JP2007211889A - Check valve and its manufacturing method - Google Patents

Check valve and its manufacturing method Download PDF

Info

Publication number
JP2007211889A
JP2007211889A JP2006032453A JP2006032453A JP2007211889A JP 2007211889 A JP2007211889 A JP 2007211889A JP 2006032453 A JP2006032453 A JP 2006032453A JP 2006032453 A JP2006032453 A JP 2006032453A JP 2007211889 A JP2007211889 A JP 2007211889A
Authority
JP
Japan
Prior art keywords
valve body
valve
check valve
flexible member
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032453A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2006032453A priority Critical patent/JP2007211889A/en
Publication of JP2007211889A publication Critical patent/JP2007211889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Check Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged substance separating device and a charged substance separating method, capable of separating a charged substance to a practical degree even by relatively low magnetic flux density by a small magnet, in a separating device and a method for separating the charged substance included in fluid by fluid energy, by making the fluid flow in a magnetic field. <P>SOLUTION: A separation chamber being a fluid passage part for separating is miniaturized, and a separation speed is quickened even if separation capacity is small in one separation chamber. The separation capacity and the speed can be simultaneously improved by arranging this separation chamber in a multistage shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フィルム状の弁体を持つ逆止弁に関し、特に、マイクロ流体デバイス、即ち、部材に微小な流路が形成された化学・生化学用微小デバイスに組み込まれ、或いは接続されて好適に使用される微小な逆止弁及びその製造方法に関する。   The present invention relates to a check valve having a film-like valve body, and particularly suitable for being incorporated in or connected to a microfluidic device, that is, a chemical / biochemical microdevice in which a microchannel is formed in a member. The present invention relates to a minute check valve used in the manufacturing method and a manufacturing method thereof.

直径1〜500μm程度の微細な流路用の逆止弁として、通常の寸法、即ちミリメートルオーダー以上の寸法の逆止弁と同じ構造を微小化して組み込むことは相当にに困難である。このような、微細な流路に好適な逆止弁の構造として、特許文献1や特許文献2に、舌片状の弁体を持つ逆止弁が開示されている。   As a check valve for a fine channel having a diameter of about 1 to 500 μm, it is considerably difficult to incorporate the same structure as a check valve having a normal dimension, that is, a dimension of a millimeter order or more. As a check valve structure suitable for such a fine flow path, Patent Document 1 and Patent Document 2 disclose a check valve having a tongue-like valve body.

これらは、シート状の部材の一部に、該シート状部材の表裏を貫通する貫通溝により囲まれた部分として舌片状の弁体を形成し、該シート状の部材を、流路となる溝や貫通孔を有する部材と積層して、該弁体の一方の側が常態で弁座に接している逆止弁を形成している。本構造は、微小な弁体がその一部に形成された通常寸法のシート状部材を他の部材と位置を合わせて積層する方法により逆止弁を製造できるため、微小な弁体をしかるべき位置に正確に接着する困難が排除され、容易に微小な逆止弁を形成できる。   These form a tongue-like valve body as a portion surrounded by a through groove penetrating the front and back of the sheet-like member in a part of the sheet-like member, and the sheet-like member serves as a flow path A check valve in which one side of the valve body is normally in contact with the valve seat is formed by laminating with a member having a groove or a through hole. In this structure, a check valve can be manufactured by a method in which a normal-sized sheet-like member having a minute valve body formed on a part thereof is laminated in alignment with other members. The difficulty of accurately bonding to the position is eliminated, and a minute check valve can be easily formed.

しかしながら、上記の弁体は、常態で平面状の弁体が弁座に接しているだけであるため、僅かなリークが生じがちであり、流速が極低い場合には逆止弁として機能しない場合があった。   However, since the above-mentioned valve body is normally only a flat valve body in contact with the valve seat, a slight leak tends to occur, and when the flow rate is extremely low, it does not function as a check valve was there.

特開2002-086399号公報JP 2002-086399 A 米国特許公開US2002/0155010/A1号公報US Patent Publication US2002 / 0155010 / A1

本発明が解決しようとする課題は、順方向、逆方向共にリークが無く、流速が極低い場合にも逆止弁として機能する逆止弁で、かつ、マイクロ流体デバイスに使用可能な微小な逆止弁、及びその製造方法を提供することにある。   The problem to be solved by the present invention is a check valve that functions as a check valve even when there is no leakage in both the forward and reverse directions and the flow rate is extremely low, and a minute check that can be used in a microfluidic device. It is in providing a stop valve and its manufacturing method.

本発明者らは、上記課題を解決する方法について鋭意検討した結果、常態において反りを生じるよう異種の材料が接合されたフィルム状の接合体からなる弁体を使用し、該弁体が弾性的に付勢されて弁座に接するよう設けた逆止弁により、微細流路内における流体が、順方向及び逆方向共にリークを生じず、流速が低い場合であっても逆止弁として機能することを見出し、本発明を完成するに至った。   As a result of intensive studies on a method for solving the above problems, the present inventors have used a valve body made of a film-like joined body in which different materials are joined so as to cause warpage in a normal state, and the valve body is elastic. The check valve provided to come into contact with the valve seat is urged by the fluid, so that the fluid in the fine channel does not leak in both the forward and reverse directions, and functions as a check valve even when the flow rate is low. As a result, the present invention has been completed.

即ち、本発明は、微細流路の途上に、可撓性の弁体、弁座及び弁体が可動できる弁室が設けられ、
微細流路の一方から流体を流した際には弁体が弁座から離れて流体が流通し、逆方向から流体を流した際には弁体が弁座と接して流体の流通が遮断される逆止弁であって、
前記弁体が、常態において反りを生じるよう異種の材料が接合されたフィルム状の接合体からなり、
該弁体が弾性的に付勢されて弁座に接するよう設けられている逆止弁を提供するものである。
That is, in the present invention, a flexible valve body, a valve seat, and a valve chamber in which the valve body can move are provided in the course of the fine flow path.
When fluid flows from one side of the micro flow path, the valve body moves away from the valve seat and the fluid flows. When fluid flows from the opposite direction, the valve body contacts the valve seat and the fluid flow is blocked. A check valve,
The valve body is composed of a film-like joined body in which different materials are joined so as to cause warpage in a normal state,
A check valve is provided in which the valve body is elastically biased and is in contact with a valve seat.

また、本発明は、上記逆止弁の製造方法であって、
シート状の可撓性部材の少なくとも前記弁体と成す部分に他の素材から成る層状の可撓性部材を接合し、該接合部に前記弁体となる部分を囲むように貫通溝を形成して前記弁体を有する弁体層を形成し、
該弁体層を、前記弁座を有する第一の流路層と、前記弁室を有する第2の流路層で、前記弁座と前記弁体とを重ねるように位置を合わせて挟持して積層する逆止弁の製造方法を提供するものである。
The present invention also relates to a method for manufacturing the check valve,
A layered flexible member made of another material is joined to at least a portion of the sheet-like flexible member that forms the valve body, and a through groove is formed at the joint portion so as to surround the portion that becomes the valve body. Forming a valve body layer having the valve body,
The valve body layer is sandwiched between the first flow path layer having the valve seat and the second flow path layer having the valve chamber so that the valve seat and the valve body overlap each other. The present invention provides a method for manufacturing a check valve that is laminated.

さらに本発明は、上記逆止弁の製造方法であって、
支持体上に活性エネルギー線硬化性樹脂組成物を塗布し、弁体となす部分を囲む貫通溝となす部分以外の部分に活性エネルギー線を不十分に照射して、流動性は喪失するが重合性官能基は残存している程度に硬化させたシート状の可撓性部材を形成し、
該シート状の可撓性部材に、活性エネルギー線硬化性のゲル状の可撓性部材を得る可撓性部材材料を塗布して、弁体となる部分に活性エネルギー線を照射した後、非照射部の未硬化成分を除去することにより、前記弁体を有する弁体層を形成し、
該弁体層を、前記弁座を有する第一の流路層と、前記弁室を有する第2の流路層で、前記弁座と前記弁体とを重ねるように位置を合わせて挟持して積層する逆止弁の製造方法を提供するものである。
Furthermore, the present invention is a method of manufacturing the check valve,
The active energy ray-curable resin composition is applied onto the support, and the active energy rays are insufficiently irradiated to portions other than the portion that forms the through groove surrounding the portion that forms the valve body. The functional group forms a sheet-like flexible member cured to the extent that it remains,
A flexible member material for obtaining an active energy ray-curable gel-like flexible member is applied to the sheet-like flexible member, and the portion that becomes the valve body is irradiated with active energy rays, By removing the uncured component of the irradiated part, forming a valve body layer having the valve body,
The valve body layer is sandwiched between the first flow path layer having the valve seat and the second flow path layer having the valve chamber so that the valve seat and the valve body overlap each other. The present invention provides a method for manufacturing a check valve that is laminated.

本発明は、常態でフィルム状の弁体が弁座方向に付勢されて弁座を押さえつけていて、順方向、逆方向共にリークが無く、流速が極低い場合にも逆止弁として機能する逆止弁で、かつ、マイクロ流体デバイスに好適に使用可能であるまた、順方向に流す場合に、一定圧力未満では流路は遮断されていて、それ以上の圧力で流路は連絡し、且つ、その繰り返しが可能なため、常態において流体が自重などにより流動することなく良好に機能する。   The present invention normally functions as a check valve even when a film-like valve body is urged in the valve seat direction to hold down the valve seat, there is no leakage in both the forward and reverse directions, and the flow rate is extremely low. The check valve is suitable for use in a microfluidic device, and when flowing in the forward direction, the flow path is blocked at a pressure lower than a certain pressure, and the flow path communicates at a pressure higher than that, and Since the process can be repeated, the fluid functions normally without flowing due to its own weight.

本発明の逆止弁は、微細流路の途上に、可撓性の弁体、弁座及び弁体が可動できる弁室が設けられ、微細流路の一方から流体を流した際には弁体が弁座から離れて流体が流通し、逆方向から流体を流した際には弁体が弁座と接して流体の流通が遮断される逆止弁であって、前記弁体が、常態において反りを生じるよう異種の材料が接合されたフィルム状の接合体からなり、該弁体が弾性的に付勢されて弁座に接するよう設けられているものである。   The check valve of the present invention is provided with a flexible valve body, a valve seat and a valve chamber in which the valve body can move in the course of the fine flow path, and when a fluid is flowed from one of the fine flow paths, When the fluid flows away from the valve seat and flows in the opposite direction, the valve body comes into contact with the valve seat and the fluid flow is blocked, and the valve body is in a normal state. It consists of a film-like joined body in which different kinds of materials are joined so as to cause warping, and the valve body is elastically biased to be in contact with the valve seat.

本発明の逆止弁を構成する弁体は、常態において反りを生じるよう接合されたフィルム状の接合体からなるものである。該弁体は、弁体が弁座を押さえつけるように、弾性的に付勢されて弁座に接しており、本逆止弁の両側の流体の圧力差が無い場合には微細流路が閉状態となっている。   The valve body constituting the check valve of the present invention is a film-like joined body joined so as to warp in a normal state. The valve body is elastically biased so that the valve body presses against the valve seat and is in contact with the valve seat. When there is no pressure difference between the fluids on both sides of the check valve, the fine flow path is closed. It is in a state.

上記のような反りは、外部の環境(温度、湿度、接触する溶媒等)に応じて膨張/収縮の度合いが異なるか、あるいは、硬化収縮率が異なる等の2以上の異種の材料(以下、煩雑さを避けるために、弁体が2つの層状の可撓性部材、即ち第1可撓性部材および第2可撓性部材、から成る場合について説明する。それに付加された第3層以上の層があっても話は同様である。)が接合されていることにより発生している。   The warping as described above may be caused by two or more different materials (hereinafter referred to as the degree of expansion / contraction depending on the external environment (temperature, humidity, contacting solvent, etc.) In order to avoid complication, the case where the valve body is composed of two layered flexible members, that is, a first flexible member and a second flexible member, will be described. The story is the same even if there is a layer.)

