JP2007208885A - 撮像ユニットおよび撮像装置 - Google Patents

撮像ユニットおよび撮像装置 Download PDF

Info

Publication number
JP2007208885A
JP2007208885A JP2006028169A JP2006028169A JP2007208885A JP 2007208885 A JP2007208885 A JP 2007208885A JP 2006028169 A JP2006028169 A JP 2006028169A JP 2006028169 A JP2006028169 A JP 2006028169A JP 2007208885 A JP2007208885 A JP 2007208885A
Authority
JP
Japan
Prior art keywords
pixel
color
white
imaging
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006028169A
Other languages
English (en)
Inventor
Toshihito Kido
稔人 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Photo Imaging Inc
Original Assignee
Konica Minolta Photo Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging Inc filed Critical Konica Minolta Photo Imaging Inc
Priority to JP2006028169A priority Critical patent/JP2007208885A/ja
Priority to US11/541,835 priority patent/US7978240B2/en
Publication of JP2007208885A publication Critical patent/JP2007208885A/ja
Priority to US12/907,459 priority patent/US20110032395A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】白画素と色画素との感度差を補うことで白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像ユニットおよび撮像装置を提供すること。
【解決手段】輝度フィルタが配置された白画素と色フィルタが配置された色画素の露光時間を別個に制御することで感度の低い色画素の露光時間を長くすることができ、白画素と色画素との感度差を補って白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像ユニットおよび撮像装置を提供することができる。
【選択図】図3

