がった態様であってもよい。   Next, a modification of this embodiment will be described. FIG. 3 is an enlarged cross-sectional view of a main part of a baffle plate 18 according to a modification of the liquid hydrogen storage tank according to the present embodiment. As shown in FIG. 3A, the baffle plate 18 may have a form in which the tip is bent toward the bottom of the inner tank 10.

図3(A)に示すバッフル板18を用いることにより、内槽10の底面とバッフル板18とで囲まれる領域にある加熱された液体水素の対流による液面付近への移動を抑制できる。そのため、内槽10の底面とバッフル板18とで囲まれる領域の液体水素の温度と液面付近の液体水素の温度との差をさらに大きくすることができる。その結果として、BOGの発生をさらに抑制することができる。   By using the baffle plate 18 shown in FIG. 3A, the movement of the heated liquid hydrogen in the region surrounded by the bottom surface of the inner tank 10 and the baffle plate 18 to the vicinity of the liquid surface can be suppressed. Therefore, the difference between the temperature of liquid hydrogen in the region surrounded by the bottom surface of the inner tank 10 and the baffle plate 18 and the temperature of liquid hydrogen near the liquid surface can be further increased. As a result, generation of BOG can be further suppressed.

バッフル板18は、図3(B)に示すように、内槽10の壁を断面略U字状に成形したものであってもよい。この場合、図3(B)に係るバッフル板18は、断熱層14を含む3層構造となる。   As shown in FIG. 3B, the baffle plate 18 may be formed by molding the wall of the inner tank 10 into a substantially U-shaped cross section. In this case, the baffle plate 18 according to FIG. 3B has a three-layer structure including the heat insulating layer 14.

断熱層14を含むバッフル板18は、内槽10の底面から液面方向への断熱性に優れる。そのため、内槽10の底面とバッフル板18とで囲まれる領域にある加熱された液体水素の熱が、バッフル板18を介して液面方向に伝導するのを防ぐことができる。その結果として、BOGの発生をさらに抑制することができる。   The baffle plate 18 including the heat insulation layer 14 is excellent in heat insulation from the bottom surface of the inner tank 10 to the liquid surface direction. Therefore, the heat of the heated liquid hydrogen in the region surrounded by the bottom surface of the inner tank 10 and the baffle plate 18 can be prevented from conducting in the liquid surface direction through the baffle plate 18. As a result, generation of BOG can be further suppressed.

<第二実施形態>
図4は、第二実施形態に係る液体水素貯蔵タンクの概略構成を示す断面図である。第二実施形態に係る液体水素貯蔵タンクの内槽10は、液体水素貯蔵タンクの上部に設けられた4つの支持体16を介して不図示の車体本体に固定されている。また、タンク下部には内槽10内に液体水素を注入・取り出し可能なように配管22が接続されている。配管22は断熱層14よりも熱伝導性の大きい部材から構成される。そのため、配管22は内槽10内への熱侵入源となる。
<Second embodiment>
FIG. 4 is a cross-sectional view showing a schematic configuration of the liquid hydrogen storage tank according to the second embodiment. The inner tank 10 of the liquid hydrogen storage tank according to the second embodiment is fixed to a vehicle body (not shown) via four supports 16 provided on the upper part of the liquid hydrogen storage tank. A pipe 22 is connected to the lower part of the tank so that liquid hydrogen can be injected into and taken out from the inner tank 10. The pipe 22 is composed of a member having higher thermal conductivity than the heat insulating layer 14. Therefore, the pipe 22 becomes a heat intrusion source into the inner tank 10.

内槽10の配管22が接続された箇所の上方には、バッフル板18が設けられている。そのため、上述の第一実施形態の場合と同様にBOGの発生を減少させることができる。   A baffle plate 18 is provided above the location where the pipe 22 of the inner tank 10 is connected. Therefore, the generation of BOG can be reduced as in the case of the first embodiment described above.

図4の配管22及び図1の支持体16のように熱侵入源の内槽に連結した箇所が液体水素(液化ガス)に触れる場合に本発明は有効である。   The present invention is effective when the portion connected to the inner tank of the heat intrusion source touches liquid hydrogen (liquefied gas), such as the pipe 22 in FIG. 4 and the support 16 in FIG.

