JP2007207679A - Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell - Google Patents

Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell Download PDF

Info

Publication number
JP2007207679A
JP2007207679A JP2006027532A JP2006027532A JP2007207679A JP 2007207679 A JP2007207679 A JP 2007207679A JP 2006027532 A JP2006027532 A JP 2006027532A JP 2006027532 A JP2006027532 A JP 2006027532A JP 2007207679 A JP2007207679 A JP 2007207679A
Authority
JP
Japan
Prior art keywords
platinum
fuel cell
catalyst
particles
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027532A
Other languages
Japanese (ja)
Inventor
Jun Yamamoto
潤 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006027532A priority Critical patent/JP2007207679A/en
Publication of JP2007207679A publication Critical patent/JP2007207679A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly for a fuel cell with hollow platinum catalyst particles, having high activity, excellent mass transfer, platinum particle connected structure, and high electron conductivity. <P>SOLUTION: The membrane electrode assembly for the fuel cell is constituted in such a way that the surface of a substrate 11 comprising particles having a primary diameter of 5 nm to 5 μm, being dissolved and removed with acid or alkali is covered with a platinum thin film to form platinum covered particles 18, the substrate is dissolved and removed from the platinum covered particles to form a hollow part 14 of the hollow platinum catalyst particles contained in a catalyst electrode for the fuel cell, and the catalyst electrode is arranged on one side or both sides of the solid polymer electrolyte membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用中空白金触媒粒子、膜電極接合体、それらの製造方法および燃料電池に関する。   The present invention relates to a hollow platinum catalyst particle for a fuel cell, a membrane electrode assembly, a production method thereof, and a fuel cell.

近年、エレクトロニクス分野においては、携帯電話や携帯情報端末(PDA)、ノートPC、デジタルスチルカメラ、デジタルビデオカメラなど携帯用電子機器の多機能化及び処理情報量の増大化が進み、消費電力量が益々大きくなっている。これに応じて、搭載電池の高エネルギー密度化及び高出力密度化は強く要望されている。   In recent years, in the electronics field, mobile electronic devices such as mobile phones, personal digital assistants (PDAs), notebook PCs, digital still cameras, and digital video cameras have become more multifunctional and the amount of processing information has increased. It is getting bigger and bigger. Accordingly, there is a strong demand for higher energy density and higher output density of the on-board battery.

現在、携帯電子機器用バッテリーとしての主流はLiイオン二次電池であり、さらに電池容量を上げるための技術開発は盛んに行なわれてはいるが、そのエネルギー密度を現在の段階からユーザーニーズを満たすほどに飛躍的に向上させることは難しい。そこで、従来の二次電池の延長ではない、新しいコンセプトの導入、即ち燃料電池の登場が期待されている。   At present, Li-ion secondary batteries are the mainstream as batteries for portable electronic devices, and technology development to further increase battery capacity has been actively carried out, but the energy density from the current stage meets user needs. It is difficult to improve so much. Therefore, the introduction of a new concept, that is, the appearance of a fuel cell, which is not an extension of the conventional secondary battery is expected.

燃料電池は水素と酸素を化学反応させて得られる化学エネルギーを直接電気エネルギーに変換するものである。そして、水素自身のエネルギー密度が高い点と、酸素を外気から取り入れる場合はカソード側の活物質を持たなくて良い点から、体積及び重量あたりのエネルギー量を、従来の電池に比べて飛躍的に高めることができる。   A fuel cell directly converts chemical energy obtained by a chemical reaction between hydrogen and oxygen into electrical energy. And since the energy density of hydrogen itself is high, and when oxygen is taken in from the outside air, it is not necessary to have an active material on the cathode side, the energy amount per volume and weight is dramatically higher than that of conventional batteries. Can be increased.

中でも固体高分子型燃料電池(PEFC)は、フレキシブルなポリマー膜を電解質とする全固体型のため、ハンドリング性が良く、構造はシンブルであり、低温作動で起動停止が早いなどの特徴を有していることから、携帯用電子機器搭載用に適している。   Above all, the polymer electrolyte fuel cell (PEFC) is an all-solid-state that uses a flexible polymer membrane as an electrolyte, so it has good handling characteristics, is simple in structure, has a low temperature operation, and is quick to start and stop. Therefore, it is suitable for mounting on portable electronic devices.

固体高分子型燃料電池の触媒には、白金黒ないしは白金をカーボン担体に担持させたもの、あるいは白金を含む貴金属をカーボン担体に担持させたものが広く用いられている。これらの触媒粒子は高分子電解質溶液と混練してスラリー状にされ、ポロテトラフルオロエチレン(PTFE)などからなる支持シート上にドクターブレード法などで展開・塗布されることで触媒電極を形成する。次いで、支持シート上に形成された触媒電極を高分子電解質膜の両側に熱転写することで、膜電極接合体を形成する。   As a catalyst for a polymer electrolyte fuel cell, platinum black or a catalyst in which platinum is supported on a carbon carrier or a catalyst in which a noble metal containing platinum is supported on a carbon carrier is widely used. These catalyst particles are kneaded with a polymer electrolyte solution to form a slurry, and developed and applied by a doctor blade method or the like on a support sheet made of polytetrafluoroethylene (PTFE) or the like to form a catalyst electrode. Next, the membrane electrode assembly is formed by thermally transferring the catalyst electrode formed on the support sheet to both sides of the polymer electrolyte membrane.

燃料電池の特性は、一般にカソード側の過電圧の大きさに律速される。これは電極での触媒活性が、アノードの水素酸化反応に比べ、カソードの酸化還元反応で非常に低いためである。作動温度が低い固体高分子型燃料電池では、カソード過電圧が電池効率ロス全体の実に80%近くを占める。このため、電極単位面積あたりにおいて十分な出力を得るためには、多量の白金触媒の使用が必要となっている。   The characteristics of a fuel cell are generally limited by the magnitude of the overvoltage on the cathode side. This is because the catalytic activity at the electrode is much lower in the redox reaction at the cathode than in the hydrogen oxidation reaction at the anode. In a polymer electrolyte fuel cell with a low operating temperature, the cathode overvoltage accounts for nearly 80% of the total cell efficiency loss. For this reason, in order to obtain sufficient output per electrode unit area, it is necessary to use a large amount of platinum catalyst.