Description

本発明は、撮像ユニットおよび撮像装置に関し、特に画像の質を向上させる撮像ユニットおよび撮像装置に関する。
近年、デジタルカメラ、デジタルビデオカメラ等の撮像装置では、多機能、高画質化および小型化が進展するに伴い、撮像装置に用いられる撮像素子の性能も高解像度、高精細なものが求められる様になり、高画素化、高密度化が加速している。
一方、高い画素密度の撮像素子では、1画素当たりの面積が減少することにより1画素当たりの光電変換量が減少し、すなわち感度が低下して画素出力の信号レベルが低くなり、S/N(Signal/Noise)比の低下を招いている。S/N比の低下は、画像再現性や画質に大きな影響を与えるため、高品位な画像形成を実現するには感度を向上させる必要がある。そして、撮像素子の分野では感度を向上させる技術がこれまでも種々検討されてきた。
たとえば、縦横に配列されたフォトダイオードを備えた固体撮像素子において、各フォトダイオードのうち市松状に配列されたフォトダイオードに、光透過率の高い、透明フィルタ、白色フィルタ等の輝度フィルタYを配置して感度を高くし、他のフォトダイオードには、従来の色フィルタR(赤)、G(緑)、B(青)を配置して色情報を得るようにしたフィルタ構成を有し、感度の高い輝度フィルタYが配置されたフォトダイオードで生成された信号電荷を輝度信号として用いることにより、被写体の色情報に左右されない輝度解像度を向上させる方法が提案されている(例えば、特許文献1参照)。
しかし、特許文献1の方法では、輝度フィルタYが配置された画素(以下、白画素と言う)と色フィルタが配置された画素(以下、色画素と言う)とでは3倍以上の感度差があるので、同一露光条件では白画素での白とびや色画素での感度不足による色再現性不良が発生する。
一方、従来の色フィルタを用いた撮像素子においても、色フィルタの色毎に色画素の露光時間を変えることでホワイトバランスを制御する方法が提案されている(例えば、特許文献2参照)。
特開2003−318375号公報 特開2003−60992号公報
しかしながら、特許文献2に示された方法は、通常の色画素からなる撮像素子におけるホワイトバランスのための微妙な露光時間制御であって、3倍以上もの感度差のある白画素と色画素の感度差を補正することまでは想定されておらず、白画素での白とびや色画素での感度不足による色再現性不良の発生を防止できるものではない。
本発明は、上記事情に鑑みてなされたもので、白画素と色画素との感度差を補うことで白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像ユニットおよび撮像装置を提供することを目的とする。
本発明の目的は、下記構成により達成することができる。
1.2次元マトリクス状に配列された複数の画素を有し、被写体像を光電変換して撮像データを生成する撮像素子を備えた撮像ユニットにおいて、
前記撮像素子の複数の画素の一部の画素上に輝度フィルタが配置された白画素と、
前記白画素以外の画素上に色フィルタが配置された色画素と、
前記白画素の露光時間と、前記色画素の露光時間とを別個に制御する露光時間制御手段とを備えたことを特徴とする撮像ユニット。
2.前記撮像素子はCMOS型撮像素子であり、
前記露光時間制御手段は、前記白画素の出力の読み出しを制御する白画素制御線と、
前記色画素の出力の読み出しを制御する色画素制御線とを備えたことを特徴とする1に記載の撮像ユニット。
3.前記撮像素子はCCD型撮像素子であり、
前記露光時間制御手段は、前記白画素の出力の転送を制御する白画素制御信号と、
前記色画素の出力の転送を制御する色画素制御信号とを備えたことを特徴とする1に記載の撮像ユニット。
4.前記露光時間制御手段は、前記白画素制御線と、前記色画素制御線とを別個に制御することを特徴とする2に記載の撮像ユニット。
5.前記露光時間制御手段は、前記白画素制御信号と、前記色画素制御信号とを別個に制御することを特徴とする3に記載の撮像ユニット。
6.1乃至5のいずれか1項に記載の撮像ユニットを備えたことを特徴とする撮像装置。
7.動画の撮影を行う動画モードと、
被写体の輝度を検出する輝度検出手段とを有し、
前記撮像ユニットが備える露光時間制御手段は、前記輝度検出手段の出力に基づき、前記撮像ユニットが備える白画素と色画素の露光時間を制御することを特徴とする6に記載の撮像装置。
8.前記露光時間制御手段は、前記輝度検出手段の出力が所定輝度よりも低輝度を示した場合、前記色画素の露光時間を前記白画素の露光時間の整数倍に制御することを特徴とする7に記載の撮像装置。
本発明によれば、輝度フィルタが配置された白画素と色フィルタが配置された色画素の露光時間を別個に制御することで感度の低い色画素の露光時間を長くすることができ、白画素と色画素との感度差を補って白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像ユニットおよび撮像装置を提供することができる。
以下、図面に基づき本発明の実施の形態を説明する。尚、各図中、同一符号は同一または相当部分を示し、重複する説明は省略する。
まず、本発明における撮像装置として機能するデジタルカメラについて、図1を用いて説明する。図1は、デジタルカメラ1の内部構成の一例を示す回路ブロック図である。図1において、被写体Objの像は、撮影レンズ201によって撮像素子162上に結像され、撮像素子162によって光電変換され、撮像データ162kとして読み出される。撮像素子162の光電変換動作および光電変換された撮像データ162kの読み出し動作は、タイミングジェネレータ166によって制御される。例えば撮影の構図を決めるためのファインダとして利用されるライブビュー画像を表示手段131に表示する場合には、撮像素子162の全画素の撮像データを読み出す必要はないため、撮像素子の内部構成によっては、間引き読み出しや画素加算読み出しといった各種の方法を用いることで読み出す撮像データ量を小さくして後段の回路の負荷を軽くすることが可能である。ここに、撮像素子162とタイミングジェネレータ166は、本発明における撮像ユニットとして機能する。
読み出された撮像データ162kは、アンプ163で増幅された後、フロントエンドプロセッサ(FEP)164でアナログ/デジタル変換やノイズ除去等の前処理が施され、画像処理手段165でホワイトバランス処理や色処理等の画像処理が施されて、撮像信号165aとして撮像制御手段161に向けて出力される。以上の撮影動作は、カメラ制御手段150の制御下で撮像制御手段161およびタイミングジェネレータ166によって制御される。
出力された撮像信号165aは、撮像制御手段161からカメラ制御手段150を介して画像メモリ181に一旦記録され、最終的にはメモリカード182に記録される。撮影時の構図を決定するためのプレビュー画像、および撮影された画像を確認するためのアフタービュー画像はカメラ制御手段150によって表示手段131に表示される。
カメラ制御手段150は、例えば前述したライブビュー画像等の撮像素子162の撮像データ162kを測光データとして用いて撮像素子162の露光条件を演算し、絞り制御手段171を介して絞り172を制御して撮像素子162への入射光量を制御するとともに、撮像制御手段161およびタイミングジェネレータ166を介して撮像素子162の光電変換時間を制御することで所謂電子シャッタ機能を達成することができる。ここに、撮像素子162、撮像制御手段161およびカメラ制御手段150は、本発明における輝度検出手段として機能する。
また、カメラ制御手段150は、操作手段100からの入力を受けて、デジタルカメラ1の各部の動作を制御する。操作手段100は、シャッタボタンの半押しで動作するAFスイッチ101a、シャッタボタンの全押しで動作するレリーズスイッチ101b、電源スイッチ111、モード設定ダイアル112等から構成される。
次に、本発明の撮像素子における輝度フィルタと色フィルタの配置について、図2を用いて説明する。図2は、撮像素子162のフィルタ構成の一例を示す模式図である。撮像素子162は、図2(a)に示すように、複数の画素162bが2次元マトリクス状に配列されていて、それぞれの画素162b上には輝度フィルタYもしくはR(赤)G(緑)B(青)の各色のみを透過する色フィルタR、G、Bのいずれかが配置されている。以下、上述した輝度フィルタYが配置された画素を白画素、色フィルタR、G、Bが配置された画素を色画素と呼ぶこととする。
図2(a)では、水平奇数行(n−1行、n+1行等)および垂直奇数列(m−1列、m+1列等)の画素が輝度フィルタYが配置された白画素であり、水平偶数行(n行、n+2行等)でかつ垂直偶数列(m列、m+2列等)の画素、つまり輝度フィルタYが配置されていない画素が色フィルタR、G、Bが通常のベイヤー配列と同様の順に配置された色画素である。
