JP2007224102A - Thermal conductive silicone composition, thermal conductive silicone molded article, and its manufacturing method - Google Patents

Thermal conductive silicone composition, thermal conductive silicone molded article, and its manufacturing method Download PDF

Info

Publication number
JP2007224102A
JP2007224102A JP2006044694A JP2006044694A JP2007224102A JP 2007224102 A JP2007224102 A JP 2007224102A JP 2006044694 A JP2006044694 A JP 2006044694A JP 2006044694 A JP2006044694 A JP 2006044694A JP 2007224102 A JP2007224102 A JP 2007224102A
Authority
JP
Japan
Prior art keywords
group
component
heat
conductive silicone
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006044694A
Other languages
Japanese (ja)
Other versions
JP4803365B2 (en
Inventor
Masaya Asaine
雅弥 朝稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006044694A priority Critical patent/JP4803365B2/en
Publication of JP2007224102A publication Critical patent/JP2007224102A/en
Application granted granted Critical
Publication of JP4803365B2 publication Critical patent/JP4803365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily provide a thermal conductive member that is arranged between a heating member (an object requiring heat to be dissipated) and a heat dissipation member of electronic parts etc., has excellent thermal conductivity, can adhere well, and is easy to handle. <P>SOLUTION: A thermal conductive silicone composition comprising (a) 100 parts of an alkenyl group containing organopolysiloxane, (b) 300-5,000 parts of a thermal conductive filler, (c) an organohydrogenpolysiloxane wherein an amount based on a molar ratio of a SiH group in the component (c) to the alkenyl group in the component (a) is 0.6-10.0, (d) a platinum group metal-based addition reaction catalyst, and (e) a volatile compound having one SiH group, to which an alkenyl group can be added, in a molecule wherein an amount based on a molar ratio of a SiH group in the component (e) to a SiH group in the component (c) is 0.01-2.0, as constituent components, are thermally heated and cured in an open state to form a skin layer on a surface of the open side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子部品等の放熱のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との間に介装する熱伝達材料として有効な熱伝導性シリコーン組成物、熱伝導性シリコーン成形体及びその製造方法に関する。   The present invention is a heat conductive silicone composition effective as a heat transfer material interposed between a heat boundary surface of a heat-generating electronic component and a heat dissipation member such as a heat sink or a circuit board for heat dissipation of the electronic component, The present invention relates to a thermally conductive silicone molded body and a method for producing the same.

電子機器に使用されるCPU、ドライバICやメモリー等の電子部品は、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中の電子部品等の温度上昇を抑制するための多くの放熱方法及びそれに使用する放熱部材が提案されている。   Electronic components such as CPUs, driver ICs, and memories used in electronic devices generate large amounts of heat as they become more sophisticated, faster, smaller, and more integrated. Chip temperature rise causes chip malfunction and destruction. Therefore, many heat dissipating methods and heat dissipating members used for suppressing the temperature rise of electronic parts during operation have been proposed.

従来、電子機器等の発熱部材においては、動作中の部材の温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンク等の放熱部材が使用されている。   Conventionally, in a heat generating member such as an electronic device, a heat radiating member such as a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of the member during operation.

ここで、発熱部材から発生する熱を放熱部材に効率よく伝えるために、柔軟性を有するシートを発熱部材と放熱部材との間に介装させ、このシートを介して発熱部材から放熱部材への熱伝導を実現している。   Here, in order to efficiently transmit the heat generated from the heat generating member to the heat radiating member, a flexible sheet is interposed between the heat generating member and the heat radiating member, and the heat generating member is connected to the heat radiating member via this sheet. Realizes heat conduction.

その際、発熱部材及び放熱部材とシートとの密着度を高くすることにより、接触熱抵抗が低くなり放熱の効率は高くなる。このシートの硬度が高い場合、発熱部材及び放熱部材との密着度を上げ接触熱抵抗を低くするためには、シート及び両部材に掛ける応力を高くする必要があり、そうするとこれら両部材に悪影響を及ぼす可能性がある。   At that time, by increasing the adhesion between the heat generating member and the heat radiating member and the sheet, the contact thermal resistance is lowered and the heat radiation efficiency is increased. When the hardness of the sheet is high, it is necessary to increase the stress applied to the sheet and both members in order to increase the adhesion between the heat generating member and the heat radiating member and to reduce the contact thermal resistance. There is a possibility of effect.

シートの硬度を低くすることにより、それほど応力をかけずとも発熱部材及び放熱部材とシートとの密着度を高くすることが可能である。しかしながら、シートの硬度が低くなることにより、取り扱いの際にシートが伸びてしまう、シート表面の粘着性が大きくなり、取り扱いが困難になる等の不具合が指摘されている。   By reducing the hardness of the sheet, it is possible to increase the degree of adhesion between the heat generating member and the heat radiating member and the sheet without applying much stress. However, it has been pointed out that the hardness of the sheet is low, the sheet is stretched during handling, the adhesiveness of the sheet surface is increased, and the handling is difficult.

これらを解決するため、高硬度のシート上に低硬度シートを成形する等の複合化が行われてきた。これにより取り扱い性が良好で、低応力で高い密着度を得ることが可能となった。しかしながら、製造の際の工程が複雑かつ長くなり、シートの収率悪化、コストアップといった問題点があった。   In order to solve these problems, composites such as molding a low hardness sheet on a high hardness sheet have been performed. Thereby, the handleability is good, and it is possible to obtain a high degree of adhesion with low stress. However, the manufacturing process is complicated and long, and there are problems such as deterioration of sheet yield and cost increase.

なお、本発明に関連する公知文献としては下記のものがある。
特開2002−33427号公報 特開2002−261206号公報
The following documents are known documents related to the present invention.
JP 2002-33427 A JP 2002-261206 A

本発明は、上記事情に鑑みなされたもので、電子部品等の発熱部材(被放熱物)と放熱部材との間に設置されて、密着性及び取り扱い性が良好な熱伝達材料として有効な熱伝導性シリコーン組成物、熱伝導性シリコーン成形体及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is installed between a heat-generating member (heat-dissipating material) such as an electronic component and a heat-dissipating member, and is effective as a heat transfer material having good adhesion and handling properties. It aims at providing a conductive silicone composition, a heat conductive silicone molding, and its manufacturing method.