このような反る力を発生する弁体は、例えば次のようなものがある。
(1)弁体を、製造後に製造中より収縮するが、その収縮率が互いに異なる2つの素材の可撓性部材が接合された弁体。該2つの素材としては、例えば下記を例示できる。
(a)固化温度から常温に冷却されたときに収縮の程度が異なる素材、例えば熱膨張率の互いに異なる重合体、溶融温度が互いに異なる熱可塑性樹脂、熱可塑性樹脂と熱硬化性樹脂、重合体と金属などの無機物。これらは、弁体を溶融成型や溶融キャスト法で形成する場合などに好ましい。
(b)硬化収縮率が互いに異なる熱又はエネルギー線硬化性樹脂、熱又はエネルギー線硬化性樹脂と金属などの無機物等。これらは、エネルギー線硬化により形成する場合に好ましい。
(c)溶剤溶解性の樹脂と該溶剤で膨潤しない樹脂、溶剤溶解性の樹脂と金属などの無機物。これらは、溶剤キャスト法で形成する場合に好ましい。
(d)2つの可撓性部材の一方がゲル、他方がゲルでない素材であり、接合後にゲルを乾燥させてキセロゲルとしたもの。但しこの場合、該キセロゲルは、逆止弁の使用状態に於いて、逆止弁に流す流体によってはゲル化しないもの、若しくは、流す流体による膨潤度は、製造時のゲルの膨潤度より低いものとする。
Examples of the valve body that generates such a warping force include the following.
(1) A valve body in which a flexible member made of two materials having a contraction rate different from each other is bonded after the valve body is contracted after manufacturing. Examples of the two materials include the following.
(a) Materials having different degrees of shrinkage when cooled from the solidification temperature to room temperature, for example, polymers having different coefficients of thermal expansion, thermoplastic resins having different melting temperatures, thermoplastic resins and thermosetting resins, polymers And inorganic materials such as metals. These are preferable when the valve body is formed by melt molding or melt casting.
(b) Heat or energy ray curable resins having different curing shrinkage rates, inorganic materials such as heat or energy ray curable resins and metals, and the like. These are preferable when formed by energy ray curing.
(c) Solvent-soluble resins and resins that do not swell with the solvent, solvent-soluble resins and metals, and other inorganic materials. These are preferable when forming by a solvent casting method.
(d) A material in which one of the two flexible members is a gel and the other is not a gel, and the gel is dried after joining to form a xerogel. However, in this case, the xerogel is not gelled by the fluid flowing through the check valve in the use state of the check valve, or the swelling degree by the fluid flowing is lower than the swelling degree of the gel at the time of manufacture. And

勿論上記の組み合わせや、種々のバリエーションがある。上記(1)の場合には、一般的には本逆止弁の製造に当たり、反った状態の弁体を弁座に押しつけるように装着することになる。但し、上記(1)(b)の場合には、弁体を構成する素材の少なくとも一方が不完全硬化状態で、かつフラットであるような弁体を弁室に装着し、その後、該素材を完全硬化させることによって反りを発生させる方法を採ることも好ましい。   Of course, there are various combinations as described above. In the case of the above (1), generally in manufacturing the check valve, the warped valve body is mounted so as to press against the valve seat. However, in the case of (1) and (b) above, a valve body in which at least one of the materials constituting the valve body is in an incompletely cured state and is flat is attached to the valve chamber, and then the material is removed. It is also preferable to adopt a method of generating warp by complete curing.

また、
(2)製造後の状態ではフラットな弁体であるが、該逆止弁の使用状態では使用する流体と接触して前記反る力が発生する様な、2つの素材の可撓性部材が接合された弁体。該2つの素材としては、例えば下記を例示できる。
(a)2つの可撓性部材の一方が逆止弁に流す流体により膨潤し、他方が膨潤しないもの。例えば、一方のみがゲル化するもの。膨潤しないものとしては耐溶剤(溶剤は水であっても良い)性の架橋又は非架橋有機重合体、金属などの無機物を例示できる。
(b)2つの素材の、逆止弁に流す流体による膨潤度が互いに異なるもの。例えば架橋度が異なる架橋重合体。
Also,
(2) Although it is a flat valve body in the state after manufacture, the flexible member of two materials which generate | occur | produces the said curvature force in contact with the fluid to be used in the state of use of this check valve. Jointed disc. Examples of the two materials include the following.
(a) One of the two flexible members is swollen by the fluid flowing through the check valve and the other is not swollen. For example, only one gelled. Examples of those that do not swell include inorganic substances such as solvent-resistant (solvent may be water) cross-linked or non-cross-linked organic polymers and metals.
(b) Two materials with different degrees of swelling due to the fluid flowing through the check valve. For example, crosslinked polymers having different degrees of crosslinking.

本発明の弁体の平面形状や寸法は任意である。例えば、一方の端に線状の固定端を持つ舌片状、対向する辺が固定端となった矩形、周辺部に3以上の固定部を持つ三角形や矩形や星形や円形、固定部を持たない矩形や円形であり得る。
これらの中で、舌片状が、製造が容易で動作が確実なため好ましく、該舌片は、U字形、コの字形、又は台形が好ましい。該舌片は、固定端である基部に於ける幅が長さの1.0〜2倍が好ましく、1.1〜1.8倍が更に好ましく、1.2〜1.6倍が最も好ましい。この範囲とすることにより、弁体のねじれを抑制し、開閉、切り替え、流量調節、逆止などの動作が確実で再現性のあるものにすることが出来、かつ、寸法も過度に大きくならない。
The planar shape and dimensions of the valve body of the present invention are arbitrary. For example, a tongue-like piece with a linear fixed end at one end, a rectangle with the opposite side as a fixed end, a triangle, rectangle, star or circle with three or more fixed parts in the periphery, a fixed part It can be a rectangle or a circle without it.
Of these, a tongue-like shape is preferable because it is easy to manufacture and reliable, and the tongue is preferably U-shaped, U-shaped, or trapezoidal. The tongue piece preferably has a width of 1.0 to 2 times, more preferably 1.1 to 1.8 times, most preferably 1.2 to 1.6 times the length at the base which is the fixed end. . By setting it within this range, it is possible to suppress twisting of the valve body, and to ensure reliable and reproducible operations such as opening / closing, switching, flow rate adjustment, and non-returning, and the dimensions do not become excessively large.

微小な逆止弁を作製する場合には、微小な弁体をしかるべき位置に正確に固定することは相当に困難となる。このような場合には、次のような構造とすることが、上記困難を回避出来るため好ましい。
(1)舌片状の弁体の場合、弁体の基部にそれより大きな、例えば弁体の10〜10000倍の面積を持つ固定部が着いた弁部材を形成し、弁体部のみを可動部として残して、前記固定部を逆止弁の部材に埋め込んだ形状。
(2)舌片状の弁体の場合、本逆止弁全体に渡るシート状の前記可撓性部材の一部に、コの字型やUの字型の貫通溝で囲まれた舌片状の弁体が形成された形状。
弁体の形成順序は任意であり、例えば上記(2)の場合、一方の可撓性部材に貫通溝で囲まれた舌片状部分を形成した後、該部分に他方の可撓性部材を接合しても良いし、一方の可撓性部材の一部又は全体に他方の可撓性部材を接合し、弁体となる部分の周囲部を貫通溝を形成して舌片状の弁体と成しても良い。上記の貫通溝は、例えばフォトリソグラフィー、レーザー切断機、機械的な打ち抜きや切り取り、プラズマ加工により形成できる。
When a minute check valve is manufactured, it is considerably difficult to accurately fix the minute valve body at an appropriate position. In such a case, the following structure is preferable because the above difficulty can be avoided.
(1) In the case of a tongue-like valve body, a valve member having a fixed portion with a larger area, for example, 10 to 10,000 times larger than that of the valve body is formed at the base of the valve body, and only the valve body portion is movable. A shape in which the fixed part is embedded in a check valve member as a part.
(2) In the case of a tongue-like valve body, a tongue piece surrounded by a U-shaped or U-shaped through groove in a part of the sheet-like flexible member over the entire check valve A shape in which a valve body is formed.
For example, in the case of the above (2), after the tongue-shaped portion surrounded by the through groove is formed on one flexible member, the other flexible member is placed on this portion. The other flexible member may be joined to a part or the whole of one flexible member, and a through-groove is formed around the portion that becomes the valve body to form a tongue-like valve body It may be done. The through groove can be formed by, for example, photolithography, a laser cutting machine, mechanical punching or cutting, or plasma processing.

弁体の他の好ましい形状としては、弁体の周囲の2点、3点、又は4点で弁室の壁に固定されている形状がある。   As another preferable shape of the valve body, there is a shape fixed to the wall of the valve chamber at two points, three points, or four points around the valve body.

また、弁体は、固定部を持たない形状も好ましい。このような弁体は、弁体の製作が容易で、かつ、該弁体を固着することなく弁室に装着するだけでよいため、弁体と弁座の位置合わせの必要がなく好ましい。   Moreover, the shape which does not have a fixing | fixed part is also preferable for a valve body. Such a valve body is preferable because it is easy to manufacture the valve body and only needs to be mounted in the valve chamber without fixing the valve body, so that it is not necessary to align the valve body and the valve seat.

前記弁体寸法は任意であり、流路の寸法によって好適に設定できるが、舌片状の弁体または弁体の周囲の複数の点で弁室の壁に固定されている形状弁体の一辺は10μm〜10mmが好ましく、30μm〜3mmがさらに好ましく、100μm〜1mmが最も好ましい。固定部を持たない形状の弁体の場合には、一辺は100μm〜10mmが好ましく、200μm〜5mmがさらに好ましく、300μm〜3mmが最も好ましい。この下限未満では製造が困難となり、上限を超えるとデッドボリュームが過大となりがちである。   The valve body dimensions are arbitrary, and can be suitably set depending on the dimensions of the flow path, but one side of the valve body in the shape of a tongue-like valve body or fixed to the wall of the valve chamber at a plurality of points around the valve body Is preferably 10 μm to 10 mm, more preferably 30 μm to 3 mm, and most preferably 100 μm to 1 mm. In the case of a valve body having no fixed part, one side is preferably 100 μm to 10 mm, more preferably 200 μm to 5 mm, and most preferably 300 μm to 3 mm. If it is less than this lower limit, the production becomes difficult, and if it exceeds the upper limit, the dead volume tends to be excessive.

弁体を構成する2つの可撓性部材の厚み方向の形状は任意であり、例えば、一定厚みのフィルム状、厚みがテーパー状に変化するフィルム状、枠や支持部が厚くその他の部分がフィルム状等であり得るが、一定厚みのフィルム状であることが製造が容易であり好ましい。   The shape in the thickness direction of the two flexible members constituting the valve body is arbitrary, for example, a film shape with a constant thickness, a film shape whose thickness changes to a taper shape, a frame and a support portion are thick, and other portions are films. However, a film having a certain thickness is preferable because it is easy to produce.

前記弁体の厚みの下限は任意であるが、1μm以上が好ましく、5μm以上が更に好ましく、10μm以上が更に好ましい。前記弁体の厚みの下限は、上記範囲であって、かつ、本逆止弁に接続される流路や弁座の直径の1/10以上であることが好ましく、該流路の直径の1/5以上であることが好ましい。前記流路の直径は、流路の断面形状が円以外の場合には、相当する断面積の円の直径とする。前記弁体の厚みをこの下限以上にすることにより、順方向の最小流通圧力を大きくすることが可能になり、又製造も容易になる。   Although the minimum of the thickness of the said valve body is arbitrary, 1 micrometer or more is preferable, 5 micrometers or more are more preferable, and 10 micrometers or more are still more preferable. The lower limit of the thickness of the valve body is preferably in the above range and at least 1/10 of the diameter of the flow path or valve seat connected to the check valve. / 5 or more is preferable. The diameter of the flow path is the diameter of a circle having a corresponding cross-sectional area when the cross-sectional shape of the flow path is other than a circle. By setting the thickness of the valve body to be equal to or greater than this lower limit, it becomes possible to increase the minimum forward pressure in the forward direction and to facilitate manufacture.

前記弁体の厚みの上限も任意であるが、500μm以下であることが好ましく、300μm以下であることが更に好ましく、150μm以下であることが最も好ましい。前記弁体の厚みの上限は、上記範囲であって、かつ、流路の直径の10倍以下であることが好ましく、5倍以下であることが更に好ましく、2倍以下であることが最も好ましい。上記上限以下とすることで、該弁体の曲率を大きくすることが容易になるため弁体を小さくでき、微小な逆止弁の形成が容易になる。なお、弁体の厚みが場所により異なる場合には、前記弁体の厚みは平均厚みとする。   The upper limit of the thickness of the valve body is also arbitrary, but is preferably 500 μm or less, more preferably 300 μm or less, and most preferably 150 μm or less. The upper limit of the thickness of the valve body is within the above range, and is preferably 10 times or less, more preferably 5 times or less, and most preferably 2 times or less the diameter of the flow path. . By setting it to the upper limit or less, it becomes easy to increase the curvature of the valve body, the valve body can be made small, and the formation of a minute check valve is facilitated. In addition, when the thickness of a valve body changes with places, the thickness of the said valve body shall be average thickness.