白金は希少であり、高価な材料であるために、電池コストを引き下げるためにも、白金の利用率を向上して使用量を低減させる必要がある。例えば、特許文献1では、カーボンブラック担体の細孔の内、直径が8nm以下の細孔が占める容積を0.5cm3/g以下とすることで、電解質が入り込めない担体細孔内への白金の担持を防ぎ、利用率を向上させている。
特開平9−167622号公報
Since platinum is a rare and expensive material, it is necessary to improve the utilization rate of platinum and reduce the amount of use in order to reduce battery costs. For example, in Patent Document 1, the volume occupied by pores having a diameter of 8 nm or less among the pores of the carbon black support is 0.5 cm 3 / g or less, so that the carrier pores into which the electrolyte cannot enter can be introduced. Platinum loading is prevented and the utilization rate is improved.
Japanese Patent Laid-Open No. 9-167622

このように白金を超微粒子化し、担体へ高分散担持させることで、利用率を高め、使用量の低減が図られている。しかしながら、白金担持カーボンを用いた場合の燃料電池の発電特性は、白金黒を用いた場合の発電特性には及ばないのが現状である。これは、実際の白金担持カーボンにおける電極の被覆状態が、必ずしも理想的な三相界面を形成していないからである。白金担持カーボンは一般に、粒径が10乃至50nmの一次粒子が数珠状に連なった構造のカーボンブラック表面に、粒径1乃至5nmの白金微粒子を担持してなる。白金粒子はカーボンブラック表面の微細孔に埋没したり、高分子電解質が不均一に分布した状態になっていることから高分子電解質に被覆されてなかったりするため、反応に寄与できないものも多く、そのため触媒活性が十分でない。   Thus, platinum is made into ultrafine particles and supported on a carrier in a highly dispersed manner, thereby increasing the utilization rate and reducing the amount used. However, the current power generation characteristics of fuel cells when using platinum-supported carbon are not comparable to the power generation characteristics when using platinum black. This is because the electrode covering state in the actual platinum-supporting carbon does not necessarily form an ideal three-phase interface. In general, platinum-supported carbon is formed by supporting platinum fine particles having a particle diameter of 1 to 5 nm on a carbon black surface having a structure in which primary particles having a particle diameter of 10 to 50 nm are arranged in a bead shape. Since platinum particles are buried in the fine pores on the surface of carbon black or the polymer electrolyte is not uniformly distributed because it is in a non-uniformly distributed state, there are many things that can not contribute to the reaction, Therefore, the catalytic activity is not sufficient.

白金担持カーボンで触媒活性を高めるためには、触媒電極の膜厚を大きくし、白金の担持量を増やす必要があるが、厚膜化することで、特にカソード側においては、酸素供給と生成水の排水という物質移動が妨げられる問題があった。   In order to increase the catalytic activity with platinum-supported carbon, it is necessary to increase the film thickness of the catalyst electrode and increase the amount of platinum supported, but by increasing the film thickness, particularly on the cathode side, oxygen supply and generated water There was a problem that prevented the mass transfer of wastewater.

一方、粒径5乃至10nmの白金黒を触媒電極に用いた場合、単味白金の高活性に加え、担持量を増やしても膜厚を薄くできることから、触媒活性を高めつつも物質移動を妨げるということが無い。さらには、カーボンブラック担体からなる構造でなく、白金単体が連結した構造を有することから、電子伝導性に優れ、発電の抵抗損失分を低減できる。これから、燃料電池の小型・高出力化という観点からは、白金の超微粒子化と担体への分散担持というコンセプトとは別に、白金黒のように担体を用いないバルク様な触媒構成にして、かつ白金使用量を低減された触媒電極が重要であると考えられる。   On the other hand, when platinum black having a particle size of 5 to 10 nm is used for the catalyst electrode, in addition to the high activity of simple platinum, the film thickness can be reduced even if the loading is increased. There is no such thing. Furthermore, since it has a structure in which platinum alone is connected instead of a structure composed of a carbon black carrier, it has excellent electron conductivity and can reduce the resistance loss of power generation. From the point of view of reducing the size and increasing the output of the fuel cell, apart from the concept of ultrafine platinum particles and dispersion support on the carrier, a bulk-like catalyst structure that does not use a carrier like platinum black, and It is considered that a catalyst electrode with a reduced amount of platinum used is important.

本発明は、白金の使用量を低減させ、かつ表面積が大きく、高活性な燃料電池用中空白金触媒粒子および燃料電池用触媒電極を提供するものである。
また、本発明は、前記中空白金触媒粒子を用いて、高活性で、物質移動に優れ、かつ白金粒子の連結した構造を有することから電子伝導性に優れた燃料電池用膜電極接合体を提供するものである。
また、本発明は、上記膜電極接合体を用いた燃料電池を提供するものである。
The present invention provides a highly active hollow platinum catalyst particle for a fuel cell and a catalyst electrode for a fuel cell that reduce the amount of platinum used and have a large surface area.
The present invention also provides a membrane electrode assembly for a fuel cell using the hollow platinum catalyst particles, which is highly active, excellent in mass transfer, and has a structure in which platinum particles are connected. It is to provide.
The present invention also provides a fuel cell using the membrane electrode assembly.

上記課題を解決するための燃料電池用中空白金触媒粒子は、酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子において、該白金被覆粒子から前記基体を溶解除去して中空部分を形成してなることを特徴とする。   A hollow platinum catalyst particle for a fuel cell for solving the above-mentioned problem is a platinum coating in which a platinum thin film is coated on the surface of a substrate composed of particles having a primary particle diameter of 5 nm to 5 μm dissolved and removed by an acid or an alkali. The particles are characterized in that a hollow portion is formed by dissolving and removing the substrate from the platinum-coated particles.

上記課題を解決するための燃料電池用触媒電極は、上記の中空白金触媒粒子を含有することを特徴とする。
上記課題を解決するための燃料電池用膜電極接合体は、上記の燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置してなることを特徴とする。
A catalyst electrode for a fuel cell for solving the above-described problems contains the hollow platinum catalyst particles described above.
A membrane electrode assembly for a fuel cell for solving the above-mentioned problems is characterized in that the above-mentioned catalyst electrode for a fuel cell is arranged on one side or both sides of a solid polymer electrolyte membrane.

上記課題を解決するための燃料電池用中空白金触媒粒子の製造方法は、酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆して白金被覆粒子を得る工程、該白金被覆粒子から前記基体を溶解除去して中空部分を形成する工程を有することを特徴とする。   A method for producing hollow platinum catalyst particles for a fuel cell for solving the above-mentioned problem is to coat a platinum thin film on the surface of a substrate composed of particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by acid or alkali. The method includes a step of obtaining platinum-coated particles and a step of dissolving and removing the substrate from the platinum-coated particles to form a hollow portion.

上記課題を解決するための燃料電池用膜電極接合体の製造方法は、上記の中空白金触媒粒子を含有する燃料電池用触媒電極を、固体高分子電解質膜の片側あるいは両面に配置する工程を有することを特徴とする。   A method for producing a membrane electrode assembly for a fuel cell for solving the above-described problem includes a step of disposing the catalyst electrode for a fuel cell containing the hollow platinum catalyst particles on one side or both sides of a solid polymer electrolyte membrane. It is characterized by having.