本発明者は、上記目的を達成するため鋭意検討した結果、(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(b)熱伝導性充填剤、(c)ケイ素原子に直接結合した水素原子(Si−H基)を分子中に平均で2個以上有するオルガノハイドロジェンポリシロキサン、(d)白金族系付加反応触媒、及び(e)アルケニル基が付加可能なケイ素原子に直接結合した水素原子(Si−H基)を分子中に一つ持つ揮発性化合物を含有してなるシリコーン組成物を基材に積層することで、基材に接触する内側表面と外部に露呈、開放された外側表面とを有する未硬化シリコーン体を形成し、これを加熱硬化させるという、いわばワンステップで外側表面部にスキン硬化層が形成され、内側表面部にこのスキン硬化層より硬化程度が低く、低硬度層が形成されたシリコーン伝熱体が得られ、このシリコーン伝熱体が、電子部品等の発熱部材(被放熱物)と放熱部材との間に設置されて、熱伝導性が良好で、密着性及び取り扱い性に優れた熱伝導部材となり得ることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has (a) an organopolysiloxane having at least two alkenyl groups in one molecule, (b) a thermally conductive filler, and (c) a silicon atom. An organohydrogenpolysiloxane having two or more directly bonded hydrogen atoms (Si-H groups) on average in the molecule, (d) a platinum group addition reaction catalyst, and (e) a silicon atom to which an alkenyl group can be added. By laminating a silicone composition containing a volatile compound having one directly bonded hydrogen atom (Si-H group) in the molecule to the substrate, it is exposed to the inner surface contacting the substrate and the outside. An uncured silicone body having an open outer surface is formed, and this is cured by heating. In other words, a skin cured layer is formed on the outer surface portion in one step, and this skin cured layer is formed on the inner surface portion. A silicone heat transfer body with a low degree of curing and a low hardness layer is obtained, and this silicone heat transfer body is installed between a heat generating member (heat radiated object) such as an electronic component and a heat radiating member, The present inventors have found that the heat conductive member can be a heat conductive member having good heat conductivity and excellent adhesion and handleability, and has led to the present invention.

即ち、本発明は下記熱伝導性シリコーン組成物、熱伝導性シリコーン成形体及びその製造方法を提供する。
[1](a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン: 100質量部、
(b)熱伝導性充填剤: 300〜5,000質量部、
(c)ケイ素原子に直接結合した水素原子を分子中に平均で2個以上有するオルガノハイドロジェンポリシロキサン: (a)成分中のアルケニル基に対する(c)成分中のケイ素原子に直接結合した水素原子がモル比で0.6〜10.0となる量、
(d)白金族系付加反応触媒: 白金元素の量で0.1〜1,000ppm、
(e)アルケニル基が付加可能なケイ素原子に直接結合した水素原子を分子中に一つ持つ揮発性化合物: (c)成分中のケイ素原子に直接結合した水素原子に対する(e)成分中のケイ素原子に直接結合した水素原子がモル比で0.01〜2.0に相当する量
を構成成分とし、開放状態で加熱硬化し、開放側表面にスキン層が形成されることを特徴とする熱伝導性シリコーン組成物。
[2]熱伝導性充填剤が、金属、酸化物、窒化物、ケイ化物及び人工ダイヤモンドから選ばれる1種又は2種以上であることを特徴とする上記[1]記載の熱伝導性シリコーン組成物。
[3]上記[1]又は[2]記載の熱伝導性シリコーン組成物を開放状態で加熱硬化させて得られる熱伝導性シリコーン成形体。
[4]上記[1]又は[2]記載の熱伝導性シリコーン組成物を基材に積層して未硬化シリコーン体を形成し、これを開放状態で加熱硬化して外側表面部にスキン硬化層を形成し、上記基材側の内側表面部に上記スキン層より低硬度層が形成されたシリコーン伝熱体を形成することを特徴とする熱伝導性シリコーン成形体の製造方法。
That is, this invention provides the following heat conductive silicone composition, a heat conductive silicone molded object, and its manufacturing method.
[1] (a) Organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass
(B) Thermally conductive filler: 300 to 5,000 parts by mass,
(C) Organohydrogenpolysiloxane having an average of two or more hydrogen atoms directly bonded to silicon atoms in the molecule: (a) Hydrogen atoms directly bonded to silicon atoms in component (c) relative to alkenyl groups in component In an amount of 0.6 to 10.0 in molar ratio,
(D) Platinum group addition reaction catalyst: 0.1 to 1,000 ppm in the amount of platinum element,
(E) Volatile compound having in its molecule one hydrogen atom directly bonded to a silicon atom to which an alkenyl group can be added: (c) Silicon in component (e) with respect to a hydrogen atom directly bonded to a silicon atom in component The heat is characterized in that the hydrogen atoms directly bonded to the atoms have an amount corresponding to a molar ratio of 0.01 to 2.0 as a constituent component and are heat-cured in an open state to form a skin layer on the open-side surface. Conductive silicone composition.
[2] The heat conductive silicone composition according to the above [1], wherein the heat conductive filler is one or more selected from metals, oxides, nitrides, silicides and artificial diamonds. object.
[3] A thermally conductive silicone molded article obtained by heat-curing the thermally conductive silicone composition according to [1] or [2] in an open state.
[4] The thermally conductive silicone composition described in [1] or [2] above is laminated on a base material to form an uncured silicone body, which is heated and cured in an open state to form a skin cured layer on the outer surface portion. And forming a silicone heat transfer body in which a lower hardness layer than the skin layer is formed on the inner surface portion on the base material side.

本発明によれば、電子部品等の発熱部材(被放熱物)と放熱部材との間に設置されて、熱伝導性が良好で、密着性及び取り扱い性に優れた熱伝導部材を容易に提供することができる。   According to the present invention, a heat conductive member that is installed between a heat generating member (heat radiated object) such as an electronic component and a heat radiating member and has good heat conductivity and excellent adhesion and handling is easily provided. can do.

以下、本発明について詳細に説明する。
本発明に用いられる(a)成分のオルガノポリシロキサンは1分子中に少なくとも2個のアルケニル基を有するもので、通常は、主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるものが好ましい。
The present invention will be described in detail below.
The organopolysiloxane of component (a) used in the present invention has at least two alkenyl groups in one molecule, and it is usually preferred that the main chain portion basically consists of repeating diorganosiloxane units. .

(a)成分として具体的には、下記一般式(1)、(2)又は(3)で表されるものが挙げられる。

Figure 2007224102

(式中、Xはアルケニル基、R1は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、RはX又はR1を示し、a、b、cは0又は正数、dは2以上の正数、eは0又は正数、fは1以上の正数である。) Specific examples of the component (a) include those represented by the following general formula (1), (2) or (3).
Figure 2007224102

(Wherein X is an alkenyl group, R 1 is an unsubstituted or substituted monovalent hydrocarbon group which does not independently contain an aliphatic unsaturated bond, R represents X or R 1 , and a, b and c are 0 or a positive number, d is a positive number of 2 or more, e is 0 or a positive number, and f is a positive number of 1 or more.)

