JP2007218980A - Reflector and its manufacturing method - Google Patents

Reflector and its manufacturing method Download PDF

Info

Publication number
JP2007218980A
JP2007218980A JP2006036450A JP2006036450A JP2007218980A JP 2007218980 A JP2007218980 A JP 2007218980A JP 2006036450 A JP2006036450 A JP 2006036450A JP 2006036450 A JP2006036450 A JP 2006036450A JP 2007218980 A JP2007218980 A JP 2007218980A
Authority
JP
Japan
Prior art keywords
resin
reflector
average particle
particle diameter
white pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036450A
Other languages
Japanese (ja)
Inventor
Hiroyuki Higuchi
弘幸 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006036450A priority Critical patent/JP2007218980A/en
Publication of JP2007218980A publication Critical patent/JP2007218980A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflector which can be manufactured without requiring a troublesome process and which has high reflectivity. <P>SOLUTION: The reflector is made of a resin composition containing a crystalline resin, white pigment of 0.05 to 5μm mean particle diameter and an inorganic filler of 0.5μm to 10mm mean particle diameter and has 0.5 to 50μm surface roughness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、照明や表示装置等に使用される反射体及びその製造方法に関する。   The present invention relates to a reflector used for lighting, a display device, and the like, and a manufacturing method thereof.

1990年代以降、発光ダイオード(LED)の進歩は目覚しく、高出力化とともに多色化が進んでいる。中でも白色LEDは、従来の白色電球、ハロゲンランプ、HIDランプ等を代替する次世代の光源として期待されている。
実際、LEDは長寿命、省電力、温度安定性、低電圧駆動等の特長が評価され、ディスプレイ、行き先表示板、車載照明、信号灯、非常灯、携帯電話、ビデオカメラ等へ応用されている。
Since the 1990s, the progress of light emitting diodes (LEDs) has been remarkable. Among these, white LEDs are expected as next-generation light sources that replace conventional white light bulbs, halogen lamps, HID lamps, and the like.
In fact, LEDs have been evaluated for their features such as long life, power saving, temperature stability, low voltage drive, etc., and are applied to displays, destination display boards, in-vehicle lighting, signal lights, emergency lights, mobile phones, video cameras and the like.

かかる発光装置は、通常、合成樹脂をリードフレームと一体成形してなる反射板にLEDを固定し、エポキシ樹脂やシリコーン樹脂等の封止材料で封止することにより製造されている。一方、LEDが発光する光を効率よく取出すためには、周囲に配置される反射体はできるだけ反射率が高いことが望ましい。   Such a light emitting device is usually manufactured by fixing an LED to a reflecting plate formed by integrally molding a synthetic resin with a lead frame, and sealing with a sealing material such as an epoxy resin or a silicone resin. On the other hand, in order to efficiently extract the light emitted from the LED, it is desirable that the reflectors arranged around have as high a reflectance as possible.

LED反射体として、ポリアミド系樹脂に酸化チタンを添加した樹脂組成物がよく用いられている。また、酸化チタンの代わりにチタン酸カリウム繊維を用いる技術が開示されている(特許文献1参照)。これら材料の反射率は波長550nmの光で約90%(特許文献1の比較例3、実施例1を参照)のレベルにあり、実際にLEDに適用されている。しかしながら、十分な輝度は得られていなかった。   As an LED reflector, a resin composition obtained by adding titanium oxide to a polyamide-based resin is often used. Moreover, the technique using a potassium titanate fiber instead of a titanium oxide is disclosed (refer patent document 1). The reflectance of these materials is about 90% (see Comparative Example 3 and Example 1 of Patent Document 1) for light having a wavelength of 550 nm, and is actually applied to LEDs. However, sufficient luminance has not been obtained.

尚、輝度の向上はLED発光素子に流す電流を増やすことによっても達成される。しかしながら、高電流により発光素子が高温になり、封止材等の周辺部材の劣化や発光素子自身の破損を引き起こすことがある。発熱の抑制と高輝度化を両立するために、反射体の反射率を1%でも増大することが求められている。   Note that the improvement in luminance can also be achieved by increasing the current passed through the LED light emitting element. However, the light emitting element becomes hot due to a high current, which may cause deterioration of peripheral members such as a sealing material and damage of the light emitting element itself. In order to achieve both suppression of heat generation and high brightness, it is required to increase the reflectance of the reflector even by 1%.

特許文献2及び3に、ポリエステル系樹脂やポリシロキサン系樹脂等のシートをオートクレーブ内に設置し、それに超臨界ガスを注入して、その後発泡させることにより、シートの反射率を向上させる技術が開示されている。本材料は、条件により反射率を95%以上にすることができる。
しかし、シート面積が大きくなると全体を均一に発泡させることが難しく、場所によっては反射率が非常に低くなってしまう問題があった。このため、この材料をLED反射体に適用しても、多数の反射体に対し反射率を一定レベルに維持することは困難であった。
Patent Documents 2 and 3 disclose a technique for improving the reflectance of a sheet by placing a sheet of polyester resin or polysiloxane resin in an autoclave, injecting supercritical gas into the autoclave, and then foaming the sheet. Has been. This material can have a reflectance of 95% or more depending on conditions.
However, when the sheet area is increased, it is difficult to uniformly foam the entire sheet, and there is a problem that the reflectance becomes very low depending on the location. For this reason, even if this material is applied to the LED reflector, it has been difficult to maintain the reflectivity at a constant level for many reflectors.

また、反射率を向上させる方法として、成形品表面を粗化する方法が知られている。例えば、成形品表面に白色塗料を塗布する方法がある。しかしながら、反射率を十分高くするには塗料層をかなり厚くしなければならず、長期使用においては塗料層の脱落による反射率低下の恐れがあった。   As a method for improving the reflectance, a method for roughening the surface of a molded product is known. For example, there is a method of applying a white paint on the surface of a molded product. However, in order to sufficiently increase the reflectance, the coating layer has to be considerably thick, and there is a risk that the reflectance will be lowered due to the coating layer dropping off during long-term use.

また、特許文献4には結晶化度の低いポリエステルシートを溶剤に接触させ結晶化を促進し、次いで乾燥、熱処理することにより表面を粗化して、反射率を向上させる方法が開示されている。この方法は、溶剤の使用や長時間の乾燥工程を必要とする等、製造上いくつかの問題があった。
また、特許文献5には突起物層と平滑層を含む反射体を共押出で製造する技術が開示されている。本技術において突起物層は、平滑層と同成分のバインダー樹脂と微粒子からなり、突起物層の厚みは0.1〜20μmである。20μm以上にすると微粒子が樹脂に埋もれてしまうため凹凸を形成できない。
このように突起物層の厚みが薄いため、下地に金属層を設けないと高い反射率を得ることができない。さらに、金属層を形成するにはメッキや蒸着等面倒な工程を要していた。
特開2003−195020号公報 国際公開第WO97/01117パンフレット 特開2003−049018号公報 特開平9−314688号公報 特開2004−252383号公報
Patent Document 4 discloses a method in which a polyester sheet having a low crystallinity is brought into contact with a solvent to promote crystallization, and then the surface is roughened by drying and heat treatment to improve the reflectance. This method has several problems in production, such as the use of a solvent and a long drying process.
Patent Document 5 discloses a technique for manufacturing a reflector including a protrusion layer and a smooth layer by coextrusion. In the present technology, the protrusion layer is composed of a binder resin and fine particles having the same components as the smooth layer, and the protrusion layer has a thickness of 0.1 to 20 μm. If the thickness is 20 μm or more, the fine particles are buried in the resin, so that unevenness cannot be formed.
As described above, since the protrusion layer is thin, a high reflectance cannot be obtained unless a metal layer is provided on the base. Furthermore, a troublesome process such as plating or vapor deposition is required to form the metal layer.
JP 2003-195020 A International Publication No. WO97 / 01117 Pamphlet JP 2003-049018 A JP-A-9-314688 JP 2004-252383 A

本発明の目的は、面倒な工程を必要とせずかつ高い反射率を有する反射体を提供することである。   The objective of this invention is providing the reflector which does not require a troublesome process and has a high reflectance.