なお、輝度フィルタYには、NDフィルタ、透明フィルタ、白色フィルタ、グレーのフィルタ、視感度補正フィルタ等が該当するが、画素の光電変換部の表面に何も設けずに光が直接光電変換部に入射する構成も、透明フィルタを設けた構成に相当するものとする。また、ベイヤー配列とは、図2(b)に示したようなカラーフィルタの配列で、例えば水平奇数行(n−1行、n+1行等)にRとGの繰り返しが配置され、水平偶数行(n行、n+2行等)にはGとBの繰り返しが配置され、Gフィルタだけを見ると市松模様になっているカラーフィルタ配列のことである。
次に、本発明における撮像素子の第1の実施の形態について、図3乃至図7を用いて説明する。
図3は、本発明における撮像ユニットの第1の実施の形態であるCMOS(相補型金属酸化膜半導体)型撮像素子の構成を示すブロック図である。CMOS型撮像素子162は、撮像面162a上に2次元マトリクス状に配列された複数の画素162bと、垂直走査回路162c、サンプルホールド回路162d、出力回路162e、出力アンプ162g、水平走査回路162f、タイミングジェネレータ162h等の構成要素を備え、画素162bの各水平行毎の並びと垂直走査回路162cとは行選択線162iで結ばれ、画素162bの各垂直列毎の並びとサンプルホールド回路162dとは垂直信号線162jで結ばれている。各画素上には例えば図2(a)に示した輝度フィルタあるいは色フィルタが配置されている。
撮像素子162の撮影動作は、撮像制御手段161からの撮像制御信号161aに従って、撮像素子162に内蔵されたタイミングジェネレータ162hによって制御され、撮像素子162の出力である撮像データ162kは、アンプ163に入力される。タイミングジェネレータ162hは、本発明における露光時間制御手段として機能する。
図1においては、タイミングジェネレータ166が撮像素子162とは別設された例を示したが、特にCMOS型撮像素子においては、タイミングジェネレータ等の制御回路を画素と同一チップに内蔵することが可能であり、CMOS型撮像素子の特徴の一つとなっている。ここに、撮像素子162は、本発明における撮像ユニットとして機能する。もちろん図1と同様に別設してもよいし、タイミングジェネレータの一部の機能を別設し、残りの機能を撮像素子に内蔵してもよい。
図4は、CMOS型撮像素子162を構成する画素162bの回路の一例を示す回路図である。画素162bは、埋め込み型フォトダイオードPD(以下、PD部という)、NチャンネルMOSFET(金属酸化膜半導体電界効果トランジスタ:以下、トランジスタという)Q1乃至Q4から構成される。トランジスタQ1のドレインとトランジスタQ2のソースの接続部は、フローティングディフュージョンFD(以下、FD部という)で構成されており、所謂完全転送型構造である。リセット信号RST、転送信号TX、読み出し信号SXは、各トランジスタに対する信号(電位)を示し、VDDは電源、GNDは接地を示している。
PD部は、被写体からの入射光を光電変換して入射光量に応じた光電流Ipdを発生し、光電流Ipdは、信号電荷QpdとしてPD部の寄生容量Cpdに蓄積される。PD部は埋め込み型構造となっており、光電変換された光電流Ipdを直接取り出せないため、転送ゲートと呼ばれるトランジスタQ1(以下、転送ゲートQ1と言う)を介してFD部に接続されている。
撮影時には、転送信号TXが低電位Lに設定されることで転送ゲートQ1がオフされて、信号電荷QpdはPD部の寄生容量Cpdに蓄積され、信号転送時には転送信号TXが高電位Hに設定されることで転送ゲートQ1はオンされて、信号電荷QpdがFD部に完全転送される。本発明の撮像素子162においては、白画素の転送信号(以下、白画素制御線と言う)YTXと色画素の転送信号(以下、色画素制御線と言う)CTXとを別個に制御することができるので、撮影時の色画素の信号電荷Qpd蓄積時間つまり露光時間を白画素のそれよりも長くすることで、色画素の感度の低さを補うことができる。
トランジスタQ2はリセットゲートと呼ばれ(以下、リセットゲートQ2と言う)、リセット信号RSTによって制御され、オンすることによってFD部を電源電圧VDDにリセットする。
トランジスタQ3は、ソースフォロワ増幅回路を構成するものであり、FD部の電位Vfdに対する電流増幅を行うことで、出力インピーダンスを下げる働きをする。
トランジスタQ4は、画素出力読み出し用のトランジスタであり、ゲートは、上述した行選択線162iに接続されており、垂直走査回路162cによって印加される読み出し信号SXに応じてオン、オフされるスイッチとして動作する。トランジスタQ4のソースは、垂直信号線162jに接続されており、トランジスタQ4がオンされると、FD部の電位VfdがトランジスタQ3で低インピーダンス化されて、画素出力VOUTとして、垂直信号線162jへ導出される。
図5は、図2および図4に示した画素の駆動方法を示す回路ブロック図である。図2に示した水平(n−1)行目の輝度フィルタYが配置された白画素には、リセット信号線RSTn−1、白画素制御線YTXn−1、読み出し信号線SXn−1が接続されており、水平(n)行目の輝度フィルタYが配置された白画素にはリセット信号線RSTn、白画素制御線YTXn、読み出し信号線SXnが、色フィルタR、G、Bの何れかが配置された色画素にはリセット信号線RSTn、色画素制御線CTXn、読み出し信号線SXnが入力されている。つまり、白画素と色画素が混在する水平(n)行には白画素信号線YTXnと色画素制御線CTXnの2本の制御線が接続されており、これによって白画素と色画素の信号電荷の蓄積時間つまり露光時間を別個に制御できるため、色画素の露光時間を白画素のそれよりも長くすることで、色画素の感度の低さを補うことができる。
図6は、図5に示した回路ブロックでの、動画撮影時あるいはライブビュー画像撮影時の撮像動作を示すタイミングチャートである。ここでの撮像動作は、基本的には、撮像素子の水平行毎にフレームレート期間露光を行う、所謂ローリングシャッタ方式の撮像動作である。
(N)フレーム目(Nは正の整数)の撮影動作において、タイミングT1で、水平(n−1)行目のリセット信号線RSTn−1が高電位Hにされることで水平(n−1)行目の各画素のリセットゲートQ2がオンされて、水平(n−1)行目の各画素のFD部が電源電圧VDDにリセットされ、タイミングT2で、水平(n−1)行目の白画素制御線YTXn−1が高電位Hにされることで水平(n−1)行目の各画素の転送ゲートQ1がオンされて、水平(n−1)行目の各画素のPD部に蓄積された信号電荷QpdがFD部に完全転送される。
タイミングT3で、水平(n−1)行目の読み出し信号線SXn−1が高電位Hにされることで水平(n−1)行目の各画素のFD部の電位、すなわち水平(n−1)行目の各画素の撮像データが垂直信号線162jに導出されてサンプルホールド回路162dに記憶され、タイミングT4で、水平転送信号HTに従って、水平(n−1)行目の全画素の撮像データがアンプ163に向けて出力される。
次に、タイミングT5で、水平(n)行目のリセット信号線RSTnが高電位Hにされることで水平(n)行目の各画素のリセットゲートQ2がオンされて、水平(n)行目の各画素のFD部が電源電圧VDDにリセットされ、タイミングT6で、水平(n)行目の白画素制御線YTXnと水平(n)行目の色画素制御線CTXnが高電位Hにされることで水平(n)行目の白画素と色画素の全画素の転送ゲートQ1がオンされて、水平(n)行目の全画素のPD部に蓄積された信号電荷QpdがFD部に完全転送される。
タイミングT7で、水平(n)行目の読み出し信号線SXnが高電位Hにされることで水平(n)行目の各画素のFD部の電位、すなわち水平(n)行目の各画素の撮像データが垂直信号線162jに導出されてサンプルホールド回路162dに記憶され、タイミングT8で、水平転送信号HTに従って、水平(n)行目の全画素の撮像データがアンプ163に向けて出力される。以上の動作が撮像素子162の全水平行について行われて、(N)フレーム目の撮影が完了する。通常の動画撮影では、この(N)フレーム目の動作が繰り返される。
次に、(N+1)フレーム目(Nは正の整数)の撮影動作に進む。基本的には上述した(N)フレーム目の撮影動作と同じであるが、(N+1)フレーム目では、タイミングT6で、水平(n)行目の白画素制御線YTXnだけが高電位Hにされ、水平(n)行目の白画素の転送ゲートQ1がオンされて、水平(n)行目の白画素のPD部に蓄積された信号電荷QpdがFD部に完全転送される。