上記式中、R1の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子に結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等の炭素原子数が1〜10、特に炭素原子数が1〜6のものが挙げられ、これらの中でも好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R1は全てが同一であっても、異なっていてもよい。 In the above formula, examples of the unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond represented by R 1 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert- Butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl, cycloheptyl and other cycloalkyl groups, phenyl, tolyl Group, an aryl group such as a xylyl group, a naphthyl group, a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, a methylbenzyl group, and a hydrogen atom bonded to the carbon atom of these groups. Groups in which part or all are substituted with halogen atoms such as fluorine, chlorine, bromine, cyano groups, etc., for example Chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6, Examples thereof include those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, such as 6,6-nonafluorohexyl group, and among these, methyl group, ethyl group, propyl group, chloromethyl group are preferable. , Unsubstituted or substituted alkyl groups having 1 to 3 carbon atoms such as bromoethyl group, 3,3,3-trifluoropropyl group, and cyanoethyl group, and unsubstituted or substituted phenyl group, chlorophenyl group, fluorophenyl group, etc. Of the phenyl group. R 1 may all be the same or different.

Xはアルケニル基である。分子中のXが全て同一である必要はない。
アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常、炭素原子数2〜8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特にはビニル基が好ましい。
X is an alkenyl group. It is not necessary that all Xs in the molecule are the same.
Examples of the alkenyl group usually include those having about 2 to 8 carbon atoms such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, and a cyclohexenyl group. Among them, a vinyl group, A lower alkenyl group such as an allyl group is preferred, and a vinyl group is particularly preferred.

式中、a、c、eは0又は正数であるが、a、c、eは10〜10,000の範囲が好ましく、より好ましくは50〜2,000の範囲であり、更に好ましくは100〜1,000の範囲である。また、bは0又は正数であるが、0≦b/(a+b)≦0.5、好ましくは0≦b/(a+b)≦0.2、更に好ましくは0≦b/(a+b)≦0.1である。
式中、dは2以上の正数であるが、0<d/(c+d)≦0.5であることが好ましく、より好ましくは0<d/(c+d)≦0.2であり、更に好ましくは0<d/(c+d)≦0.1である。
式中、fは1以上の正数であるが、0<f/(e+f)≦0.5であることが好ましく、より好ましくは0<f/(e+f)≦0.2であり、更に好ましくは0<f/(e+f)≦0.1である。
In the formula, a, c and e are 0 or a positive number, but a, c and e are preferably in the range of 10 to 10,000, more preferably in the range of 50 to 2,000, and still more preferably 100. It is in the range of ~ 1,000. Further, b is 0 or a positive number, but 0 ≦ b / (a + b) ≦ 0.5, preferably 0 ≦ b / (a + b) ≦ 0.2, and more preferably 0 ≦ b / (a + b) ≦ 0. .1.
In the formula, d is a positive number of 2 or more, preferably 0 <d / (c + d) ≦ 0.5, more preferably 0 <d / (c + d) ≦ 0.2, and still more preferably. Is 0 <d / (c + d) ≦ 0.1.
In the formula, f is a positive number of 1 or more, preferably 0 <f / (e + f) ≦ 0.5, more preferably 0 <f / (e + f) ≦ 0.2, and still more preferably. 0 <f / (e + f) ≦ 0.1.

このオルガノポリシロキサンは、1種単独で使用しても、複数の異なるものを併用しても構わない。   This organopolysiloxane may be used alone or in combination with a plurality of different ones.

本発明に用いられる(b)成分の熱伝導性充填剤は、非磁性の銅、アルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の金属窒化物、人工ダイヤモンドあるいは炭化ケイ素等、一般に熱伝導性充填剤とされる物質を用いることができる。   The heat conductive filler of the component (b) used in the present invention includes non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania and zirconia, aluminum nitride, and nitride. A material generally used as a thermally conductive filler, such as metal nitrides such as silicon and boron nitride, artificial diamond or silicon carbide, can be used.

これら熱伝導性充填剤は、平均粒径が0.1〜100μm、望ましくは0.5〜50μm、更に望ましくは0.5〜30μmのものを用いることができる。これら充填剤は1種単独で用いてもよいし、複数種を混合して用いてもよい。また、平均粒径の異なる粒子を2種以上用いることも可能である。   As these heat conductive fillers, those having an average particle diameter of 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 0.5 to 30 μm can be used. These fillers may be used individually by 1 type, and may mix and use multiple types. Two or more kinds of particles having different average particle diameters can be used.

熱伝導性充填剤の配合量は、(a)成分100質量部に対して300〜5,000質量部、好ましくは500〜3,000質量部である。熱伝導性充填剤の配合量が多すぎると、硬化後に所望の軟らかさを得ることが困難になり、そのために必要な密着性を得ることができなくなる。少なすぎると所望の熱伝導性を得ることができない。   The compounding quantity of a heat conductive filler is 300-5,000 mass parts with respect to 100 mass parts of (a) component, Preferably it is 500-3,000 mass parts. When the blending amount of the heat conductive filler is too large, it becomes difficult to obtain a desired softness after curing, and thus it becomes impossible to obtain the necessary adhesion. If the amount is too small, the desired thermal conductivity cannot be obtained.

本発明に用いられる(c)成分であるオルガノハイドロジェンポリシロキサンは分子中にSi−H基を平均で2個以上有するものであり、好ましくは平均構造式で以下のように表される単一又は混合物である。   The organohydrogenpolysiloxane which is the component (c) used in the present invention has an average of two or more Si—H groups in the molecule, preferably a single unit represented by the following average structural formula: Or a mixture.

Figure 2007224102

(式中、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、p、sは0又は正数、また、qは2以上の正数、rは1以上の正数である。)
Figure 2007224102

(Wherein R 2 independently represents an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, p and s are 0 or a positive number, q is a positive number of 2 or more, r Is a positive number greater than or equal to 1.)

式(4)〜(6)中、R2の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。又、R2は全てが同一であることを限定するものではない。式(4)〜(6)中のpは0又は正数であるが、好ましくは0〜1,000、更に好ましくは1〜100である。qは2以上の正数、好ましくは2〜30、更に好ましくは2〜10、rは1以上の正数、好ましくは1〜30、更に好ましくは1〜10、sは0又は正数、好ましくは1〜30、更に好ましくは1〜10である。 In the formulas (4) to (6), as the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond of R 2 , for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Cycloalkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc., cyclopentyl group, cyclohexyl group, cycloheptyl group An aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group and a methylbenzyl group, and a carbon atom bonded to these groups. A group in which some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine, bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5, 6,6,6-nonafluorohexyl group and the like can be mentioned, and typical ones are those having 1 to 10 carbon atoms, particularly those having 1 to 6 carbon atoms, preferably a methyl group, an ethyl group, C1-C3 unsubstituted or substituted alkyl groups such as propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group and the like, phenyl group, chlorophenyl group, fluorophenyl group, etc. An unsubstituted or substituted phenyl group. Also, R 2 is not limited to being all the same. P in the formulas (4) to (6) is 0 or a positive number, preferably 0 to 1,000, and more preferably 1 to 100. q is a positive number of 2 or more, preferably 2 to 30, more preferably 2 to 10, r is a positive number of 1 or more, preferably 1 to 30, more preferably 1 to 10, and s is 0 or a positive number, preferably Is 1-30, more preferably 1-10.