本発明によれば、以下の反射体等が提供される。
1.結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物からなり、表面粗さが0.5〜50μmである反射体。
2.前記結晶性樹脂が、結晶性スチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂及び液晶ポリマーからなる群から選択される1種以上の樹脂である1に記載の反射体。
3.前記白色顔料が、二酸化チタン、アルミナ、酸化亜鉛、二酸化ケイ素、炭酸カルシウム、硫酸バリウム、チタン酸カリウム、マイカ、カオリン及びタルクからなる群から選択される1種以上の化合物である1又は2に記載の反射体。
4.前記無機フィラーが、ガラス繊維、ガラスフレーク、シリカ、アルミナ及び炭酸カルシウムからなる群から選択される1種以上のフィラーである1〜3のいずれかに記載の反射体。
5.発光ダイオード用である1〜4のいずれかに記載の反射体。
6.結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物を溶融し、前記結晶性樹脂のガラス転移点以下の温度の金型に接触させて成形し、
得られた成形体を、前記結晶性樹脂のガラス転移点以上の温度で熱処理して成形体の反射面に凹凸を形成する、1〜5のいずれかに記載の反射体の製造方法。
7.結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物を溶融し、溶融状態の樹脂組成物を、転写面の表面粗さが0.5〜50μmである金型に接触させて成形する1〜5のいずれかに記載の反射体の製造方法。
According to the present invention, the following reflectors and the like are provided.
1. A reflection comprising a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm, and having a surface roughness of 0.5 to 50 μm body.
2. 2. The reflector according to 1, wherein the crystalline resin is at least one resin selected from the group consisting of a crystalline styrene resin, a polyamide resin, a polyester resin, a polyether resin, and a liquid crystal polymer.
3. 3 or 3 wherein the white pigment is one or more compounds selected from the group consisting of titanium dioxide, alumina, zinc oxide, silicon dioxide, calcium carbonate, barium sulfate, potassium titanate, mica, kaolin and talc. Reflector.
4). The reflector according to any one of 1 to 3, wherein the inorganic filler is one or more fillers selected from the group consisting of glass fibers, glass flakes, silica, alumina, and calcium carbonate.
5). The reflector in any one of 1-4 used for light emitting diodes.
6). Melting a resin composition containing a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm, and a temperature below the glass transition point of the crystalline resin In contact with the mold of
The manufacturing method of the reflector in any one of 1-5 which heat-processes the obtained molded object at the temperature more than the glass transition point of the said crystalline resin, and forms an unevenness | corrugation in the reflective surface of a molded object.
7). A resin composition containing a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm is melted, and the molten resin composition is applied to the transfer surface. The manufacturing method of the reflector in any one of 1-5 shape | molded by making it contact with the metal mold | die whose surface roughness is 0.5-50 micrometers.

本発明によれば、面倒な工程を必要とせず、かつ高い反射率を有する反射体が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the reflector which does not require a troublesome process and has a high reflectance can be provided.

本発明の反射体は、下記の(A)〜(C)を含む樹脂組成物からなり、その表面(反射面)の表面粗さが0.5〜50μmであることを特徴とする。
(A)結晶性樹脂
(B)平均粒径が0.05μm〜5μmの白色顔料
(C)平均粒径が0.5μm〜10mmの無機フィラー
The reflector of this invention consists of a resin composition containing the following (A)-(C), The surface roughness of the surface (reflection surface) is 0.5-50 micrometers, It is characterized by the above-mentioned.
(A) Crystalline resin (B) White pigment having an average particle diameter of 0.05 μm to 5 μm (C) Inorganic filler having an average particle diameter of 0.5 μm to 10 mm

(A)成分である結晶性樹脂の具体例としては、結晶性スチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、液晶ポリマー等が挙げられる。これらの樹脂のうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Specific examples of the crystalline resin as component (A) include crystalline styrene resins, polyamide resins, polyester resins, polyether resins, liquid crystal polymers, and the like. Among these resins, one kind may be used alone, or two or more kinds may be used in combination.

結晶性スチレン系樹脂として、例えば、シンジオタクチックポリスチレン等が挙げられる。
ポリアミド樹脂として、例えば、ナイロン6、ナイロン12、半芳香族ナイロン(ナイロン6とフタル酸の共重合体、ナイロン9とフタル酸の共重合体等)、芳香族ナイロン等が挙げられる。
ポリエステル樹脂として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリナフタレンテレフタレート等が挙げられる。
ポリエーテル樹脂として、例えば、ポリエーテルエーテルケトン、ポリケトン、ポリエーテルニトリル等が挙げられる。
液晶ポリマーとして、例えば、ケブラーに代表される全芳香族ポリアミド、ザイダーやベクトラに代表される全芳香族ポリエステル等が挙げられる。
Examples of the crystalline styrene resin include syndiotactic polystyrene.
Examples of the polyamide resin include nylon 6, nylon 12, semi-aromatic nylon (such as a copolymer of nylon 6 and phthalic acid, a copolymer of nylon 9 and phthalic acid), and aromatic nylon.
Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polynaphthalene terephthalate.
Examples of the polyether resin include polyether ether ketone, polyketone, polyether nitrile, and the like.
Examples of the liquid crystal polymer include wholly aromatic polyamides typified by Kevlar, wholly aromatic polyesters typified by Zaider and Vectra, and the like.

結晶性樹脂の含有量は、(A)〜(C)成分の合計に対して、好ましくは30〜90重量%、さらに好ましくは30〜80重量%、特に好ましくは40〜80重量%である。30重量%未満又は90重量%を越えると反射率が充分でない場合がある。   The content of the crystalline resin is preferably 30 to 90% by weight, more preferably 30 to 80% by weight, and particularly preferably 40 to 80% by weight with respect to the total of the components (A) to (C). If it is less than 30% by weight or more than 90% by weight, the reflectance may not be sufficient.

(B)成分である白色顔料としては、二酸化チタン、アルミナ、酸化亜鉛、二酸化ケイ素、酸化アンチモン、酸化セリウム、酸化スズ、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、チタン酸カリウム、チタン酸カリウムリチウム、チタン酸マグネシウムカリウム、亜鉛華、マイカ、カオリン、タルク等公知の白色顔料を使用できる。これらの白色顔料のうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
中でも、二酸化チタン、酸化亜鉛、アルミナ、二酸化ケイ素、炭酸カルシウム、硫酸バリウム、チタン酸カリウム、マイカ、カオリン、タルクが高反射率であり好ましい。さらに好ましくは、二酸化チタン、酸化亜鉛、チタン酸カリウムである。
これらの白色顔料は樹脂との屈折率差が大きいため、樹脂と混ぜたときの反射率が非常に高くなる。
As the white pigment as component (B), titanium dioxide, alumina, zinc oxide, silicon dioxide, antimony oxide, cerium oxide, tin oxide, calcium carbonate, barium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, potassium titanate, Known white pigments such as potassium lithium titanate, potassium potassium titanate, zinc white, mica, kaolin and talc can be used. Among these white pigments, one kind may be used alone, or two or more kinds may be used in combination.
Among these, titanium dioxide, zinc oxide, alumina, silicon dioxide, calcium carbonate, barium sulfate, potassium titanate, mica, kaolin, and talc are preferable because of high reflectivity. More preferred are titanium dioxide, zinc oxide and potassium titanate.
Since these white pigments have a large refractive index difference from the resin, the reflectance when mixed with the resin is very high.