この時に、水平(n)行目の色画素制御線CTXnは低電位Lのままであるので、水平(n)行目の色画素のPD部に蓄積された信号電荷QpdはFD部に転送されずに引き続き蓄積動作が継続され、色画素の露光時間が延長されて感度が向上される。つまり、白画素の露光時間は(N)フレーム目のタイミングT2の立ち下がりから(N+1)フレーム目のタイミングT2の立ち上がりまでの1フレームレート間で、色画素の露光時間は(N)フレーム目のタイミングT2の立ち下がりから図示していない(N+2)フレーム目のタイミングT2の立ち上がりまでの2フレームレート間である。
また、水平(n)行目の色画素のFD部は電源電圧VDDにリセットされているので、水平(n)行目の色画素のFD部の電位、すなわち撮像データは暗黒状態の撮像データとなる。この撮像データは、例えば後段の画像処理手段165で無効なデータとして扱われ、例えば1フレーム前の(N)フレーム目の色画素の撮像データと置き換えられる等の処理が行われる。
以上の動作により、動画撮影において、撮影の全フレームで白画素の撮像データを出力し、1フレームおきに色画素の撮像データを出力することで色画素の露光時間を長くすることができるため、白画素と色画素との感度差を補って白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像素子および撮像装置を提供することができる。
図7は、図5に示した回路ブロックでの、静止画撮影時の撮像動作を示すタイミングチャートである。図7において、タイミングT11で、撮像素子162の全画素のリセット信号線RST(RSTn−1、RSTn等)、白画素制御線YTX(YTXn−1、YTXn等)および色画素制御線CTX(CTXn等)が高電位Hにされることで、全画素のPD部に蓄積された電荷がFD部に完全転送されるとともに、全画素のFD部が電源電圧VDDにリセットされることでPD部とFD部が共に初期化される。タイミングT11の最後で撮像素子162の全画素のリセット信号線RST(RSTn−1、RSTn等)、白画素制御線YTX(YTXn−1、YTXn等)および色画素制御線CTX(CTXn等)が低電位Lにされることで、全画素のPD部に光電荷の蓄積開始すなわち電子シャッタの露光が開始される。
タイミングT11の最後から白画素露光時間SS1経過後、タイミングT12で撮像素子162の全ての白画素の白画素制御線YTX(YTXn−1、YTXn等)が高電位Hにされることで、全ての白画素のPD部に蓄積された光電荷がFD部に完全転送され、白画素の電子シャッタの露光が終了される。タイミングT13で、撮像素子162の水平(n−1)行目の全画素の読み出し信号線SXn−1が高電位Hにされることで水平(n−1)行目の各画素のFD部の電位、すなわち水平(n−1)行目の各画素の撮像データが垂直信号線162jに導出されてサンプルホールド回路162dに記憶され、タイミングT14で、水平転送信号HTに従って、水平(n−1)行目の全画素の撮像データがアンプ163に向けて出力される。タイミングT13とT14の動作が白画素のみからなる全水平行に対して順次行われることで、白画素のみからなる全水平行の撮像データの読み出しが完了される。
タイミングT11の最後から色画素露光時間SS2経過後、タイミングT15で撮像素子162の全ての色画素の色画素制御線CTX(CTXn等)が高電位Hにされることで、全ての色画素のPD部に蓄積された光電荷がFD部に完全転送され、色画素の電子シャッタの露光が終了される。タイミングT16で、撮像素子162の水平(n)行目の全画素の読み出し信号線SXnが高電位Hにされることで水平(n)行目の各画素のFD部の電位、すなわち水平(n)行目の各画素の撮像データが垂直信号線162jに導出されてサンプルホールド回路162dに記憶され、タイミングT17で、水平転送信号HTに従って、水平(n)行目の全画素の撮像データがアンプ163に向けて出力される。タイミングT16とT17の動作が白画素と色画素が混在する全水平行に対して順次行われることで、白画素と色画素が混在する全水平行の撮像データの読み出しが完了される。
本例では、タイミングT12すなわち白画素の電子シャッタの露光終了後に白画素のみからなる全水平行の撮像データの読み出しを行い、タイミングT15すなわち色画素の電子シャッタの露光終了後に白画素と色画素が混在する全水平行の撮像データの読み出しを行うとしたが、これに限るものではなく、例えば、タイミングT15すなわち色画素の電子シャッタの露光終了後に全ての水平行の撮像データを順次読み出してもよい。本例の読み出し方法によれば、色画素の露光中に白画素のみからなる全水平行の撮像データの読み出しを完了するため、タイミングT15以後の読み出し時間が短縮できる。
白画素露光時間SS1および色画素露光時間SS2は、例えば静止画撮像前のライブビュー画像の撮像データを用いた測光演算によって求めてもよいし、撮像素子162とは独立した測光素子の測光出力から演算して求めてもよい。白画素露光時間SS1と色画素露光時間SS2の比率は、輝度フィルタYと色フィルタR、G、Bとの透過率の比に基づいて予め決定された比であってもよいし、上述した測光演算の結果から、被写体が既定値以上の明るさである場合は白画素露光時間SS1と色画素露光時間SS2を同一とし、既定値以下の明るさである場合は既定の比率に設定して色画素露光時間を長くとって色に関する感度を向上させてもよい。
次に、デジタルカメラ1の撮影時の制御の流れを、図8乃至図10を用いて説明する。図8乃至図10は、デジタルカメラ1の撮影時の制御の流れを示すフローチャートで、図8はメインルーチン、図9は静止画モードのサブルーチン、図10は動画モードのサブルーチンである。
図8において、ステップS101でデジタルカメラ1の電源がオンされると、ステップS102でデジタルカメラ1の動作モードがカメラモードであるか否かが確認される。動作モードが、例えば再生モードや録音モード等のカメラモードではないモードに設定されている場合(ステップS102;NO)には、設定された各モードでの制御に移行する。カメラモード以外の各モードでの制御の説明は省略する。
動作モードがカメラモードに設定されている場合(ステップS102;YES)、ステップS111でファインダとして利用されるライブビュー画像の表示が開始される。ライブビュー表示では、図1の説明で述べたように、撮像素子162の全画素の撮像データを読み出すのではなく、例えば毎秒30フレームの間引き読み出し動作を行うことで信号処理および画像処理の負荷を低減することができる。
ステップS112で、シャッタボタンの半押しで動作するAFスイッチ101aがオンされたか否かが確認される。オンされるまでステップS111およびステップS112の動作を繰り返して待機する。AFスイッチ101aがオンされたら(ステップS112;YES)、ステップS113で、例えばライブビュー画像中の白画素の撮像データを用いて、被写体へのオートフォーカス(AF)動作と、被写体輝度の検出すなわち測光(AE)動作が行われ、被写体への合焦動作と、撮像素子162の白画素が飽和しないように絞り172の絞り値制御が行われる。ステップS114で、シャッタボタンの全押しで動作するレリーズスイッチ101bがオンされたか否か、つまり撮影が開始されたか否かが確認される。オンされるまでステップS111からステップS114の動作が繰り返される。
ステップS114でレリーズスイッチ101bがオンされたら(ステップS114;YES)、ステップS121で、デジタルカメラ1のカメラモードでの撮影モードが静止画モードであるか否かが確認される。静止画モードである場合(ステップS121;YES)、ステップS130に進んで図9に示す静止画サブルーチンが実行され、ステップS151に進み、デジタルカメラ1の電源がオフされたか否かが確認される。電源がオフされていなければ(ステップS151;NO)、ステップS102に戻り、以後、上述した動作が繰り返される。電源がオフされていれば(ステップS151;YES)、そのまま動作が終了される。
ステップS121で静止画モードでない場合(ステップS121;NO)、デジタルカメラ1のカメラモードでの撮影モードは動画モードであると判断され、ステップS140に進んで図10に示す動画サブルーチンが実行され、ステップS151に進み、以後、上述した動作が繰り返される。
図9は、図8のステップS130(静止画サブルーチン)のフローチャートである。ステップS301で、ステップS111で開始されたライブビュー画像の表示を終了し、ステップS302で、絞り172がステップS113の測光(AE)動作で求められた白画素が飽和しない適正絞り値に制御され、ステップS303で、図7のタイミングチャートに示された動作に従って、静止画の撮影が行われる。