上記実施形態は本発明の液化ガス貯蔵タンクを車載用の液体水素貯蔵タンクに適用したものであるが、本発明は車載用の液体水素貯蔵タンクとしてだけでなく、例えば、タンクローリー等に適応可能であり、その形状は矩形、円筒形、球形等とすることができる。また、液化ガスとしては、液体水素だけでなく、液体ヘリウム、液体窒素、液化石油ガス等に適応できる。   In the above embodiment, the liquefied gas storage tank of the present invention is applied to an in-vehicle liquid hydrogen storage tank. However, the present invention is applicable not only to an in-vehicle liquid hydrogen storage tank but also to, for example, a tank lorry. And the shape can be rectangular, cylindrical, spherical, or the like. The liquefied gas can be applied not only to liquid hydrogen but also liquid helium, liquid nitrogen, liquefied petroleum gas, and the like.

第一実施形態に係る液体水素貯蔵タンクの概略構成を示す一部破断図である。It is a partially broken figure which shows schematic structure of the liquid hydrogen storage tank which concerns on 1st embodiment. 図1の液体水素貯蔵タンクのA−A線断面を示す図である。It is a figure which shows the AA sectional view of the liquid hydrogen storage tank of FIG. 本実施形態に係る液体水素貯蔵タンクの変形例に係るバッフル板の要部拡大断面図である。It is a principal part expanded sectional view of the baffle board concerning the modification of the liquid hydrogen storage tank concerning this embodiment. 第二実施形態に係る液体水素貯蔵タンクの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the liquid hydrogen storage tank which concerns on 2nd embodiment.

符号の説明Explanation of symbols

10 内槽
12 外槽
14 断熱層
16 支持体
18 バッフル板
20 液体水素
22 配管
DESCRIPTION OF SYMBOLS 10 Inner tank 12 Outer tank 14 Heat insulation layer 16 Support body 18 Baffle board 20 Liquid hydrogen 22 Piping

Claims (4)

液化ガスを貯留可能な内槽と、前記内槽の外側周囲を覆う外槽と、前記内槽と前記外槽との間に設けられた断熱層と、前記内槽に連結した熱侵入源と、前記内槽の前記熱侵入源が連結した箇所の上方に位置し前記熱侵入源が連結した箇所から前記液化ガス液面への伝熱距離を延長するバッフル板と、を有する液化ガス貯蔵タンク。   An inner tank capable of storing liquefied gas; an outer tank covering the outer periphery of the inner tank; a heat insulating layer provided between the inner tank and the outer tank; and a heat intrusion source connected to the inner tank; A liquefied gas storage tank having a baffle plate located above the location where the heat penetration source of the inner tank is connected and extending a heat transfer distance from the location where the heat penetration source is connected to the liquid level of the liquefied gas . 前記バッフル板が、前記液化ガス液面に対して略水平に設けられた請求項1に記載の液化ガス貯蔵タンク。   The liquefied gas storage tank according to claim 1, wherein the baffle plate is provided substantially horizontally with respect to the liquefied gas liquid surface. 前記熱侵入源が、前記断熱層よりも熱伝導性の大きい支持体である請求項1又は2に記載の液化ガス貯蔵タンク。   The liquefied gas storage tank according to claim 1 or 2, wherein the heat intrusion source is a support having a higher thermal conductivity than the heat insulating layer. 前記熱侵入源が、前記内槽へ液化ガスを注入するため又は前記内槽から液化ガスを取り出すための、前記断熱層よりも熱伝導性の大きい配管である請求項1又は2に記載の液化ガス貯蔵タンク。   The liquefaction according to claim 1 or 2, wherein the heat intrusion source is a pipe having a higher thermal conductivity than the heat insulating layer for injecting the liquefied gas into the inner tank or taking out the liquefied gas from the inner tank. Gas storage tank.
JP2006060313A 2006-03-06 2006-03-06 Liquefied gas storage tank Pending JP2007239805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060313A JP2007239805A (en) 2006-03-06 2006-03-06 Liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060313A JP2007239805A (en) 2006-03-06 2006-03-06 Liquefied gas storage tank

Publications (1)

Publication Number Publication Date
JP2007239805A true JP2007239805A (en) 2007-09-20