白色顔料の平均粒径は、0.05μm〜5μm、好ましくは0.05μm〜1μm、さらに好ましくは0.1μm〜1μmである。平均粒径が0.05μm未満又は5μmを越えると、可視光の反射率が低くなる場合がある。
尚、白色顔料の粒径とは、球状白色顔料の場合は直径を指し、偏平白色顔料では長径を、繊維状白色顔料では繊維長を意味する。また、平均粒径は、電子顕微鏡(透過型(TEM)又は走査型(SEM))でいくつかの単一粒子径を測定し、平均した値である。
The average particle diameter of the white pigment is 0.05 μm to 5 μm, preferably 0.05 μm to 1 μm, and more preferably 0.1 μm to 1 μm. When the average particle size is less than 0.05 μm or exceeds 5 μm, the visible light reflectance may be lowered.
The particle size of the white pigment refers to the diameter in the case of a spherical white pigment, the long diameter in a flat white pigment, and the fiber length in a fibrous white pigment. Moreover, an average particle diameter is the value which measured several single particle diameters with the electron microscope (Transmission type (TEM) or scanning type (SEM)), and averaged.

白色顔料の含有量は、(A)〜(C)成分の合計に対して、好ましくは5〜69重量%、さらに好ましくは5〜65重量%、特に好ましくは10〜60重量%である。5重量%未満であると反射率が不十分な場合がある。69重量%を越えると成形金型の摩耗が激しくなる恐れがある。   The content of the white pigment is preferably 5 to 69% by weight, more preferably 5 to 65% by weight, and particularly preferably 10 to 60% by weight with respect to the total of the components (A) to (C). If it is less than 5% by weight, the reflectance may be insufficient. If it exceeds 69% by weight, there is a risk that the wear of the molding die becomes severe.

(C)成分である無機フィラーとしては、ガラス繊維、ガラスフレーク、シリカ、アルミナ、チタン酸カリウム繊維、炭化ケイ素ウィスカ、ホウ酸アルミニウムウィスカ、炭酸カルシウムウィスカ、ワラストナイト等や、上述した白色顔料であって平均粒径が0.5μm〜10mmのものが使用できる。
これらの無機フィラーのうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
中でも、ガラス繊維、ガラスフレーク、シリカ、アルミナ、炭酸カルシウムが安価であり好ましい。
Examples of the inorganic filler (C) include glass fiber, glass flake, silica, alumina, potassium titanate fiber, silicon carbide whisker, aluminum borate whisker, calcium carbonate whisker, wollastonite, and the white pigment described above. In addition, those having an average particle diameter of 0.5 μm to 10 mm can be used.
Among these inorganic fillers, one kind may be used alone, or two or more kinds may be used in combination.
Among these, glass fiber, glass flake, silica, alumina, and calcium carbonate are preferable because they are inexpensive.

無機フィラーの平均粒径は、0.5μm〜10mm、好ましくは0.5μm〜5mm、さらに好ましくは1μm〜5mmである。無機フィラーの平均粒径が0.5μm未満だと表面凹凸が小さく反射率向上効果が小さい場合がある。10mmを越えると成形が困難になる恐れがある。
尚、無機フィラーの粒径とは、球状フィラーの場合は直径を指し、偏平フィラーでは長径を、繊維状フィラーでは繊維長を意味する。また、平均粒径は、電子顕微鏡(透過型(TEM)又は走査型(SEM))でいくつかの単一粒子径を測定し、平均した値である。
The average particle size of the inorganic filler is 0.5 μm to 10 mm, preferably 0.5 μm to 5 mm, and more preferably 1 μm to 5 mm. If the average particle size of the inorganic filler is less than 0.5 μm, the surface unevenness may be small and the effect of improving the reflectance may be small. If it exceeds 10 mm, molding may be difficult.
The particle size of the inorganic filler refers to the diameter in the case of the spherical filler, the long diameter in the flat filler, and the fiber length in the fibrous filler. Moreover, an average particle diameter is the value which measured several single particle diameters with the electron microscope (Transmission type (TEM) or scanning type (SEM)), and averaged.

無機フィラーの含有量は、(A)〜(C)成分の合計に対して、好ましくは1〜40重量%である。さらに好ましくは1〜30重量%であり、特に好ましくは5〜30重量%である。1重量%未満だと反射率が不十分となるおそれがあり、40重量%を越えると成形金型の摩耗が激しくなる恐れがある。   The content of the inorganic filler is preferably 1 to 40% by weight with respect to the total of the components (A) to (C). More preferably, it is 1-30 weight%, Most preferably, it is 5-30 weight%. If it is less than 1% by weight, the reflectivity may be insufficient, and if it exceeds 40% by weight, the mold may be worn heavily.

尚、本発明の反射体には、添加剤として、公知の酸化防止剤及び光安定剤等を使用することができる。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等がある。   In the reflector of the present invention, known antioxidants and light stabilizers can be used as additives. Antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.

フェノール系酸化防止剤としては、例えば、トリエチレングリコール・ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール・ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等を挙げることができる。
これらの中でも、ペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナムアミド)が好ましい。
Examples of phenolic antioxidants include triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, N, N′-hexamethylenebis (3,5- Di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-) -T-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- {3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane.
Among these, pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl- 4-hydroxy-hydrocinnamamide) is preferred.

リン系酸化防止剤の具体例としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−[[2,4,8,10−テトラキス(1,1−ジメチルエテル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6−イル]オキシ]−エチル]エタナミン、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト等を挙げることができる。
これらの中でも、2−[[2,4,8,10−テトラキス(1,1−ジメチルエテル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェビン6−イル]オキシ]−エチル]エタナミンが好ましい。
Specific examples of phosphorus antioxidants include, for example, tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylether). Dibenzo [d, f] [1,3,2] dioxaphosphenine 6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1 dimethylethyl) ) Dibenzo [d, f] [1,3,2] dioxaphosphenine 6-yl] oxy] -ethyl] ethanamine, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol di A phosphite etc. can be mentioned.
Among these, 2-[[2,4,8,10-tetrakis (1,1-dimethylether) dibenzo [d, f] [1,3,2] dioxaphosphine6-yl] oxy]- N, N-bis [2-[[2,4,8,10-tetrakis (1,1 dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphin 6-yl] oxy] -Ethyl] ethanamine is preferred.

イオウ系酸化防止剤の具体例としては、例えば、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、テトラキス[メチレン−3−(ドデシルチオ)プロピオネート]メタン等を挙げることができる。
これらの酸化防止剤は1種を単独で使用でき又は2種以上を併用できる。
Specific examples of the sulfur-based antioxidant include 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], tetrakis [methylene-3- ( Dodecylthio) propionate] methane and the like.
These antioxidants can be used alone or in combination of two or more.

光安定剤としてはヒンダードアミン系化合物やベンゾトリアゾール系化合物が好ましく用いられる。   As the light stabilizer, hindered amine compounds and benzotriazole compounds are preferably used.

ヒンダードアミン系化合物としては、ヘテロサイクリックヒンダードアミン化合物が好ましい。
このヘテロサイクリックヒンダードアミン化合物とは、ヒンダードアミン窒素原子及び場合により他の異原子、好ましくは窒素又は酸素原子を含む6員複素環からなる化合物である。
As the hindered amine compound, a heterocyclic hindered amine compound is preferable.
This heterocyclic hindered amine compound is a compound consisting of a 6-membered heterocyclic ring containing a hindered amine nitrogen atom and optionally other heteroatoms, preferably nitrogen or oxygen atoms.