2つの可撓性部材の厚み比は任意であるが、好適な比は2つの可撓性部材の硬度の違いに依存する。一方の可撓性部材の「引張弾性率物性×厚み]の値を他方の可撓性部材の該値の好ましくは1〜100倍、さらに好ましくは1〜10倍、最も好ましくは1〜3倍にする。この範囲とすることにより、耐久性のある弁体が得れれ易く、曲率の大きな弁体が得られ易い。しかし、一方の可撓性部材の素材がゲルである場合には、ゲルのヤング率は他方の素材のヤング率に比べて数桁低い場合が多いので、前記他方の素材の厚みを上記範囲まで薄くすることが困難な場合には、前記他方の素材の厚みは出来るだけ上記範囲に近づけることが好ましい。なお、一般にゲルの引張弾性率の測定は困難であるため、曲げ剛性率の3倍を引張弾性率として良い。   The thickness ratio of the two flexible members is arbitrary, but the preferred ratio depends on the difference in hardness between the two flexible members. The value of “tensile modulus physical property × thickness” of one flexible member is preferably 1 to 100 times, more preferably 1 to 10 times, and most preferably 1 to 3 times that of the other flexible member. By setting it within this range, it is easy to obtain a durable valve body, and it is easy to obtain a valve body with a large curvature, but when the material of one flexible member is a gel, The Young's modulus of the other material is often several orders of magnitude lower than that of the other material. If it is difficult to reduce the thickness of the other material to the above range, the thickness of the other material is as much as possible. In general, it is difficult to measure the tensile elastic modulus of the gel, so that the tensile elastic modulus may be three times the bending rigidity.

本発明で使用する弁体は、本逆止弁の使用条件に於いて、曲率が好ましくは0.03〜10(mm−1)、さらに好ましくは、0.1〜3(mm−1)、最も好ましくは、0.3〜1(mm−1)である。 The valve body used in the present invention preferably has a curvature of 0.03 to 10 (mm −1 ), more preferably 0.1 to 3 (mm −1 ), under the use conditions of the check valve. Most preferably, it is 0.3-1 (mm < -1 >).

弁体を構成する可撓性部材の素材は任意であり、後述の、本発明の逆止弁の躯体を構成する部材と同様であるが、有機重合体(以下、単に「重合体」と称する)が、好適な弾性率を有し、成形性も良いため好ましい。有機重合体は架橋重合体であることが、クリープが少なく、付勢力の経時変化が少ないため好ましい。   The material of the flexible member constituting the valve body is arbitrary, and is the same as the member constituting the casing of the check valve of the present invention, which will be described later, but an organic polymer (hereinafter simply referred to as “polymer”). ) Is preferable because it has a suitable elastic modulus and good moldability. The organic polymer is preferably a cross-linked polymer because it has less creep and little change in urging force over time.

可撓性部材の厚みは任意であるが、好適な厚みは引張弾性率に依存し、引張弾性率が大きいほど薄くすることが好ましい。例えば、「引張弾性率物性×厚み]の値を好ましくは0.1〜10kPam、更に好ましくは0.3〜3kPamである。   The thickness of the flexible member is arbitrary, but the preferred thickness depends on the tensile elastic modulus, and it is preferable to make it thinner as the tensile elastic modulus is larger. For example, the value of “tensile modulus physical property × thickness” is preferably 0.1 to 10 kPam, more preferably 0.3 to 3 kPam.

可撓性部材は、互いに良好に接合させる為に、共有結合できる官能基を表面に有することが好ましい。このような官能基を導入する方法は任意であるが、例えば下記の方法を例示できる。即ち、
(i)重合体から成る可撓性部材に未反応の単量体を残存させておく方法。本方法は、インサイチュー重合の場合に好適であり、例えば完全硬化するには不十分な線量のエネルギー線照射により実施することが出来る。
(ii)重合体から成る可撓性部材を、互いに重合しない2種以上の重合性官能基を有する単量体の重合体で構成する方法。互いに重合しない2種以上の重合性官能基を有する単量体とは、例えば、エポキシ基、イソシアナト基、クロルアルデヒド基、アルデヒド基などの縮合重合性官能基と、(メタ)アクリロイル基やビニル基などの付加重合性エチレン基の両者を分子内に有する単量体を言う。エポキシ基などの代わりに、水酸基、アミノ基、カルボキシル基など、上記の官能基と縮重合する官能基を有する単量体であっても良い。
(iii)可撓性部材を、例えば分子内に(メタ)アクリロイル基やエポキシ基を持つシランカップリング剤などの表面処理剤で処理し、表面に温度応答性ゲル素材に含有される単量体と共重合可能な官能基を導入する方法。本方法は、可撓性部材がガラスやアルミニウムなどの無機素材で形成されている場合に好適であり、また分子内に水酸基を有する単量体の重合体の場合に好ましい。
(iv)過マンガン酸(塩)処理、オゾン処理、プラズマ処理、コロナ処理などの処理による水酸基、カルボキシル基、カルボニル基の導入。本方法は、弁体を接着により形成する場合に好適である。
The flexible member preferably has a functional group that can be covalently bonded to the surface in order to bond the flexible member to each other well. Although the method of introducing such a functional group is arbitrary, for example, the following method can be exemplified. That is,
(I) A method in which an unreacted monomer is left on a flexible member made of a polymer. This method is suitable for in-situ polymerization, and can be carried out, for example, by irradiation with a dose of energy rays that is insufficient for complete curing.
(Ii) A method in which a flexible member made of a polymer is composed of a polymer of monomers having two or more polymerizable functional groups that do not polymerize each other. Monomers having two or more polymerizable functional groups that do not polymerize with each other include, for example, condensation polymerizable functional groups such as epoxy groups, isocyanato groups, chloraldehyde groups, aldehyde groups, (meth) acryloyl groups, and vinyl groups. A monomer having both of addition-polymerizable ethylene groups in the molecule. Instead of an epoxy group or the like, a monomer having a functional group that undergoes polycondensation with the above functional group such as a hydroxyl group, an amino group, or a carboxyl group may be used.
(Iii) A monomer that is treated with a surface treatment agent such as a silane coupling agent having a (meth) acryloyl group or an epoxy group in the molecule, and the surface contains a temperature-responsive gel material. To introduce a functional group copolymerizable with the. This method is suitable when the flexible member is formed of an inorganic material such as glass or aluminum, and is preferred when the polymer is a monomer polymer having a hydroxyl group in the molecule.
(Iv) Introduction of hydroxyl groups, carboxyl groups, and carbonyl groups by treatments such as permanganic acid (salt) treatment, ozone treatment, plasma treatment, and corona treatment. This method is suitable when the valve body is formed by adhesion.

2つの可撓性部材の接合方法は任意であり、例えば、接着剤による接着、熱融着、超音波融着、不完全硬化状態の重合体を接触させて完全硬化させる固着、インサイチュー重合により形成と同時に接合する方法、重合体溶液の塗布乾燥による固着などを利用できる。   The joining method of two flexible members is arbitrary, for example, adhesion by adhesive, thermal fusion, ultrasonic fusion, fixing by bringing a polymer in an incompletely cured state into contact, and in-situ polymerization. A method of joining at the same time as formation, fixing by applying and drying a polymer solution, and the like can be used.

本発明の逆止弁の外形は特に限定されず、用途目的に応じた形状を採りうる。例えば、フィルム状、板状、棒状、管状、円筒状、その他複雑な形状の成型物などであり得るが、マイクロ流体デバイスとの一体化しやすさ及び成形しやすさの面から、フィルム状又は板状であることが好ましい。   The outer shape of the check valve of the present invention is not particularly limited, and may take a shape according to the purpose of use. For example, it may be a film, plate, rod, tube, cylinder, or other complex molded product. From the viewpoint of ease of integration with a microfluidic device and ease of molding, a film or plate It is preferable that it is a shape.

本発明の逆止弁は、他の機構が形成されたマイクロ流体デバイスに組み込むことも好ましく、他の部材や他の機構と積層や接着などにより一体化することも好ましい。また、複数の逆止弁を1つの部材中に形成することも可能であり、製造後、これらを切断して複数の逆止弁とすることも可能である。   The check valve of the present invention is preferably incorporated in a microfluidic device in which another mechanism is formed, and is preferably integrated with another member or another mechanism by lamination or adhesion. It is also possible to form a plurality of check valves in one member, and after manufacturing, they can be cut into a plurality of check valves.

本発明の逆止弁は、部材内部に微細な毛細管状の流路(以下、単に「流路」と称する場合もある)を有し、該流路内に設けられた弁座を、前記弁体が押さえる方向に付勢されて接触することで、常態、即ち弁体両側の圧力差がない場合、では流路を遮断している。そして、順方向に一定以上の圧力が掛かると、流体は弁体を押し上げて流れ、流路は連絡する。逆方向では流体の圧力にかかわらず遮断されており流体は流れない。   The check valve of the present invention has a fine capillary channel (hereinafter sometimes simply referred to as “channel”) inside a member, and the valve seat provided in the channel is connected to the valve. By being urged and brought into contact with the body in a pressing direction, the flow path is blocked in a normal state, that is, when there is no pressure difference between both sides of the valve body. When a certain pressure or more is applied in the forward direction, the fluid pushes up the valve body and flows, and the flow path communicates. In the reverse direction, the fluid is shut off regardless of the fluid pressure, and the fluid does not flow.

弁体は、常態で弁座に接触して流路を遮断していれば、弁体が弁座を押さえる力は任意であるが、下限は好ましくは順方向の流体の圧力差にして0.5kPa以上、さらに好ましくは1kPa以上、最も好ましくは2kPa以上である。この範囲とすることで、順方向及び逆方向に対して、上記範囲以下の僅かな圧力差における該逆止弁の漏洩を防ぎ、流路を確実に遮断することが出来る。また、上限は、好ましくは順方向の流体の圧力差にして100kPa以下、さらに好ましくは50kPa以下、最も好ましくは20kPa以下である。この範囲とすることで、弁体の製造が容易になる。しかし、弁体が弁座を押さえる力の上限は、本逆止弁を順方向に使用して、一定以上の圧力で開放する安全弁や平衡弁の機能を持たせる場合には、任意に高くすることが出来る。   As long as the valve body normally contacts the valve seat and blocks the flow path, the force with which the valve body presses the valve seat is arbitrary, but the lower limit is preferably set to 0. 5 kPa or more, more preferably 1 kPa or more, and most preferably 2 kPa or more. By setting it as this range, it is possible to prevent leakage of the check valve at a slight pressure difference below the above range with respect to the forward direction and the reverse direction, and to reliably block the flow path. The upper limit is preferably 100 kPa or less, more preferably 50 kPa or less, and most preferably 20 kPa or less in terms of the forward fluid pressure difference. By setting it as this range, manufacture of a valve body becomes easy. However, the upper limit of the force with which the valve body holds the valve seat can be arbitrarily increased when the check valve is used in the forward direction to provide the function of a safety valve or a balance valve that opens at a pressure above a certain level. I can do it.

弁体が弁座を押さえる力は、弁体を構成する2つの部材の少なくとも一方の厚みを増す、弁体を構成する2つの部材の膨張/収縮の度合いの差を増す、弁体を構成する2つの部材のヤング率を増すことなどの方法で大きくすることが出来る。   The force with which the valve body presses the valve seat increases the thickness of at least one of the two members constituting the valve body, increases the difference in the degree of expansion / contraction between the two members constituting the valve body, and constitutes the valve body It can be increased by a method such as increasing the Young's modulus of the two members.

流路断面の幅(本逆止弁の外形が板状やフィルム状などの場合には、流路断面と同じ面の逆止弁の断面において本逆止弁の外形が棒状等の場合には、互いに直角な任意の方向を幅及び高さとしてよい。)は任意であり、好ましくは1〜1000μm、さらに好ましくは3〜500μm、最も好ましくは5〜300μmである。流路断面の高さも任意であり、好ましくは1〜3000μm、さらに好ましくは3〜1000μm、最も好ましくは5〜500μmである。これらの範囲内の場合に本発明の効果が十分に発揮される。   The width of the cross section of the flow path (If the check valve has an outer shape such as a plate or film, the cross section of the check valve is the same surface as the cross section of the flow path. The width and the height may be arbitrary directions perpendicular to each other.) Is arbitrary, preferably 1 to 1000 μm, more preferably 3 to 500 μm, and most preferably 5 to 300 μm. The height of the channel cross section is also arbitrary, preferably 1 to 3000 μm, more preferably 3 to 1000 μm, and most preferably 5 to 500 μm. The effects of the present invention are sufficiently exerted within these ranges.