(c)成分の配合量は、(a)成分中のアルケニル基に対する(c)成分中のケイ素原子に直接結合した水素原子のモル比(Si−H/アルケニル基)が0.6〜10.0となる量であり、好ましくは0.7〜5.0となる量である。0.6未満であると組成物の硬化が不十分となり、10.0を超えると成形時に発泡してしまう。   The compounding amount of the component (c) is such that the molar ratio of the hydrogen atom directly bonded to the silicon atom in the component (c) to the alkenyl group in the component (a) (Si-H / alkenyl group) is 0.6 to 10. The amount is 0, preferably 0.7 to 5.0. If it is less than 0.6, the composition is insufficiently cured, and if it exceeds 10.0, foaming occurs during molding.

本発明に用いられる(d)成分の白金族系付加反応触媒は、(a)成分中のアルケニル基と、(c)成分中のSi−H基との付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(特許文献2参照)、塩化白金酸とオレフィンとのコンプレックス、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。 The platinum group addition reaction catalyst of component (d) used in the present invention is a catalyst for promoting the addition reaction between the alkenyl group in component (a) and the Si—H group in component (c). Examples of the catalyst used in the hydrosilylation reaction include known catalysts. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0 to 6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (see Patent Document 2), chloroplatinic acid and olefin Complex, platinum black, platinum group metals such as palladium supported on alumina, silica, carbon, etc., rhodium-olefin complex, chlorotris (triphenylphosphine) lodge (Complex of platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane, particularly vinyl group-containing cyclic siloxane).

(d)成分の使用量は、所謂触媒量でよく、通常、成分(a)に対する白金族金属元素の質量換算で、0.1〜1,000ppm、好ましくは0.5〜500ppm、より好ましくは1.0〜200ppm程度がよい。0.1ppm未満では硬化が不十分となり、1,000ppmを超えると経済的に不利である。   The amount of component (d) used may be a so-called catalytic amount, and is usually 0.1 to 1,000 ppm, preferably 0.5 to 500 ppm, more preferably in terms of the mass of the platinum group metal element relative to component (a). About 1.0-200 ppm is good. If it is less than 0.1 ppm, curing is insufficient, and if it exceeds 1,000 ppm, it is economically disadvantageous.

(e)成分のアルケニル基が付加可能なケイ素原子に直接結合した水素原子(Si−H基)を分子中に一つ持つ揮発性化合物は、組成物を加熱成形する際に成形物表面から揮発するものであればよいが、シラン化合物、低分子シロキサン化合物から選ばれることが好ましい。また、加熱時の温度(特に150℃)で蒸気圧が1.33kPa(10mmHg)以上を示すことが好ましく、更には6.67kPa(50mmHg)以上を示すことが好ましい。   (E) The volatile compound having one hydrogen atom (Si-H group) directly bonded to the silicon atom to which the alkenyl group of the component can be added is volatilized from the surface of the molded product when the composition is thermoformed. However, it is preferably selected from silane compounds and low molecular siloxane compounds. Further, the vapor pressure is preferably 1.33 kPa (10 mmHg) or more at the heating temperature (particularly 150 ° C.), more preferably 6.67 kPa (50 mmHg) or more.

揮発性化合物がシラン又は低分子シロキサンである場合、以下の一般式で示される化合物を用いることができる。   When the volatile compound is silane or low molecular siloxane, a compound represented by the following general formula can be used.

Figure 2007224102

(式中、R3は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、hは0又は正数であり、iは0又は正数であり、jは2以上の正数である。)
Figure 2007224102

(In the formula, R 3 is an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, h is 0 or a positive number, i is 0 or a positive number, and j is 2 or more. Is a positive number.)

式(7)〜(10)中、R3の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R3は全てが同一であることを限定するものではない。 In formulas (7) to (10), examples of the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond represented by R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Cycloalkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc., cyclopentyl group, cyclohexyl group, cycloheptyl group An aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group and a methylbenzyl group, and a carbon atom bonded to these groups. Some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly those having 1 to 6 carbon atoms, preferably methyl group, ethyl group , A propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, a cyanoethyl group, etc., an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms and a phenyl group, a chlorophenyl group, a fluorophenyl group Or an unsubstituted or substituted phenyl group. Also, R 3 is not limited to being all the same.

式(8)中のhは0又は正数であり、好ましくは0又は1、更に好ましくは0であり、式(9)中のiは0又は正数であり、望ましくは0又は1、更に望ましくは0であり、式(10)中のjは1以上の正数であり、望ましくは1〜6、更に望ましくは2〜4である。   H in the formula (8) is 0 or a positive number, preferably 0 or 1, more preferably 0, i in the formula (9) is 0 or a positive number, desirably 0 or 1, It is preferably 0, and j in the formula (10) is a positive number of 1 or more, preferably 1 to 6, and more preferably 2 to 4.

(e)成分の配合量は、(c)成分中のケイ素原子に直接結合した水素原子(Si−H基)に対する(e)成分中のケイ素原子に直接結合した水素原子(Si−H基)がモル比[(e)成分のSi−H/(c)成分のSi−H]で0.01〜2.0に相当する量であり、望ましくは0.05〜1.0、更に望ましくは0.1〜0.5である。2.0よりも多くなると、加熱しても硬化しなくなり、0.01未満ではシート全体が硬くなってしまう。   The compounding amount of the component (e) is the hydrogen atom (Si-H group) directly bonded to the silicon atom in the component (e) relative to the hydrogen atom (Si-H group) directly bonded to the silicon atom in the component (c). Is an amount corresponding to a molar ratio [Si-H of component (e) / Si-H of component (c)] of 0.01 to 2.0, preferably 0.05 to 1.0, more preferably 0.1 to 0.5. If it exceeds 2.0, it will not be cured even if heated, and if it is less than 0.01, the entire sheet will become hard.

本発明のシリコーン組成物には、この他に、硬化反応を適当な時間に調整するための制御剤、熱伝導性充填剤の表面処理剤、着色のための顔料・染料、難燃性付与剤、内添離型剤等、機能を向上させるための様々な添加剤を本発明の目的を損なわない範囲で添加することが可能である。   In addition to this, the silicone composition of the present invention includes a control agent for adjusting the curing reaction to an appropriate time, a surface treatment agent for a heat conductive filler, a pigment / dye for coloring, and a flame retardant imparting agent. It is possible to add various additives for improving the function, such as an internal release agent, within a range that does not impair the object of the present invention.