上記課題を解決するための燃料電池用膜電極接合体の製造方法は、酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を含有する燃料電池用触媒電極を得る工程、該中空白金触媒粒子を含有する燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程を有することを特徴とする。   A method for producing a membrane electrode assembly for a fuel cell for solving the above-mentioned problems is obtained by coating a platinum thin film on the surface of a substrate composed of particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by an acid or alkali. A step of obtaining a catalyst electrode for a fuel cell containing platinum-coated particles, a catalyst for a fuel cell containing hollow platinum catalyst particles in which a hollow portion is formed by dissolving and removing the substrate from the platinum-coated particles of the catalyst electrode for fuel cells It has the process of obtaining the electrode, and the process of arrange | positioning the catalyst electrode for fuel cells containing this hollow platinum catalyst particle on the one side or both surfaces of a solid polymer electrolyte membrane.

上記課題を解決するための燃料電池用膜電極接合体の製造方法は、酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、該燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を得る工程を有することを特徴とする。   A method for producing a membrane electrode assembly for a fuel cell for solving the above-mentioned problem is obtained by coating a platinum thin film on the surface of a substrate composed of particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by an acid or alkali. A step of obtaining a catalyst electrode for a fuel cell containing platinum-coated particles, a step of disposing the catalyst electrode for a fuel cell on one side or both sides of a solid polymer electrolyte membrane, the platinum-coated particles of the catalyst electrode for a fuel cell, It has the process of obtaining the hollow platinum catalyst particle which dissolved and removed and formed the hollow part, It is characterized by the above-mentioned.

上記課題を解決するための燃料電池、上記の燃料電池用膜電極接合体を有することを特徴とする。
本発明の中空白金触媒粒子は、酸またはアルカリによる化学処理で溶解除去される微粒子を基体として用い、該基体の表面に連続的に連なる白金薄膜を形成後、該基体を溶解除去することで得られる、該基体の跡形としての中空部分を内部に有することを特徴とする白金触媒粒子に関するものである。
It has the fuel cell for solving the above-mentioned subject, and the above-mentioned membrane electrode assembly for fuel cells.
The hollow platinum catalyst particles of the present invention use fine particles dissolved and removed by chemical treatment with acid or alkali as a substrate, and after forming a platinum thin film continuously connected to the surface of the substrate, the substrate is dissolved and removed. The present invention relates to a platinum catalyst particle having a hollow portion as a trace of the obtained substrate.

また、中空白金触媒粒子を用いた燃料電池用電極触媒は内部に中空部分を有することから、外壁に加え内壁を有し、白金表面積が大きく高活性であり、かつ触媒粒子自身が細孔径を多く有するため物質移動に優れ、かつ白金粒子の連結した構造を有することから電子伝導性に優れる。   In addition, since the electrode catalyst for fuel cells using hollow platinum catalyst particles has a hollow portion inside, it has an inner wall in addition to the outer wall, has a large platinum surface area and is highly active, and the catalyst particles themselves have a pore size. Since it has many, it is excellent in mass transfer, and since it has the structure which the platinum particle connected, it is excellent in electronic conductivity.

本発明によれば、中空白金触媒粒子がその内部に中空部分を有することから、白金の使用量を低減させ、かつ表面積が大きく、高活性な触媒粒子を提供できる。
該中空白金触媒粒子を用いた燃料電池用触媒電極および膜電極接合体は、触媒が内部に中空部分を有することから、外壁に加え内壁を有し、表面積が大きく高活性であり、かつ触媒粒子自身が細孔径を多く有するため物質移動に優れ、かつ白金粒子の連結した構造を有することから電子伝導性に優れる。
According to the present invention, since the hollow platinum catalyst particles have a hollow portion therein, the amount of platinum used can be reduced, and the catalyst particles having a large surface area and high activity can be provided.
The catalyst electrode and membrane electrode assembly for a fuel cell using the hollow platinum catalyst particles has a hollow portion in the inside thereof, and thus has an inner wall in addition to the outer wall, has a large surface area, and is highly active. Since the particles themselves have many pore diameters, they are excellent in mass transfer, and because they have a structure in which platinum particles are connected, they are excellent in electron conductivity.

これから、従来のような白金の超微粒子化と凝集を防ぐための担体上への分散担持という構成とは異なる、バルク様な高い触媒活性、拡散性、伝導性を有する燃料電池用触媒電極および膜電極接合体が提供できる。   From this, the catalyst electrode and membrane for fuel cells having high bulk bulk catalytic activity, diffusivity, and conductivity, which are different from the conventional configuration of dispersion and support on the support for preventing the formation of ultrafine platinum particles and aggregation. An electrode assembly can be provided.

また、電子機器搭載用としての要求に応え得る、小型かつ高出力な燃料電池を提供できる。   In addition, a small and high output fuel cell that can meet the demand for mounting on an electronic device can be provided.

以下、本発明を詳細に説明する。
中空白金触媒粒子は、酸またはアルカリによる化学処理で溶解除去される、一次粒径が5nm以上5μm以下のナノ乃至マイクロオーダーサイズの微粒子からなる基体を用い、該基体の表面に連続的に連なる白金薄膜を形成して白金被覆粒子を得た後、該基体を溶解除去することで得られる。該基体の跡形としての中空部分を内部に有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The hollow platinum catalyst particles are continuously connected to the surface of the substrate using a substrate made of fine particles having a primary particle size of 5 nm to 5 μm and dissolved and removed by chemical treatment with acid or alkali. After obtaining a platinum-coated particle by forming a platinum thin film, it is obtained by dissolving and removing the substrate. It has a hollow portion as a trace of the substrate inside.

前記基体は、化学処理によって溶解除去可能であるものならば種類は特に限定されない。例えば、銅、ニッケル、アルミニウム、亜鉛、錫、鉄等の金属粒子、酸化亜鉛、酸化錫、酸化珪素等の金属酸化物粒子、炭酸リチウム、炭酸カルシウム等の金属炭酸化物等の粒子が挙げられる。   The type of the substrate is not particularly limited as long as it can be dissolved and removed by chemical treatment. Examples thereof include metal particles such as copper, nickel, aluminum, zinc, tin, and iron, metal oxide particles such as zinc oxide, tin oxide, and silicon oxide, and particles such as metal carbonates such as lithium carbonate and calcium carbonate.

また、前記基体は、球状、棒状、樹枝状、鱗片状、いずれの形状のものでも用いられる。
前記基体に白金薄膜を形成する方法は、公知の方法を用いることができ、溶液法ではめっきや溶液中での分散吸着、気相法では蒸着やスパッタ等の種々の方法があるが、いずれの方法に限定されるものではなく、基体の種類に応じて、適した方法を選べばよい。
Further, the substrate may be in any shape such as a spherical shape, a rod shape, a dendritic shape, and a scale shape.
As a method for forming a platinum thin film on the substrate, a known method can be used. There are various methods such as plating and dispersion adsorption in a solution method, and vapor deposition and sputtering in a gas phase method. The method is not limited, and a suitable method may be selected according to the type of substrate.