また、流路の断面積は好ましくは1μm2〜1mm2であり、更に好ましくは10μm2〜0.1mm2である。この寸法未満である場合、製造上の困難が増加する上、液体の遮断性が低下する傾向にあるので好ましくなく、また、この寸法を超えると、逆止弁の耐圧性と応答速度が低下する傾向にあるので好ましくない。 The cross-sectional area of the channel is preferably 1 μm 2 to 1 mm 2 , more preferably 10 μm 2 to 0.1 mm 2 . If it is less than this size, it is not preferable because the manufacturing difficulty increases and the liquid blocking property tends to be reduced, and if it exceeds this size, the pressure resistance and response speed of the check valve decrease. It is not preferable because it is in a tendency.

弁座は弁体が押さえることにより流路を遮断する部分であり、流路内開口部の周囲部である。弁座の構造は任意であり、例えば平面に開けられた孔の周囲、筒の先端、舌片状の弁体の固定端側から該弁体の中ほどまで、弁体に接して弁体の面と平行に伸びた流路の端部付近の周囲部等であり得る。これらの中で、上記流路の端部付近の周囲部であることが、構造が単純で製造が容易であるため好ましい。流路内開口部の平面形状も任意であり、用途目的によって設計できる。例えば、順方向の圧力損失を低くするためには、前記弁座の開口面積を大きくしたり、弁座の平面形状を弁体の長さ方向に短く、幅方向に長い形状が好ましい。   The valve seat is a portion that blocks the flow path when pressed by the valve body, and is a peripheral portion of the opening in the flow path. The structure of the valve seat is arbitrary, for example, around the hole formed in a plane, the tip of the tube, the fixed end side of the tongue-like valve body, and the middle of the valve body in contact with the valve body, It may be a peripheral portion in the vicinity of the end of the flow path extending in parallel with the surface. Among these, the peripheral portion in the vicinity of the end portion of the flow path is preferable because the structure is simple and the manufacture is easy. The planar shape of the opening in the channel is also arbitrary and can be designed according to the purpose of use. For example, in order to reduce the pressure loss in the forward direction, it is preferable that the opening area of the valve seat is increased, or the planar shape of the valve seat is short in the length direction of the valve body and long in the width direction.

弁室は弁体が可動な空間であり、その構造や形状は任意である。流路の一部であっても良いし、弁体の形状に応じた形状に形成しても良い。弁体と平行な方向に伸びる流路の一部とすることが、構造が単純で製造が容易なため好ましい。   The valve chamber is a space in which the valve body is movable, and its structure and shape are arbitrary. It may be a part of the flow path, or may be formed in a shape corresponding to the shape of the valve body. A part of the flow path extending in a direction parallel to the valve body is preferable because the structure is simple and the manufacturing is easy.

特に、弁体が固着部を持たないタイプのものである場合には、弁室は、縦横厚み方向共に弁体より僅かにかに大きくし、弁体が弁室内で動き回ることなく、流体を流す力によって僅かに変形することが可能な空隙を残す寸法にすることが好ましい。   In particular, when the valve body is of a type that does not have a sticking portion, the valve chamber is slightly larger than the valve body in both the vertical and horizontal thickness directions, and the fluid flows without the valve body moving around in the valve chamber. It is preferable to have a size that leaves a gap that can be slightly deformed by force.

弁座に接続される流路や弁室に接続される流路の形状や構造も任意であるが、溝を有するフィルム状部材や板状部材に設けられた溝が他の部材と積層されることにより形成された形状であることが、構造が単純で製造が容易なため好ましい。   The shape and structure of the flow path connected to the valve seat and the flow path connected to the valve chamber are arbitrary, but the groove provided in the film-like member or plate-like member having the groove is laminated with other members. The shape formed by this is preferable because the structure is simple and the manufacture is easy.

本発明の逆止弁の躯体及び弁体の素材は任意であり、ガラス、石英のような結晶、シリコンのような半導体、ステンレススチールのような金属、セラミック、炭素、重合体などであり得るが、重合体が、製造が容易であり好ましい。   The body of the check valve of the present invention and the material of the valve body are arbitrary, and may be glass, crystals such as quartz, semiconductors such as silicon, metals such as stainless steel, ceramics, carbon, polymers, etc. A polymer is preferred because it is easy to produce.

重合体は、単独重合体であっても、共重合体であっても良く、また、熱可塑性重合体であっても、熱硬化性重合体であっても良い。生産性の面から、熱可塑性重合体又はエネルギー線硬化性組成物の硬化物であることが好ましい。   The polymer may be a homopolymer or a copolymer, and may be a thermoplastic polymer or a thermosetting polymer. From the viewpoint of productivity, a cured product of a thermoplastic polymer or an energy beam curable composition is preferable.

本発明の逆止弁を形成する部材に使用できる重合体としては、例えば、ポリスチレン、ポリ−α−メチルスチレン、ポリスチレン/マレイン酸共重合体、ポリスチレン/アクリロニトリル共重合体の如きスチレン系重合体;ポルスルホン、ポリエーテルスルホンの如きポリスルホン系重合体;ポリメチルメタクリレート、ポリアクリロニトリルの如き(メタ)アクリル系重合体;ポリマレイミド系重合体;   Examples of the polymer that can be used for the member forming the check valve of the present invention include styrene polymers such as polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, polystyrene / acrylonitrile copolymer; Polysulfone polymers such as porsulfone and polyethersulfone; (meth) acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide polymers;

ビスフェノールA系ポリカーボネート、ビスフェノールF系ポリカーボネート、ビスフェノールZ系ポリカーボネートの如きポリカーボネート系重合体;ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1の如きポリオレフィン系重合体;塩化ビニル、塩化ビニリデンの如き塩素含有重合体;酢酸セルロース、メチルセルロースの如きセルロース系重合体; Polycarbonate polymers such as bisphenol A polycarbonate, bisphenol F polycarbonate, and bisphenol Z polycarbonate; polyolefin polymers such as polyethylene, polypropylene, and poly-4-methylpentene-1; chlorine-containing heavy compounds such as vinyl chloride and vinylidene chloride Cellulose polymer such as cellulose acetate and methylcellulose;

ポリウレタン系重合体;ポリアミド系重合体;ポリイミド系重合体;ポリ−2,6−ジメチルフェニレンオキサイド、ポリフェニレンサルファイドの如きポリエーテル系又はポリチオエーテル系重合体;ポリエーテルエーテルケトンの如きポリエーテルケトン系重合体;ポリエチレンテレフタレート、ポリアリレートの如きポリエステル系重合体;エポキシ樹脂;ウレア樹脂;フェノール樹脂などが挙げられる。 Polyurethane polymers; Polyamide polymers; Polyimide polymers; Polyether or polythioether polymers such as poly-2,6-dimethylphenylene oxide and polyphenylene sulfide; Polyether ketone polymers such as polyether ether ketone Polyester polymers such as polyethylene terephthalate and polyarylate; epoxy resins; urea resins; phenol resins and the like.

これらの中でも、接着性が良好な点などから、スチレン系重合体、(メタ)アクリル系重合体、ポリカーボネート系重合体、ポリスルホン系重合体、ポリエステル系重合体が好ましい。   Among these, a styrene polymer, a (meth) acrylic polymer, a polycarbonate polymer, a polysulfone polymer, and a polyester polymer are preferable from the viewpoint of good adhesiveness.

エネルギー線硬化性組成物を構成するエネルギー線硬化性化合物は、ラジカル重合性、アニオン重合性、カチオン重合性等の任意のものであってよい。
エネルギー線硬化性化合物は、重合開始剤の非存在下で重合するものに限らず、重合開始剤の存在下でのみエネルギー線により重合するものも使用することができる。
The energy beam curable compound constituting the energy beam curable composition may be any one such as radical polymerizable, anionic polymerizable, and cationic polymerizable.
The energy ray-curable compound is not limited to those that polymerize in the absence of a polymerization initiator, and those that polymerize with energy rays only in the presence of a polymerization initiator can also be used.

そのようなエネルギー線硬化性化合物としては、重合性の炭素−炭素二重結合を有するものが好ましく、中でも、反応性の高い(メタ)アクリル系化合物やビニルエーテル類、また光重合開始剤の不存在下でも硬化するマレイミド系化合物が好ましい。   As such an energy ray-curable compound, those having a polymerizable carbon-carbon double bond are preferable, and among them, a highly reactive (meth) acrylic compound or vinyl ether, or absence of a photopolymerization initiator is preferred. A maleimide compound that cures even underneath is preferred.

エネルギー線硬化性化合物として好ましく使用することができる架橋重合性の(メタ)アクリル系単量体としては、例えば、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,8−オクタンジオールジ(メタ)アクリレート、2,2’−ビス(4−(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパン、   Examples of the crosslinkable (meth) acrylic monomer that can be preferably used as the energy ray curable compound include diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 2,2′-bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) propane,

2,2’−ビス(4−(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン、ヒドロキシジピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレート、ビス(アクロキシエチル)ヒドロキシエチルイソシアヌレート、N−メチレンビスアクリルアミドの如き2官能単量体; 2,2′-bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane, hydroxydipivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl diacrylate, bis (acryloxyethyl) hydroxyethyl isocyanurate , Bifunctional monomers such as N-methylenebisacrylamide;

トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリス(アクロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクロキシエチル)イソシアヌレートの如き3官能単量体;ペンタエリスリトールテトラ(メタ)アクリレートの如き4官能単量体;ジペンタエリスリトールヘキサ(メタ)アクリレートの如き6官能単量体などが挙げられる。 Trifunctional monomers such as trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tetra (meta) ) Tetrafunctional monomer such as acrylate; hexafunctional monomer such as dipentaerythritol hexa (meth) acrylate.

また、エネルギー線硬化性化合物として、重合性オリゴマー(プレポリマーとの呼ばれる)を用いることもでき、例えば、重量平均分子量が500〜50000のものが挙げられる。そのような重合性オリゴマーしては、例えば、エポキシ樹脂の(メタ)アクリル酸エステル、ポリエーテル樹脂の(メタ)アクリル酸エステル、ポリブタジエン樹脂の(メタ)アクリル酸エステル、分子末端に(メタ)アクリロイル基を有するポリウレタン樹脂などが挙げられる。   Moreover, a polymerizable oligomer (referred to as a prepolymer) can also be used as the energy ray curable compound, and examples thereof include those having a weight average molecular weight of 500 to 50,000. Examples of such polymerizable oligomers include (meth) acrylic acid ester of epoxy resin, (meth) acrylic acid ester of polyether resin, (meth) acrylic acid ester of polybutadiene resin, and (meth) acryloyl at the molecular end. Examples thereof include a polyurethane resin having a group.

マレイミド系の架橋重合性のエネルギー線硬化性化合物としては、例えば、4,4’−メチレンビス(N−フェニルマレイミド)、2,3−ビス(2,4,5−トリメチル−3−チエニル)マレイミド、1,2−ビスマレイミドエタン、1,6−ビスマレイミドヘキサン、トリエチレングリコールビスマレイミド、N,N’−m−フェニレンジマレイミド、m−トリレンジマレイミド、N,N’−1,4−フェニレンジマレイミド、N,N’−ジフェニルメタンジマレイミド、N,N’−ジフェニルエーテルジマレイミド、   Examples of maleimide-based crosslinkable energy ray-curable compounds include 4,4′-methylenebis (N-phenylmaleimide), 2,3-bis (2,4,5-trimethyl-3-thienyl) maleimide, 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, triethylene glycol bismaleimide, N, N′-m-phenylene dimaleimide, m-tolylene dimaleimide, N, N′-1,4-phenylene diene Maleimide, N, N′-diphenylmethane dimaleimide, N, N′-diphenyl ether dimaleimide,

N,N’−ジフェニルスルホンジマレイミド、1,4−ビス(マレイミドエチル)−1,4−ジアゾニアビシクロ−[2,2,2]オクタンジクロリド、4,4’−イソプロピリデンジフェニル=ジシアナート・N,N’−(メチレンジ−p−フェニレン)ジマレイミドの如き2官能マレイミド;N−(9−アクリジニル)マレイミドの如きマレイミド基とマレイミド基以外の重合性官能基とを有するマレイミドなどが挙げられる。 N, N'-diphenylsulfone dimaleimide, 1,4-bis (maleimidoethyl) -1,4-diazoniabicyclo- [2,2,2] octane dichloride, 4,4'-isopropylidenediphenyl dicyanate , N ′-(methylenedi-p-phenylene) dimaleimide, bifunctional maleimide; N- (9-acridinyl) maleimide, and maleimide having a polymerizable functional group other than maleimide group.