ステップS304で、撮影された静止画像データが一旦画像メモリ181に記録され、ステップS305で画像メモリ181に記録された静止画像データが表示手段131にアフタービュー画像として表示され、ステップS306で、画像メモリ181に記録された静止画像データが、最終的にメモリカード182に記録されて、図8のメインルーチンのステップ130に戻る。
図10は、図8のステップ140(動画サブルーチン)のフローチャートである。ステップS401で、図8のステップS113の測光(AE)動作で求められた被写体輝度が所定輝度よりも高輝度かあるいは等しいか否かが確認される。所定輝度よりも高輝度かあるいは等しい場合(ステップS401;YES)、ステップS411で、絞り172がステップS113の測光(AE)動作で求められた1フレーム(通常は1/30秒)の露光時間で白画素が飽和しない適正絞り値に制御され、ステップS412で、通常の動画撮影と同様に、図6のNフレーム目に示された白画素と色画素の両方の撮像データを読み出す動作のみを繰り返して既定フレーム数(例えば1秒分の30フレーム)の動画像を撮影し、ステップS413で、ステップS412で撮影された既定フレーム数の動画像が画像メモリ181に記録される。
ステップS401で被写体輝度が所定輝度よりも低輝度であると判断された場合(ステップS401;NO)ステップS421で、ステップS411と同様に、絞り172がステップS113の測光(AE)動作で求められた1フレームの露光時間で白画素が飽和しない適正絞り値に制御され、ステップS422で、図6のNフレーム目とN+1フレーム目に示された動作を交互に繰り返して既定フレーム数(例えば1秒分の30フレーム)の動画像を撮影し、ステップS413で、ステップS422で撮影された既定フレーム数の動画像が画像メモリ181に記録される。ステップS412またはステップS422の撮影中、撮影された動画像はライブビュー画像として表示手段131に表示される。
ここに、上述した所定輝度は、撮像素子自体の感度や撮影レンズのFナンバー等の種々の条件によって異なるが、例えば色画素の蓄積電荷量が少なくなってノイズが目立ちはじめる輝度あるいはそれよりも少し高い輝度に設定されることが望ましい。
ステップS414でレリーズスイッチ101bがオフされたか否か、つまり動画撮影が終了されたか否かが確認される。オフされた場合(ステップS414;YES)、ステップS431で、画像メモリ181に記録されている動画像が全てメモリカード182に記録され、図8のメインルーチンのステップ140に戻る。ステップS414でレリーズスイッチ101bがオフされていない場合(ステップS4146;NO)、ステップS401に戻り、以後、上述した動作が繰り返される。
以上に述べた方法により、被写体輝度を検出し、その結果から被写体が明るい場合には通常の動画撮影と同じ撮影を行い、被写体が暗い場合には感度の低い色画素の撮影を白画素の複数フレーム(本例では2フレーム)に1回の割合で行って色画素の感度を向上させることで、暗い被写体であっても色再現性のよい高品位な動画像を得ることができる。
なお、本例においては、ステップS401で被写体の明るさに応じてステップS412の通常の動画撮影とステップS422の本発明に特有の動画撮影を切り換えるとして説明したが、被写体の明るさに関わらず白画素と色画素との感度差は存在するので、ステップS401の判断は行わず、常にステップS422に示した本発明に特有の動画撮影を行ってもよい。
次に、本発明の第2の実施の形態について、図11および図12を用いて説明する。図11は、本発明における撮像ユニットの第2の実施の形態であるCMOS型撮像素子の構成を示すブロック図である。図5に対して、図11では白画素のみからなる水平行(例えば水平(n−1)行目)の画素の出力が接続された第1の垂直信号線1621jと、白画素と色画素が混在する水平行(例えば水平(n)行目)の画素出力が接続された第2の垂直信号線1622jとが設けられ、垂直信号線1621jは第1のサンプルホールド回路1621dに、垂直信号線1622jは第2のサンプルホールド回路1622dに接続されている。
第1のサンプルホールド回路1621dに記憶された白画素のみからなる水平行の各画素の画素出力は、第1の水平走査回路1621fの走査動作に従って第1の出力回路1621eによって第1の出力アンプ1621gに向けて順次出力され、白画素のみからなる水平行の撮像データ1621kとして撮像素子162から出力される。白画素と色画素が混在する水平行の画素出力についても同様に、第2の出力アンプ1622gを介して白画素と色画素が混在する水平行の撮像データ1622kとして出力される。これらの動作は、タイミングジェネレータ162hによって制御される。ここに、撮像素子162は、本発明における撮像ユニットとして機能する。
図12は、図11に示した本発明の撮像素子の第2の実施の形態の動作を示すタイミングチャートである。図12においては、白画素のみからなる水平行(例えば水平(n−1)行目)と、白画素と色画素とが混在する水平行(例えば水平(n)行目)とを同時並行で駆動してフレームレート期間露光を行う、所謂ローリングシャッタ方式の撮像動作を行う。
図12で、(N)フレーム目(Nは正の整数)の撮影動作において、タイミングT21で、水平(n−1)行目のリセット信号線RSTn−1と水平(n)行目のリセット信号線RSTnとがともに高電位Hにされることで、白画素のみからなる水平(n−1)行目と白画素と色画素とが混在する水平(n)行目の全画素のFD部が電源電圧VDDにリセットされ、タイミングT22で水平(n−1)行目の白画素制御線YTXn−1と、水平(n)行目の白画素制御線YTXnおよび色画素制御線CTXnが全て高電位Hにされることで、水平(n−1)行目と水平(n)行目の全画素のPD部に蓄積された光電荷がFD部に完全転送される。
タイミングT23で、水平(n−1)行目の読み出し信号線SXn−1と水平(n)行目の読み出し信号線SXnが高電位Hにされることで、水平(n−1)行目の全画素の画素出力が第1の垂直信号線1621jに導出され、同時に水平(n)行目の全画素の画素出力が第2の垂直信号線1622jに導出される。
タイミングT24で、第1の水平転送信号HT1に従って水平(n−1)行目の全画素の第1の撮像データ1621kが出力され、それと並行して第2の水平転送信号HT2に従って水平(n−1)行目の全画素の第1の撮像データ1621kが出力される。第1の水平転送信号HT1と第2の水平転送信号HT2とは同じ信号であってもよいし、異なるタイミングの信号であってもよい。以上の動作が撮像素子162の全水平行について2行ずつ行われて、(N)フレーム目の撮影が完了する。
次に、(N+1)フレーム目(Nは正の整数)の撮影動作に進む。基本的には上述した(N)フレーム目の撮影動作と同じであるが、(N+1)フレーム目では、タイミングT22で、水平(n−1)行目の白画素制御線YTXn−1と、水平(n)行目の白画素制御線YTXnだけが高電位Hにされ、水平(n−1)行目と水平(n)行目の白画素の転送ゲートQ1がオンされて、水平(n−1)行目と水平(n)行目の白画素のPD部に蓄積された信号電荷QpdがFD部に完全転送される。
この時に、水平(n)行目の色画素制御線CTXnは低電位Lのままであるので、水平(n)行目の色画素のPD部に蓄積された信号電荷QpdはFD部に転送されずに引き続き蓄積動作が継続され、色画素の露光時間が延長されて感度が向上される。つまり、白画素の露光時間は(N)フレーム目のタイミングT22の立ち下がりから(N+1)フレーム目のタイミングT22の立ち上がりまでの1フレームレート間で、色画素の露光時間は(N)フレーム目のタイミングT22の立ち下がりから図示していない(N+2)フレーム目のタイミングT22の立ち上がりまでの2フレームレート間である。
また、水平(n)行目の色画素のFD部は電源電圧VDDにリセットされているので、水平(n)行目の色画素のFD部の電位、すなわち撮像データは暗黒状態の撮像データとなる。この撮像データは、例えば後段の画像処理手段165で無効なデータとして扱われ、例えば1フレーム前の(N)フレーム目の色画素の撮像データと置き換えられる等の処理が行われる。
以上に述べた方法によって、白画素のみからなる水平行の撮像データと白画素と色画素が混在する水平行の撮像データを別個に読み出すことができ、後段の画像処理手段165での画像処理が容易になる他、例えばオートフォーカスや測光等の輝度情報のみが用いられる動作には白画素のみからなる水平行の撮像データのみを読み出して用いる等の撮像データの選択が容易となる。