前記基体に白金薄膜を被覆した白金被覆粒子は、酸性溶液或いはアルカリ溶液に浸漬させるなどの化学処理によって、基体を溶解除去し、基体の形状を追従した形状を有する単体としての中空白金触媒粒子が形成される。基体に対する白金薄膜の被覆が十分である場合は、中空白金触媒粒子は基体の跡形としての中空部分を内部に有することから、表面積が非常に大きくなり、高活性となる。   The platinum-coated particles in which the substrate is coated with a platinum thin film are hollow platinum catalyst particles having a shape that follows the shape of the substrate by dissolving and removing the substrate by chemical treatment such as immersion in an acidic solution or an alkaline solution. Is formed. When the coating of the platinum thin film on the substrate is sufficient, the hollow platinum catalyst particles have a hollow portion as a trace of the substrate inside, so that the surface area becomes very large and the activity becomes high.

基体に白金薄膜を被覆した白金被覆粒子は、酸性溶液或いはアルカリ溶液に浸漬すると、酸性溶液或いはアルカリ溶液は白金薄膜のピンホール等の被覆の欠陥部を通過して内部の基体に接触し基体を溶解する。溶解された基体は、該欠陥部を通過して外部へと溶出していくため、基体を溶解除去することができる。   When platinum-coated particles with a platinum thin film coated on a substrate are immersed in an acidic solution or an alkaline solution, the acidic solution or alkaline solution passes through a defective portion of the coating such as a pinhole of the platinum thin film and comes into contact with the internal substrate to cover the substrate. Dissolve. Since the dissolved substrate passes through the defect and elutes to the outside, the substrate can be dissolved and removed.

基体に被覆する白金薄膜の厚さは、0.3nm以上100nm以下、好ましくは1nm以上5nm以下が望ましい。
また、中空白金触媒粒子の大きさは、一次粒径が5nm以上5μm以下、好ましくは10nm以上100nm以下が望ましい。
The thickness of the platinum thin film coated on the substrate is 0.3 nm to 100 nm, preferably 1 nm to 5 nm.
The hollow platinum catalyst particles have a primary particle size of 5 nm to 5 μm, preferably 10 nm to 100 nm.

また、本発明の燃料電池用触媒電極の特徴は、基体の跡形としての中空部分を内部に有する中空白金触媒粒子を含有していることから、白金の使用量を大きく低減させながらも、触媒表面積が大きく高活性である。また、触媒粒子自身が細孔径を多く有するため、燃料供給、生成物の排出という物質移動に優れ、かつ白金粒子の連結した構造を有することから電子伝導性に優れた構成をとることを特徴とする。   In addition, the feature of the catalyst electrode for a fuel cell of the present invention is that it contains hollow platinum catalyst particles having a hollow portion as a trace of the substrate inside, so that the catalyst can be used while greatly reducing the amount of platinum used. High surface area and high activity. In addition, since the catalyst particles themselves have a large pore diameter, they are excellent in mass transfer such as fuel supply and product discharge, and have a structure in which platinum particles are connected, so that the structure is excellent in electron conductivity. To do.

また、燃料電池用膜電極接合体の製造方法は、該触媒粒子を用いて膜電極接合体を作製する過程で、該基体を溶解除去することを特徴とする。具体的には、以下の(1)乃至(3)の方法が挙げられるが、いずれの工程をとっても構わない。   The method for producing a membrane electrode assembly for a fuel cell is characterized in that the substrate is dissolved and removed in the process of producing a membrane electrode assembly using the catalyst particles. Specifically, the following methods (1) to (3) may be mentioned, but any step may be taken.

(1)中空白金触媒粒子を含有する燃料電池用触媒電極を、固体高分子電解質膜の片側あるいは両面に配置する工程を有する方法である。
(2)基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を含有する燃料電池用触媒電極を得る工程、該中空白金触媒粒子を含有する燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程を有する方法である。
(1) A method comprising a step of disposing a fuel cell catalyst electrode containing hollow platinum catalyst particles on one side or both sides of a solid polymer electrolyte membrane.
(2) A step of obtaining a catalyst electrode for a fuel cell containing platinum-coated particles formed by coating a platinum thin film on the surface of the substrate, and dissolving and removing the substrate from the platinum-coated particles of the catalyst electrode for the fuel cell to form a hollow portion A method comprising a step of obtaining a catalyst electrode for a fuel cell containing the formed hollow platinum catalyst particles, and a step of disposing the catalyst electrode for a fuel cell containing the hollow platinum catalyst particles on one side or both sides of the solid polymer electrolyte membrane It is.

(3)基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、該燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を得る工程を有する方法である。   (3) A step of obtaining a catalyst electrode for a fuel cell containing platinum-coated particles formed by coating a platinum thin film on the surface of a substrate, a step of disposing the catalyst electrode for a fuel cell on one side or both sides of a solid polymer electrolyte membrane, The method includes a step of obtaining hollow platinum catalyst particles in which hollow portions are formed by dissolving and removing the substrate from platinum-coated particles of the catalyst electrode for a fuel cell.

上記方法(1)では、基体を溶解除去した中空白金触媒粒子と、高分子電解質分散液とを混合して触媒スラリーを作製し、PTFE支持シート上にドクターブレード法などで展開・塗布されることで触媒電極を形成する。次いで、支持シート上に形成された触媒電極を高分子電解質膜の両側に熱転写することで膜電極接合体を形成する。   In the above method (1), hollow platinum catalyst particles obtained by dissolving and removing the substrate and a polymer electrolyte dispersion are mixed to prepare a catalyst slurry, which is developed and applied on a PTFE support sheet by a doctor blade method or the like. Thus, a catalyst electrode is formed. Next, the membrane electrode assembly is formed by thermally transferring the catalyst electrode formed on the support sheet to both sides of the polymer electrolyte membrane.

上記方法(2)では、基体の表面に白金薄膜を被覆して白金被覆粒子と、高分子電解質分散液とを混合して触媒スラリーを作製し、支持シート上にドクターブレード法などで展開・塗布されることで触媒電極を形成する。支持シート上の触媒電極を硫酸等の酸性溶液中に浸漬することで基体を溶解除去する。次いで、支持シート上に形成された触媒電極を高分子電解質膜の両側に熱転写することで膜電極接合体を形成する。   In the above method (2), the surface of the substrate is coated with a platinum thin film, and platinum-coated particles and a polymer electrolyte dispersion are mixed to prepare a catalyst slurry, which is then spread and applied on a support sheet by a doctor blade method or the like. As a result, a catalyst electrode is formed. The substrate is dissolved and removed by immersing the catalyst electrode on the support sheet in an acidic solution such as sulfuric acid. Next, the membrane electrode assembly is formed by thermally transferring the catalyst electrode formed on the support sheet to both sides of the polymer electrolyte membrane.