マレイミド系の架橋重合性オリゴマーとしては、例えば、ポリテトラメチレングリコールマレイミドカプリエート、ポリテトラメチレングリコールマレイミドアセテートの如きポリテトラメチレングリコールマレイミドアルキレートなどが挙げられる。マレイミド系の単量体やオリゴマーは、これら同士、及び/又はビニル単量体、ビニルエーテル類、アクリル系単量体の如き重合性炭素・炭素二重結合を有する化合物と共重合させることもできる。これらの化合物は、単独で用いることもでき、2種類以上を混合して用いることもできる。   Examples of maleimide-based cross-linkable oligomers include polytetramethylene glycol maleimide alkylates such as polytetramethylene glycol maleimide capriate and polytetramethylene glycol maleimide acetate. Maleimide monomers and oligomers can be copolymerized with each other and / or with compounds having a polymerizable carbon / carbon double bond such as vinyl monomers, vinyl ethers, and acrylic monomers. These compounds can also be used independently and can also be used in mixture of 2 or more types.

エネルギー線硬化性組成物には、必要に応じて、光重合開始剤を添加することもできる。光重合開始剤は、使用するエネルギー線に対して活性であり、エネルギー線硬化性化合物を重合させることが可能なものであれば、特に制限はなく、例えば、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤であって良い。また、光重合開始剤は、マレイミド化合物であって良い。   If necessary, a photopolymerization initiator can be added to the energy ray curable composition. The photopolymerization initiator is not particularly limited as long as it is active with respect to the energy beam used and can polymerize the energy beam curable compound. For example, a radical polymerization initiator or an anionic polymerization initiator is used. It may be a cationic polymerization initiator. The photopolymerization initiator may be a maleimide compound.

混合使用できる単官能マレイミド系単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−ドデシルマレイミドの如きN−アルキルマレイミド;N−シクロヘキシルマレイミドの如きN−脂環族マレイミド;N−ベンジルマレイミド;N−フェニルマレイミド、N−(アルキルフェニル)マレイミド、N−ジアルコキシフェニルマレイミド、N−(2−クロロフェニル)マレイミド、2,3−ジクロロ−N−(2,6−ジエチルフェニル)マレイミド、   Examples of monofunctional maleimide monomers that can be used in combination include N-alkylmaleimides such as N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, and N-dodecylmaleimide; N-fats such as N-cyclohexylmaleimide. N-benzylmaleimide; N-phenylmaleimide, N- (alkylphenyl) maleimide, N-dialkoxyphenylmaleimide, N- (2-chlorophenyl) maleimide, 2,3-dichloro-N- (2,6 -Diethylphenyl) maleimide,

2,3−ジクロロ−N−(2−エチル−6−メチルフェニル)マレイミドの如きN−(置換又は非置換フェニル)マレイミド;N−ベンジル−2,3−ジクロロマレイミド、N−(4’−フルオロフェニル)−2,3−ジクロロマレイミドの如きハロゲンを有するマレイミド;ヒドロキシフェニルマレイミドの如き水酸基を有するマレイミド;N−(4−カルボキシ−3−ヒドロキシフェニル)マレイミドの如きカルボキシ基を有するマレイミド; N- (substituted or unsubstituted phenyl) maleimide such as 2,3-dichloro-N- (2-ethyl-6-methylphenyl) maleimide; N-benzyl-2,3-dichloromaleimide, N- (4′-fluoro A maleimide having a halogen such as phenyl) -2,3-dichloromaleimide; a maleimide having a hydroxyl group such as hydroxyphenylmaleimide; a maleimide having a carboxy group such as N- (4-carboxy-3-hydroxyphenyl) maleimide;

N−メトキシフェニルマレイミドの如きアルコキシ基を有するマレイミド;N−[3−(ジエチルアミノ)プロピル]マレイミドの如きアミノ基を有するマレイミド;N−(1−ピレニル)マレイミドの如き多環芳香族マレイミド;N−(ジメチルアミノ−4−メチル−3−クマリニル)マレイミド、N−(4−アニリノ−1−ナフチル)マレイミドの如き複素環を有するマレイミド等が挙げられる。 A maleimide having an alkoxy group such as N-methoxyphenylmaleimide; a maleimide having an amino group such as N- [3- (diethylamino) propyl] maleimide; a polycyclic aromatic maleimide such as N- (1-pyrenyl) maleimide; And maleimide having a heterocyclic ring such as (dimethylamino-4-methyl-3-coumarinyl) maleimide and N- (4-anilino-1-naphthyl) maleimide.

エネルギー線としては、紫外線、可視光線、赤外線の如き光線;エックス線、ガンマ線の如き電離放射線;電子線、イオンビーム、ベータ線、重粒子線の如き粒子線が挙げられる。また、部材はポリマーブレンドやポリマーアロイであっても良いし、発泡体、積層体、その他の複合体であっても良い。また、部材は改質剤、着色剤など、その他の成分を含有していても良い。   Examples of energy rays include rays such as ultraviolet rays, visible rays, and infrared rays; ionizing radiations such as X-rays and gamma rays; and particle rays such as electron rays, ion beams, beta rays, and heavy particle rays. The member may be a polymer blend or a polymer alloy, or may be a foam, a laminate, or another composite. The member may contain other components such as a modifier and a colorant.

改質剤としては、例えば、シリコンオイルやフッ素置換炭化水素の如き疎水化剤(撥水剤);アニオン系、カチオン系、ノニオン系などの界面活性剤、シリカゲルの如き無機粉末、ポリビニルピロリドンの如き親水性重合体などの親水化剤;引張弾性率を調節するための可塑剤などが挙げられる。着色剤としては、例えば、任意の染料や顔料、蛍光性の染料や顔料、紫外線吸収剤が挙げられる。   Examples of the modifier include hydrophobizing agents (water repellents) such as silicone oil and fluorine-substituted hydrocarbons; surfactants such as anionic, cationic and nonionic surfactants, inorganic powders such as silica gel, and polyvinylpyrrolidone. Hydrophilic agents such as hydrophilic polymers; plasticizers for adjusting the tensile modulus. Examples of the colorant include arbitrary dyes and pigments, fluorescent dyes and pigments, and ultraviolet absorbers.

[実施態様]
本発明の逆止弁の実施態様について説明する。なお、同じ機能を持つ機構は各実施態様に共通した同じ番号で示す。なお、下記説明に於かる流入側と流出側は、順方向に流す場合の方向である。
[Embodiment]
An embodiment of the check valve of the present invention will be described. In addition, the mechanism which has the same function is shown with the same number common to each embodiment. In addition, the inflow side and the outflow side in the following description are directions in the case of flowing in the forward direction.

本発明の第1態様は、図1、図2に示したように、表面に流出側流路(1)となる溝(1)と、弁体(15)が入り込む弁室(2)となる凹部(2)を有する板状の第1部材(3)、貫通溝(4)で囲まれた部分として、弁体(15)を構成する舌片状の第1可撓性部材(5)部分をその一部に有するフィルム状の第2部材(6)、及び、表面に流入側流路(7)となる溝を有する板状の第3部材(8)が積層して固着されており、第1可撓性部材(5)の第1部材(8)側には、フィルム状(層状)の第2可撓性部材(9)が接合されて弁体(15)とされている。   As shown in FIGS. 1 and 2, the first aspect of the present invention is a groove (1) serving as an outflow channel (1) on the surface and a valve chamber (2) into which the valve body (15) enters. A plate-shaped first member (3) having a recess (2) and a tongue-shaped first flexible member (5) portion constituting the valve body (15) as a portion surrounded by the through groove (4) And a plate-like third member (8) having a groove serving as an inflow side flow path (7) on the surface thereof are laminated and fixed. A film-like (layer-like) second flexible member (9) is joined to the first member (8) side of the first flexible member (5) to form a valve body (15).

第1部材(3)に設けられた流出側流路(1)の一方の端(図2中左側)は第2部材(6)及び第3部材(8)に開けられた連絡孔(10)を経て本逆止弁外に開口しており、流出口(11)とされる。流出側流路(1)の他端(図2中右側)は弁室(2)に接続されている。   One end (left side in FIG. 2) of the outflow side flow path (1) provided in the first member (3) is a communication hole (10) opened in the second member (6) and the third member (8). Is opened to the outside of the check valve, and serves as an outlet (11). The other end (the right side in FIG. 2) of the outflow side channel (1) is connected to the valve chamber (2).

第3部材(8)の流入側流路(7)の一方の端(図2中左側)は、第2部材(6)に設けられた舌片状の弁体(15)の基部側から弁体(15)と重なるように弁体(15)の中央部まで形成されており、弁体(15)と第3部材(8)が接触する部分が弁座(12)として機能する。第3部材(8)の流入側流路(7)の他方の端(図2中右側)は、第3部材(8)に開けられた連絡孔(13)を通じて、本逆止弁外に開口しており、流入口(14)とされる。   One end (left side in FIG. 2) of the inflow channel (7) of the third member (8) is a valve from the base side of the tongue-like valve body (15) provided on the second member (6). The valve body (15) is formed so as to overlap with the body (15), and the portion where the valve body (15) and the third member (8) are in contact functions as the valve seat (12). The other end (the right side in FIG. 2) of the inflow channel (7) of the third member (8) is opened to the outside of the check valve through a communication hole (13) opened in the third member (8). The inlet (14).

本第1態様の弁体(15)は、第2可撓性部材(9)が乾燥状態において舌片状の第1可撓性部材(5)と同じ寸法を持ち、弁体(15)は乾燥状態でフラットである。第2可撓性部材(9)として、使用する流体により膨潤してゲルとなる架橋重合体を使用する。該可撓性部材(9)は、ゲルとなりうる架橋重合体を与える単量体組成物を舌片状の第1可撓性部材(5)に塗布し、エネルギー線照射により重合硬化させて該可撓性部材(9)を形成すると同時に舌片状の第1可撓性部材(5)に接合する方法で形成できる。   The valve body (15) of the first aspect has the same dimensions as the tongue-shaped first flexible member (5) when the second flexible member (9) is in a dry state. Flat in the dry state. As the second flexible member (9), a crosslinked polymer that swells with a fluid to be used to form a gel is used. The flexible member (9) is prepared by applying a monomer composition that gives a cross-linked polymer that can be a gel to the tongue-shaped first flexible member (5), and polymerizing and curing by irradiation with energy rays. The flexible member (9) can be formed simultaneously with the tongue-shaped first flexible member (5).

本第1態様の逆止弁は、使用状態では第2可撓性部材(9)が流通流体により膨潤して、弁座(12)側に反ろうとして付勢し、弁座(12)を押さえつけた状態となる。   In the check valve according to the first aspect, the second flexible member (9) is swollen by the circulating fluid in a use state and urges the valve seat (12) to warp, thereby urging the valve seat (12). Pressed down.

第1部材(3)や第3部材(8)の溝の形成方法は任意であり、例えば射出成型や光造形法により溝を有する部材を直接形成する方法、、エッチング工程を有するフォトリソグラフィー、機械的切削加工、レーザー加工、プラズマ加工等により部材に溝を形成する方法、貫通溝を有するフィルム状又は板状の部材(3b)(8b)と他の部材(3a)(8a)の貼り合わせや、部材の上に活性エネルギー線硬化性樹脂組成物を塗布し、選択的露光と洗浄を行うことにより、貫通溝を有するフィルム状の部材(3b)(8b)を形成すると同時に他の部材(3a)(8a)に貼り合わせる方法を例示できる。   The method of forming the grooves of the first member (3) and the third member (8) is arbitrary. For example, a method of directly forming a member having grooves by injection molding or stereolithography, photolithography or machine having an etching step A method of forming grooves in a member by means of mechanical cutting, laser processing, plasma processing, etc., bonding of a film-like or plate-like member (3b) (8b) having a through groove and other members (3a) (8a) By applying the active energy ray-curable resin composition on the member, and performing selective exposure and cleaning, the film-like member (3b) (8b) having a through groove is formed and at the same time another member (3a) ) (8a) can be exemplified.