このような化合物としては、例えばジ−(2,2,6,6−テトラメチル−4−ピペリジル)セバケート;4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン;コハク酸とN−(2−ヒドロキシエチル)−2,2,6,6−テトラメチル−4−ヒドロキシピペリジンとの化合物、1,2,3,4−テトラ−(2,2,6,6−テトラメチル−4−ピペリジル)ブタンテトラカルボキシレート;1,4−ジ−(2,2,6,6−テトラメチル−4−ピペリジル)−2,3−ブタンジオン;トリス−(2,2,6,6−テトラメチル−4−ピペリジル)トリメリテート;1,2,2,6,6−ペンタメチル−4−ピペリジルステアレート;1,2,2,6,6−ペンタメチル−4−ピペリジル−n−オクトエート;ビス−(1,2,6,6−ペンタメチル−4−ピペリジル)セバケート;トリス−(2,2,6,6−テトラメチル−4−ピペリジル)ニトリルアセテート;4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン;4−ヒドロキシ−1,2,2,6,6−ペンタメチルピペリジン等が挙げられる。   Examples of such compounds include di- (2,2,6,6-tetramethyl-4-piperidyl) sebacate; 4-benzoyloxy-2,2,6,6-tetramethylpiperidine; succinic acid and N- Compound with (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-hydroxypiperidine, 1,2,3,4-tetra- (2,2,6,6-tetramethyl-4- Piperidyl) butanetetracarboxylate; 1,4-di- (2,2,6,6-tetramethyl-4-piperidyl) -2,3-butanedione; tris- (2,2,6,6-tetramethyl- 4-piperidyl) trimellitate; 1,2,2,6,6-pentamethyl-4-piperidyl stearate; 1,2,2,6,6-pentamethyl-4-piperidyl-n-octoate; bis- (1,2 6,6-pentamethyl-4-piperidyl) sebacate; tris- (2,2,6,6-tetramethyl-4-piperidyl) nitrile acetate; 4-hydroxy-2,2,6,6-tetramethylpiperidine; 4 -Hydroxy-1,2,2,6,6-pentamethylpiperidine and the like.

これらの中でジ−(2,2,6,6−テトラメチル−4−ピペリジル)セバケート及びコハク酸とN−(2−ヒドロキシエチル)−2,2,6,6−テトラメチル−4−ヒドロキピペリジンとの縮合物が好ましい。   Among these, di- (2,2,6,6-tetramethyl-4-piperidyl) sebacate and succinic acid and N- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-hydroxy A condensate with piperidine is preferred.

また、ベンゾトリアゾール系化合物としては、例えば(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−5’−アミルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−4’−オクトキシフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジイソアミルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジメチルフェニル)ベンゾトリアゾール;2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジメチルフェニル)−5−クロロベンゾトリアゾール;2−(2’−ヒドロキシ−3’,5’−ジクロロフェニル)ベンゾトリアゾール等が挙げられる。   Examples of the benzotriazole compounds include (2′-hydroxy-5′-methylphenyl) benzotriazole; 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole; 2- (2′- Hydroxy-5′-amylphenyl) benzotriazole; 2- (2′-hydroxy-4′-octoxyphenyl) benzotriazole; 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) 2- (2′-hydroxy-3 ′, 5′-diisoamylphenyl) benzotriazole; 2- (2′-hydroxy-3 ′, 5′-dimethylphenyl) benzotriazole; 2- (2′- Hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole; 2- (2'-hydroxy 3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole; 2- (2'-hydroxy-3', 5'-dimethylphenyl) -5-chlorobenzotriazole; 2- (2'- Hydroxy-3 ′, 5′-dichlorophenyl) benzotriazole and the like.

これらの中で特に2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾールが好ましい。   Of these, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole is particularly preferable.

これら添加剤の使用量は、上記(A)〜(C)成分全量を100質量部としたときに、通常、0.005〜5質量部、好ましくは0.02〜2質量部である。これらの添加剤を2種以上組み合わせてもよい。   The amount of these additives used is usually 0.005 to 5 parts by mass, preferably 0.02 to 2 parts by mass, when the total amount of the components (A) to (C) is 100 parts by mass. Two or more of these additives may be combined.

光安定剤は、ヒンダードアミン系光安定剤が好適に用いることができる。添加量は、上記(A)〜(C)成分全量を100質量部としたときに通常、0.005〜5質量部、好ましくは0.02〜2質量部である。これらの添加剤を2種以上組み合わせてもよい。   As the light stabilizer, a hindered amine light stabilizer can be suitably used. The addition amount is usually 0.005 to 5 parts by mass, preferably 0.02 to 2 parts by mass, when the total amount of the components (A) to (C) is 100 parts by mass. Two or more of these additives may be combined.

本発明の反射体の反射面の表面粗さは、0.5μm〜50μmであり、好ましくは0.5μm〜30μmであり、さらに好ましくは0.5μm〜15μmである。表面粗さが0.5μm未満であると反射率が不十分となる恐れがあり、50μmを越えると外観不良となる恐れがある。
本発明では比較的粒径の大きい無機フィラーを用いることで、表面をより粗化しやすくしている。また同時に、白色顔料を用いることで反射率をより向上させている。
尚、表面粗さの測定方法は実施例にて説明する。
The surface roughness of the reflecting surface of the reflector of the present invention is 0.5 μm to 50 μm, preferably 0.5 μm to 30 μm, and more preferably 0.5 μm to 15 μm. If the surface roughness is less than 0.5 μm, the reflectance may be insufficient, and if it exceeds 50 μm, the appearance may be poor.
In the present invention, by using an inorganic filler having a relatively large particle size, the surface is more easily roughened. At the same time, the reflectance is further improved by using a white pigment.
In addition, the measuring method of surface roughness is demonstrated in an Example.

本発明の反射体の厚みは20μm以上であることが好ましい。20μm未満では反射率が不十分となることがあり、反射性能を有する下地層がさらに必要となる場合がある。尚、反射体の厚みの上限は特に制限しない。   The thickness of the reflector of the present invention is preferably 20 μm or more. If the thickness is less than 20 μm, the reflectivity may be insufficient, and an underlayer having reflective performance may be further required. The upper limit of the reflector thickness is not particularly limited.

本発明の反射体は、例えば、以下の製造方法1又は2で製造できる。
[製造方法1]
本製造方法は以下の製造工程を含む。
(1)溶融状態の樹脂組成物を、結晶性樹脂のガラス転移点以下の温度に設定した金型に接触させて反射体の形状に成形する工程
(2)成形体を結晶性樹脂のガラス転移点(Tg)以上の温度で熱処理して反射体の反射面に凹凸を形成する工程
The reflector of this invention can be manufactured with the following manufacturing methods 1 or 2, for example.
[Production Method 1]
This manufacturing method includes the following manufacturing steps.
(1) A step of bringing the resin composition in a molten state into contact with a mold set at a temperature not higher than the glass transition point of the crystalline resin to form it into the shape of a reflector (2) The glass transition of the crystalline resin A process of forming irregularities on the reflecting surface of the reflector by heat treatment at a temperature equal to or higher than the point (Tg)