(a)〜(e)成分及びその他の任意成分を混練することにより所望のシリコーン組成物を得ることができる。混練には、プラネタリミキサ、品川式万能撹拌機、ミックスマーラー、ニーダー、二本ロール、三本ロール等、粉体と液体とを混練せしめる際に用いられるミキサを用いることができる。   A desired silicone composition can be obtained by kneading the components (a) to (e) and other optional components. For the kneading, a mixer used for kneading powder and liquid, such as a planetary mixer, a Shinagawa universal stirrer, a mix muller, a kneader, a two-roll, a three-roll, can be used.

このようにして得られる本発明の熱伝導性シリコーン組成物は、フィルム等の基材上にコーティングする等して基材に積層し、外側表面が外部に露呈、開放され、空気にさらされている開放状態、内側表面が上記基材に接触していることにより空気に直接触れられていない閉鎖状態にある未硬化シリコーン体を形成する。そして、この状態で加熱することにより、上記(e)成分の揮発性化合物が上記未硬化シリコーン体をその外側表面の開放面から揮発するように拡散し、該外側表面近傍でケイ素原子に直接結合した水素原子(Si−H基)の量が増大して上記(a)成分のオルガノポリシロキサンのアルケニル基と速やかにかつ十分量で付加反応が生じて表面が硬化し、硬くなって粘着感が実質的にないか又は少ないスキン硬化層が外表面部に形成される一方、この外表面部より内部、特に上記基材に接触している内表面部は、未硬化乃至半硬化状態で、少なくとも上記外表面部より硬化程度が低く、このため上記スキン硬化層より低硬度で軟らかいゴム状態の緩衝層が形成された、シリコーン伝熱体が得られる。   The heat conductive silicone composition of the present invention thus obtained is laminated on a substrate such as by coating on a substrate such as a film, and the outer surface is exposed to the outside, released, and exposed to air. An uncured silicone body in a closed state in which the inner surface is in contact with the substrate and is not in direct contact with air is formed. Then, by heating in this state, the volatile compound of the component (e) diffuses so that the uncured silicone body volatilizes from the open surface of the outer surface, and directly bonds to silicon atoms in the vicinity of the outer surface. The amount of hydrogen atoms (Si-H groups) increased and an addition reaction with the alkenyl group of the organopolysiloxane of component (a) occurred quickly and in a sufficient amount to cure the surface and become hard and sticky. While the skin hardened layer substantially or little is formed on the outer surface portion, the inner surface from this outer surface portion, particularly the inner surface portion in contact with the substrate is at least uncured or semi-cured, A silicone heat transfer body is obtained in which the degree of cure is lower than that of the outer surface portion, and therefore a rubber-like buffer layer having a lower hardness and softer than the skin cured layer is formed.

ここで、基材として用いられるこのシリコーン伝熱体と剥離可能なフィルムとしては、プラスチックフィルムや金属フィルムが例示されるが、例えば、PET(ポリエチレンテレフタレート)フィルム、フッ素樹脂フィルム、ポリエステルフィルム等のプラスチックフィルムが好ましく、特に未硬化シリコーン体の加熱硬化温度(通常80〜160℃程度)での耐熱性を有するプラスチックフィルムが好ましい。   Here, examples of the film that can be peeled off from the silicone heat transfer material used as the base material include plastic films and metal films. A film is preferable, and a plastic film having heat resistance at a heat curing temperature (usually about 80 to 160 ° C.) of an uncured silicone body is particularly preferable.

この基材(フィルム)は、熱伝導部材の使用時に剥離するが、この使用直前まで熱伝導部材に付着された状態で該部材を取り扱うことができるので、この基材(フィルム)に面するシリコーン伝熱体の内表面部が軟らかかったり、粘着性があったとしても、取り扱い性がよいものである。なお、このフィルム厚さは、10〜500μm、特に50〜200μmが好ましい。   Although this base material (film) peels off at the time of use of a heat conductive member, since this member can be handled in the state attached to the heat conductive member until just before this use, the silicone which faces this base material (film) Even if the inner surface portion of the heat transfer body is soft or sticky, it is easy to handle. The film thickness is preferably 10 to 500 μm, particularly preferably 50 to 200 μm.

また、上記未硬化シリコーン体、及びこれを硬化させて得られるシリコーン伝熱体は、シート状であることが好ましく、この場合、このシート体の厚さは、0.1〜10.0mm、特に0.3〜5.0mmとすることが、取り扱い性及び伝熱特性の点より好ましい。   The uncured silicone body and the silicone heat transfer body obtained by curing the silicone body are preferably in the form of a sheet. In this case, the thickness of the sheet body is 0.1 to 10.0 mm, in particular It is preferable to set it as 0.3-5.0 mm from the point of a handleability and a heat-transfer characteristic.

なお、上記シリコーン組成物を基材にコーティングする方法としては、コンマコート、グラビアコート、バーコート、ナイフコート等を用いることができる。   In addition, as a method of coating the base material with the silicone composition, comma coating, gravure coating, bar coating, knife coating, or the like can be used.

加熱する手段は、熱風、赤外線照射、マイクロ波等あらゆる加熱手段を用いることができる。成形時の加熱温度は、60〜200℃とすることが好ましく、より好ましくは80〜160℃であり、加熱時間は1〜30分とすることが好ましく、より好ましくは3〜15分である。加熱温度が高すぎると発泡する場合があり、低すぎると開放側表面の粘着感が強すぎてしまう場合がある。一方、加熱時間が短いと十分な表面硬化が起こらない場合があり、長すぎると経済的に不利となる。   Any heating means such as hot air, infrared irradiation, and microwave can be used as the heating means. The heating temperature during molding is preferably 60 to 200 ° C., more preferably 80 to 160 ° C., and the heating time is preferably 1 to 30 minutes, more preferably 3 to 15 minutes. If the heating temperature is too high, foaming may occur, and if it is too low, the adhesiveness on the open side surface may be too strong. On the other hand, if the heating time is short, sufficient surface hardening may not occur, and if it is too long, it is economically disadvantageous.

なお、上記スキン硬化層の厚さ、硬度、緩衝層の硬度とスキン硬化層との硬度差は、(a)成分のアルケニル基量と、(c)、(e)成分のSi−H基の量、これらSi−H基量との割合や、加熱温度、時間を選定することにより、コントロールすることができる。   The thickness of the skin cured layer, the hardness, the hardness difference between the buffer layer hardness and the skin cured layer are the amount of the alkenyl group of the component (a) and the Si-H group of the components (c) and (e). It can be controlled by selecting the amount, the ratio of these Si-H groups, the heating temperature, and the time.