第1部材(3)、第2部材(6)、第3部材(8)の固着方法も任意であり、接着剤による接着、熱融着、超音波融着、不完全硬化状態の重合体を接触させて完全硬化させる固着、インサイチュー重合により形成と同時に接合する方法、などを利用できる。   The fixing method of the first member (3), the second member (6), and the third member (8) is also arbitrary. Adhesion with an adhesive, thermal fusion, ultrasonic fusion, incompletely cured polymer is used. For example, fixing by contact and complete curing, and a method of bonding at the same time as formation by in situ polymerization can be used.

本発明の第2態様は、図3、図4に示したように、表面に流出側流路(1)となる溝と、流入側流路(7)となる溝を有する板状の第1部材(16)、貫通溝(4)で囲まれた部分として舌片状の第1可撓性部材(5)部分をその一部に有するフィルム状の第2部材(6)、及び表面に弁室(2)となる凹部を有する板状の第3部材(17)が積層して固着され、第1可撓性部材(5)の第3部材(17)側には第2可撓性部材(9)が接合されて弁体(15)とされている。   As shown in FIGS. 3 and 4, the second aspect of the present invention is a plate-shaped first having a groove serving as the outflow side flow path (1) and a groove serving as the inflow side flow path (7) on the surface. A member (16), a film-like second member (6) having a tongue-like first flexible member (5) portion as a portion surrounded by the through groove (4), and a valve on the surface A plate-like third member (17) having a recess that becomes the chamber (2) is laminated and fixed, and the second flexible member is disposed on the third member (17) side of the first flexible member (5). (9) is joined to form a valve body (15).

第2可撓性部材(9)は、水及び水系溶液により膨潤してゲルとなる架橋重合体である。前記第一態様で述べたと同じ方法で形成、接合できる。   The second flexible member (9) is a crosslinked polymer that swells with water and an aqueous solution to form a gel. It can be formed and bonded by the same method as described in the first embodiment.

第1部材(16)の流出側流路(1)の一方の端(図4中左側)は第2部材(6)及び第3部材(17)に開けられた連絡孔(10)を経て本逆止弁外に開口して流出口(11)とされ、流出側流路(1)の他端(図4中右側)は第2部材(6)の弁体(5)周囲に設けられた貫通溝(4)に連絡する位置まで形成されている。   One end (left side in FIG. 4) of the outflow side flow path (1) of the first member (16) is connected to the main body through a communication hole (10) opened in the second member (6) and the third member (17). The outlet (11) is opened outside the check valve, and the other end (right side in FIG. 4) of the outflow side channel (1) is provided around the valve body (5) of the second member (6). It is formed up to a position communicating with the through groove (4).

また、第1部材(16)の流入側流路(7)の一方の端(図4中左側)は弁体(15)の基部側から弁体(15)と重なるように弁体(15)の中央部まで形成されており、弁体(15)と第1部材(16)が接触する部分が弁座(12)として機能する。流入側流路(7)の他端(図4中右側)は第2部材(6)及び第3部材(17)に開けられた連絡孔(13)を経て本逆止弁外に開口して流入口(14)とされる。第1部材(16)には、弁体(15)が入り込み得る大きさのの凹部状の弁室(2)が形成されている。該弁室(2)は第2部材(6)に設けられた貫通溝(4)を経て第1部材(3)の流出側流路(1)に連絡している。   Further, one end (left side in FIG. 4) of the inflow channel (7) of the first member (16) overlaps the valve body (15) from the base side of the valve body (15). The portion where the valve body (15) and the first member (16) are in contact functions as the valve seat (12). The other end (the right side in FIG. 4) of the inflow channel (7) is opened outside the check valve through a communication hole (13) opened in the second member (6) and the third member (17). The inlet (14) is used. The first member (16) is formed with a recessed valve chamber (2) having a size that allows the valve body (15) to enter. The valve chamber (2) communicates with the outflow side flow path (1) of the first member (3) through a through groove (4) provided in the second member (6).

本第2態様の逆止弁は、使用状態では第2可撓性部材(9)が流通流体により膨潤して、弁座(12)側に反ろうとして付勢し、弁座(12)を押さえつけた状態となる。   In the check valve of the second aspect, the second flexible member (9) is swollen by the circulating fluid in a use state and urges the valve seat (12) to warp, thereby urging the valve seat (12). Pressed down.

本第2態様についても第1態様と同様に、上記各部材は複数の部材で構成されていても良い。例えば第1部材(16)は第1態様に於ける第1部材(3)と同様に、貫通溝を有するフィルム状又は板状の部材(16b)と他の部材(16a)の接合体であっても良い。   Also in the second aspect, each member may be composed of a plurality of members, as in the first aspect. For example, the first member (16) is a joined body of a film-like or plate-like member (16b) having a through groove and another member (16a), like the first member (3) in the first embodiment. May be.

本発明の第3態様は、図5、図6に示したように、弁体(35)が固定されていない逆止弁である。本逆止弁は、表面に流出側流路(1)となる溝(1)および、それに接続された弁室(2)となる凹部(2)を有する板状の第1部材(22)、弁室(2)と流入側流路(7)とを連絡する連絡孔(25)を有する第2部材(23)、弁室(2)となる貫通孔(2)が設けられたフィルム状の第3部材(24)、及び、表面に流入側流路(7)となる溝(7)を有する板状の第4部材(24)が積層して固着され、前記弁室(2)には矩形の弁体(35)が非固着状態で装着されている。   The 3rd aspect of this invention is a non-return valve in which the valve body (35) is not fixed as shown in FIG. 5, FIG. The check valve has a plate-shaped first member (22) having a groove (1) serving as an outflow channel (1) and a recess (2) serving as a valve chamber (2) connected thereto on the surface, A film-like member provided with a second member (23) having a communication hole (25) connecting the valve chamber (2) and the inflow channel (7), and a through hole (2) serving as the valve chamber (2). A third member (24) and a plate-like fourth member (24) having a groove (7) to be an inflow channel (7) on the surface are laminated and fixed, and the valve chamber (2) A rectangular valve body (35) is mounted in a non-fixed state.

第1部材(22)の流出側流路(1)の一方の端(図6中左側)は第2部材(23)および第3部材(24)に設けられた連絡孔(10)を経て本逆止弁外に開口して流出口(11)とされ、他端(図6中右側)は弁室(2)に接続されている。第3部材(24)に設けられた流入側流路(7)の一方の端(図6中左側)は第2部材(23)に設けられた連絡孔(25)に接続され、流入側流路(7)の他方の端(図6中右側)は第3部材(24)に開けられた連絡孔(13)を経て本逆止弁外に開口し、流入口(14)とされている。   One end (left side in FIG. 6) of the outflow side flow path (1) of the first member (22) is connected to the second member (23) and the third member (24) through a communication hole (10). The outlet (11) is opened outside the check valve, and the other end (right side in FIG. 6) is connected to the valve chamber (2). One end (left side in FIG. 6) of the inflow side flow path (7) provided in the third member (24) is connected to the communication hole (25) provided in the second member (23), and the inflow side flow The other end (right side in FIG. 6) of the passage (7) is opened to the outside of the check valve through a communication hole (13) opened in the third member (24), and serves as an inlet (14). .

弁室(2)には、弁体(35)がいずれの部材にも固定されずに装着されており、該弁室の平面視中央付近に設けられた連絡孔(25)の周囲部の弁座(12)に接触している。   A valve body (35) is mounted to the valve chamber (2) without being fixed to any member, and the valve around the communication hole (25) provided near the center of the valve chamber in plan view. It is in contact with the seat (12).

本第3態様についても第1態様と同様に、上記各部材は複数の部材で構成されていても良い。例えば第1部材(22)は第1態様に於ける第1部材(3)と同様に、貫通溝を有するフィルム状の部材(22b)と板状の部材(22a)の接合体であっても良い。   In the third aspect, each member may be composed of a plurality of members as in the first aspect. For example, the first member (22) may be a joined body of a film-like member (22b) having a through groove and a plate-like member (22a), like the first member (3) in the first embodiment. good.

本第3態様の弁体(35)は、第一態様の弁体(15)と同様に、第一可撓性部材(36)が乾燥状態で第2可撓性部材(37)と同じ寸法を持ち、弁体(35)は乾燥状態で平面状を成している。第2可撓性部材(37)は、使用する流体により膨潤してゲルとなる架橋重合体で形成されている。該可撓性部材(37)は、該架橋重合体を与える単量体組成物を第1可撓性部材(36)に塗布し、エネルギー線照射により重合硬化させて第2可撓性部材(37)を形成すると同時に第1可撓性部材(36)に接合する方法で形成できる。   Similar to the valve body (15) of the first aspect, the valve body (35) of the third aspect has the same dimensions as the second flexible member (37) when the first flexible member (36) is in a dry state. The valve body (35) has a flat shape in a dry state. The second flexible member (37) is formed of a crosslinked polymer that swells into a gel by the fluid used. The flexible member (37) is formed by applying a monomer composition that gives the cross-linked polymer to the first flexible member (36) and polymerizing and curing it by irradiation with energy rays. 37) can be formed simultaneously with the first flexible member (36).

本第3態様の逆止弁は、ゲルと成りうる第2可撓性部材(37)側を弁座(12)側にして装着することにより、使用状態では第2可撓性部材(37)が流通流体により膨潤して反り、その中央部付近が弁座(12)に接しつつ弁座(12)を押さえつけた状態となる。   The check valve of the third aspect is mounted with the second flexible member (37), which can be a gel, facing the valve seat (12), so that the second flexible member (37) is in use. Swells and warps due to the flowing fluid, and the central portion thereof is in contact with the valve seat (12) while pressing the valve seat (12).

本発明の逆止弁は、単純な構造で、弁体が弁座を押さえ付けているため、極微小な流速でも逆方向にリークすることがない。また、順方向に流す場合も、常態でリークのない閉状態となっているため、静止時における流体の不要なリークや混合が生じることがなく、混合、反応、抽出などの、一つのマイクロ流体デバイスに複数の流体を流す用途に好適に使用できる。また、本発明の逆止弁は、微小な寸法のものをマイクロ流体デバイスに容易に組み込むことが出来、多数の逆止弁を同時に組み込むことも容易である。   Since the check valve of the present invention has a simple structure and the valve body presses the valve seat, it does not leak in the reverse direction even at a very small flow rate. In addition, when flowing in the forward direction, it is normally closed with no leakage, so there is no unnecessary leakage or mixing of fluid at rest, and one microfluidic such as mixing, reaction, extraction, etc. It can be used suitably for the application of flowing a plurality of fluids through the device. In addition, the check valve of the present invention can be easily incorporated into a microfluidic device having a small size, and it is easy to incorporate a large number of check valves at the same time.

以下、実施例及び比較例を用いて、本発明を更に詳細に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。なお、以下の実施例において、「部」は、特に断りがない限り「質量部」を表わす。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to the range of these Examples. In the following examples, “part” represents “part by mass” unless otherwise specified.

[エネルギー線照射装置]
200wメタルハライドランプが組み込まれた、ウシオ電機株式会社製のマルチライト200型露光装置用光源ユニットを用いた。紫外線強度は50mw/cm2である。
[Energy beam irradiation equipment]
A light source unit for a multi-light 200 type exposure apparatus manufactured by USHIO INC., In which a 200w metal halide lamp was incorporated, was used. The ultraviolet intensity is 50 mw / cm 2.

[エネルギー線硬化性組成物の調製]
〔組成物(x)〕
架橋重合性化合物として平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)を60部、1,6−ヘキサンジオールジアクリレート(第1工業製薬株式会社製の「ニューフロンティアHDDA」)を20部、ノニルフェノキシポリエチレングリコール(n=17)アクリレート(第1工業製薬株式会社製の「N−177E」)20部、紫外線重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」;光重合開始剤)を5部、及び重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(関東化学株式会社製;重合遅延剤)0.1部を均一に混合してエネルギー線硬化性組成物(x−1)を調製した。
本エネルギー線硬化性組成物(x−1)の紫外線硬化フィルムは引張弾性率が約580MPa、破断伸び率が約7.3%である。
[Preparation of energy beam curable composition]
[Composition (x)]
60 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 (“Unidic V-4263” manufactured by Dainippon Ink & Chemicals, Inc.) as a cross-linkable polymerizable compound, 1,6-hexanediol diacrylate (Daiichi Kogyo Seiyaku) 20 parts of “New Frontier HDDA” manufactured by Co., Ltd., 20 parts of nonylphenoxypolyethylene glycol (n = 17) acrylate (“N-177E” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 1-hydroxy as an ultraviolet polymerization initiator 5 parts of cyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Geigy Inc .; photopolymerization initiator) and 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Inc .; polymerization retarder) as a polymerization retarder ) Prepare an energy ray curable composition (x-1) by uniformly mixing 0.1 parts. It was.
The ultraviolet ray cured film of the present energy beam curable composition (x-1) has a tensile elastic modulus of about 580 MPa and an elongation at break of about 7.3%.