上記工程(1)、(2)により、反射体の反射面に表面粗さが0.5μm〜50μmの凹凸ができる。これは、工程(1)で結晶化できずに残った結晶性樹脂の非晶部分が、工程(2)の熱処理時に結晶化して収縮し、その結果、粒径の大きなフィラーが表面に顔を出すためである。
工程(1)の適用例としては、射出成形による方法が挙げられる。具体的に、成形機にて樹脂組成物を溶融し、これを結晶性樹脂のガラス転移点以下の温度に設定した金型に射出することで成形できる。この際、金型の設定温度は、使用する樹脂にもよるが、(Tg−50℃)〜(Tg)が好ましい。尚、金型の転写面は通常の平滑面、例えば、鏡面加工されたものである。
また、本明細書において結晶性樹脂のガラス転移点(Tg)は、示差走査型熱量計(DSC)で測定した値である。
また、工程(1)は射出成形に限定されるものではなく、例えば、樹脂板を加熱し溶融状態とし、真空成形等で成形する方法でも実施できる。
By the above steps (1) and (2), irregularities having a surface roughness of 0.5 μm to 50 μm can be formed on the reflecting surface of the reflector. This is because the amorphous part of the crystalline resin remaining uncrystallized in the step (1) crystallizes and shrinks during the heat treatment in the step (2), and as a result, a filler having a large particle size makes a face on the surface. It is for putting out.
As an application example of the step (1), there is a method by injection molding. Specifically, it can be molded by melting the resin composition with a molding machine and injecting it into a mold set at a temperature not higher than the glass transition point of the crystalline resin. At this time, the set temperature of the mold is preferably (Tg-50 ° C.) to (Tg) although it depends on the resin used. The transfer surface of the mold is a normal smooth surface, for example, a mirror-finished surface.
In the present specification, the glass transition point (Tg) of the crystalline resin is a value measured by a differential scanning calorimeter (DSC).
Further, the step (1) is not limited to injection molding, and for example, it can be carried out by a method in which a resin plate is heated to a molten state and molded by vacuum molding or the like.

工程(2)の適用例としては、工程(1)で得られた成形体を加熱したオーブン中に放置する方法が挙げられる。
熱処理温度は使用する樹脂にもよるが、(Tg+10℃)〜(Tm−50℃)が好ましい。また、処理時間は5分〜2時間が好ましい。ここでTmは、樹脂の融点をいい、DSCで測定した値である。
尚、反射面の凹凸を大きくする場合は金型温度を低くすればよく、凹凸を小さくする場合は金型温度をTgに近づければよい。
また、熱処理条件をより低温又は短時間とすれば、反射面の凹凸は小さくなり、より高温又は長時間とすれば反射面の凹凸は大きくなる。
As an application example of the step (2), there is a method of leaving the molded body obtained in the step (1) in a heated oven.
The heat treatment temperature depends on the resin used, but is preferably (Tg + 10 ° C.) to (Tm−50 ° C.). The treatment time is preferably 5 minutes to 2 hours. Here, Tm refers to the melting point of the resin and is a value measured by DSC.
It should be noted that the mold temperature may be lowered to increase the unevenness of the reflecting surface, and the mold temperature may be brought close to Tg to reduce the unevenness.
Further, if the heat treatment condition is set to a lower temperature or a shorter time, the unevenness of the reflecting surface becomes smaller, and if the temperature is set to a higher temperature or a longer time, the unevenness of the reflecting surface becomes larger.

[製造方法2]
射出成形や押出成形時に、転写面に細かい凹凸を形成した金型に接触させ反射面に凹凸を形成し反射体を作製する方法である。
この方法では、転写面の温度を結晶性樹脂のガラス転移点以上として十分結晶化させれば、製造方法1のような熱処理を行なう必要はない。
転写面の表面粗さは0.5μm〜50μm、好ましくは0.5μm〜30μm、さらに好ましくは0.5μm〜0.15μmである。表面粗さが0.5μm未満であると反射率が不十分となる恐れがあり、50μmを越えると外観不良となる恐れがある。
[Production Method 2]
In the injection molding or extrusion molding, a reflector is produced by contacting a mold having fine irregularities on the transfer surface to form irregularities on the reflecting surface.
In this method, if the temperature of the transfer surface is sufficiently crystallized above the glass transition point of the crystalline resin, it is not necessary to perform the heat treatment as in manufacturing method 1.
The surface roughness of the transfer surface is 0.5 μm to 50 μm, preferably 0.5 μm to 30 μm, and more preferably 0.5 μm to 0.15 μm. If the surface roughness is less than 0.5 μm, the reflectance may be insufficient, and if it exceeds 50 μm, the appearance may be poor.

本発明の反射体の製造方法としては、上記製造方法1の方法が好ましい。製造方法2では、成形中に金型の転写面が摩耗して凹凸が減少する懸念があるからである。また、製造方法1では、射出成形時のバリ発生量が少ないという利点もある。   As a manufacturing method of the reflector of the present invention, the method of manufacturing method 1 is preferable. This is because, in the production method 2, there is a concern that the transfer surface of the mold is worn during molding and the unevenness is reduced. Further, the production method 1 has an advantage that the amount of burrs generated at the time of injection molding is small.

[使用材料]
実施例及び比較例で使用した結晶性樹脂等を以下に示す。
1.結晶性樹脂
(1)半芳香族ポリアミド
テレフタル酸単位及びイソフタル酸単位[テレフタル酸:イソフタル酸=70:30(モル比)]と1,6−ヘキサンジアミン単位からなり、末端が安息香酸で封止されたポリアミド(Tg=85℃、Tm=310℃)を使用した。
このポリアミドは、特開平7−228689号公報の比較例3に記載された方法に従って調製したものである。
[Materials used]
The crystalline resins used in the examples and comparative examples are shown below.
1. Crystalline resin (1) Semi-aromatic polyamide Consists of terephthalic acid unit and isophthalic acid unit [terephthalic acid: isophthalic acid = 70: 30 (molar ratio)] and 1,6-hexanediamine unit, and ends are sealed with benzoic acid The resulting polyamide (Tg = 85 ° C., Tm = 310 ° C.) was used.
This polyamide was prepared according to the method described in Comparative Example 3 of JP-A-7-228689.

(2)シンジオタクチックポリスチレン
ザレック130ZC(出光興産(株)製、Tg=100℃、Tm=270℃)を使用した。
(3)ポリエーテルエーテルケトン
PEEK 450G(ビクトレックス・エムシー(株)、Tg=143℃、Tm=343℃)を使用した。
(2) Syndiotactic polystyrene Zalek 130ZC (manufactured by Idemitsu Kosan Co., Ltd., Tg = 100 ° C., Tm = 270 ° C.) was used.
(3) Polyetheretherketone PEEK 450G (Victrex MC Co., Ltd., Tg = 143 ° C., Tm = 343 ° C.) was used.

2.白色顔料
二酸化チタン(タイペークR680、石原産業(株)、平均粒径0.21μm)を使用した。平均粒径は、透過型電子顕微鏡(TEM)でいくつかの単一粒子径を測定し、平均した値である。
3.無機フィラー
(1)ガラス繊維
JAFT164G(旭ファイバーグラス(株)、繊維径13μm、繊維長3mm)を使用した。
(2)シリカ
FB201SX(昭和電工(株)、平均粒径7.8μm)を使用した。平均粒径は、走査型電子顕微鏡(SEM)でいくつかの単一粒子径を測定し、平均した値である。
2. White pigment Titanium dioxide (Taipeke R680, Ishihara Sangyo Co., Ltd., average particle size 0.21 μm) was used. The average particle diameter is an average value obtained by measuring several single particle diameters with a transmission electron microscope (TEM).
3. Inorganic filler (1) Glass fiber JAFT164G (Asahi Fiber Glass Co., Ltd., fiber diameter 13 μm, fiber length 3 mm) was used.
(2) Silica FB201SX (Showa Denko Co., Ltd., average particle size 7.8 μm) was used. The average particle diameter is an average value obtained by measuring several single particle diameters with a scanning electron microscope (SEM).