このようにして得られる熱伝導部材(上記基材を除去した後のシリコーン伝熱体)は、発熱性電子部品(発熱部材乃至被放熱物)の熱境界面とヒートシンク又は回路基板などの放熱部材との間に介装して用いた場合、被放熱物及び放熱部材に低応力で密着し、熱抵抗も小さくなるため、より良好な放熱特性を示すものである。即ち、一面のスキン層が形成され、強靭さを有しているので、取り扱い性が良好である上、スキン層より内部側、特に内側表面部の緩衝層が軟らかく形成されているので、被放熱物と放熱部材との間に、その変位や段差等にも十分確実に追随し、密着よく配置することができる。特に、軟らかい側が発熱部材に接触し、スキン層のある側が放熱部材に接触するように用いることが好ましい。   The heat conducting member (silicone heat transfer member after removing the base material) thus obtained is composed of a heat boundary surface of a heat-generating electronic component (a heat generating member or a heat radiating object) and a heat radiating member such as a heat sink or a circuit board. When it is used in between, it adheres to the object to be radiated and the heat radiating member with low stress, and the thermal resistance is reduced, so that better heat radiating characteristics are exhibited. In other words, since the skin layer on one side is formed and has toughness, it is easy to handle, and the buffer layer on the inner side, particularly the inner surface part, is softer than the skin layer. Between the object and the heat radiating member, it is possible to follow the displacement, the step, and the like with sufficient certainty and arrange them with good adhesion. In particular, it is preferable that the soft side is in contact with the heat generating member and the side having the skin layer is in contact with the heat radiating member.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、粘度はオストワルド法により測定した25℃における値を示し、平均粒径はマイクロトラックにより測定した値を示す。また、下記式においてMeはメチル基を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the viscosity indicates a value at 25 ° C. measured by the Ostwald method, and the average particle diameter indicates a value measured by Microtrac. In the following formulae, Me represents a methyl group.

[実施例1]
10,000mm2/sの粘度を持ち、両末端にビニル基を持つジメチルオルガノポリシロキサン100質量部、4μmの平均粒径をもつアルミナ500質量部を品川式万能撹拌機に仕込み、60分間混合せしめた後、塩化白金酸の2−エチル−ヘキサノール溶液(白金量で2質量%)を0.2質量部、エチニルシクロヘキサノールのトルエン溶液(50質量%)を0.1質量部、ペンタメチルハイドロジェンジシロキサンを0.5質量部、オルガノハイドロジェンポリシロキサン(式11)を5.0質量部、を順に添加し、各物質の添加後にその都度混合を5分行い、最後に−650mmHgの減圧条件下で5分間混合せしめて組成物aを得た。この組成物aを、PETフィルム上に厚さ1.0mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートAを得た。
[Example 1]
100 parts by weight of dimethylorganopolysiloxane having a viscosity of 10,000 mm 2 / s and vinyl groups at both ends and 500 parts by weight of alumina having an average particle diameter of 4 μm are charged into a Shinagawa universal stirrer and mixed for 60 minutes. Then, 0.2 parts by mass of 2-ethyl-hexanol solution of chloroplatinic acid (2% by mass in platinum), 0.1 part by mass of toluene solution of ethynylcyclohexanol (50% by mass), pentamethylhydrogen 0.5 parts by mass of disiloxane and 5.0 parts by mass of organohydrogenpolysiloxane (formula 11) were added in order, and after each addition, mixing was performed for 5 minutes each time, and finally a reduced pressure condition of -650 mmHg. Under mixing for 5 minutes, composition a was obtained. This composition a was applied on a PET film so as to have a thickness of 1.0 mm, and left in an atmosphere at 150 ° C. for 10 minutes to form a sheet, whereby a sheet A was obtained.

Figure 2007224102
Figure 2007224102

[実施例2]
10,000mm2/sの粘度を持ち、両末端にビニル基を持つジメチルオルガノポリシロキサン100質量部、4μmの平均粒径をもつアルミナ500質量部を品川式万能撹拌機に仕込み、60分間混合せしめた後、塩化白金酸の2−エチル−ヘキサノール溶液(白金量で2質量%)を0.2質量部、エチニルシクロヘキサノールのトルエン溶液(50質量%)を0.1質量部、式(12)で表されるヘプタメチルハイドロジェントリシロキサンを0.7質量部、オルガノハイドロジェンポリシロキサン(式11)を5.0質量部、を順に添加し、各物質の添加後にその都度混合を5分行い、最後に−650mmHgの減圧条件下で5分間混合せしめて組成物bを得た。この組成物bを、PETフィルム上に厚さ1.0mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートBを得た。
[Example 2]
100 parts by weight of dimethylorganopolysiloxane having a viscosity of 10,000 mm 2 / s and vinyl groups at both ends and 500 parts by weight of alumina having an average particle diameter of 4 μm are charged into a Shinagawa universal stirrer and mixed for 60 minutes. After that, 0.2 parts by mass of 2-ethyl-hexanol solution of chloroplatinic acid (2% by mass in platinum), 0.1 part by mass of toluene solution of ethynylcyclohexanol (50% by mass), formula (12) 0.7 parts by mass of heptamethylhydrogentrisiloxane represented by the following, 5.0 parts by mass of organohydrogenpolysiloxane (formula 11) were added in order, and after each addition, mixing was performed for 5 minutes each time, Finally, it was mixed for 5 minutes under a reduced pressure condition of -650 mmHg to obtain a composition b. The composition b was applied on a PET film so as to have a thickness of 1.0 mm, and left in an atmosphere at 150 ° C. for 10 minutes to form a sheet, whereby a sheet B was obtained.

Figure 2007224102
Figure 2007224102

[比較例1]
10,000mm2/sの粘度を持ち、両末端にビニル基を持つジメチルオルガノポリシロキサン100質量部、4μmの平均粒径をもつアルミナ500質量部を品川式万能撹拌機に仕込み、60分間混合せしめた後、塩化白金酸の2−エチル−ヘキサノール溶液(白金量で2質量%)を0.2質量部、エチニルシクロヘキサノールのトルエン溶液(50質量%)を0.1質量部、オルガノハイドロジェンポリシロキサン(式11)を5.0質量部、を順に添加し、各物質の添加後にその都度混合を5分行い、最後に−650mmHgの減圧条件下で5分間混合せしめて組成物cを得た。この組成物cを、PETフィルム上に厚さ1.0mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートCを得た。
[Comparative Example 1]
100 parts by weight of dimethylorganopolysiloxane having a viscosity of 10,000 mm 2 / s and vinyl groups at both ends and 500 parts by weight of alumina having an average particle diameter of 4 μm are charged into a Shinagawa universal stirrer and mixed for 60 minutes. Then, 0.2 parts by mass of 2-ethyl-hexanol solution of chloroplatinic acid (2% by mass in platinum), 0.1 part by mass of toluene solution of ethynylcyclohexanol (50% by mass), organohydrogenpoly 5.0 parts by mass of siloxane (Formula 11) was added in order, and after each addition, mixing was performed for 5 minutes each time, and finally, mixing was performed for 5 minutes under a reduced pressure of −650 mmHg to obtain a composition c. . This composition c was applied on a PET film so as to have a thickness of 1.0 mm, and left in an atmosphere at 150 ° C. for 10 minutes to form a sheet, whereby a sheet C was obtained.