次に、本発明における第3の実施の形態について、図13および図14を用いて説明する。図13は、本発明の撮像ユニットの第3の実施の形態であるインターライン方式のCCD(電荷結合素子)型撮像素子とその周辺回路の構成を示すブロック図である。CCD型撮像素子162は、光電変換部162w、転送部162x、垂直転送CCD162yおよび水平転送CCD162z等から構成される。光電変換部162w以外の部分は基本的に遮光されている。
光電変換部162wは、その上部に図2(a)および図5に示したと同様の輝度フィルタYまたは色フィルタR、G、Bのいずれかが配置されたフォトダイオードからなり、入射する被写体光を光電変換してフォトダイオードの寄生容量に光電荷を蓄積する。本実施の形態では、輝度フィルタが配置された光電変換部を白画素、色フィルタが配置された光電変換部を色画素と呼ぶ。
転送部162xは、光電変換部162wに蓄積された光電荷を垂直転送CCD162yに転送する。転送のタイミングは転送信号によって制御され、本実施の形態においては、白画素の転送信号を白画素制御信号YTX、色画素の転送信号を色画素制御信号CTXと呼ぶ。白画素制御信号YTXおよび色画素制御信号CTXは、カメラ制御手段150および撮像制御手段161の制御下でタイミングジェネレータ166により制御される。
垂直転送CCD162yは、転送部162xによって転送された光電荷を垂直転送クロックVCLに従って図の縦方向に順次転送する。水平転送CCD162zは、垂直転送CCD162yによって図の縦方向に転送された光電荷を各水平行毎に水辺転送クロックHCLに従って図の横方向に転送し、撮像データ162kとしてアンプ163に向けて出力する。垂直転送CCDおよび水平転送CCDの動作は一般的なCCD型撮像素子と同じでよく、タイミングジェネレータ166によって制御される。ここに、撮像素子162とタイミングジェネレータ166とは、本発明における撮像ユニットとして機能する。
図14は、図13に示したCCD型撮像素子162の動画撮影時の駆動方法を示すタイミングチャートである。本例においては、色画素の撮像データの読み出しは白画素の撮像データの読み出し3回につき1回として説明する。
図14において、タイミングT31で白画素制御信号YTXと色画素制御信号CTXが共に高電位Hにされることで、撮像素子162の全ての転送部162xが開かれて、光電変換部162wに蓄積された(N−1)フレーム目の蓄積された光電荷が垂直転送CCD162yに転送されるとともに、光電変換部162wは光電荷が蓄積されていない状態にリセットされる。
タイミングT31の最後で白画素制御信号YTXと色画素制御信号CTXが共に低電位Lにされて全ての転送部162xが閉じられ、(N)フレーム目の光電荷の蓄積、すなわち撮影が開始される。(N)フレーム目の撮影中に、タイミングT32で、垂直転送クロックVCLが1クロック入力されて垂直転送CCDが水平1行分転送され、水平転送クロックHCLが水平1行の画素数分入力されて水平1行分の撮像データ162kが水平転送されてアンプ163に向けて出力される。上述した動作が水平行数分繰り返されることで、(N−1)フレーム目の全撮像データ162kが出力される。通常のCCD型撮像素子では、前後の撮像データとの混合を避ける等の理由で4層のクロックを用いて垂直および水平の転送動作を行うが、本例では説明を簡単にするために1クロックで転送されるとした。実際には、通常のCCD型撮像素子で行われる垂直および水平の転送動作を行えばよい。
タイミングT31の最初から1フレーム分の所定時間経過後(通常の動画の場合は1/30秒後)、タイミングT33で白画素制御信号YTXが高電位Hにされることで、撮像素子162の全ての白画素の転送部162xが開かれて、白画素の光電変換部162wに蓄積された(N)フレーム目の蓄積された光電荷が垂直転送CCD162yに転送されるとともに、白画素の光電変換部162wは光電荷が蓄積されていない状態にリセットされる。
タイミングT33の最後で白画素制御信号YTXが低電位Lにされて全ての白画素の転送部162xが閉じられ、白画素の(N+1)フレーム目の撮影が開始される。この時に、タイミングT33では色画素制御信号CTXは低電位Lのままであるので、色画素に蓄積された光電荷は垂直転送CCD162yに転送されず、引き続き光電荷の蓄積すなわち撮影が継続される。
(N+1)フレーム目の撮影中に、タイミングT34で、上述したタイミングT32と同様に(N)フレーム目の全撮像データ162kが出力される。この時、垂直転送CCD162yの色画素に対応する部分の撮像データは、信号電荷が無い状態、すなわち暗黒状態のデータとなっている。このデータは、例えば後段の画像処理手段165で無効なデータとして扱われ、例えば1フレーム前の(N−1)フレーム目の色画素の撮像データと置き換えられる等の処理が行われる。
タイミングT35およびT36では、タイミングT33およびT34と同じ動作が行われ、(N+2)フレーム目の撮影と(N+1)フレーム目の撮像データ出力が行われる。タイミングT35でも色画素の光電荷の転送は行われず、引き続き光り電荷の蓄積が継続される。
タイミングT35の最初から1フレーム分の所定時間経過後(通常の動画の場合は1/30秒後)、タイミングT37で、タイミングT31と同様に、白画素制御信号YTXと色画素制御信号CTXが共に高電位Hにされることで、撮像素子162の全ての転送部162xが開かれて、光電変換部162wに蓄積された(N+2)フレーム目の蓄積された光電荷が垂直転送CCD162yに転送され、タイミングT38で、(N+2)フレーム目の全撮像データ162kが出力される。
本例では、白画素の光電荷の転送3回につき色画素の光電荷の転送1回の割合で行われるとしたが、これによって、通常3倍以上ある白画素と色画素の感度比をキャンセルすることができる。人の目は、動画像においては、輝度情報に比べて色情報への応答性が遅いので、本例のように白画素の撮像データすなわち輝度情報に対して、色画素の撮像データすなわち色情報の読み出し頻度を下げても色ズレとして感じることなほとんどなく、逆に、色画素の蓄積時間を長くできることで色に対する感度を向上させることができ、それによって豊かな色再現を行うことができる。
以上に述べたように、本発明によれば、輝度フィルタが配置された白画素と色フィルタが配置された色画素の露光時間を別個に制御することで感度の低い色画素の露光時間を長くすることができ、白画素と色画素との感度差を補って白とびや色再現性不良の発生を防止し、かつ、画質的にも遜色ない撮影が行える撮像ユニットおよび撮像装置を提供することができる。
尚、本発明に係る撮像ユニットおよび撮像装置を構成する各構成の細部構成および細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。
デジタルカメラの内部構成の一例を示す回路ブロック図である。 撮像素子のフィルタ構成の一例を示す模式図である。 本発明における撮像ユニットの第1の実施の形態であるCMOS型撮像素子の構成を示すブロック図である。 CMOS型撮像素子を構成する画素の回路の一例を示す回路図である。 撮像素子の画素の駆動方法を示す回路ブロック図である。 動画撮影時あるいはライブビュー画像撮影時の撮像動作を示すタイミングチャートである。 静止画撮影時の撮像動作を示すタイミングチャートである。 デジタルカメラの撮影時の制御の流れを示すフローチャートのメインルーチンである。 静止画撮影時の制御の流れを示すサブルーチンである。 動画撮影時の制御の流れを示すサブルーチンである。 本発明における撮像ユニットの第2の実施の形態であるCMOS型撮像素子の構成を示すブロック図である。 図11に示した本発明の撮像素子の第2の実施の形態の動作を示すタイミングチャートである。 本発明における撮像ユニットの第3の実施の形態であるインターライン方式のCCD型撮像素子とその周辺回路の構成を示すブロック図である。 図13に示したCCD型撮像素子の動画撮影時の駆動方法を示すタイミングチャートである。
符号の説明
1 デジタルカメラ
100 操作手段
131 表示手段
150 カメラ制御手段
161 撮像制御手段
162 撮像素子
162b 画素
163 アンプ
164 フロントエンドプロセッサ(FEP)
165 画像処理手段
166 タイミングジェネレータ
171 絞り制御手段
172 絞り
181 画像メモリ
182 メモリカード
201 撮影レンズ
Obj 被写体
Y 輝度フィルタ
R、G、B 色フィルタ
YTX 白画素制御線および白画素制御信号
CTX 色画素制御線および色画素制御信号