〔組成物(y)〕
重合性単量体としてN、N−ジメチルアクリルアミド(和光純薬株式会社製)を90部、架橋重合性単量体として上記平均分子量約2000の3官能ウレタンアクリレートオリゴマーを10部、光重合開始剤として上記、1−ヒドロキシシクロヘキシルフェニルケトンを5部、N,N−ジメチルアセトアミド(和光純薬株式会社製)20部を混合して組成物(y)を調製した。
[Composition (y)]
90 parts of N, N-dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerizable monomer, 10 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 as a crosslinkable monomer, a photopolymerization initiator As above, 5 parts of 1-hydroxycyclohexyl phenyl ketone and 20 parts of N, N-dimethylacetamide (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed to prepare a composition (y).

[実施例1]
本実施例では前記第1態様の逆止弁についてさらに詳細に述べる。
〔逆止弁の作製〕
<第3部材>
図1、図2に示したように、75mm×25mm×1mmのアクリル板(8a)に、前記組成物(x)を塗布し、フォトマスクを通してて、流入側流路(7)となす部分以外の部分に紫外線を照射し、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、アクリル板(8a)と硬化した樹脂組成物(x)硬化フィルム(8b)の積層固着体であり、該硬化フィルム(8b)の貫通溝(欠損部)として、流入側流路(7)となる溝(7)を有する第3部材(8)を作成した。その後、該第3部材の流入側流路(7)となる溝(7)の端にドリルで孔を開け、連絡孔(13)と流入口(14)を形成した。
[Example 1]
In this embodiment, the check valve of the first aspect will be described in more detail.
(Production of check valve)
<Third member>
As shown in FIGS. 1 and 2, the composition (x) is applied to an acrylic plate (8a) of 75 mm × 25 mm × 1 mm, and the portion other than the portion that forms the inflow side flow path (7) through the photomask. The ultraviolet ray is irradiated on the part of the resin, and the uncured resin composition in the non-irradiated part is washed and removed with a 50% aqueous ethanol solution, thereby the acrylic resin plate (8a) and the cured resin composition (x) of the cured film (8b). A third member (8) having a groove (7) serving as an inflow side flow path (7) as a through-groove (defect portion) of the cured film (8b) was prepared as a laminated fixed body. Thereafter, a hole was drilled at the end of the groove (7) to be the inflow side flow path (7) of the third member to form a communication hole (13) and an inflow port (14).

<第2部材及び弁体>
厚さ60μmのポリプロピレンシートを一時的な支持体(図示略)として用い、これに活性エネルギー線硬化性樹脂組成物(x)を塗布し、フォトマスクを通して、貫通溝(4)となす部分以外の部分に、該活性エネルギー線硬化性樹脂組成物(x)が完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、貫通溝(4)とそれにより囲まれた舌片状の第1可撓性部材(5)部分を有する第2部材(6)を形成した。これを、図2(イ)に示したように位置を合わせて第3部材(8)に積層し、紫外線を照射して第2部材(6)を硬化させると同時に第3部材(8)に接合した。
<Second member and valve body>
A polypropylene sheet having a thickness of 60 μm is used as a temporary support (not shown), to which the active energy ray-curable resin composition (x) is applied, and through the photomask, the part other than the part that forms the through groove (4). A portion is irradiated with ultraviolet rays in an amount insufficient for the active energy ray-curable resin composition (x) to be completely cured, so that the irradiated portion is semi-cured, and an uncured portion of the uncured resin composition is 50 The second member (6) having the through groove (4) and the tongue-shaped first flexible member (5) portion surrounded by the through-groove (4) was formed by washing and removing with a% ethanol aqueous solution. As shown in FIG. 2 (a), this is aligned and laminated on the third member (8), and the second member (6) is cured by irradiating with ultraviolet rays. Joined.

その後、前記一時的な支持体(図示略)を剥離除去し、第2部材(6)の第1可撓性部材(5)に組成物(y)を塗布し、弁体(5)となす部分に紫外線照射して、第2可撓性部材(9)を形成すると同時に接合し、弁体(15)とした。   Thereafter, the temporary support (not shown) is peeled and removed, and the composition (y) is applied to the first flexible member (5) of the second member (6) to form the valve body (5). The part was irradiated with ultraviolet rays to form the second flexible member (9) and bonded at the same time to obtain a valve body (15).

<第1部材>
第2部材(6)の作製に用いたものと同じ一時的な支持体(図示略)に、組成物(x)を塗布し、完全硬化するには不十分な量だけ紫外線を照射して照射部を半硬化させて部材(3a)を形成した。
<First member>
The composition (x) is applied to the same temporary support (not shown) as used for the production of the second member (6) and irradiated with ultraviolet rays in an amount insufficient for complete curing. The part (3a) was formed by semi-curing the part.

次いで、その上にさらに組成物(x)を塗布し、フォトマスクを通して、流出側流路(1)及び弁室(2)となす部分以外の部分に紫外線を完全硬化するには不十分な量だけ照射して照射部を半硬化させ、非照射部の未硬化の樹脂組成物を50%エタノール水溶液で洗浄除去することにより、流出側流路(1)となる溝(1)と、それに接続された、弁室(2)となる凹部が形成された部材(3b)を形成すると同時に部材(3a)と接合し、第1部材(3)とした。   Next, the composition (x) is further applied thereon, and the amount is insufficient to completely cure the ultraviolet rays through the photomask to the portion other than the portion which becomes the outflow side flow path (1) and the valve chamber (2). The groove (1) that becomes the outflow side flow path (1) is connected to the non-irradiated portion by curing and removing the uncured resin composition of the non-irradiated portion with 50% ethanol aqueous solution. The member (3b) in which the recessed part used as the valve chamber (2) was formed was formed, and simultaneously joined to the member (3a) to obtain the first member (3).

これを、図2(イ)(ロ)に示したように位置を合わせて第2部材(6)と第3部材(8)の接合体に積層し、紫外線を照射して第3部材(8)を硬化させると同時に第2部材(6)と第3部材(8)に接合し、その後、第3部材側から流出側流路(1)に連絡する深さまでドリルで孔を開けて、連絡孔(10)と流出口(11)を形成し、逆止弁を作製した。   As shown in FIGS. 2 (a) and 2 (b), these are aligned and laminated on the joined body of the second member (6) and the third member (8), and irradiated with ultraviolet rays to irradiate the third member (8 ) Is cured and simultaneously joined to the second member (6) and the third member (8), and then a hole is drilled from the third member side to the depth communicating with the outflow side flow passage (1). A hole (10) and an outlet (11) were formed to produce a check valve.

〔各部の寸法〕
作製した逆止弁は長さ75mm×幅25mm×厚さ1.45mmの板状であり、第1部材(3)は厚さ300μm、第2部材(6)は厚さ50μm、第3部材は厚さ1100μm、流出側流路(1)は幅300μm、長さ20mm、深さ200μm、弁室(2)は幅2mm、長さ2mm、深さ200μm、第1可撓性部材(5)は幅1mm、長さ1mm、厚さ50μm、貫通溝(4)は幅200μm、第2可撓性部材(9)は乾燥状態で幅1mm、長さ1mm、厚さ50μm、弁体(15)は幅1mm、長さ1mm、厚さ100μm、流入側流路(7)は幅300μm、長さ25mm、深さ100μm、連絡孔(10)、(13)は両方とも直径500μmであった。
[Dimensions of each part]
The produced check valve has a plate shape of length 75 mm × width 25 mm × thickness 1.45 mm, the first member (3) is 300 μm thick, the second member (6) is 50 μm thick, and the third member is Thickness 1100 μm, outflow channel (1) width 300 μm, length 20 mm, depth 200 μm, valve chamber (2) width 2 mm, length 2 mm, depth 200 μm, first flexible member (5) 1 mm wide, 1 mm long, 50 μm thick, the through groove (4) is 200 μm wide, the second flexible member (9) is 1 mm wide, 1 mm long, 50 μm thick, and the valve body (15) is dry. The width of 1 mm, the length of 1 mm, the thickness of 100 μm, the inflow channel (7) was 300 μm in width, the length was 25 mm, the depth was 100 μm, and the communication holes (10) and (13) were both 500 μm in diameter.

なお、弁体(15)が形成された第2部材(6)を水に浸漬したところ、第2可撓性部材(9)が水により膨潤して伸び、弁体(15)は第1可撓性部材(5)側に、弁体の先端部が約500μmの高さに第2部材(6)の平面外に出るように反って変形した。これを乾燥させると元の形状に復帰した。   In addition, when the 2nd member (6) in which the valve body (15) was formed was immersed in water, the 2nd flexible member (9) swelled and extended with water, and the valve body (15) was 1st possible. On the side of the flexible member (5), the tip of the valve body was warped and deformed so as to come out of the plane of the second member (6) to a height of about 500 μm. When this was dried, it returned to its original shape.

〔使用試験〕
作製した逆止弁の流入口(14)にフィッティング(図示略)を接着し、軟質塩化ビニルチューブ(図示略)を介してシリンジ(図示略)に接続した。また、軟質塩化ビニルチューブ(図示略)の途中に、該チューブ内の圧力を測定する圧力計(図示略)を装着した。
また、あらかじめ、前記シリンジから本逆止弁中に蒸留水を注入し、全ての空隙部に充満させた。
[Use test]
A fitting (not shown) was bonded to the inlet (14) of the produced check valve and connected to a syringe (not shown) via a soft vinyl chloride tube (not shown). A pressure gauge (not shown) for measuring the pressure in the tube was attached in the middle of the soft vinyl chloride tube (not shown).
In addition, distilled water was poured into the check valve from the syringe in advance to fill all the gaps.

前記シリンジから着色水を徐々に押し出したところ、前記チューブ内の圧力が約4.4kPa以下では逆止弁に着色水は流れなかった。圧力が約4.4kPaを越えると、着色水は流入口(14)から入り、流出口(11)から流出した。   When the colored water was gradually pushed out from the syringe, the colored water did not flow to the check valve when the pressure in the tube was about 4.4 kPa or less. When the pressure exceeded about 4.4 kPa, the colored water entered from the inlet (14) and exited from the outlet (11).

軟質塩化ビニルチューブ(図示略)を流出口(11)に接続して逆方向に流す実験を行うと、圧力にかかわらず着色水は流れなかった。   When an experiment was conducted by connecting a soft vinyl chloride tube (not shown) to the outlet (11) and flowing in the reverse direction, colored water did not flow regardless of the pressure.

[比較例1]
第2可撓性部材(9)を形成しなかったこと以外は実施例1と同様にして逆止弁を作製した。この逆止弁の第2部材(6)を水中に浸漬しても、弁体は変形しなかった。従って、この逆止弁の弁体は、見かけ上弁座(12)に接触しているが、弁座(12)を押さえる力はない。
[Comparative Example 1]
A check valve was produced in the same manner as in Example 1 except that the second flexible member (9) was not formed. Even when the second member (6) of the check valve was immersed in water, the valve body did not deform. Therefore, the valve body of the check valve apparently contacts the valve seat (12), but there is no force to press the valve seat (12).

この逆止弁を用いて実施例1と同様の使用試験を行ったところ、順方向には前記チューブ内の圧力に係わらず着色水は流通した。また、逆方向は、圧力が約0.89kPa以下では着色水は通過し、それ以上の圧力では通過しなかった。   Using this check valve, the same usage test as in Example 1 was performed. As a result, colored water circulated in the forward direction regardless of the pressure in the tube. In the reverse direction, the colored water passed when the pressure was about 0.89 kPa or less, and did not pass when the pressure was higher.