上記方法(3)では、基体の表面に白金薄膜を被覆して白金被覆粒子と、高分子電解質分散液とを混合して触媒スラリーを作製し、支持シート上にドクターブレード法などで展開・塗布されることで触媒電極を形成する。次いで、支持シート上に形成された触媒電極を高分子電解質膜の両側に熱転写することで、膜電極接合体を形成する。膜電極接合体を硫酸等の酸性溶液中に浸漬することで基体を溶解除去して膜電極接合体を得る。   In the above method (3), the surface of the substrate is coated with a platinum thin film, and platinum-coated particles and a polymer electrolyte dispersion are mixed to prepare a catalyst slurry, which is developed and applied on a support sheet by a doctor blade method or the like. As a result, a catalyst electrode is formed. Next, the membrane electrode assembly is formed by thermally transferring the catalyst electrode formed on the support sheet to both sides of the polymer electrolyte membrane. The membrane / electrode assembly is obtained by immersing the membrane / electrode assembly in an acidic solution such as sulfuric acid to dissolve and remove the substrate.

本発明による中空白金触媒粒子、及びそれを用いた触媒電極を図面を用いて説明すると以下のようになる。
図1は、本発明の中空白金触媒粒子の製造方法の一例を示す説明図である。基体11の表面に白金薄膜12を被覆して白金被覆粒子18を得た後、基体11を化学処理により溶解除去することで、基体の跡形としての中空部分14を内部に有する中空白金触媒粒子1が得られる。該中空白金触媒粒子1は外壁15に加え内壁16を有することから、非常に大きな表面積を有し、触媒活性も高い。
A hollow platinum catalyst particle according to the present invention and a catalyst electrode using the same will be described below with reference to the drawings.
FIG. 1 is an explanatory view showing an example of a method for producing hollow platinum catalyst particles of the present invention. After the platinum thin film 12 is coated on the surface of the substrate 11 to obtain the platinum-coated particles 18, the substrate 11 is dissolved and removed by chemical treatment, whereby hollow platinum catalyst particles having hollow portions 14 as traces of the substrate inside. 1 is obtained. Since the hollow platinum catalyst particle 1 has the inner wall 16 in addition to the outer wall 15, it has a very large surface area and a high catalytic activity.

17は白金の被覆の欠陥部であり、酸性溶液或いはアルカリ溶液は該欠陥部を通過して内部の基体に接触し基体を溶解する。溶解された基体は、該欠陥部を通過して外部へと溶出していくことで、基体の溶解除去を可能ならしめる。   Reference numeral 17 denotes a defect portion of the platinum coating, and the acidic solution or the alkali solution passes through the defect portion and comes into contact with the substrate inside to dissolve the substrate. The dissolved substrate passes through the defect and is eluted to the outside, so that the substrate can be dissolved and removed.

図2は、図1で示した中空白金触媒粒子を用いた触媒電極の構成の一例を示す説明図である。触媒電極2は中空白金触媒粒子1と高分子電解質21を3次元的に分散配置させた構成からなる。   FIG. 2 is an explanatory view showing an example of the configuration of a catalyst electrode using the hollow platinum catalyst particles shown in FIG. The catalyst electrode 2 has a configuration in which the hollow platinum catalyst particles 1 and the polymer electrolyte 21 are three-dimensionally dispersed.

基体の跡形としての中空部分を内部に有する中空白金触媒粒子1を含有することから、白金の使用量を大きく低減させながらも、触媒表面積が大きく高活性である。また、中空白金触媒粒子自身が細孔径を多く有するため、燃料供給、生成物の排出という物質移動に優れ、かつ白金粒子の連結した構造を有することから電子伝導性に優れた構成をとる。   Since the hollow platinum catalyst particles 1 having hollow portions as traces of the substrate are contained therein, the catalyst surface area is large and the activity is high while greatly reducing the amount of platinum used. Further, since the hollow platinum catalyst particles themselves have many pore sizes, they have excellent mass transfer such as fuel supply and product discharge, and have a structure in which platinum particles are connected, and thus have an excellent electronic conductivity.

図3は、膜電極接合体の構成の一例を示す説明図である。固体高分子電解質膜32の両側に、触媒電極31として、図2で示した触媒電極2を、水素極及び空気極として配置してある。また、該触媒電極31は水素極或いは空気極としてどちらか一方に配置される構成でも構わない。   FIG. 3 is an explanatory diagram showing an example of the configuration of the membrane electrode assembly. The catalyst electrode 2 shown in FIG. 2 is disposed as a hydrogen electrode and an air electrode on both sides of the solid polymer electrolyte membrane 32 as the catalyst electrode 31. Further, the catalyst electrode 31 may be arranged as either a hydrogen electrode or an air electrode.

図4は、燃料電池の構成の一例を示す説明図である。固体高分子電解質51、アノード触媒電極52、カソード触媒電極53、アノード側集電板54、カソード側集電板55、外部出力端子56、燃料導入ライン57、燃料排出ライン58、アノード側燃料拡散層59、カソード側燃料拡散層60から成り、触媒電極表面の三相界面で化学反応が起こることで電力が発生する。ここで、セルの構成として、例えば図4に示す構成を複数層形成することで発生電圧値及び出力値を高めることができる。この場合、半導体プロセスを応用して上記セルを作製することで、燃料電池システムの小型化、高出力化が可能となる。   FIG. 4 is an explanatory diagram showing an example of the configuration of the fuel cell. Solid polymer electrolyte 51, anode catalyst electrode 52, cathode catalyst electrode 53, anode side current collecting plate 54, cathode side current collecting plate 55, external output terminal 56, fuel introduction line 57, fuel discharge line 58, anode side fuel diffusion layer 59, the cathode-side fuel diffusion layer 60, and power is generated by a chemical reaction occurring at the three-phase interface on the surface of the catalyst electrode. Here, as the configuration of the cell, for example, the generated voltage value and the output value can be increased by forming a plurality of layers as shown in FIG. In this case, it is possible to reduce the size and increase the output of the fuel cell system by manufacturing the cell by applying a semiconductor process.