Claims (8)

  1. 2次元マトリクス状に配列された複数の画素を有し、被写体像を光電変換して撮像データを生成する撮像素子を備えた撮像ユニットにおいて、
    前記撮像素子の複数の画素の一部の画素上に輝度フィルタが配置された白画素と、
    前記白画素以外の画素上に色フィルタが配置された色画素と、
    前記白画素の露光時間と、前記色画素の露光時間とを別個に制御する露光時間制御手段とを備えたことを特徴とする撮像ユニット。
  2. 前記撮像素子はCMOS型撮像素子であり、
    前記露光時間制御手段は、前記白画素の出力の読み出しを制御する白画素制御線と、
    前記色画素の出力の読み出しを制御する色画素制御線とを備えたことを特徴とする請求項1に記載の撮像ユニット。
  3. 前記撮像素子はCCD型撮像素子であり、
    前記露光時間制御手段は、前記白画素の出力の転送を制御する白画素制御信号と、
    前記色画素の出力の転送を制御する色画素制御信号とを備えたことを特徴とする請求項1に記載の撮像ユニット。
  4. 前記露光時間制御手段は、前記白画素制御線と、前記色画素制御線とを別個に制御することを特徴とする請求項2に記載の撮像ユニット。
  5. 前記露光時間制御手段は、前記白画素制御信号と、前記色画素制御信号とを別個に制御することを特徴とする請求項3に記載の撮像ユニット。
  6. 請求項1乃至5のいずれか1項に記載の撮像ユニットを備えたことを特徴とする撮像装置。
  7. 動画の撮影を行う動画モードと、
    被写体の輝度を検出する輝度検出手段とを有し、
    前記撮像ユニットが備える露光時間制御手段は、前記輝度検出手段の出力に基づき、前記撮像ユニットが備える白画素と色画素の露光時間を制御することを特徴とする請求項6に記載の撮像装置。
  8. 前記露光時間制御手段は、前記輝度検出手段の出力が所定輝度よりも低輝度を示した場合、前記色画素の露光時間を前記白画素の露光時間の整数倍に制御することを特徴とする請求項7に記載の撮像装置。
JP2006028169A 2005-10-03 2006-02-06 撮像ユニットおよび撮像装置 Pending JP2007208885A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006028169A JP2007208885A (ja) 2006-02-06 2006-02-06 撮像ユニットおよび撮像装置
US11/541,835 US7978240B2 (en) 2005-10-03 2006-10-02 Enhancing image quality imaging unit and image sensor
US12/907,459 US20110032395A1 (en) 2005-10-03 2010-10-19 Imaging unit and image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028169A JP2007208885A (ja) 2006-02-06 2006-02-06 撮像ユニットおよび撮像装置