[実施例2]
実施例1とほぼ同様の工程にて、前記第2態様の逆止弁を作製し、これを用いて実施例1と同様の使用試験を行ったところ、前記チューブ内の圧力が約2.3kPa以下では逆止弁に着色水は流れなかった。圧力が約2.3kPaを越えると、着色水は流入口(14)から入り、流出口(11)から流出した。逆方向には、圧力にかかわらず着色水は流れなかった。
[Example 2]
The check valve of the second aspect was manufactured in substantially the same process as in Example 1, and when the same usage test as in Example 1 was performed using this check valve, the pressure in the tube was about 2.3 kPa. In the following, colored water did not flow through the check valve. When the pressure exceeded about 2.3 kPa, the colored water entered from the inlet (14) and exited from the outlet (11). In the reverse direction, colored water did not flow regardless of pressure.

[実施例3]
弁体(35)が独立した第1可撓性部材(36)と第2可撓性部材(37)の接合体であること、それに応じて、各部の構造が若干異なること以外は、実施例1とほぼ同様の工程で第3態様の逆止弁を作製した。
[Example 3]
Example except that the valve body (35) is an independent joined body of the first flexible member (36) and the second flexible member (37), and the structure of each part is slightly different accordingly. A check valve according to the third aspect was manufactured in substantially the same process as in step 1.

各部の寸法は、弁室(2)が幅4mm、長さ5mmであること、弁体(35)が幅3.6mm、長さ4.6mmであること以外は、実施例1と同様であった。   The dimensions of each part were the same as in Example 1 except that the valve chamber (2) was 4 mm wide and 5 mm long, and the valve body (35) was 3.6 mm wide and 4.6 mm long. It was.

得られた逆止弁を用いて実施例1と同様の使用試験を行ったところ、前記チューブ内の圧力が約4.2kPa以下では逆止弁に着色水は流れなかった。圧力が約4.2kPaを越えると、着色水は流入口(14)から入り、流出口(11)から流出した。逆方向には、圧力にかかわらず着色水は流れなかった。   When the same use test as in Example 1 was performed using the obtained check valve, colored water did not flow through the check valve when the pressure in the tube was about 4.2 kPa or less. When the pressure exceeded about 4.2 kPa, the colored water entered from the inlet (14) and exited from the outlet (11). In the reverse direction, colored water did not flow regardless of pressure.

本発明の第1態様の逆止弁の組み立て模式図である。It is an assembly schematic diagram of the check valve of the first aspect of the present invention. 本発明の第1態様の逆止弁の(イ)平面模式図、(ロ)上記イ)のA部に於ける側面断面模式図である。It is (a) a plane schematic diagram of the check valve of the 1st mode of the present invention, and (b) a side section schematic diagram in the A section of a) above. 本発明の第2態様の逆止弁の組み立て模式図である。It is an assembly schematic diagram of the check valve of the 2nd mode of the present invention. 本発明の第2態様の逆止弁の(イ)平面模式図、(ロ)上記(イ)のC部に於ける断面側面模式図である。(A) A schematic plan view of the check valve according to the second aspect of the present invention, (b) A schematic cross-sectional side view in section C of (b) above. 本発明の第3態様の逆止弁の組み立て模式図である。It is an assembly schematic diagram of the check valve of the 3rd mode of the present invention. 本発明の第3態様の逆止弁の(イ)平面模式図、及び、(ロ)上記(イ)のE部に於ける側面断面模式図である。It is (a) a plane schematic diagram of a check valve of the 3rd mode of the present invention, and (b) a side section schematic diagram in E section of the above (I).

符号の説明Explanation of symbols

1:流出側流路、溝
2:弁室
3:第1態様における第1部材
4:貫通溝
5:第1可撓性部材
6:第2部材
7:流入側流路
8:第1態様における第3部材
9:第2可撓性部材
10:連絡孔
11:流出口
12:弁座
13:連絡孔
14:流入口
15:弁体
16:第2態様における第1部材
17:第2態様における第3部材
21:流出側流路
22:第3態様における第1部材
23:第3態様における第2部材
24:第3態様における第3部材
24:第3態様における第4部材
25:連絡孔
28:第1流出側の弁座
29:第2流出側の弁座
31:連絡孔
32:第1流出口
33:連絡孔
34:第2流出口
35:弁体
36:第1可撓性部材
37:第2可撓性部材


1: Outflow side channel, groove 2: Valve chamber 3: First member in the first aspect 4: Through groove 5: First flexible member 6: Second member 7: Inflow side flow path 8: In the first aspect Third member 9: Second flexible member 10: Communication hole 11: Outlet 12: Valve seat 13: Communication hole 14: Inlet 15: Valve body 16: First member 17 in the second mode 17: In the second mode 3rd member 21: Outflow side flow path 22: 1st member 23 in a 3rd aspect: 2nd member 24 in a 3rd aspect 24: 3rd member 24 in a 3rd aspect 24th member 25 in a 3rd aspect 25: Communication hole 28 : First outlet valve seat 29: second outlet valve seat 31: communication hole 32: first outlet 33: communication hole 34: second outlet 35: valve body 36: first flexible member 37 : Second flexible member


Claims (10)

微細流路の途上に、可撓性の弁体、弁座及び弁体が可動できる弁室が設けられ、
微細流路の一方から流体を流した際には弁体が弁座から離れて流体が流通し、逆方向から流体を流した際には弁体が弁座と接して流体の流通が遮断される逆止弁であって、
前記弁体が、常態において反りを生じるよう異種の材料が接合されたフィルム状の接合体からなり、
該弁体が弾性的に付勢されて弁座に接するよう設けられていることを特徴とする逆止弁。
A flexible valve body, a valve seat and a valve chamber in which the valve body can move are provided in the course of the fine flow path,
When fluid flows from one side of the micro flow path, the valve body moves away from the valve seat and the fluid flows. When fluid flows from the opposite direction, the valve body contacts the valve seat and the fluid flow is blocked. A check valve,
The valve body is composed of a film-like joined body in which different materials are joined so as to cause warpage in a normal state,
A check valve characterized in that the valve body is elastically biased and is in contact with a valve seat.
前記弁体が、外部環境条件に対する膨張/収縮の度合い、及び/又は、硬化収縮率が異なる異種の材料の接合体からなる請求項1に記載の逆止弁。 The check valve according to claim 1, wherein the valve body is composed of a joined body of different materials having different degrees of expansion / shrinkage with respect to external environmental conditions and / or curing shrinkage rate. 前記弁体の一部が前記弁室の一部に固着された舌片状の弁体である請求項1又は2に記載の逆止弁。 The check valve according to claim 1 or 2, wherein a part of the valve body is a tongue-like valve body fixed to a part of the valve chamber. 前記弁体が、前記弁室に固着されることなく前記弁室内に配置されでいる請求項1又は2に記載の逆止弁。 The check valve according to claim 1 or 2, wherein the valve body is disposed in the valve chamber without being fixed to the valve chamber. 前記弁体を構成する可撓性部材の少なくとも一方の素材が有機重合体である請求項1〜4のいずれかに記載の逆止弁。 The check valve according to any one of claims 1 to 4, wherein at least one material of the flexible member constituting the valve body is an organic polymer. 前記弁体を構成する可撓性部材の少なくとも一方の素材が、活性エネルギー線硬化性架橋重合体である請求項5に記載の逆止弁。 The check valve according to claim 5, wherein at least one material of the flexible member constituting the valve body is an active energy ray-curable crosslinked polymer. 前記弁体を構成する可撓性部材の少なくとも一方の素材が、前記逆止弁に流す流体によってゲル化する架橋重合体である請求項5に記載の逆止弁。 The check valve according to claim 5, wherein at least one material of the flexible member constituting the valve body is a cross-linked polymer that is gelled by a fluid flowing through the check valve. 請求項1〜7に記載の逆止弁の製造方法であって、
シート状の可撓性部材の少なくとも前記弁体と成す部分に他の素材から成る層状の可撓性部材を接合し、該接合部に前記弁体となる部分を囲むように貫通溝を形成して前記弁体を有する弁体層を形成し、
該弁体層を、前記弁座を有する第一の流路層と、前記弁室を有する第2の流路層で、前記弁座と前記弁体とを重ねるように位置を合わせて挟持して積層することを特徴とする逆止弁の製造方法。
A method for manufacturing the check valve according to claim 1,
A layered flexible member made of another material is joined to at least a portion of the sheet-like flexible member that forms the valve body, and a through groove is formed at the joint portion so as to surround the portion that becomes the valve body. Forming a valve body layer having the valve body,
The valve body layer is sandwiched between the first flow path layer having the valve seat and the second flow path layer having the valve chamber so that the valve seat and the valve body overlap each other. And manufacturing the check valve.
前記シート状の可撓性部材への他の素材から成る可撓性部材の接合が、前記弁体となる部分を含む範囲に、活性エネルギー線重合性組成物を塗布し、活性エネルギー線照射により硬化させてシート状の可撓性部材に接合させるものである請求項8に記載の逆止弁の製造方法。 The active energy ray-polymerizable composition is applied to a range where the flexible member made of another material to the sheet-like flexible member includes the portion that becomes the valve body, and the active energy ray irradiation is performed. The check valve manufacturing method according to claim 8, wherein the check valve is cured and bonded to a sheet-like flexible member. 請求項1〜7に記載の逆止弁の製造方法であって、
支持体上に活性エネルギー線硬化性樹脂組成物を塗布し、弁体となす部分を囲む貫通溝となす部分以外の部分に活性エネルギー線を不十分に照射して、流動性は喪失するが重合性官能基は残存している程度に硬化させたシート状の可撓性部材を形成し、
該シート状の可撓性部材に、活性エネルギー線硬化性のゲル状の可撓性部材を得る可撓性部材材料を塗布して、弁体となる部分に活性エネルギー線を照射した後、非照射部の未硬化成分を除去することにより、前記弁体を有する弁体層を形成し、
該弁体層を、前記弁座を有する第一の流路層と、前記弁室を有する第2の流路層で、前記弁座と前記弁体とを重ねるように位置を合わせて挟持して積層することを特徴とする逆止弁の製造方法。
A method for manufacturing the check valve according to claim 1,
The active energy ray-curable resin composition is applied onto the support, and the active energy rays are insufficiently irradiated to portions other than the portion that forms the through groove surrounding the portion that forms the valve body. The functional group forms a sheet-like flexible member cured to the extent that it remains,
A flexible member material for obtaining an active energy ray-curable gel-like flexible member is applied to the sheet-like flexible member, and the portion that becomes the valve body is irradiated with active energy rays, By removing the uncured component of the irradiated part, forming a valve body layer having the valve body,
The valve body layer is sandwiched between the first flow path layer having the valve seat and the second flow path layer having the valve chamber so that the valve seat and the valve body overlap each other. And manufacturing the check valve.
JP2006032453A 2006-02-09 2006-02-09 Check valve and its manufacturing method Pending JP2007211889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032453A JP2007211889A (en) 2006-02-09 2006-02-09 Check valve and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032453A JP2007211889A (en) 2006-02-09 2006-02-09 Check valve and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007211889A true JP2007211889A (en) 2007-08-23

Family

ID=38490523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032453A Pending JP2007211889A (en) 2006-02-09 2006-02-09 Check valve and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007211889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013238A (en) * 2016-07-19 2018-01-25 科際精密股▲ふん▼有限公司 One-way valve assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013238A (en) * 2016-07-19 2018-01-25 科際精密股▲ふん▼有限公司 One-way valve assembly

Similar Documents

Publication Publication Date Title
US7220334B2 (en) Method of manufacturing microdevice having laminated structure
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2007170469A (en) Temperature responsive valve and its manufacturing method
US7238325B2 (en) Very small chemical device and flow rate adjusting method therefor
JP2002066999A (en) Extremely small valve mechanism and manufacturing method of the same
JP2002018271A (en) Micro chemical device
JP2000246092A (en) Production of microchemical device
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2002370200A (en) Method of manufacturing miniature valve mechanism
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2003136500A (en) Method of manufacturing micro fluid device having resin diaphragm
JP2007216226A (en) Micronozzle, its manufacturing method, spotting method, and spotter
JP2000288381A (en) Manufacture of microchemical device
JP2007211889A (en) Check valve and its manufacturing method
JP2000248076A (en) Production of minute chemical device
JP4307771B2 (en) Manufacturing method of microfluidic device
JP2003190768A (en) Method for manufacturing micro-fluid device having porous part
JP2002219697A (en) Micro fluid device having valve mechanism, and flow control method therefor
JP2006136990A (en) Microfluid device having valve
JP2003083256A (en) Micro fluid device with a pump mechanism, pump mechanism driving device and fluid transporting method
KR101151221B1 (en) The method of manufacturing a structure with micro-channels and the structure using the same
WO2016136551A1 (en) Valve, fluid device, and method for producing fluid device
JP2000297157A (en) Microchemical device