[物性測定方法]
実施例及び比較例で製造した反射体の物性について以下の方法で測定した。
1.表面粗さ
走査型レーザー顕微鏡(レーザーテック社製、LSM700)を用いて、成形品表面の凹凸を観察した。凹凸の平均値からのずれを平均した値Raを求め、それを表面粗さと定義した。
2.反射率
(株)島津製作所製・自記分光光度計UV−2400PCに、(株)島津製作所社製のマルチパーパス大形試料室ユニットMPC−2200形を取り付け、波長550nmにおける反射率を測定した。レファレンスとして硫酸バリウムを使用した。
[Physical property measurement method]
The physical properties of the reflectors produced in the examples and comparative examples were measured by the following method.
1. Surface roughness Using a scanning laser microscope (LSM700, manufactured by Lasertec Corporation), unevenness on the surface of the molded product was observed. A value Ra obtained by averaging the deviation from the average value of the unevenness was obtained and defined as surface roughness.
2. Reflectivity Multi-purpose large sample chamber unit MPC-2200 manufactured by Shimadzu Corporation was attached to Shimadzu Corporation's self-recording spectrophotometer UV-2400PC, and the reflectance at a wavelength of 550 nm was measured. Barium sulfate was used as a reference.

実施例1〜3
半芳香族ポリアミド、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度330℃で溶融混練後、ペレットとした。
得られたペレットを100℃で一昼夜乾燥した後、バレル温度330℃、金型温度70℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。
その後、得られた角板を140℃で30分間熱処理を施した。熱処理は、140℃に設定したオーブン内で行なった。
得られた角板の表面粗さ及び反射率を測定した。結果を表1に示す。
Examples 1-3
Semi-aromatic polyamide, titanium dioxide and glass fiber were blended in the proportions shown in Table 1, and after dry blending, they were put into a hopper of a twin screw extruder having an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 330 ° C., and then pelletized. .
The obtained pellets were dried at 100 ° C. for a whole day and night, and then injection molded at a barrel temperature of 330 ° C. and a mold temperature of 70 ° C. (mirror mold) to obtain a square plate having a 3 cm square and a 1 mm thickness.
Then, the obtained square plate was heat-treated at 140 ° C. for 30 minutes. The heat treatment was performed in an oven set at 140 ° C.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

比較例1
半芳香族ポリアミド、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度330℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度330℃、金型温度120℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Comparative Example 1
Semi-aromatic polyamide, titanium dioxide and glass fiber were blended in the proportions shown in Table 1, and after dry blending, they were put into a hopper of a twin screw extruder having an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 330 ° C., and then pelletized. . The obtained pellets were dried at 100 ° C. for a whole day and night, and then injection molded at a barrel temperature of 330 ° C. and a mold temperature of 120 ° C. (mirror mold) to obtain a square plate having a 3 cm square and a 1 mm thickness.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

実施例4,6
シンジオタクチックポリスチレン、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度285℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度280℃、金型温度80℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。その後、150℃で30分間熱処理を施した。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Examples 4 and 6
After syndiotactic polystyrene, titanium dioxide and glass fiber were blended in the proportions shown in Table 1 and dry blended, they were put into a hopper of a twin screw extruder with an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 285 ° C., and then pelletized. . The obtained pellets were dried at 100 ° C. all day and night, and then injection molded at a barrel temperature of 280 ° C. and a mold temperature of 80 ° C. (mirror mold) to obtain a square plate having a 3 cm square and a 1 mm thickness. Thereafter, heat treatment was performed at 150 ° C. for 30 minutes.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

実施例5
シンジオタクチックポリスチレン、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度285℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度280℃、金型温度140℃(凹凸面金型:転写面の表面粗さ6.0μm)で射出成形し、3cm角1mm厚の角板を得た。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Example 5
After syndiotactic polystyrene, titanium dioxide and glass fiber were blended in the proportions shown in Table 1 and dry blended, they were put into a hopper of a twin screw extruder with an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 285 ° C., and then pelletized. . The obtained pellets were dried at 100 ° C. for a whole day and night, and then injection molded at a barrel temperature of 280 ° C. and a mold temperature of 140 ° C. (uneven surface mold: transfer surface roughness of 6.0 μm). Got.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

比較例2
シンジオタクチックポリスチレン、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度285℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度280℃、金型温度140℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Comparative Example 2
After syndiotactic polystyrene, titanium dioxide and glass fiber were blended in the proportions shown in Table 1 and dry blended, they were put into a hopper of a twin screw extruder with an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 285 ° C., and then pelletized. . The obtained pellets were dried at 100 ° C. for a whole day and night, and then injection molded at a barrel temperature of 280 ° C. and a mold temperature of 140 ° C. (mirror mold) to obtain a 3 cm square 1 mm thick square plate.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

実施例7
シンジオタクチックポリスチレン、二酸化チタン及びシリカを表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度285℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度280℃、金型温度80℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。その後、角板を150℃で30分間熱処理を施した。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Example 7
Syndiotactic polystyrene, titanium dioxide and silica were blended in the proportions shown in Table 1 and dry blended, then charged into a hopper of a twin screw extruder having an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 285 ° C., and pelletized. The obtained pellets were dried at 100 ° C. all day and night, and then injection molded at a barrel temperature of 280 ° C. and a mold temperature of 80 ° C. (mirror mold) to obtain a square plate having a 3 cm square and a 1 mm thickness. Thereafter, the square plate was heat-treated at 150 ° C. for 30 minutes.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

実施例8
ポリエーテルエーテルケトン、二酸化チタン及びガラス繊維を表1に示す割合で配合し、ドライブレンドした後、内径30mmの二軸押出機のホッパーに投入し、バレル温度360℃で溶融混練後、ペレットとした。得られたペレットを100℃で一昼夜乾燥後、バレル温度360℃、金型温度100℃(鏡面金型)で射出成形し、3cm角1mm厚の角板を得た。その後、200℃で30分間熱処理を施した。
得られた角板の表面粗さ、反射率を測定した。結果を表1に示す。
Example 8
After blending polyether ether ketone, titanium dioxide and glass fiber in the proportions shown in Table 1, dry blending, the mixture was put into a hopper of a twin screw extruder having an inner diameter of 30 mm, melt-kneaded at a barrel temperature of 360 ° C., and then pelletized. . The obtained pellets were dried at 100 ° C. all day and night, and then injection molded at a barrel temperature of 360 ° C. and a mold temperature of 100 ° C. (mirror mold) to obtain a square plate having a 3 cm square and a 1 mm thickness. Thereafter, heat treatment was performed at 200 ° C. for 30 minutes.
The surface roughness and reflectance of the obtained square plate were measured. The results are shown in Table 1.

Figure 2007218980
Figure 2007218980

本発明の反射体は、液晶ディスプレイ用ランプリフレクタ、ショーケース用反射板、各種照明用反射板、LED用反射体等に使用できる。特にLED用反射体に好適である。
本発明の反射体をLED用反射体として使用した場合、ディスプレイ、行き先表示板、車載照明、信号灯、非常灯、携帯電話、ビデオカメラ等の様々なOA機器、電気電子機器及び部品、自動車部品等に使用できる。
The reflector of the present invention can be used for a liquid crystal display lamp reflector, a showcase reflector, various illumination reflectors, LED reflectors, and the like. It is particularly suitable for a reflector for LED.
When the reflector of the present invention is used as a reflector for LEDs, various OA devices such as displays, destination display boards, in-vehicle lighting, signal lights, emergency lights, mobile phones, video cameras, electrical and electronic devices and parts, automobile parts, etc. Can be used for

Claims (7)