また、例えば、燃料としてアノード側に水素、カソード側に空気を用いた場合、アノード側に供給された燃料がもれることのないようにパッキングをすることが重要であり、カソード側は燃料が供給されやすいように空気に対して開放されている事が重要である。また拡散層とは、触媒電極への燃料の均一な供給と、セル反応の集電を担うために設置された高気孔率を有する導電性部材であり、炭素繊維織物やカーボンペーパー等を好適に用いることができる。   In addition, for example, when hydrogen is used as the fuel on the anode side and air is used on the cathode side, it is important to pack so that the fuel supplied to the anode side does not leak, and fuel is supplied to the cathode side. It is important to be open to the air so that it can be easily done. The diffusion layer is a conductive member having a high porosity that is installed to uniformly supply the fuel to the catalyst electrode and collect the current of the cell reaction, and is preferably made of carbon fiber fabric or carbon paper. Can be used.

以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
基体の表面に白金薄膜を形成して、白金被覆粒子を作製した。基体には一次粒径が200nmの銅粉を用いた。銅粉を塩化白金酸水溶液中に浸漬させる無電解めっきにより、銅粉の表面に白金を析出させた。次いで、純水で洗浄して、銅粉の基体粒子表面上に厚薄の差異はあるが平均的な厚さ5nmの白金薄膜を有する白金被覆粒子を得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
A platinum thin film was formed on the surface of the substrate to produce platinum-coated particles. Copper powder having a primary particle size of 200 nm was used for the substrate. Platinum was deposited on the surface of the copper powder by electroless plating in which the copper powder was immersed in a chloroplatinic acid aqueous solution. Subsequently, it was washed with pure water to obtain platinum-coated particles having a platinum thin film having an average thickness of 5 nm although there was a difference in thickness on the surface of the copper powder base particles.

得られた白金被覆粒子1gに対して、高分子電解質分散溶液として5%ナフィオンアルコール系溶液(デュポン社製)1.5gを加え、水を適宜加えて攪拌し、触媒スラリーを作製した。この触媒スラリーをPTFEシート上にバーコーターにより100μmの厚さで展開・塗布して、触媒電極を形成した。シート上に形成された触媒電極を適当なサイズに切り出した後、固体高分子電解質膜としてナフィオン112(デュポン社製)の両面に、触媒電極面を内側に向けるように挟持し、130℃,1分の条件で熱転写して膜電極接合体を形成した。得られた膜電極接合体を硫酸と過酸化水素との混合液に浸漬して、白金被覆粒子の銅粉の基体を溶解除去して中空白金触媒粒子とした。次いで、純水で洗浄して、膜電極接合体を得た。   To 1 g of the resulting platinum-coated particles, 1.5 g of a 5% Nafion alcohol-based solution (manufactured by DuPont) was added as a polymer electrolyte dispersion, and water was appropriately added and stirred to prepare a catalyst slurry. This catalyst slurry was spread and coated on a PTFE sheet with a thickness of 100 μm by a bar coater to form a catalyst electrode. After the catalyst electrode formed on the sheet was cut out to an appropriate size, it was sandwiched between both surfaces of Nafion 112 (manufactured by DuPont) as a solid polymer electrolyte membrane with the catalyst electrode surface facing inward, and 130 ° C., 1 The film electrode assembly was formed by thermal transfer under the conditions of minutes. The obtained membrane / electrode assembly was immersed in a mixed solution of sulfuric acid and hydrogen peroxide to dissolve and remove the base of the copper powder of the platinum-coated particles to obtain hollow platinum catalyst particles. Subsequently, it was washed with pure water to obtain a membrane electrode assembly.

上記の膜電極接合体を用いて単セルからなる燃料電池を作製した。
燃料電池の拡散層にはカーボンクロスLT1400W(E−TEK社製)を使用し、集電板には表面に金メッキを施したSUS板を使用した。また、アノード側の封止のためにバイトン(DuPont社製)O−リングをシール材として使用し、これらをSUS材のプレートで上下から挟持し、締結することで燃料電池の構成となる。アノード側は水素供給ラインに繋がれていて、燃料として水素が供給される。また、カソード側には空気が自然拡散により供給される。燃料を供給した状態で燃料電池を電子負荷装置に接続し、発電特性を測定した。
A fuel cell composed of a single cell was produced using the membrane electrode assembly.
Carbon cloth LT1400W (manufactured by E-TEK) was used for the diffusion layer of the fuel cell, and a SUS plate with a gold plated surface was used for the current collector plate. Further, a Viton (DuPont) O-ring is used as a sealing material for sealing on the anode side, and these are sandwiched from above and below by a SUS material plate and fastened to form a fuel cell. The anode side is connected to a hydrogen supply line, and hydrogen is supplied as a fuel. Air is supplied to the cathode side by natural diffusion. With the fuel supplied, the fuel cell was connected to an electronic load device, and the power generation characteristics were measured.

実施例2
実施例1において触媒電極の形成時に、触媒スラリーを150μmの厚さで展開・塗布したものを用いた膜電極接合体を作製した。
Example 2
In Example 1, a membrane electrode assembly was produced using the catalyst slurry developed and applied in a thickness of 150 μm when the catalyst electrode was formed.

比較例1
比較例1として、50重量%白金担持カーボン粉末に5%ナフィオンアルコール系溶液を混合して触媒スラリーを作製し、PTFEシート上に100μmの厚さで展開・塗布して触媒電極を作製した。実施例1と同様のサイズに切り出した触媒シートをナフィオン112膜に挟持して熱転写し、膜電極接合体を作製した。
Comparative Example 1
As Comparative Example 1, a catalyst slurry was prepared by mixing a 50% by weight platinum-supported carbon powder with a 5% Nafion alcohol-based solution, and developed and applied on a PTFE sheet at a thickness of 100 μm to prepare a catalyst electrode. A catalyst sheet cut out to the same size as in Example 1 was sandwiched between Nafion 112 membranes and thermally transferred to produce a membrane electrode assembly.

比較例2
比較例1において触媒電極の形成時に、触媒スラリーを150μmの厚さで展開・塗布したものを用いた膜電極接合体を作製した。
Comparative Example 2
In Comparative Example 1, a membrane electrode assembly was prepared using a catalyst slurry developed and applied at a thickness of 150 μm when the catalyst electrode was formed.

図5は、実施例1及び2、比較例1及び2の単電池を駆動させて得られた電流−電圧曲線を示す。
触媒電極をともに100μmで形成した場合、実施例1は比較例1よりも電池特性が高くなった。これは、本実施例で作製した膜電極接合体の触媒電極が、基体の跡形としての中空部分を内部に有する中空白金触媒粒子で構成されていることから、触媒表面積が大きく高活性であり、かつ触媒粒子自身が細孔径を多く有する。また、カソード側の酸素供給や生成水の排出に優れ、また白金粒子の連結した構造を有することから電子伝導性に優れているためと考え得られた。
FIG. 5 shows current-voltage curves obtained by driving the cells of Examples 1 and 2 and Comparative Examples 1 and 2.
When both the catalyst electrodes were formed with a thickness of 100 μm, the battery characteristics of Example 1 were higher than those of Comparative Example 1. This is because the catalyst electrode of the membrane electrode assembly produced in this example is composed of hollow platinum catalyst particles having a hollow portion as a trace of the substrate inside, so that the catalyst surface area is large and the activity is high. In addition, the catalyst particles themselves have many pore sizes. Moreover, it was considered that it was excellent in oxygen supply and discharge of produced water on the cathode side, and because it had a structure in which platinum particles were connected, it was excellent in electron conductivity.