Publications (1)

Publication Number Publication Date
JP2007208885A true JP2007208885A (ja) 2007-08-16

Family

ID=38487901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028169A Pending JP2007208885A (ja) 2005-10-03 2006-02-06 撮像ユニットおよび撮像装置

Country Status (1)

Country Link
JP (1) JP2007208885A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847857B2 (en) 2006-04-17 2010-12-07 Sony Corporation Imaging device and exposure control method for imaging device
WO2013145753A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 撮像素子および撮像装置
JP2014175832A (ja) * 2013-03-08 2014-09-22 Toshiba Corp 固体撮像装置
WO2016013412A1 (ja) * 2014-07-25 2016-01-28 ソニー株式会社 固体撮像素子、撮像制御方法、信号処理方法、及び、電子機器
JP2016213715A (ja) * 2015-05-11 2016-12-15 キヤノン株式会社 撮像装置、撮像システム、信号処理方法
JP2018125862A (ja) * 2012-12-20 2018-08-09 キヤノン株式会社 光電変換装置および光電変換装置を有する撮像装置
JP2022535292A (ja) * 2019-06-06 2022-08-05 ホアウェイ・テクノロジーズ・カンパニー・リミテッド カラーフィルタアレイ装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847857B2 (en) 2006-04-17 2010-12-07 Sony Corporation Imaging device and exposure control method for imaging device
WO2013145753A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 撮像素子および撮像装置
US11689832B2 (en) 2012-03-30 2023-06-27 Nikon Corporation Image pickup element and image pickup device
US11317046B2 (en) 2012-03-30 2022-04-26 Nikon Corporation Image pickup element and image pickup device
US10574918B2 (en) 2012-03-30 2020-02-25 Nikon Corporation Image pickup element and image pickup device
US10244194B2 (en) 2012-03-30 2019-03-26 Nikon Corporation Individual cell charge control in an image sensor
JP2018125862A (ja) * 2012-12-20 2018-08-09 キヤノン株式会社 光電変換装置および光電変換装置を有する撮像装置
US9191636B2 (en) 2013-03-08 2015-11-17 Kabushiki Kaisha Toshiba Solid-state imaging device having varying pixel exposure times
JP2014175832A (ja) * 2013-03-08 2014-09-22 Toshiba Corp 固体撮像装置
US10171750B2 (en) 2014-07-25 2019-01-01 Sony Corporation Solid-state image sensor, imaging control method, signal processing method, and electronic apparatus
WO2016013412A1 (ja) * 2014-07-25 2016-01-28 ソニー株式会社 固体撮像素子、撮像制御方法、信号処理方法、及び、電子機器
JP2016213715A (ja) * 2015-05-11 2016-12-15 キヤノン株式会社 撮像装置、撮像システム、信号処理方法
JP2022535292A (ja) * 2019-06-06 2022-08-05 ホアウェイ・テクノロジーズ・カンパニー・リミテッド カラーフィルタアレイ装置
JP7371129B2 (ja) 2019-06-06 2023-10-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド カラーフィルタアレイ装置

Similar Documents

Publication Publication Date Title
CN101262565B (zh) 摄像方法及摄像装置以及驱动装置
US7978240B2 (en) Enhancing image quality imaging unit and image sensor
US8174590B2 (en) Image pickup apparatus and image pickup method
JP5247007B2 (ja) 撮像装置及び撮像システム
JP6159105B2 (ja) 撮像装置及びその制御方法
JP4691930B2 (ja) 物理情報取得方法および物理情報取得装置、並びに物理量分布検知の半導体装置、プログラム、および撮像モジュール
JP4622790B2 (ja) 撮像素子および撮像装置
JP2006261595A (ja) 固体撮像装置及びカメラ
JP2009159186A (ja) 撮像素子の駆動装置、撮像素子の駆動方法、撮像装置、及び撮像素子
JP2006174404A (ja) 固体撮像素子および固体撮像装置
JP2007028339A (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP2007208885A (ja) 撮像ユニットおよび撮像装置
JP2001024948A (ja) 固体撮像装置及びそれを用いた撮像システム
JP2006014117A (ja) 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置
JP2006121151A (ja) 信号処理方法および信号処理装置並びに物理情報取得装置
US20190387187A1 (en) Image sensor and image capturing apparatus
JP2007134806A (ja) 固体撮像素子
JP5627728B2 (ja) 撮像装置及び撮像システム
US8743273B2 (en) Imaging device and solid-state imaging device
US7999871B2 (en) Solid-state imaging apparatus, and video camera and digital still camera using the same
US11089217B2 (en) Image-pickup apparatus and control method thereof
JP2008236634A (ja) 固体撮像装置及び撮像装置
JP2006222762A (ja) 撮像装置
JP5629568B2 (ja) 撮像装置及びその画素加算方法
JP2007006071A (ja) 撮像装置、撮像素子の駆動方法