結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物からなり、表面粗さが0.5〜50μmである反射体。   A reflection comprising a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm, and having a surface roughness of 0.5 to 50 μm body. 前記結晶性樹脂が、結晶性スチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂及び液晶ポリマーからなる群から選択される1種以上の樹脂である請求項1に記載の反射体。   2. The reflector according to claim 1, wherein the crystalline resin is at least one resin selected from the group consisting of a crystalline styrene resin, a polyamide resin, a polyester resin, a polyether resin, and a liquid crystal polymer. 前記白色顔料が、二酸化チタン、アルミナ、酸化亜鉛、二酸化ケイ素、炭酸カルシウム、硫酸バリウム、チタン酸カリウム、マイカ、カオリン及びタルクからなる群から選択される1種以上の化合物である請求項1又は2に記載の反射体。   3. The white pigment is one or more compounds selected from the group consisting of titanium dioxide, alumina, zinc oxide, silicon dioxide, calcium carbonate, barium sulfate, potassium titanate, mica, kaolin and talc. Reflector according to. 前記無機フィラーが、ガラス繊維、ガラスフレーク、シリカ、アルミナ及び炭酸カルシウムからなる群から選択される1種以上のフィラーである請求項1〜3のいずれか一項に記載の反射体。   The reflector according to any one of claims 1 to 3, wherein the inorganic filler is one or more fillers selected from the group consisting of glass fibers, glass flakes, silica, alumina, and calcium carbonate. 発光ダイオード用である請求項1〜4のいずれか一項に記載の反射体。   It is an object for light emitting diodes, The reflector as described in any one of Claims 1-4. 結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物を溶融し、前記結晶性樹脂のガラス転移点以下の温度の金型に接触させて成形し、
得られた成形体を、前記結晶性樹脂のガラス転移点以上の温度で熱処理して成形体の反射面に凹凸を形成する、請求項1〜5のいずれか一項に記載の反射体の製造方法。
Melting a resin composition containing a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm, and a temperature below the glass transition point of the crystalline resin In contact with the mold of
The obtained molded body is heat-treated at a temperature equal to or higher than the glass transition point of the crystalline resin to form irregularities on the reflective surface of the molded body, and manufacturing the reflector according to any one of claims 1 to 5. Method.
結晶性樹脂、平均粒径が0.05μm〜5μmの白色顔料、及び平均粒径が0.5μm〜10mmの無機フィラーを含む樹脂組成物を溶融し、溶融状態の樹脂組成物を、転写面の表面粗さが0.5〜50μmである金型に接触させて成形する請求項1〜5のいずれか一項に記載の反射体の製造方法。
A resin composition containing a crystalline resin, a white pigment having an average particle diameter of 0.05 μm to 5 μm, and an inorganic filler having an average particle diameter of 0.5 μm to 10 mm is melted, and the molten resin composition is applied to the transfer surface. The manufacturing method of the reflector as described in any one of Claims 1-5 shape | molded by making it contact with the metal mold | die whose surface roughness is 0.5-50 micrometers.
JP2006036450A 2006-02-14 2006-02-14 Reflector and its manufacturing method Pending JP2007218980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036450A JP2007218980A (en) 2006-02-14 2006-02-14 Reflector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036450A JP2007218980A (en) 2006-02-14 2006-02-14 Reflector and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007218980A true JP2007218980A (en) 2007-08-30

Family

ID=38496392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036450A Pending JP2007218980A (en) 2006-02-14 2006-02-14 Reflector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007218980A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065627A1 (en) * 2007-11-23 2009-05-28 Solvay Advanced Polymers, L.L.C. Gamma radiation sterilizable, reinforced polymer composition with improved color stability
JP2009155551A (en) * 2007-12-27 2009-07-16 Toyoda Gosei Co Ltd Composite material composition and light reflection member
WO2010027099A1 (en) * 2008-09-05 2010-03-11 住友化学株式会社 Method for manufacturing resin sheet for surface shape transfer
DE112008003185T5 (en) 2007-11-29 2010-09-30 Mitsubishi Plastics, Inc. Metal laminated object, LED substrate and white foil
JP2011241398A (en) * 2010-05-17 2011-12-01 Ems-Patent Ag Polyamide molding material and use of the material for producing led housing member
US20120165448A1 (en) * 2010-12-28 2012-06-28 Cheil Industries Inc. Polyamide Resin Composition
US20120165445A1 (en) * 2010-12-28 2012-06-28 Cheil Industries Inc. Polyamide Resin Composition
JP2012167285A (en) * 2011-01-28 2012-09-06 Kuraray Co Ltd Polyamide composition for reflecting plate, reflecting plate, light emission device having the reflecting plate, and illumination device and image display having the light emission device
WO2013009006A2 (en) * 2011-07-08 2013-01-17 Ahn Seung-Geun Led mirror using a proximity sensor
KR101237521B1 (en) 2010-09-16 2013-03-04 (주) 케이엠팩 Polymer reflector and Polymer composite for reflector
US20130197150A1 (en) * 2010-10-13 2013-08-01 Solvay Specialty Polymers Usa, Llc Stain-resistant articles
JP2014501322A (en) * 2010-12-27 2014-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Noise attenuating composition
US8692272B2 (en) 2008-10-28 2014-04-08 Sumitomo Chemical Company, Limited Resin composition, reflective board and light-emitting apparatus
US8822834B2 (en) 2010-07-30 2014-09-02 Nitto Denko Corporation Printed circuit board and method of manufacturing the same
US8865807B2 (en) 2011-12-29 2014-10-21 Cheil Industries Inc. Polyamide resin composition having improved physical properties including thin-wall moldability
US20150008455A1 (en) * 2011-09-30 2015-01-08 Kaneka Corporation Molded resin body for surface-mounted light-emitting device, manufacturing method thereof, and surface-mounted light-emitting device
US8957142B2 (en) 2013-02-01 2015-02-17 Cheil Industries Inc. Polyamide resin composition having excellent photostability and discoloration resistance
US8957146B2 (en) 2010-12-15 2015-02-17 Cheil Industries Inc. Polyamide resin composition with excellent reflectivity, heat resistance, and water resistance
TWI473859B (en) * 2011-12-29 2015-02-21 Cheil Ind Inc Polyamide resin composition having improved physical properties including thin-wall moldability
US9018296B2 (en) 2012-12-31 2015-04-28 Cheil Industries Inc. Thermoplastic resin composition having excellent surface gloss, reflectance, anti-yellowing property and moldability
TWI500698B (en) * 2010-12-28 2015-09-21 Cheil Ind Inc Polyamide resin composition
JP2015197959A (en) * 2014-03-31 2015-11-09 東芝ライテック株式会社 lamp
US9283707B2 (en) 2008-09-11 2016-03-15 Sumitomo Chemical Company, Limited Method for producing liquid-crystalline polyester resin composition
WO2017187643A1 (en) * 2016-04-28 2017-11-02 東京尽陽株式会社 Reflective sheet, and solar cell module and led lighting device each using same
US9840610B2 (en) 2014-09-30 2017-12-12 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article using the same
US10131785B2 (en) 2015-06-30 2018-11-20 Lotte Advanced Materials Co., Ltd. Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
US10301449B2 (en) 2013-11-29 2019-05-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent light stability at high temperature
US10508190B2 (en) 2014-12-17 2019-12-17 Lotte Advanced Materials Co., Ltd. Polyester resin composition and molded article manufactured therefrom
US10636951B2 (en) 2014-06-27 2020-04-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent reflectivity
US10822490B2 (en) 2013-12-30 2020-11-03 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent shock resistance and light resistance