Family

ID=38585553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060313A Pending JP2007239805A (en) 2006-03-06 2006-03-06 Liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP2007239805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324305B1 (en) 2011-07-08 2013-11-01 삼성중공업 주식회사 Cargo tank for storing liquefied gas
JP5391281B2 (en) * 2009-11-06 2014-01-15 本田技研工業株式会社 Gas tank
JP2019183427A (en) * 2018-04-03 2019-10-24 トーヨーカネツ株式会社 Heat insulating panel structure, liquefied gas storage container, method for manufacturing heat insulating panel structure, and method for producing liquefied gas storage container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758000A (en) * 1980-09-24 1982-04-07 Hitachi Zosen Corp Method of reducing pressure rise in pressure-accumulation-type low-temperature liquified gas taker
JPH0439400U (en) * 1990-07-30 1992-04-03
JPH0712295A (en) * 1993-06-25 1995-01-17 Mitsubishi Heavy Ind Ltd Inner chamber swing prevented supporting structure for double structural tank with heat insulation
JPH1030795A (en) * 1996-07-16 1998-02-03 Ishikawajima Harima Heavy Ind Co Ltd Method and device for hot-up of liquefied gas low temperature storage tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758000A (en) * 1980-09-24 1982-04-07 Hitachi Zosen Corp Method of reducing pressure rise in pressure-accumulation-type low-temperature liquified gas taker
JPH0439400U (en) * 1990-07-30 1992-04-03
JPH0712295A (en) * 1993-06-25 1995-01-17 Mitsubishi Heavy Ind Ltd Inner chamber swing prevented supporting structure for double structural tank with heat insulation
JPH1030795A (en) * 1996-07-16 1998-02-03 Ishikawajima Harima Heavy Ind Co Ltd Method and device for hot-up of liquefied gas low temperature storage tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391281B2 (en) * 2009-11-06 2014-01-15 本田技研工業株式会社 Gas tank
KR101324305B1 (en) 2011-07-08 2013-11-01 삼성중공업 주식회사 Cargo tank for storing liquefied gas
JP2019183427A (en) * 2018-04-03 2019-10-24 トーヨーカネツ株式会社 Heat insulating panel structure, liquefied gas storage container, method for manufacturing heat insulating panel structure, and method for producing liquefied gas storage container
JP7253131B2 (en) 2018-04-03 2023-04-06 トーヨーカネツ株式会社 Insulated panel structure, liquefied gas storage container, method of manufacturing the insulated panel structure, and method of manufacturing the liquefied gas storage container

Similar Documents

Publication Publication Date Title
KR101088464B1 (en) Heat insulation structure and cryogenic liquid storage tank having the same
KR102020141B1 (en) Storage vessel for cryogenic material
JP2007198717A (en) Hot water storage tank
JP6364694B2 (en) Carrier ship
KR101349871B1 (en) Lng storage tank
EP2320123B1 (en) Double barrier for liquefied gas storage tank and method of constructing the same
JP6843517B2 (en) Cold liquid storage tank
KR20090094505A (en) Material corrugation to lng cargo
JP2007239805A (en) Liquefied gas storage tank
KR20130113134A (en) Lng cargo containment
JP2018194116A (en) Low-temperature liquefied gas storage tank
JP6036605B2 (en) Above-ground cryogenic tank
JP2007155274A (en) Hot water storage tank
AU2020331403A1 (en) Pipe leadthrough module for a cryogenic container
JP5124918B2 (en) Hydrogen storage device
KR101556262B1 (en) Cargo for liquefied gas
JP4622906B2 (en) Liquefied gas filling method
JP2006009949A (en) Low-temperature liquefied gas storage tank
JP7257730B2 (en) Cryogenic liquid storage tank
KR101680290B1 (en) Liquefied Fuel Tank
KR101819296B1 (en) Apparatus for supporting inner tank of gas tank
KR101205926B1 (en) Installation method of panel for corner area of LNG tank and panel for corner area of LNG tank
CN204693036U (en) For connecting the labyrinth seal structure of low-temperature storage tank inner canister tank skin and furred ceiling
KR102490347B1 (en) Reinforcing member for corrugated membrane and lng storage tank having the reinforcing member
KR101337639B1 (en) Combination structure of reinforcing member for primary barrier of lng storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207