[比較例2]
10,000mm2/sの粘度を持ち、両末端にビニル基を持つジメチルオルガノポリシロキサン100質量部、4μmの平均粒径をもつアルミナ500質量部を品川式万能撹拌機に仕込み、60分間混合せしめた後、塩化白金酸の2−エチル−ヘキサノール溶液(白金量で2質量%)を0.2質量部、エチニルシクロヘキサノールのトルエン溶液(50質量%)を0.1質量部、オルガノハイドロジェンポリシロキサン(式11)を2.0質量部、を順に添加し、各物質の添加後にその都度混合を5分行い、最後に−650mmHgの減圧条件下で5分間混合せしめて組成物dを得た。この組成物dを、PETフィルム上に厚さ1.0mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートDを得た。
[Comparative Example 2]
100 parts by weight of dimethylorganopolysiloxane having a viscosity of 10,000 mm 2 / s and vinyl groups at both ends and 500 parts by weight of alumina having an average particle diameter of 4 μm are charged into a Shinagawa universal stirrer and mixed for 60 minutes. Then, 0.2 parts by mass of 2-ethyl-hexanol solution of chloroplatinic acid (2% by mass in platinum), 0.1 part by mass of toluene solution of ethynylcyclohexanol (50% by mass), organohydrogenpoly 2.0 parts by mass of siloxane (formula 11) was added in order, and after each addition, mixing was performed for 5 minutes each time, and finally, mixing was performed for 5 minutes under a reduced pressure of −650 mmHg to obtain a composition d. . The composition d was applied on a PET film so as to have a thickness of 1.0 mm, and left in an atmosphere at 150 ° C. for 10 minutes to form a sheet, whereby a sheet D was obtained.

[比較例3]
組成物cを、PETフィルム上に厚さ0.10mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートC’を得た。このシートC’上に、組成物dを厚さ0.9mmとなるように塗布し、150℃の雰囲気下に10分放置し、シート状に成形し、シートEを得た。
[Comparative Example 3]
The composition c was applied on a PET film so as to have a thickness of 0.10 mm, left in an atmosphere at 150 ° C. for 10 minutes, and formed into a sheet shape to obtain a sheet C ′. On this sheet C ′, the composition d was applied so as to have a thickness of 0.9 mm, left in an atmosphere at 150 ° C. for 10 minutes, and formed into a sheet shape to obtain a sheet E.

[比較例4]
シートDの開放側表面にオルガノハイドロジェンポリシロキサン(式13)を5g/m2塗布し、150℃の雰囲気下に10分放置し、シートFを得た。
[Comparative Example 4]
5 g / m 2 of organohydrogenpolysiloxane (Formula 13) was applied to the surface of the open side of the sheet D and allowed to stand in an atmosphere at 150 ° C. for 10 minutes to obtain a sheet F.

Figure 2007224102
Figure 2007224102

これら成形したシートA〜Fの表面の粘着感と取り扱い性を確認した。   The adhesion feeling and the handleability of the surface of these molded sheets A to F were confirmed.

更に、これらシートA〜FをTO−3P型トランジスタの形に模したモデルヒーターと、ヒートシンクの間に設置し、29.4kPaの荷重をかけ、モデルヒーターに28Wの電力を印加した。電力印加開始10分後のモデルヒーターの温度T1(℃)とヒートシンクの温度T2(℃)から以下の計算式により各組成物の熱抵抗を計算した。
熱抵抗=(T1−T2)/28
Further, these sheets A to F were placed between a model heater imitating the shape of a TO-3P transistor and a heat sink, a load of 29.4 kPa was applied, and 28 W of power was applied to the model heater. From the model heater temperature T1 (° C.) and the heat sink temperature T2 (° C.) 10 minutes after the start of power application, the thermal resistance of each composition was calculated according to the following formula.
Thermal resistance = (T1-T2) / 28

本発明によって、取り扱い性良好、低応力、かつ、熱特性の良好なシートを、1つの成形工程で成形することが可能になった。   According to the present invention, it is possible to form a sheet having good handleability, low stress, and good thermal characteristics in a single forming process.

Figure 2007224102
Figure 2007224102

Claims (4)

(a)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン: 100質量部、
(b)熱伝導性充填剤: 300〜5,000質量部、
(c)ケイ素原子に直接結合した水素原子を分子中に平均で2個以上有するオルガノハイドロジェンポリシロキサン: (a)成分中のアルケニル基に対する(c)成分中のケイ素原子に直接結合した水素原子がモル比で0.6〜10.0となる量、
(d)白金族系付加反応触媒: 白金元素の量で0.1〜1,000ppm、
(e)アルケニル基が付加可能なケイ素原子に直接結合した水素原子を分子中に一つ持つ揮発性化合物: (c)成分中のケイ素原子に直接結合した水素原子に対する(e)成分中のケイ素原子に直接結合した水素原子がモル比で0.01〜2.0に相当する量
を構成成分とし、開放状態で加熱硬化し、開放側表面にスキン層が形成されることを特徴とする熱伝導性シリコーン組成物。
(A) Organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass
(B) Thermally conductive filler: 300 to 5,000 parts by mass,
(C) Organohydrogenpolysiloxane having an average of two or more hydrogen atoms directly bonded to silicon atoms in the molecule: (a) Hydrogen atoms directly bonded to silicon atoms in component (c) relative to alkenyl groups in component In an amount of 0.6 to 10.0 in molar ratio,
(D) Platinum group addition reaction catalyst: 0.1 to 1,000 ppm in the amount of platinum element,
(E) Volatile compound having in its molecule one hydrogen atom directly bonded to a silicon atom to which an alkenyl group can be added: (c) Silicon in component (e) with respect to a hydrogen atom directly bonded to a silicon atom in component The heat is characterized in that the hydrogen atoms directly bonded to the atoms have an amount corresponding to a molar ratio of 0.01 to 2.0 as a constituent component and are heat-cured in an open state to form a skin layer on the open-side surface. Conductive silicone composition.
熱伝導性充填剤が、金属、酸化物、窒化物、ケイ化物及び人工ダイヤモンドから選ばれる1種又は2種以上であることを特徴とする請求項1記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to claim 1, wherein the thermally conductive filler is one or more selected from metals, oxides, nitrides, silicides and artificial diamond. 請求項1又は2記載の熱伝導性シリコーン組成物を開放状態で加熱硬化させて得られる熱伝導性シリコーン成形体。   A thermally conductive silicone molded article obtained by heat-curing the thermally conductive silicone composition according to claim 1 or 2 in an open state. 請求項1又は2記載の熱伝導性シリコーン組成物を基材に積層して未硬化シリコーン体を形成し、これを開放状態で加熱硬化して外側表面部にスキン硬化層を形成し、上記基材側の内側表面部に上記スキン層より低硬度層が形成されたシリコーン伝熱体を形成することを特徴とする熱伝導性シリコーン成形体の製造方法。   A thermally conductive silicone composition according to claim 1 or 2 is laminated on a base material to form an uncured silicone body, which is heated and cured in an open state to form a skin cured layer on the outer surface portion. A method for producing a thermally conductive silicone molded article, comprising: forming a silicone heat transfer body having a lower hardness layer than the skin layer on an inner surface portion on a material side.
JP2006044694A 2006-02-22 2006-02-22 Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same Expired - Fee Related JP4803365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044694A JP4803365B2 (en) 2006-02-22 2006-02-22 Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044694A JP4803365B2 (en) 2006-02-22 2006-02-22 Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007224102A true JP2007224102A (en) 2007-09-06
JP4803365B2 JP4803365B2 (en) 2011-10-26