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504527A (en) * 2007-11-23 2011-02-10 ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー Gamma-ray disinfectant, reinforced polymer composition with improved color stability
US8524821B2 (en) 2007-11-23 2013-09-03 Solvay Advanced Polymers, L.L.C. Gamma radiation sterilizable, reinforced polymer composition with improved color stability
WO2009065627A1 (en) * 2007-11-23 2009-05-28 Solvay Advanced Polymers, L.L.C. Gamma radiation sterilizable, reinforced polymer composition with improved color stability
US8169129B2 (en) 2007-11-29 2012-05-01 Mitsubishi Plastics, Inc. Metal laminated body, LED-mounted substrate, and white film
DE112008003185T5 (en) 2007-11-29 2010-09-30 Mitsubishi Plastics, Inc. Metal laminated object, LED substrate and white foil
JP2009155551A (en) * 2007-12-27 2009-07-16 Toyoda Gosei Co Ltd Composite material composition and light reflection member
WO2010027099A1 (en) * 2008-09-05 2010-03-11 住友化学株式会社 Method for manufacturing resin sheet for surface shape transfer
US9283707B2 (en) 2008-09-11 2016-03-15 Sumitomo Chemical Company, Limited Method for producing liquid-crystalline polyester resin composition
US8692272B2 (en) 2008-10-28 2014-04-08 Sumitomo Chemical Company, Limited Resin composition, reflective board and light-emitting apparatus
JP2011241398A (en) * 2010-05-17 2011-12-01 Ems-Patent Ag Polyamide molding material and use of the material for producing led housing member
US8822834B2 (en) 2010-07-30 2014-09-02 Nitto Denko Corporation Printed circuit board and method of manufacturing the same
KR101237521B1 (en) 2010-09-16 2013-03-04 (주) 케이엠팩 Polymer reflector and Polymer composite for reflector
US20130197150A1 (en) * 2010-10-13 2013-08-01 Solvay Specialty Polymers Usa, Llc Stain-resistant articles
US8957146B2 (en) 2010-12-15 2015-02-17 Cheil Industries Inc. Polyamide resin composition with excellent reflectivity, heat resistance, and water resistance
JP2014501322A (en) * 2010-12-27 2014-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Noise attenuating composition
JP2012140619A (en) * 2010-12-28 2012-07-26 Cheil Industries Inc Polyamide resin composition for reflector excellent in surface glossiness and reflectance and molded product thereof
US8431636B2 (en) * 2010-12-28 2013-04-30 Cheil Industries Inc. Polyamide resin composition
TWI500698B (en) * 2010-12-28 2015-09-21 Cheil Ind Inc Polyamide resin composition
CN102532887A (en) * 2010-12-28 2012-07-04 第一毛织株式会社 Polyamide resin composition
US20120165445A1 (en) * 2010-12-28 2012-06-28 Cheil Industries Inc. Polyamide Resin Composition
US20120165448A1 (en) * 2010-12-28 2012-06-28 Cheil Industries Inc. Polyamide Resin Composition
JP2012167285A (en) * 2011-01-28 2012-09-06 Kuraray Co Ltd Polyamide composition for reflecting plate, reflecting plate, light emission device having the reflecting plate, and illumination device and image display having the light emission device
US10480749B2 (en) 2011-01-28 2019-11-19 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
EP2647671A1 (en) * 2011-01-28 2013-10-09 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
US10407548B2 (en) 2011-01-28 2019-09-10 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
US9822949B2 (en) 2011-01-28 2017-11-21 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
EP2647670A1 (en) * 2011-01-28 2013-10-09 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
EP2647670B1 (en) 2011-01-28 2015-03-18 Kuraray Co., Ltd. Polyamide composition for reflector, reflector, light emitting device including the reflector, and lighting device and image display device each including the light emitting device
WO2013009006A2 (en) * 2011-07-08 2013-01-17 Ahn Seung-Geun Led mirror using a proximity sensor
WO2013009006A3 (en) * 2011-07-08 2013-03-14 Ahn Seung-Geun Led mirror using a proximity sensor
US20150008455A1 (en) * 2011-09-30 2015-01-08 Kaneka Corporation Molded resin body for surface-mounted light-emitting device, manufacturing method thereof, and surface-mounted light-emitting device
US9793456B2 (en) * 2011-09-30 2017-10-17 Kaneka Corporation Molded resin body for surface-mounted light-emitting device, manufacturing method thereof, and surface-mounted light-emitting device
US8865807B2 (en) 2011-12-29 2014-10-21 Cheil Industries Inc. Polyamide resin composition having improved physical properties including thin-wall moldability
TWI473859B (en) * 2011-12-29 2015-02-21 Cheil Ind Inc Polyamide resin composition having improved physical properties including thin-wall moldability
US9018296B2 (en) 2012-12-31 2015-04-28 Cheil Industries Inc. Thermoplastic resin composition having excellent surface gloss, reflectance, anti-yellowing property and moldability
US8957142B2 (en) 2013-02-01 2015-02-17 Cheil Industries Inc. Polyamide resin composition having excellent photostability and discoloration resistance
US10301449B2 (en) 2013-11-29 2019-05-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent light stability at high temperature
US10822490B2 (en) 2013-12-30 2020-11-03 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent shock resistance and light resistance
JP2015197959A (en) * 2014-03-31 2015-11-09 東芝ライテック株式会社 lamp
US10636951B2 (en) 2014-06-27 2020-04-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent reflectivity
US11355683B2 (en) 2014-06-27 2022-06-07 Lotte Chemical Corporation Thermoplastic resin composition having excellent reflectivity
US9840610B2 (en) 2014-09-30 2017-12-12 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article using the same
US10508190B2 (en) 2014-12-17 2019-12-17 Lotte Advanced Materials Co., Ltd. Polyester resin composition and molded article manufactured therefrom
US10538661B2 (en) 2015-06-30 2020-01-21 Lotte Advanced Materials Co., Ltd. Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
US10131785B2 (en) 2015-06-30 2018-11-20 Lotte Advanced Materials Co., Ltd. Polyester resin composition with excellent impact resistance and light reliability and molded article using the same
WO2017187643A1 (en) * 2016-04-28 2017-11-02 東京尽陽株式会社 Reflective sheet, and solar cell module and led lighting device each using same

Similar Documents

Publication Publication Date Title
JP2007218980A (en) Reflector and its manufacturing method
JP4835438B2 (en) Polyester resin composition for light reflector
TWI513745B (en) Liquid crystal polyester composition and connector obtained by molding the same
JP2010084129A (en) Liquid crystal polyester resin mixture, and reflection plate and emission device using the same
JP5261876B2 (en) Polyester resin composition for light reflector
TWI568566B (en) Metallized multilayer structure made of specific polycarbonates with low coefficient of thermal expansion
JP5319047B2 (en) Polycarbonate resin composition
JP2006124600A (en) Highly light-reflecting polycarbonate resin composition and method for producing the same
JP2004240292A (en) Light reflector made of polybutylene terephthalate resin and its manufacturing method
JP5292877B2 (en) Polyester resin composition and light reflector
TW201602225A (en) Resin composition for reflective material, and reflective panel including same
JP5729169B2 (en) Thermoplastic polyester resin composition and light reflector using the same
TWI483847B (en) Reflective material
WO2016002193A1 (en) Polyester resin composition for reflective materials and reflection plate containing same
JP2017071728A (en) Polyester resin composition, method for manufacturing reflector and method for manufacturing light-emitting diode (led) element
JP4329007B2 (en) Polyester resin composition
JP6042271B2 (en) Polyester resin composition for reflector and reflector
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP2005041977A (en) Polyester resin composition
JP4300842B2 (en) LIGHT REFLECTOR AND LIGHTING APPARATUS HAVING THE LIGHT REFLECTOR
EP3064550B1 (en) Resin composition
JP2009004592A (en) Reflector for polystyrene-based light emitting diode
JP2006225440A (en) Polyester resin composition for light-reflecting molded article
JP2008303292A (en) Polyester resin composition for coating/deposition molded product
KR101762484B1 (en) Thermoplastic Resin Composition Having Excellent Light stability in High Temperature