また、触媒電極を150μmで形成した場合、実施例2では実施例1よりも特性が高くなったのに対し、比較例2では比較例1よりも特性が低下した。これは、白金担持カーボンを用いた触媒電極は、厚膜化によって触媒活性の増加は図れるものの、炭素粒子の連結した構造を有することから電子抵抗が大きくなる。また、物質の移動、特にカソード側への酸素の供給量が低減されてたためと考えられる。一方、本実施例で作製した触媒電極では、厚膜化によって触媒活性が向上しつつも、電子伝導性や物質移動を妨げることはなかった。   When the catalyst electrode was formed with a thickness of 150 μm, the characteristics in Example 2 were higher than those in Example 1, whereas the characteristics in Comparative Example 2 were lower than those in Comparative Example 1. This is because a catalyst electrode using platinum-supported carbon has a structure in which the catalytic activity is increased by increasing the film thickness but has a structure in which carbon particles are connected, so that the electronic resistance is increased. Moreover, it is thought that the movement of the substance, especially the supply amount of oxygen to the cathode side was reduced. On the other hand, in the catalyst electrode produced in this example, although the catalytic activity was improved by increasing the film thickness, electron conductivity and mass transfer were not hindered.

これから、白金の使用量を同じように低減させる試みを持ちつつも、従来のような白金の超微粒子化と担体上への分散担持という構成とは異なる、バルク様な構成の、高い触媒活性、拡散性、伝導性を有する触媒電極が提供できた。   From now on, while having an attempt to reduce the amount of platinum used in the same way, a high catalyst activity with a bulk-like configuration, which is different from the conventional configuration of ultrafine platinum and dispersion support on the support, A catalyst electrode having diffusibility and conductivity could be provided.

本発明の燃料電池用中空白金触媒粒子は、触媒粒子がその内部に中空部分を有することから、表面積を大きくでき、高活性な触媒粒子を作製することができる。
また、該中空白金触媒粒子を用いた燃料電池用触媒電極を作製することで、十分な触媒活性、電子伝導性、及び物質移動性を保ちつつも、貴金属触媒の使用量を大きく低減させ、電池コストを下げることができる。
Since the hollow platinum catalyst particles for fuel cells of the present invention have a hollow portion inside the catalyst particles, the surface area can be increased and highly active catalyst particles can be produced.
In addition, by producing a catalyst electrode for a fuel cell using the hollow platinum catalyst particles, while maintaining sufficient catalytic activity, electron conductivity, and mass mobility, greatly reducing the amount of noble metal catalyst used, Battery cost can be reduced.

また、該触媒電極を用いることで、電子機器搭載用としての要求に応え得る、小型かつ高出力な燃料電池に利用することができる。   Further, by using the catalyst electrode, it can be used for a small and high output fuel cell that can meet the demand for mounting on electronic equipment.

本発明の中空白金触媒粒子の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the hollow platinum catalyst particle | grains of this invention. 図1で示した中空白金触媒粒子を用いた触媒電極の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the catalyst electrode using the hollow platinum catalyst particle shown in FIG. 膜電極接合体の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of a membrane electrode assembly. 燃料電池の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of a fuel cell. 実施例1及び2、比較例1及び2の燃料電池の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the fuel cell of Examples 1 and 2 and Comparative Examples 1 and 2.

符号の説明Explanation of symbols

1 中空白金触媒粒子
11 基体
12 白金薄膜
14 中空部分
15 外壁
16 内壁
17 被覆欠陥部
18 白金被覆粒子
2 触媒電極
21 高分子電解質
3 膜電極接合体
31 触媒電極
32 固体高分子電解質
51 固体高分子電解質
52 アノード触媒電極
53 カソード触媒電極
54 アノード側集電板
55 カソード側集電板
56 外部出力端子
57 燃料導入ライン
58 燃料排出ライン
59 アノード側燃料拡散層
60 カソード側燃料拡散層
DESCRIPTION OF SYMBOLS 1 Hollow platinum catalyst particle 11 Base body 12 Platinum thin film 14 Hollow part 15 Outer wall 16 Inner wall 17 Covering defect part 18 Platinum coated particle 2 Catalyst electrode 21 Polymer electrolyte 3 Membrane electrode assembly 31 Catalyst electrode 32 Solid polymer electrolyte 51 Solid polymer Electrolyte 52 Anode catalyst electrode 53 Cathode catalyst electrode 54 Anode side current collector plate 55 Cathode side current collector plate 56 External output terminal 57 Fuel introduction line 58 Fuel discharge line 59 Anode side fuel diffusion layer 60 Cathode side fuel diffusion layer

Claims (8)

酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子において、該白金被覆粒子から前記基体を溶解除去して中空部分を形成してなることを特徴とする燃料電池用中空白金触媒粒子。   In platinum-coated particles in which a platinum thin film is coated on the surface of a substrate composed of particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by acid or alkali, the substrate is dissolved and removed from the platinum-coated particles to form a hollow portion A hollow platinum catalyst particle for a fuel cell, characterized in that is formed. 請求項1に記載の中空白金触媒粒子を含有することを特徴とする燃料電池用触媒電極。   A catalyst electrode for a fuel cell comprising the hollow platinum catalyst particle according to claim 1. 請求項2に記載の燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置してなることを特徴とする燃料電池用膜電極接合体。   3. A fuel cell membrane electrode assembly comprising the fuel cell catalyst electrode according to claim 2 arranged on one side or both sides of a solid polymer electrolyte membrane. 酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆して白金被覆粒子を得る工程、該白金被覆粒子から前記基体を溶解除去して中空部分を形成する工程を有することを特徴とする燃料電池用中空白金触媒粒子の製造方法。   A step of obtaining a platinum-coated particle by coating a platinum thin film on the surface of a substrate composed of particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by an acid or an alkali; the substrate is dissolved and removed from the platinum-coated particle A method for producing hollow platinum catalyst particles for fuel cells, comprising a step of forming a portion. 請求項1に記載の中空白金触媒粒子を含有する燃料電池用触媒電極を、固体高分子電解質膜の片側あるいは両面に配置する工程を有することを特徴とする燃料電池用膜電極接合体の製造方法。   A fuel cell membrane electrode assembly comprising the step of disposing the catalyst electrode for a fuel cell containing the hollow platinum catalyst particles according to claim 1 on one side or both sides of a solid polymer electrolyte membrane. Method. 酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を含有する燃料電池用触媒電極を得る工程、該中空白金触媒粒子を含有する燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程を有することを特徴とする燃料電池用膜電極接合体の製造方法。   A step of obtaining a catalyst electrode for a fuel cell comprising platinum coated particles obtained by coating a platinum thin film on the surface of a substrate comprising particles having a primary particle size of 5 nm or more and 5 μm or less dissolved and removed by an acid or alkali; A step of obtaining a catalyst electrode for a fuel cell containing hollow platinum catalyst particles in which hollow portions are formed by dissolving and removing the substrate from platinum-coated particles of the catalyst electrode, and a catalyst electrode for fuel cells containing the hollow platinum catalyst particles A method for producing a membrane electrode assembly for a fuel cell, comprising the step of disposing a polymer electrolyte membrane on one side or both sides of a solid polymer electrolyte membrane. 酸またはアルカリにより溶解除去される一次粒径が5nm以上5μm以下の粒子からなる基体の表面に白金薄膜を被覆してなる白金被覆粒子を含有する燃料電池用触媒電極を得る工程、該燃料電池用触媒電極を固体高分子電解質膜の片側あるいは両面に配置する工程、前記燃料電池用触媒電極の白金被覆粒子から前記基体を溶解除去して中空部分を形成した中空白金触媒粒子を得る工程を有することを特徴とする燃料電池用膜電極接合体の製造方法。   A step of obtaining a catalyst electrode for a fuel cell containing platinum-coated particles formed by coating a platinum thin film on a surface of a substrate composed of particles having a primary particle size of 5 nm to 5 μm dissolved and removed by an acid or an alkali; Disposing the catalyst electrode on one or both sides of the solid polymer electrolyte membrane, and dissolving and removing the substrate from the platinum-coated particles of the fuel cell catalyst electrode to obtain hollow platinum catalyst particles in which hollow portions are formed. A method for producing a membrane electrode assembly for a fuel cell. 請求項3に記載の燃料電池用膜電極接合体を有することを特徴とする燃料電池。   A fuel cell comprising the fuel cell membrane electrode assembly according to claim 3.
JP2006027532A 2006-02-03 2006-02-03 Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell Pending JP2007207679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027532A JP2007207679A (en) 2006-02-03 2006-02-03 Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027532A JP2007207679A (en) 2006-02-03 2006-02-03 Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell

Publications (1)

Publication Number Publication Date
JP2007207679A true JP2007207679A (en) 2007-08-16

Family

ID=38486937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027532A Pending JP2007207679A (en) 2006-02-03 2006-02-03 Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell

Country Status (1)

Country Link
JP (1) JP2007207679A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992235A1 (en) * 2012-06-25 2013-12-27 Centre Nat Rech Scient HOLLOW PLATINUM NANOPARTICLES FOR FUEL CELLS
WO2015151408A1 (en) * 2014-04-03 2015-10-08 信越半導体株式会社 Workpiece cutting method and working fluid
JP2015206102A (en) * 2014-04-23 2015-11-19 株式会社ノリタケカンパニーリミテド Platinum hollow nanoparticle, catalyst carrying the particle, and method for producing the catalyst
CN111354953A (en) * 2018-12-20 2020-06-30 现代自动车株式会社 Method for preparing catalyst of fuel cell without carbon carrier
CN113206262A (en) * 2021-05-10 2021-08-03 太原科技大学 Preparation method of active-opening hollow-shell type nano Pt microstructure for fuel cell catalysis
WO2022206528A1 (en) * 2021-04-01 2022-10-06 宁德时代新能源科技股份有限公司 Current collector and preparation method therefor, and secondary battery and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992235A1 (en) * 2012-06-25 2013-12-27 Centre Nat Rech Scient HOLLOW PLATINUM NANOPARTICLES FOR FUEL CELLS
EP2680353A1 (en) * 2012-06-25 2014-01-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hollow platinum nanoparticles for fuel cells
US9755246B2 (en) 2012-06-25 2017-09-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hollow platinum nanoparticles for fuel cells
WO2015151408A1 (en) * 2014-04-03 2015-10-08 信越半導体株式会社 Workpiece cutting method and working fluid
JP2015196236A (en) * 2014-04-03 2015-11-09 信越半導体株式会社 Cutting method of workpiece and treatment liquid
CN106132631A (en) * 2014-04-03 2016-11-16 信越半导体株式会社 The cutting-off method of workpiece and working fluid
US10189181B2 (en) 2014-04-03 2019-01-29 Shin-Etsu Handotai Co., Ltd. Method for slicing workpiece and processing liquid
JP2015206102A (en) * 2014-04-23 2015-11-19 株式会社ノリタケカンパニーリミテド Platinum hollow nanoparticle, catalyst carrying the particle, and method for producing the catalyst
CN111354953A (en) * 2018-12-20 2020-06-30 现代自动车株式会社 Method for preparing catalyst of fuel cell without carbon carrier
WO2022206528A1 (en) * 2021-04-01 2022-10-06 宁德时代新能源科技股份有限公司 Current collector and preparation method therefor, and secondary battery and apparatus
CN113206262A (en) * 2021-05-10 2021-08-03 太原科技大学 Preparation method of active-opening hollow-shell type nano Pt microstructure for fuel cell catalysis

Similar Documents

Publication Publication Date Title
US10115972B2 (en) Single wall carbon nanotube based air cathodes
JP4626514B2 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THE SAME
CN102318112B (en) Ternary platinum alloy catalysts
JP5587797B2 (en) Direct fuel cell without selectively permeable membrane and components thereof
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
EP1997175A1 (en) Fuel cell electrode catalyst with improved noble metal utilization efficiency, method for manufacturing the same, and solid polymer fuel cell comprising the same
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP2009059524A (en) Fuel cell, gas diffusion layer for the same, method of manufacturing the same
JP2007207679A (en) Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell
JP2009026546A (en) Electrode for fuel cell, electrolyte dispersion solution for forming electrode, its manufacturing method, and solid polymer fuel cell
JP2014203809A (en) Positive electrode and process of manufacturing the same
JP4642656B2 (en) Fuel cell electrode and fuel cell using the same
US20070111085A1 (en) Electrocatalyst for fuel cell-electrode, membrane-electrode assembly using the same and fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JP2007329072A (en) Method of manufacturing electrode for fuel cell
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
JP2003308869A (en) Fuel cell
JP2022138872A (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP2007207678A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
KR20140088884A (en) A method for manufacturing a passive direct methanol fuel cell and a passive direct methanol fuel cell
CN1973391A (en) Formic acid fuel cells and catalysts
US11715833B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP2008192438A (en) Catalyst for fuel cell
KR101093708B1 (en) A electrode for fuel cell and a fuel cell comprising the same