Family

ID=38546205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044694A Expired - Fee Related JP4803365B2 (en) 2006-02-22 2006-02-22 Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP4803365B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203373A (en) * 2008-02-28 2009-09-10 Momentive Performance Materials Inc Thermoconductive silicone composition
JP2009256428A (en) * 2008-04-15 2009-11-05 Shin Etsu Chem Co Ltd Heat conductive silicone composition, adhesion structure, and semiconductor device
WO2014065143A1 (en) * 2012-10-22 2014-05-01 Jnc株式会社 Thermosetting resin composition
JP2015214665A (en) * 2014-05-07 2015-12-03 ビジョン開発株式会社 Molding structure surface-hardened with addition-curable organopolysiloxane composition and production method thereof
JP2022545162A (en) * 2019-07-26 2022-10-26 ダウ シリコーンズ コーポレーション Curable organopolysiloxane composition, cured product, and electrical/electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124953A (en) * 1974-03-19 1975-10-01
JPS6422967A (en) * 1987-07-17 1989-01-25 Shinetsu Chemical Co Curable liquid silicone rubber composition
JPH0423865A (en) * 1990-05-17 1992-01-28 Shin Etsu Chem Co Ltd Adhesive organopolysiloxane composition and method for curing the same and its cured product
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2005206733A (en) * 2004-01-23 2005-08-04 Shin Etsu Chem Co Ltd Thermally conductive silicone composition for heat radiation and its use method
JP2006182888A (en) * 2004-12-27 2006-07-13 Shin Etsu Chem Co Ltd Manufacturing method of heat conductive member and heat dissipating structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124953A (en) * 1974-03-19 1975-10-01
JPS6422967A (en) * 1987-07-17 1989-01-25 Shinetsu Chemical Co Curable liquid silicone rubber composition
JPH0423865A (en) * 1990-05-17 1992-01-28 Shin Etsu Chem Co Ltd Adhesive organopolysiloxane composition and method for curing the same and its cured product
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2005206733A (en) * 2004-01-23 2005-08-04 Shin Etsu Chem Co Ltd Thermally conductive silicone composition for heat radiation and its use method
JP2006182888A (en) * 2004-12-27 2006-07-13 Shin Etsu Chem Co Ltd Manufacturing method of heat conductive member and heat dissipating structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203373A (en) * 2008-02-28 2009-09-10 Momentive Performance Materials Inc Thermoconductive silicone composition
JP2009256428A (en) * 2008-04-15 2009-11-05 Shin Etsu Chem Co Ltd Heat conductive silicone composition, adhesion structure, and semiconductor device
WO2014065143A1 (en) * 2012-10-22 2014-05-01 Jnc株式会社 Thermosetting resin composition
JPWO2014065143A1 (en) * 2012-10-22 2016-09-08 Jnc株式会社 Thermosetting resin composition
US9512273B2 (en) 2012-10-22 2016-12-06 Jnc Corporation Thermosetting resin composition
JP2015214665A (en) * 2014-05-07 2015-12-03 ビジョン開発株式会社 Molding structure surface-hardened with addition-curable organopolysiloxane composition and production method thereof
JP2022545162A (en) * 2019-07-26 2022-10-26 ダウ シリコーンズ コーポレーション Curable organopolysiloxane composition, cured product, and electrical/electronic device
JP7411063B2 (en) 2019-07-26 2024-01-10 ダウ シリコーンズ コーポレーション Curable organopolysiloxane composition, cured product, and electrical/electronic equipment

Also Published As

Publication number Publication date
JP4803365B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
JP5015436B2 (en) Thermally conductive silicone elastomer, thermal conductive medium and thermally conductive silicone elastomer composition
EP1675174B1 (en) Preparation of heat transfer member and heat-dissipating structure
JP6032359B2 (en) Thermally conductive composite sheet and heat dissipation structure
JP6020187B2 (en) Thermally conductive composite sheet
WO2019098290A1 (en) Two-step curable thermally conductive silicone composition and method for producing same
JP4144998B2 (en) Material for heat dissipation
JP6314915B2 (en) Heat dissipation putty sheet
JP2009203373A (en) Thermoconductive silicone composition
JP2016082155A (en) Heat dissipation sheet
JP2020002236A (en) Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP4803365B2 (en) Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same
JP4463117B2 (en) Flame-retardant and heat-conductive silicone molded article and method for producing the same
TW200536896A (en) Composition for heat conductive siloxanes heat release and its using method
US7034073B2 (en) Heat conductive silicone composition and shaped article
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
JP6558301B2 (en) Thermally conductive composite sheet
JP2016219732A (en) Thermal conducive composite silicone rubber sheet
JP2008160126A (en) Cooling structure of electronic component
JP4299324B2 (en) Thermally conductive silicone composition and thermally conductive silicone molded article
JP5418620B2 (en) Thermal conduction member
JP2004010691A (en) Thermally conductive silicone rubber molding
WO2020084868A1 (en) Thermally conductive silicone composition and cured product thereof
JP2020189929A (en) Method of producing non-tacky heat-conductive silicone rubber sheet
JP2005035264A (en) Heat conductive silicone shaped body and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees