JP2007204992A - Up welling current-generating submarine artificial levee and its construction method - Google Patents

Up welling current-generating submarine artificial levee and its construction method Download PDF

Info

Publication number
JP2007204992A
JP2007204992A JP2006023583A JP2006023583A JP2007204992A JP 2007204992 A JP2007204992 A JP 2007204992A JP 2006023583 A JP2006023583 A JP 2006023583A JP 2006023583 A JP2006023583 A JP 2006023583A JP 2007204992 A JP2007204992 A JP 2007204992A
Authority
JP
Japan
Prior art keywords
upwelling
steel pipe
artificial
submarine
levee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006023583A
Other languages
Japanese (ja)
Other versions
JP4539989B2 (en
Inventor
Atsushi Nagahama
淳 永濱
Hideyuki Kida
英之 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2006023583A priority Critical patent/JP4539989B2/en
Publication of JP2007204992A publication Critical patent/JP2007204992A/en
Application granted granted Critical
Publication of JP4539989B2 publication Critical patent/JP4539989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a up welling current-generating submarine artificial levee which enables a structure necessary for the generation of up welling current to be constructed as a lightweight structure of a minimum necessary size and which can be easily installed in a proper installation place on the bottom of the sea from on the ocean, and a construction method for the up welling current-generating submarine artificial levee. <P>SOLUTION: This up welling current-generating submarine artificial levee comprises: a steel-pipe truss structure 100 which is composed of three main steel pipes 110 each arranged in such a manner as to correspond to three axial edges of a virtual trigonal prism, and a plurality of connecting materials 120 for connecting the main steel pipes to one another; and at least two shielding plates 130 which are elongated in the axial direction of the main steel pipe on the outer peripheral surface or inside of the steel-pipe truss structure, and which have surface angles different from each other. A hollow space inside the main steel pipe is sealed, and water can be injected into the sealed hollow space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,湧昇流発生海底人工堤及びその施工方法に関する。   The present invention relates to a submarine artificial dam that generates upwelling currents and a construction method therefor.

海底には,栄養塩類を豊富に含んだ水平方向の底層流が形成されている。海底から海面方向へ流れる湧昇流を人工的に発生させることによって,栄養塩類が乏しい海面付近の表層に栄養塩類を上昇させる技術が提案されている。かかる技術により,太陽光が届く有光層である表層に栄養塩類が到達するため,光合成作用を伴って植物プランクトンが増殖し,海域の基礎生産力が増加する。すなわち,食物連鎖に基づいて,植物プランクトンの増殖によって,動物プランクトン,次いで魚類が増殖するため,漁獲高の増加を図ることができる良好な漁場を形成することができる。   At the bottom of the sea, a horizontal bottom current containing abundant nutrients is formed. Techniques have been proposed to raise nutrients to the surface layer near the sea surface where nutrients are scarce by artificially generating upwelling currents that flow from the sea floor toward the sea surface. With this technology, nutrient salts reach the surface layer, which is a lighted layer to which sunlight can reach, so that phytoplankton grows with photosynthesis and increases the basic productivity of the sea area. In other words, based on the food chain, zooplankton and then fish grow through the growth of phytoplankton, so that it is possible to form a good fishing ground that can increase the catch.

湧昇流を発生させる技術として,例えば,特許文献1には,海底に自然石やコンクリートブロックを積み上げてマウンド状の構造物を形成し,底層流を当該構造物に沿わせることによって,底層流を海面方向へ上昇させる技術が提案されている。また,海底に構造物を形成し,湧昇流を発生させる技術として,例えば,特許文献2には,角錐形状の架台と架台に斜設された複数の円筒柱から構成される構造物を形成する技術が提案され,特許文献3には,3方向に壁部を有する構造物を形成する技術が提案されている。   As a technique for generating the upwelling flow, for example, in Patent Document 1, a natural stone or concrete block is stacked on the seabed to form a mound-like structure, and the bottom layer flow is made to follow the structure, thereby forming the bottom layer flow. A technology to raise the sea level toward the sea surface has been proposed. In addition, as a technology for forming a structure on the seabed and generating upwelling flow, for example, Patent Document 2 discloses a structure composed of a pyramid-shaped frame and a plurality of cylindrical columns obliquely installed on the frame. A technique for forming a structure having walls in three directions is proposed in Patent Document 3.

特開平5−123076号公報JP-A-5-123076 特開平8−308426号公報JP-A-8-308426 特開平7−54322号公報Japanese Patent Laid-Open No. 7-54322

しかしながら,上記従来の特許文献1の技術によれば,海底の深さや海流の条件により構造物が大規模となった場合などには,洋上から海底へ投入される自然石やコンクリートブロックの投入量が多くなり,施工期間が長期化し,材料費や輸送費などを含めた施工コストが高価となるという問題があった。   However, according to the technology of the above-mentioned conventional Patent Document 1, when the structure becomes large due to the depth of the seabed or the conditions of the ocean current, the amount of natural stones and concrete blocks that are thrown into the seabed from the ocean However, there was a problem that the construction period was prolonged, and construction costs including material costs and transportation costs became expensive.

また,特許文献2や特許文献3の技術によれば,湧昇流を発生させるための構造物を地上で作成し,海上輸送する。そして,構造物の規模によっては,構造物を設置する現場で,大型の起重機船を使用して,構造物を海底に沈降する必要があり,施工にかかる時間とコストが嵩むという問題があった。   Moreover, according to the technique of patent document 2 and patent document 3, the structure for generating upwelling current is created on the ground, and is transported by the sea. Depending on the scale of the structure, it is necessary to sink the structure to the sea floor using a large hoist at the site where the structure is to be installed, which increases the time and cost for construction. .

そこで,本発明は,上記問題に鑑みてなされたものであり,本発明の目的とするところは,湧昇流の発生に必要な構造物を必要最小限の大きさかつ軽量の構造体で構築することができ,洋上から海底の適切な設置箇所に容易に設置することが可能な,新規かつ改良された湧昇流発生海底人工堤及び湧昇流発生海底人工堤の施工方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to construct a structure necessary for the generation of upwelling flow with a minimum size and a lightweight structure. To provide a new and improved upwelling generation submarine artificial levee and a method of constructing upwelling generation submarine artificial levee that can be installed at an appropriate location on the seabed from the ocean. It is in.

上記課題を解決するために,本発明のある観点によれば,仮想三角柱の軸方向の3つの稜に対応するようにそれぞれ配置された3本の主鋼管と,主鋼管を相互に連結する複数の連結材とからなる鋼管トラス構造体と;鋼管トラス構造体の外周面または内部に主鋼管の軸方向に延設され,相異なる面角度を有する少なくとも2枚の遮蔽板と;を備え,主鋼管内部の中空空間は,密閉されており,密閉された中空空間に注水可能に構成されたことを特徴とする,湧昇流発生海底人工堤が提供される。   In order to solve the above-described problem, according to one aspect of the present invention, three main steel pipes respectively arranged so as to correspond to three ridges in the axial direction of the virtual triangular prism and a plurality of main steel pipes connected to each other A steel pipe truss structure comprising: a connecting material of at least two shielding plates extending in the axial direction of the main steel pipe on the outer peripheral surface or inside of the steel pipe truss structure and having different surface angles; A hollow space inside the steel pipe is sealed, and an artificial submarine dam with upwelling flow is provided, which is characterized in that water can be poured into the sealed hollow space.

かかる構成により,遮蔽板は,海底を水平に流れている底層流を遮断して,海底から海面方向へ海流の流れ方向を転向させるので,湧昇流発生海底人工堤は,湧昇流を発生させることができる。また,主鋼管内部に密閉された中空空間を有するので,鋼管トラス構造体は,軽量であり,浮力によって洋上に浮遊する。そして,主鋼管内部の中空空間に海水を注入した場合,鋼管トラス構造体は,鋼管トラス構造体及び注入された海水による重力と,鋼管トラス構造体にかかる浮力との均衡によって,海中に徐々に沈降する。その結果,主鋼管と連結材とからなる鋼管トラス構造体は,湧昇流の発生に必要な湧昇流発生海底人工堤を必要最小限の大きさかつ軽量の構造体で構築することができる。また,洋上から海底の適切な設置箇所に容易に湧昇流発生海底人工堤を設置することができる。   With this configuration, the shielding plate blocks the bottom layer flow that flows horizontally across the seabed and diverts the flow direction of the ocean current from the bottom to the sea surface. Can be made. In addition, since the main steel pipe has a sealed hollow space, the steel pipe truss structure is lightweight and floats on the ocean by buoyancy. When seawater is injected into the hollow space inside the main steel pipe, the steel pipe truss structure gradually moves into the sea due to the balance between the gravity of the steel pipe truss structure and the injected seawater and the buoyancy on the steel pipe truss structure. Settling. As a result, the steel pipe truss structure consisting of the main steel pipe and the connecting material can be constructed with the minimum required size and lightweight structure for the upwelling generation submarine artificial dam necessary for generating upwelling flow. . In addition, it is possible to easily install an artificial submarine embankment that generates upwelling current from an offshore location at an appropriate location on the seabed.

また,上記連結材は,鋼管で構成されており,連結材内部の中空空間に注水可能に構成されてもよい。かかる構成により,連結材は,中空空間を有するため,鋼管トラス構造体は,軽量となり,浮力によって洋上に浮遊する。そして,連結材の中空空間に海水を注入した場合,湧昇流発生海底人工堤及び注入された海水による重力によって,湧昇流発生海底人工堤を海中に沈降させることができる。なお,上記連結材は,鋼管で構成される例に限定されず,例えば,棒鋼,H型鋼など任意の鋼材,他の材質の部材または組立部材などであってもよい。   Moreover, the said connection material is comprised with the steel pipe, and may be comprised so that water can be poured into the hollow space inside a connection material. With such a configuration, since the connecting material has a hollow space, the steel pipe truss structure is lightweight and floats on the ocean by buoyancy. When seawater is injected into the hollow space of the connecting material, the upwelling generation seabed artificial levee and the gravity due to the injected seawater can be submerged into the sea. In addition, the said connection material is not limited to the example comprised with a steel pipe, For example, arbitrary steel materials, such as bar steel and H-shaped steel, the member of another material, or an assembly member etc. may be sufficient.

また,上記遮蔽板は,鋼管トラス構造体内部に,相異なる面角度を有して3枚配設され,3枚の遮蔽板の一側端部は,3本の主鋼管にそれぞれ接合され,3枚の遮蔽板の他側端部は,鋼管トラス構造体内部において相互に接合されてもよい。かかる構成により,鋼管トラス構造体内部で,3枚の遮蔽板が相互に接合されているため,少ない材料で遮蔽板を構成することができる。また,海底に設置された湧昇流発生海底人工堤の接地面が,鋼管トラス構造体の外周面3面のうちどの面であっても,遮蔽板は,海底を水平に流れている底層流を遮断して,海底から海面方向へ海流の流れ方向を転向させるように配置されているので,湧昇流発生海底人工堤は,湧昇流を発生させることができる。   Further, the three shielding plates are arranged in the steel pipe truss structure with different surface angles, and one end of each of the three shielding plates is joined to the three main steel pipes, The other end portions of the three shielding plates may be joined to each other inside the steel pipe truss structure. With this configuration, since the three shielding plates are joined to each other inside the steel pipe truss structure, the shielding plate can be configured with a small amount of material. In addition, regardless of the three outer peripheral surfaces of the steel pipe truss structure, the shielding plate is a bottom layer flow that flows horizontally across the sea floor. Is arranged so that the flow direction of the ocean current is diverted from the sea floor to the sea surface, so the upwelling artificial seabed can generate the upwelling current.

また,湧昇流発生海底人工堤は,少なくとも3つの鋼管トラス構造体を備え,鋼管トラス構造体の軸方向の一端は,相互に接合されてもよい。かかる構成により,湧昇流発生海底人工堤を海底に設置する場合に,湧昇流発生海底人工堤がいかなる方向を向いたとしても,遮蔽板の向きは,海底を水平に流れている底層流を遮断して,海底から海面方向へ海流の流れ方向を転向させるような向きとなるので,湧昇流発生海底人工堤は,湧昇流を発生させることができる。また,湧昇流発生海底人工堤の設置方向を制御せずに,湧昇流発生海底人工堤を着底させることができるので,施工が容易かつ迅速になる。   Further, the upwelling generation submarine artificial dam may include at least three steel pipe truss structures, and one ends of the steel pipe truss structures in the axial direction may be joined to each other. With this configuration, when the upwelling seabed artificial levee is installed on the seabed, no matter which direction the upwelling seabed artificial dam faces, the direction of the shielding plate is the bottom layer flow that flows horizontally across the seabed. Since the direction of the flow of the ocean current is diverted from the sea bottom to the sea surface, the upwelling generation submarine artificial levee can generate the upwelling current. In addition, since the seabed artificial levee generating upwelling flow can be settled without controlling the installation direction of the seabed artificial levee generating upwelling current, construction becomes easy and quick.

また,上記主鋼管内部において,密閉された中空空間を区分する1または2以上の隔壁を備えてもよい。かかる構成により,主鋼管内部に複数の中空空間が形成されるため,主鋼管内部の中空空間に海水を注入する場合,注水する中空空間と注水しない中空空間とに分けることができる。その結果,湧昇流発生海底人工堤を沈降させる際,湧昇流発生海底人工堤を傾斜させることなく,鋼管トラス構造体の長手方向のバランスを維持して,略水平に沈降させることができる。   Moreover, you may provide the 1 or 2 or more partition which divides the sealed hollow space inside the said main steel pipe. With this configuration, since a plurality of hollow spaces are formed inside the main steel pipe, when seawater is injected into the hollow space inside the main steel pipe, it can be divided into a hollow space where water is poured and a hollow space where water is not poured. As a result, when sinking an upwelling submarine artificial levee, the steel pipe truss structure can be submerged substantially horizontally while maintaining the longitudinal balance of the steel pipe truss structure without tilting the upwelling submarine artificial levee. .

また,衝撃緩衝材が,上記主鋼管の外周面に設けられてもよい。かかる構成において,衝撃吸収材は,湧昇流発生海底人工堤の海底への着底時に生じる衝撃を吸収するので,湧昇流発生海底人工堤が破損することを防止できる。   Further, an impact buffering material may be provided on the outer peripheral surface of the main steel pipe. In such a configuration, the shock absorber absorbs an impact generated when the upwelling generation seabed artificial levee settles on the seabed, so that the upwelling generation seabed artificial levee can be prevented from being damaged.

上記課題を解決するために,本発明の別の観点によれば,上記の湧昇流発生海底人工堤を設置箇所の洋上に浮遊させる工程と;海水を湧昇流発生海底人工堤の主鋼管内部の密閉された中空空間に注水する工程と;湧昇流発生海底人工堤を設置箇所に沈降させる工程と;を含むことを特徴とする,湧昇流発生海底人工堤の施工方法が提供される。   In order to solve the above-mentioned problems, according to another aspect of the present invention, a process of floating the above-mentioned upwelling generation submarine artificial levee over the installation site; and a main steel pipe of the upwelling generation submarine artificial levee; There is provided a method for constructing an artificial submarine levee for generating upwelling flow, comprising the steps of pouring water into a sealed hollow space inside; The

かかる構成により,湧昇流発生海底人工堤の鋼管トラス構造体は,中空空間を有するので,湧昇流発生海底人工堤を洋上に浮遊させることができる。さらに,当該中空空間に海水を注入することができる。また,鋼管トラス構造体内部の中空空間に海水を注入した場合,鋼管トラス構造体は,鋼管トラス構造体及び注入された海水による重力と,鋼管トラス構造体にかかる浮力との均衡によって,海中に徐々に沈降させることができる。その結果,主鋼管と連結材とからなる鋼管トラス構造体は,湧昇流の発生に必要な湧昇流発生海底人工堤を必要最小限の大きさかつ軽量の構造体で構築することができる。また,湧昇流発生海底人工堤は,洋上から海底の適切な場所に容易に設置される。   With this configuration, the steel truss structure of the upwelling generation submarine artificial levee has a hollow space, so that the upwelling generation submarine artificial levee can be suspended on the ocean. Furthermore, seawater can be injected into the hollow space. In addition, when seawater is injected into the hollow space inside the steel truss structure, the steel truss structure is submerged in the sea due to the balance between the gravity of the steel pipe truss structure and the injected seawater and the buoyancy on the steel truss structure. It can be gradually settled. As a result, the steel pipe truss structure consisting of the main steel pipe and the connecting material can be constructed with the minimum required size and lightweight structure for the upwelling generation submarine artificial dam necessary for generating upwelling flow. . In addition, the upwelling submarine artificial dam is easily installed from the ocean to an appropriate location on the ocean floor.

また,上記沈降工程では,湧昇流発生海底人工堤の浮力を利用して,沈降させてもよい。かかる構成により,湧昇流発生海底人工堤の鋼管トラス構造体は,中空空間を有するので,中空空間に空気を残留させながら,海水を注入することができる。その結果,湧昇流発生海底人工堤は,浮力を受けるので,緩やかに海底へ沈降することができる。   Further, in the subsidence process, subsidence may be performed using the buoyancy of the artificial seabed with upwelling flow generation. With such a configuration, the steel pipe truss structure of the artificial seabed with upwelling flow generation has a hollow space, so that seawater can be injected while air remains in the hollow space. As a result, the uplifted seabed artificial levee receives buoyancy and can slowly sink to the seabed.

また,湧昇流発生海底人工堤を設置箇所の洋上に浮遊させる工程より前に,湧昇流発生海底人工堤を構築する工程と;設置箇所の洋上まで湧昇流発生海底人工堤を輸送する工程と;をさらに含んでもよい。かかる構成により,湧昇流発生海底人工堤の鋼管トラス構造体は,中空空間を有するので,鋼管トラス構造体は軽量であり,湧昇流発生海底人工堤の構築及び輸送を容易かつ迅速とすることができる。   In addition, the process of constructing an artificial submarine levee generating upwelling flow before the process of floating the submarine artificial levee generating upwelling on the offshore of the installation site; And a process. With this configuration, the steel truss structure of the seabed artificial levee generating the upwelling current has a hollow space, so the steel truss structure is lightweight, and the construction and transportation of the seabed artificial levee generating the upwelling current is easy and quick. be able to.

また,上記輸送工程は,湧昇流発生海底人工堤を洋上に浮遊させて輸送してもよい。かかる構成において,湧昇流発生海底人工堤は,洋上に浮遊されて輸送される。湧昇流発生海底人工堤の鋼管トラス構造体は,中空空間を有するので,湧昇流発生海底人工堤を海上に浮遊させて輸送することができる。その結果,輸送工程において,台船が不要となるため,輸送コストを削減することができる。   Further, in the transporting process, the artificial seabed with upwelling current generation may be suspended and transported on the ocean. In such a configuration, the upwelling submarine artificial levee is suspended and transported offshore. Since the steel pipe truss structure of the upwelling seabed artificial levee has a hollow space, it is possible to transport the uplifted seabed artificial levee floating on the sea. As a result, since no trolley is required in the transportation process, transportation costs can be reduced.

以上説明したように本発明によれば,湧昇流の発生に必要な構造物を必要最小限の大きさかつ軽量の構造体で構築することができ,洋上から海底の適切な設置箇所に容易に設置することができる。   As described above, according to the present invention, a structure necessary for generating upwelling flow can be constructed with a minimum size and a lightweight structure, and can be easily installed from the ocean to an appropriate location on the seabed. Can be installed.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)
まず,本発明の第1の実施形態にかかる湧昇流発生海底人工堤1について説明する。図1は,本発明の第1の実施形態にかかる湧昇流発生海底人工堤1を示す斜視図である。図2は,同実施形態にかかる湧昇流発生海底人工堤1を示す側面図である。図3は,図1のA−A線で切断した断面図である。
(First embodiment)
First, the upwelling generation submarine artificial dam 1 according to the first embodiment of the present invention will be described. FIG. 1 is a perspective view showing an upwelling generation submarine artificial dam 1 according to a first embodiment of the present invention. FIG. 2 is a side view showing the upwelling generation submarine artificial dam 1 according to the embodiment. 3 is a cross-sectional view taken along line AA in FIG.

湧昇流発生海底人工堤1は,海底190を水平に流れる底層流を遮断し,海底190から海面180方向へ流れる湧昇流を人工的に発生させる構造物である。湧昇流発生海底人工堤1は,例えば,例えば大陸棚が形成された沖合い約80km,海面180からの深さD(図7F参照)が約200〜300mの海底190に設置される。但し,湧昇流発生海底人工堤1の設置場所は,かかる例に限定されず,例えば水深はさらに浅くてもよいし,深くてもよい。   The upwelling generation submarine artificial dam 1 is a structure that interrupts the bottom layer flow that flows horizontally through the seabed 190 and artificially generates the upwelling current that flows from the seabed 190 toward the sea surface 180. The upwelling generation seabed artificial levee 1 is installed, for example, on the seabed 190 of about 80 km offshore where a continental shelf is formed and a depth D (see FIG. 7F) from the sea surface 180 of about 200 to 300 m. However, the installation location of the upwelling generation submarine artificial dam 1 is not limited to such an example, and the water depth may be shallower or deeper, for example.

湧昇流発生海底人工堤1は,底層流の流れの向きを海底190から海面180方向に転向できる規模を有しており,例えば,湧昇流発生海底人工堤1の長手方向の長さLが例えば約100〜200m,奥行き方向の長さLが例えば約20m〜30mであり,垂直高さHが例えば20〜30mである。但し,湧昇流発生海底人工堤1の長さや高さは,かかる例に限定されず,例えば海底190の深さや海流の速度,海流の幅などの設計条件に応じて変更してもよい。 The upwelling generation submarine artificial levee 1 has a scale that can change the direction of the flow of the bottom layer flow from the seabed 190 to the sea surface 180. For example, the longitudinal length L of the upwelling generation submarine artificial levee 1 1 is, for example, about 100 to 200 m, the length L 2 in the depth direction is, for example, about 20 m to 30 m, and the vertical height H is, for example, 20 to 30 m. However, the length and height of the upwelling seabed artificial levee 1 are not limited to this example, and may be changed according to design conditions such as the depth of the seabed 190, the speed of the sea current, and the width of the sea current.

上記の湧昇流発生海底人工堤1は,鋼管トラス構造体100と3枚の遮蔽板130とを備える。この鋼管トラス構造体100は,3本の主鋼管110と,主鋼管110を連結する連結材120とからなる鋼管トラス構造で形成されている。また,3枚の遮蔽板130は,鋼管トラス構造体100の内部に,主鋼管110の軸方向に延設されている。   The above-mentioned upwelling submarine artificial dam 1 includes a steel pipe truss structure 100 and three shielding plates 130. The steel pipe truss structure 100 is formed by a steel pipe truss structure including three main steel pipes 110 and a connecting member 120 that connects the main steel pipes 110. Further, the three shielding plates 130 are extended in the axial direction of the main steel pipe 110 inside the steel pipe truss structure 100.

鋼管トラス構造体100の主鋼管110の長さは,上記で説明したとおり,湧昇流発生海底人工堤1全体の長さに応じて定まり,例えば約100〜200mである。主鋼管110の管径は,例えば約2〜3mである。主鋼管110の肉厚は,例えば約12〜20mmである。主鋼管110は,中空空間119を有した鋼管であり,主鋼管110の軸方向の両側端部114は,例えば平板状の鋼板などによって,封止されている。なお,主鋼管110の外周面は,腐食防止のため電気防食や防食塗装等が施されてもよい。   As described above, the length of the main steel pipe 110 of the steel pipe truss structure 100 is determined according to the overall length of the upwelling seabed artificial levee 1 and is, for example, about 100 to 200 m. The pipe diameter of the main steel pipe 110 is, for example, about 2 to 3 m. The wall thickness of the main steel pipe 110 is, for example, about 12 to 20 mm. The main steel pipe 110 is a steel pipe having a hollow space 119, and both end portions 114 in the axial direction of the main steel pipe 110 are sealed with, for example, a flat steel plate. Note that the outer peripheral surface of the main steel pipe 110 may be subjected to anticorrosion, anticorrosion coating, or the like in order to prevent corrosion.

主鋼管110には,排気口116,注水口117と,格点部112が形成される。図1及び図3に示すように,排気口116は,例えば主鋼管110の横断面の上部に形成され,注水口117は,例えば主鋼管110の横断面の下部に形成される。また,排気口116には,排気制御手段としての排気用バルブ(図示せず)が設けられ,注水口117には,注水制御手段としての注水用バルブ(図示せず)が設けられてもよい。   The main steel pipe 110 is formed with an exhaust port 116, a water injection port 117, and a rating part 112. As shown in FIGS. 1 and 3, the exhaust port 116 is formed, for example, in the upper part of the cross section of the main steel pipe 110, and the water injection port 117 is formed, for example, in the lower part of the cross section of the main steel pipe 110. The exhaust port 116 may be provided with an exhaust valve (not shown) as exhaust control means, and the water injection port 117 may be provided with a water injection valve (not shown) as water injection control means. .

主鋼管110は,3本の主鋼管110が互いに平行するように配設される。このとき,鋼管トラス構造体100の横断面において,各主鋼管110が三角形の頂点に対応する位置に配設される。この三角形は,例えば正三角形とすることができる。   The main steel pipe 110 is disposed so that the three main steel pipes 110 are parallel to each other. At this time, in the cross section of the steel pipe truss structure 100, each main steel pipe 110 is disposed at a position corresponding to the apex of the triangle. This triangle can be, for example, a regular triangle.

上記鋼管トラス構造体100の連結材120は,例えば鋼管を用いることができ,この連結材120を成す鋼管の管径は例えば約1mである。なお,連結材120は,鋼管の例に限定されず,例えば,棒鋼,H型鋼など任意の鋼材,他の材質の部材または組立部材などであってもよい。連結材120は,3本の主鋼管110を連結して,鋼管トラス構造体100の全体の形状を保持する。   For example, a steel pipe can be used as the connecting member 120 of the steel pipe truss structure 100, and the diameter of the steel pipe forming the connecting member 120 is, for example, about 1 m. In addition, the connection material 120 is not limited to the example of a steel pipe, For example, arbitrary steel materials, such as bar steel and H-shaped steel, the member of another material, an assembly member, etc. may be sufficient. The connecting member 120 connects the three main steel pipes 110 and maintains the overall shape of the steel pipe truss structure 100.

複数の連結材120は,トラス構造を形成するように,主鋼管110と連結される。具体的には,主鋼管110の軸方向の端部114側で連結される連結材120は,例えば,主鋼管110の軸方向に対して垂直に連結される。また,主鋼管110の軸方向の中間部で連結される連結材120は,鋼管トラス構造体100の外側面内で斜めに配置される。なお,本明細書において,鋼管トラス構造体100の外側面とは,鋼管トラス構造体100の外周面であり,2辺が主鋼管110からなる略四角形の面をいう。   The plurality of connecting members 120 are connected to the main steel pipe 110 so as to form a truss structure. Specifically, the connecting member 120 connected on the axial end portion 114 side of the main steel pipe 110 is connected perpendicularly to the axial direction of the main steel pipe 110, for example. Further, the connecting member 120 connected at the intermediate portion in the axial direction of the main steel pipe 110 is disposed obliquely within the outer surface of the steel pipe truss structure 100. In the present specification, the outer surface of the steel pipe truss structure 100 is an outer peripheral surface of the steel pipe truss structure 100 and refers to a substantially rectangular surface having two main sides made of the main steel pipe 110.

主鋼管110の格点部112は,主鋼管110の外周面に形成され,主鋼管110と連結材120とが連結される部分に形成される。格点部112は,管の肉厚が格点部112以外の部分よりも厚く形成される。例えば,格点部112以外の主鋼管110の肉厚が12〜20mmのとき,格点部112の肉厚は30〜60mmで形成される。このように格点部112の肉厚が厚く形成されることにより,主鋼管110は,連結材120の軸力によって受ける押し抜きせん断に耐えることができる。   The grading portion 112 of the main steel pipe 110 is formed on the outer peripheral surface of the main steel pipe 110 and is formed at a portion where the main steel pipe 110 and the connecting material 120 are connected. The rating portion 112 is formed so that the thickness of the tube is thicker than the portion other than the rating portion 112. For example, when the thickness of the main steel pipe 110 other than the rating portion 112 is 12 to 20 mm, the thickness of the rating portion 112 is formed to be 30 to 60 mm. By forming the thickness of the grading portion 112 in this way, the main steel pipe 110 can withstand the punching shear received by the axial force of the connecting member 120.

連結材120が例えば鋼管である場合,主鋼管110と連結材120とは,例えば溶接によって連結される。一方,連結材120が例えばH型鋼である場合,主鋼管110と連結材120とは,主鋼管110に例えばガセットプレート(図示せず。)を設けて,ガセットプレートとH型鋼の連結材120とを溶接やボルトで接合することによって連結される。   When the connecting material 120 is a steel pipe, for example, the main steel pipe 110 and the connecting material 120 are connected by welding, for example. On the other hand, when the connecting material 120 is, for example, H-shaped steel, the main steel pipe 110 and the connecting material 120 include, for example, a gusset plate (not shown) provided in the main steel pipe 110, Are connected by welding or bolting.

上記遮蔽板130は,板厚が例えば12〜20mmの平板状の鋼板で形成できる。なお,遮蔽板130,鋼板の例に限定されず,例えば樹脂製や布製などとしてもよい。   The shielding plate 130 can be formed of a flat steel plate having a thickness of 12 to 20 mm, for example. In addition, it is not limited to the example of the shielding board 130 and a steel plate, For example, it is good also as a product made from resin or cloth.

遮蔽板130は,鋼管トラス構造体100内部において,鋼管トラス構造体100の軸方向に延設される。この場合,鋼管トラス構造体100軸方向の遮蔽板130の長さは,任意の長さとすることができる。このとき,複数の遮蔽板130を配設することによって,1枚の遮蔽板130を施工しやすい長さとすることができるので,湧昇流発生海底人工堤1の構築が容易となる。なお,鋼管トラス構造体100に複数の遮蔽板130を配設することにより,図1に示すように,遮蔽板130と遮蔽板130との間には,スリット134が形成される場合がある。但し,遮蔽板130が底層流を遮断する機能が損なわれないように,スリット134の間隔は,湧昇流発生海底人工堤1全体の長さLに比べて,短くする必要がある。 The shielding plate 130 extends in the axial direction of the steel pipe truss structure 100 inside the steel pipe truss structure 100. In this case, the length of the shielding plate 130 in the axial direction of the steel pipe truss structure 100 can be set to an arbitrary length. At this time, by arranging the plurality of shielding plates 130, it is possible to make the length of the one shielding plate 130 easy to construct, so that the construction of the upwelling generation seabed artificial levee 1 is facilitated. In addition, by arranging a plurality of shielding plates 130 on the steel pipe truss structure 100, a slit 134 may be formed between the shielding plates 130 as shown in FIG. However, as function of the shielding plate 130 blocks the bottom layer flow is not compromised, the interval of the slits 134, compared to the upwelling occurs seabed artificial dam 1 overall length L 1, it is necessary to shorten.

なお,鋼管トラス構造体100内部において,遮蔽板130を鋼管トラス構造体100の軸方向に複数枚配設せず,軸方向に一枚の遮蔽板130が配設されるとしてもよい。このとき,遮蔽板130は,主鋼管110の一の端部114から他の端部114まで,鋼管トラス構造体100の軸方向に長い1枚の遮蔽板130とすることができる。   In the steel pipe truss structure 100, a plurality of shielding plates 130 may not be provided in the axial direction of the steel pipe truss structure 100, but a single shielding plate 130 may be provided in the axial direction. At this time, the shielding plate 130 may be a single shielding plate 130 that is long in the axial direction of the steel pipe truss structure 100 from one end 114 to the other end 114 of the main steel pipe 110.

遮蔽板130は,鋼管トラス構造体100の内部に,相異なる面角度を有して形成される。3枚の遮蔽板130a〜130c(以下,130と総称する場合もある)は,図2(a)に示すように,接合材132を中心として,120度の間隔で配設される。かかる3枚の遮蔽板130a〜130cの配置は,鋼管トラス構造体100内部に遮蔽板130a〜130cを配して傾斜面を形成する際,最も材料を少なくすることができる配置である。そのため,本実施形態の遮蔽板130の配置は,材料費を最も安価にすることができる配置である。   The shielding plate 130 is formed inside the steel pipe truss structure 100 with different surface angles. As shown in FIG. 2A, three shielding plates 130a to 130c (hereinafter sometimes collectively referred to as 130) are arranged at intervals of 120 degrees with the bonding material 132 as the center. The arrangement of the three shielding plates 130a to 130c is an arrangement in which the material can be reduced most when the shielding plates 130a to 130c are disposed inside the steel pipe truss structure 100 to form the inclined surface. Therefore, the arrangement of the shielding plate 130 of the present embodiment is an arrangement that can minimize the material cost.

遮蔽板130は,それぞれの遮蔽板130a〜130cの一側端部136aが接合材132を介して相互に間接的に接合され,それぞれの遮蔽板130a〜130cの他側端部136bが主鋼管110と接合される。遮蔽板130a〜130cの側端部136aと接合材132,及び遮蔽板130a〜130cの側端部136bと主鋼管110とは,例えば溶接によって接合される。   In the shielding plate 130, one end portions 136a of the respective shielding plates 130a to 130c are indirectly joined to each other via a bonding material 132, and the other end portions 136b of the respective shielding plates 130a to 130c are joined to the main steel pipe 110. Joined with. The side end portions 136a of the shielding plates 130a to 130c and the joining material 132, and the side end portions 136b of the shielding plates 130a to 130c and the main steel pipe 110 are joined by welding, for example.

接合材132は,鋼管トラス構造体100の軸方向に平行な軸材である。接合材132は,例えば鋼管トラス構造体100の横断面において,3本の主鋼管110が形成する三角形の重心を通る。但し,かかる例に限定されず,接合材132は三角形の重心以外の位置に配設されてもよい。   The bonding material 132 is a shaft material parallel to the axial direction of the steel pipe truss structure 100. For example, in the cross section of the steel pipe truss structure 100, the bonding material 132 passes through the center of gravity of the triangle formed by the three main steel pipes 110. However, the present invention is not limited to this example, and the bonding material 132 may be disposed at a position other than the triangular center of gravity.

なお,遮蔽板130a〜130cの側端部136aの接合は,接合材132を介して間接的に接合される例に限定されず,遮蔽板130a〜130cの側端部136a同士が直接接合されてもよい。   The joining of the side end portions 136a of the shielding plates 130a to 130c is not limited to the example of being indirectly joined via the joining material 132, and the side end portions 136a of the shielding plates 130a to 130c are directly joined together. Also good.

上記の遮蔽板130は,鋼管トラス構造体100の内部に配設されているため,底層流によって異物が流れてきた場合でも,鋼管トラス構造体100の主鋼管110や連結材120によって防御されるため,破損するおそれが少ない。遮蔽板130は,必要に応じて遮蔽板130に補強材(図示せず。)を設けて,外力に耐えられるように補強してもよい。   Since the shielding plate 130 is disposed inside the steel pipe truss structure 100, even when foreign matter flows due to the bottom layer flow, the shielding plate 130 is protected by the main steel pipe 110 and the connecting member 120 of the steel pipe truss structure 100. Therefore, there is little risk of damage. The shielding plate 130 may be reinforced to withstand external force by providing a reinforcing material (not shown) on the shielding plate 130 as necessary.

上記で説明したように,鋼管トラス構造体100は,鋼管トラス構造体100の主鋼管110が中空であるため,浮力によって海面180上に浮遊する。また,主鋼管110は,注水口117を通じて中空空間119に海水が注水され,排気口116を通じて中空空間119の空気が排出される。このとき,湧昇流発生海底人工堤1は,湧昇流発生海底人工堤1及び注水された海水の重力によって海中に沈む。   As described above, the steel pipe truss structure 100 floats on the sea surface 180 due to buoyancy because the main steel pipe 110 of the steel pipe truss structure 100 is hollow. In the main steel pipe 110, seawater is injected into the hollow space 119 through the water injection port 117, and air in the hollow space 119 is discharged through the exhaust port 116. At this time, the upwelling seabed artificial levee 1 sinks into the sea due to the gravity of the upwelling seabed artificial dam 1 and the injected seawater.

注水口117及び排気口116にそれぞれ設けられた注水用バルブ及び排気口バルブが閉鎖されているとき,主鋼管110の中空空間119は密閉された状態となり,中空空間119に海水が浸入せず,鋼管トラス構造体100を海面180に浮遊させることができる。また,鋼管トラス構造体100が海面180に浮遊した状態で,上記の注水用バルブ及び排気用バルブを開放することによって,注水口117から中空空間119に海水が注入され,排気口116から中空空間119の空気が排出されて,鋼管トラス構造体100を海中に沈降させることができる。   When the water injection valve and the exhaust port valve respectively provided at the water injection port 117 and the exhaust port 116 are closed, the hollow space 119 of the main steel pipe 110 is in a sealed state, and seawater does not enter the hollow space 119, The steel pipe truss structure 100 can be suspended on the sea surface 180. In addition, when the steel pipe truss structure 100 is floated on the sea surface 180, the water injection valve and the exhaust valve are opened, so that seawater is injected from the water injection port 117 into the hollow space 119, and from the exhaust port 116 to the hollow space. 119 air is discharged, and the steel pipe truss structure 100 can be submerged in the sea.

また,上記バルブは,遠隔操作によって開放または閉鎖できるように構成されてもよい。その結果,鋼管トラス構造体100の注水時に,主鋼管110の中空空間119に注入する海水量を調整することができる。また,湧昇流発生海底人工堤1の着底時に,中空空間119に残留した空気を排出し,中空空間119に海水を完全に満たすように注水することができる。   The valve may be configured to be opened or closed by remote control. As a result, the amount of seawater injected into the hollow space 119 of the main steel pipe 110 can be adjusted when the steel pipe truss structure 100 is poured. In addition, when the upwelling seabed artificial levee 1 is settled, the air remaining in the hollow space 119 can be discharged, and water can be poured so that the hollow space 119 is completely filled with seawater.

連結材120を中空の鋼管で構成する場合は,連結材120に注水口(図示せず。)が設けられてもよい。この注入孔は,湧昇流発生海底人工堤1の沈降時に,連結材120の中空空間に海水を注水することができる。連結材120に設けられる注入孔は,例えば連結材120の側面に形成される。   In the case where the connecting member 120 is constituted by a hollow steel pipe, the connecting member 120 may be provided with a water inlet (not shown). This injection hole can inject seawater into the hollow space of the connecting member 120 when the submarine artificial dam 1 generating the upwelling flow is submerged. The injection hole provided in the connecting material 120 is formed on the side surface of the connecting material 120, for example.

また,主鋼管110と連結材120がともに鋼管である場合は,相互に連通するように,主鋼管110側面に貫通孔(図示せず。)を形成してもよい。このとき,連結材120側面に注入孔を設けなくても,主鋼管110に設けられた注水口117から注入された海水は,当該貫通孔を経由して,連結材120の中空空間に注水され,連結材120の中空空間に海水を満たすことができる。   Moreover, when both the main steel pipe 110 and the connection material 120 are steel pipes, you may form a through-hole (not shown) in the side surface of the main steel pipe 110 so that it may mutually communicate. At this time, the seawater injected from the water injection port 117 provided in the main steel pipe 110 is injected into the hollow space of the connection material 120 through the through hole without providing the injection hole on the side surface of the connection material 120. , The hollow space of the connecting member 120 can be filled with seawater.

鋼管トラス構造体100内部に3枚の遮蔽板130を配設することにより,図2(b)に示すとおり,3枚の遮蔽板130a〜130cのうちの2枚の遮蔽板130b,130cは,海底面190に対して約30度の傾斜面を形成する。また,遮蔽板130a〜130cのうちの1枚の遮蔽板130aは,海底面190に対してほぼ垂直な面を形成する。   By arranging the three shielding plates 130 inside the steel pipe truss structure 100, as shown in FIG. 2 (b), the two shielding plates 130b and 130c among the three shielding plates 130a to 130c are: An inclined surface of about 30 degrees with respect to the sea bottom 190 is formed. In addition, one of the shielding plates 130 a to 130 c forms a surface that is substantially perpendicular to the sea bottom 190.

その結果,海底面190に対して水平方向に流れる底層流は,例えば遮蔽板130bによって遮断され,海底190から海面180方向へ流れが転向する。この転向した海流は,遮蔽板130aに沿って垂直方向に流れることで,湧昇流が発生する。   As a result, the bottom layer flow flowing in the horizontal direction with respect to the sea bottom 190 is blocked by, for example, the shielding plate 130b, and the flow is turned from the sea bottom 190 toward the sea surface 180. The diverted ocean current flows in the vertical direction along the shielding plate 130a, thereby generating upwelling current.

また,遮蔽板130は,鋼管トラス構造体100内部で,例えば正三角形の重心を中心として,各主鋼管110と接するように放射状に配置されている。その結果,湧昇流発生海底人工堤1が海底190に着底した際,鋼管トラス構造体100の外側面は,どの面が海底面190に接地する底面となったしても,3つの遮蔽板130a〜130cで形成される傾斜面及び垂直面の配置は同じである。そのため,湧昇流発生海底人工堤1を着底させる工程で,湧昇流発生海底人工堤1の接地面を制御せずに,湧昇流を発生させるための傾斜面及び垂直面を得ることができる。   In addition, the shielding plate 130 is radially arranged inside the steel pipe truss structure 100 so as to be in contact with each main steel pipe 110 around the center of the equilateral triangle, for example. As a result, when the upwelling seabed artificial levee 1 settles on the seabed 190, the outer surface of the steel pipe truss structure 100 has three shields regardless of which surface becomes the bottom surface that contacts the seabed 190. The arrangement of the inclined surface and the vertical surface formed by the plates 130a to 130c is the same. Therefore, it is possible to obtain an inclined surface and a vertical surface for generating the upwelling flow without controlling the ground contact surface of the upwelling generated submarine artificial dam 1 in the process of landing the upwelling generated submarine artificial dam 1. Can do.

上記のとおり,主鋼管110と連結材120とからなる鋼管トラス構造体100は,湧昇流の発生に必要な湧昇流発生海底人工堤1を必要最小限の大きさで,軽量の構造体で構築することができる。遮蔽板130は,海底190を水平に流れている底層流を遮断して,海底190から海面180方向へ海流の流れ方向を変化させ,湧昇流を発生させる。   As described above, the steel truss structure 100 composed of the main steel pipe 110 and the connecting member 120 is a light-weight structure with the minimum required size of the artificial seabed 1 for generating the upwelling flow necessary for generating the upwelling flow. Can be built with. The shielding plate 130 blocks the bottom layer flow that flows horizontally through the seabed 190, changes the flow direction of the ocean current from the seabed 190 toward the sea surface 180, and generates upwelling flow.

また,鋼管トラス構造体100が三角柱の構造によって形成されることにより,鋼管トラス構造体100は,四角柱などの他の多角柱による構造に比べて,外力を受けても回転しにくい安定的な構造を得ることができる。また,同規模の構造物を構築する場合,他の多角柱構造に比べて,使用材料が最も少なくなり,製造コストや施工コストも安価である。   Further, since the steel pipe truss structure 100 is formed of a triangular column structure, the steel pipe truss structure 100 is more stable than the structure of other polygonal columns such as a quadrangular column and is difficult to rotate even when subjected to an external force. A structure can be obtained. In addition, when constructing a structure of the same scale, compared to other polygonal column structures, the materials used are the least, and the manufacturing cost and construction cost are also low.

また,海底に設置された湧昇流発生海底人工堤1の接地面が,鋼管トラス構造体100の外周面の3面のうちどの1面であっても,遮蔽板130によって形成される傾斜面及び垂直面の向きは,同じである。従って,いずれの場合でも,遮蔽板130は,海底190を水平に流れている底層流を遮断して,海底190から海面180方向へ海流の流れ方向を転向させるように配置されるので,湧昇流発生海底人工堤1は,湧昇流を発生させることができる。   In addition, the inclined surface formed by the shielding plate 130 is used for any one of the three outer peripheral surfaces of the steel pipe truss structure 100 as the ground contact surface of the upwelling generation artificial seawall 1 installed on the seabed. And the orientation of the vertical plane is the same. Therefore, in any case, the shielding plate 130 is disposed so as to block the bottom layer flow flowing horizontally on the seabed 190 and to turn the direction of the ocean current from the seabed 190 toward the sea surface 180. The flow generating submarine artificial dam 1 can generate upwelling flow.

次に,図4〜図6を参照して,本実施形態にかかる湧昇流発生海底人工堤1の遮蔽板の配置の変更例について説明する。図4〜図6は,それぞれ本実施形態にかかる湧昇流発生海底人工堤1の変更例を示す側面図である。   Next, with reference to FIGS. 4-6, the example of a change of arrangement | positioning of the shielding board of the upwelling generation submarine artificial dam 1 concerning this embodiment is demonstrated. 4-6 is a side view which shows the example of a change of the upwelling generation | occurrence | production seabed artificial dam 1 concerning this embodiment, respectively.

まず,図4に示した本実施形態にかかる湧昇流発生海底人工堤1の遮蔽板230a〜230c(以下,230と総称する場合もある)の配置の変更例について説明する。本変更例では,図4(a)に示すとおり,遮蔽板230は,鋼管トラス構造体100の外側面の3面全てに配置される。遮蔽板230は,鋼管トラス構造体100の軸方向に延設され,相異なる面角度を有して配設される。さらに,遮蔽板230は,連結材120に接して設置される。   First, a description will be given of a modified example of the arrangement of the shielding plates 230a to 230c (hereinafter sometimes referred to as 230) of the upwelling generation seabed artificial levee 1 according to the present embodiment shown in FIG. In this modified example, as shown in FIG. 4A, the shielding plate 230 is disposed on all three outer surfaces of the steel pipe truss structure 100. The shielding plate 230 extends in the axial direction of the steel pipe truss structure 100 and is disposed with different surface angles. Further, the shielding plate 230 is installed in contact with the connecting member 120.

図4(b)に示すとおり,3枚の遮蔽板230a〜230cのうちの2枚の遮蔽板230a,230bは,海底面190に対して約60度の傾斜面を形成する。その結果,海底面190に対して水平方向に流れる底層流は,例えば遮蔽板230aによって遮断され,遮蔽板230aに沿って海流が流れることにより,海底190から海面180方向へ流れる湧昇流が発生する。   As shown in FIG. 4B, the two shielding plates 230 a and 230 b out of the three shielding plates 230 a to 230 c form an inclined surface of about 60 degrees with respect to the sea bottom 190. As a result, the bottom layer flow that flows in the horizontal direction with respect to the sea bottom 190 is blocked by, for example, the shielding plate 230a, and the ocean current flows along the shielding plate 230a, thereby generating the upwelling flow that flows from the sea bottom 190 toward the sea surface 180. To do.

また,遮蔽板230a〜230cが鋼管トラス構造体100の外側面3面に設けられているので,湧昇流発生海底人工堤1が海底190に着底した際,どの外側面が海底面190に向いたとしても,残りの2面は,約60度の傾斜面を形成する。そのため,湧昇流発生海底人工堤1を着底させる工程で,湧昇流発生海底人工堤1の接地面を制御せずに,湧昇流を発生させるための傾斜面を得ることができる。   Further, since the shielding plates 230a to 230c are provided on the three outer side surfaces of the steel pipe truss structure 100, when the upwelling generation seabed artificial levee 1 settles on the seabed 190, which outer side surface is on the seabed 190. Even if it faces, the remaining two surfaces form an inclined surface of about 60 degrees. Therefore, it is possible to obtain an inclined surface for generating the upwelling flow without controlling the ground contact surface of the upwelling generated seabed artificial levee 1 in the process of landing the upwelling generated seabed artificial levee 1.

次に,図5に示した本実施形態にかかる湧昇流発生海底人工堤1の変更例について説明する。本変更例では,図5(a)に示すとおり,遮蔽板230は,鋼管トラス構造体100の外側面2面に配置される。遮蔽板230は,主鋼管110の軸方向に延設され,相異なる面角度を有して配設される。さらに,遮蔽板230は,連結材120に接して設置される。   Next, a modified example of the upwelling generation submarine artificial dam 1 according to the present embodiment shown in FIG. 5 will be described. In this modified example, as shown in FIG. 5A, the shielding plate 230 is disposed on the two outer surfaces of the steel pipe truss structure 100. The shielding plate 230 extends in the axial direction of the main steel pipe 110 and is disposed with different surface angles. Further, the shielding plate 230 is installed in contact with the connecting member 120.

図5(b)に示すとおり,遮蔽板230a,230bが設けられていない面が海底面190を向いた場合,2枚の遮蔽板230a,230bは,海底面190に対して約60度の傾斜面を形成する。その結果,海底面190に対して水平方向に流れる底層流は,例えば遮蔽板230aによって遮断され,遮蔽板230aに沿って海流が流れることにより,海底190から海面180方向へ流れる湧昇流が発生する。   As shown in FIG. 5B, when the surface where the shielding plates 230a and 230b are not provided faces the sea bottom 190, the two shielding plates 230a and 230b are inclined at about 60 degrees with respect to the sea bottom 190. Form a surface. As a result, the bottom layer flow that flows in the horizontal direction with respect to the sea bottom 190 is blocked by, for example, the shielding plate 230a, and the ocean current flows along the shielding plate 230a, thereby generating the upwelling flow that flows from the sea bottom 190 toward the sea surface 180. To do.

図5(c)に示すとおり,鋼管トラス構造体100の外周面のうち遮蔽板230が設けられた面のうちの1面,例えば遮蔽板230aが海底面190を向いた底面である場合,残りの遮蔽板230bは,海底面190に対して約60度の傾斜面を形成する。その結果,海底面190に対して水平方向に流れる底層流は,遮蔽板230bによって遮断され,遮蔽板230bに沿って海流が流れることにより,海底190から海面180方向へ流れる湧昇流が発生する。   As shown in FIG. 5C, one of the outer peripheral surfaces of the steel pipe truss structure 100 provided with the shielding plate 230, for example, the shielding plate 230a is a bottom surface facing the sea bottom 190, the remaining The shielding plate 230b forms an inclined surface of about 60 degrees with respect to the sea bottom 190. As a result, the bottom layer flow that flows in the horizontal direction with respect to the sea floor 190 is blocked by the shielding plate 230b, and the ocean current flows along the shielding plate 230b, thereby generating the upwelling flow that flows from the sea bottom 190 toward the sea surface 180. .

以上で説明したように,湧昇流発生海底人工堤1が海底190に着底した際,湧昇流発生海底人工堤1が,図5(b),図5(c)に示したどちらの向きで着底したとしても,少なくとも1面は,約60度の傾斜面を形成する。そのため,湧昇流発生海底人工堤1を着底させる工程で,湧昇流発生海底人工堤1の設置面を制御せずに,湧昇流を発生させるための傾斜面を得ることができる。   As described above, when the upwelling generation submarine artificial dam 1 settles on the seabed 190, the upwelling generation submarine artificial levee 1 is not shown in either of FIGS. 5 (b) and 5 (c). At least one surface forms an inclined surface of about 60 degrees even if it is settled in the direction. Therefore, it is possible to obtain an inclined surface for generating the upwelling flow without controlling the installation surface of the upwelling generated seabed artificial levee 1 in the process of landing the upwelling generated seabed artificial levee 1.

次に,図6に示した本実施形態にかかる湧昇流発生海底人工堤1の変更例について説明する。本変更例では,図6(a)に示すとおり,遮蔽板230が,鋼管トラス構造体100の外側面に設置される。遮蔽板330は,遮蔽板230に対して垂直となるように,主鋼管110と遮蔽板230との間に設けられる。   Next, a modified example of the upwelling generation submarine artificial dam 1 according to this embodiment shown in FIG. 6 will be described. In this modified example, as shown in FIG. 6A, the shielding plate 230 is installed on the outer surface of the steel pipe truss structure 100. The shielding plate 330 is provided between the main steel pipe 110 and the shielding plate 230 so as to be perpendicular to the shielding plate 230.

遮蔽板330は鋼管トラス構造体100の内部に,遮蔽板230は鋼管トラス構造体100の外周面に形成される。また,遮蔽板330,230は,主鋼管110の軸方向に延設され,相異なる面角度(例えば,90度)を有して配設される。さらに,遮蔽板230は,連結材120に接して設置される。   The shielding plate 330 is formed inside the steel pipe truss structure 100, and the shielding plate 230 is formed on the outer peripheral surface of the steel pipe truss structure 100. The shielding plates 330 and 230 extend in the axial direction of the main steel pipe 110 and are disposed with different surface angles (for example, 90 degrees). Further, the shielding plate 230 is installed in contact with the connecting member 120.

図6(b)に示すとおり,かかる構成において,遮蔽板230が設けられた面が海底面190を向いた場合,遮蔽板330は,海底面190に対して約90度の垂直面を形成する。その結果,海底面190に対して水平方向に流れる底層流は,遮蔽板330によって遮断され,遮蔽板330に沿って海流が流れることにより,海底190から海面180方向へ流れる湧昇流が発生する。   As shown in FIG. 6B, in such a configuration, when the surface on which the shielding plate 230 is provided faces the sea bottom surface 190, the shielding plate 330 forms a vertical surface of about 90 degrees with respect to the sea bottom surface 190. . As a result, the bottom layer flow that flows in the horizontal direction with respect to the sea floor 190 is blocked by the shielding plate 330, and the ocean current flows along the shielding plate 330, thereby generating the upwelling flow that flows from the sea bottom 190 toward the sea surface 180. .

図6(c)に示すとおり,かかる構成において,遮蔽板230が設けられていない面が海底面190を向いた場合,遮蔽板230は,海底面190に対して約60度の傾斜面を形成する。その結果,この場合は,海底面190に対して水平方向に流れる底層流は,遮蔽板230によって遮断され,遮蔽板230に沿って海流が流れることにより,海底190から海面180方向へ流れる湧昇流が発生する。   As shown in FIG. 6C, in such a configuration, when the surface on which the shielding plate 230 is not provided faces the sea bottom surface 190, the shielding plate 230 forms an inclined surface of about 60 degrees with respect to the sea bottom surface 190. To do. As a result, in this case, the bottom layer flow that flows in the horizontal direction with respect to the bottom surface 190 is interrupted by the shielding plate 230, and the ocean current flows along the shielding plate 230. A flow is generated.

以上で説明したように,湧昇流発生海底人工堤1が海底190に着底した際,湧昇流発生海底人工堤1が,図6(b),図6(c)に示したどちらの向きで着底したとしても,約90度の垂直面または約60度の傾斜面を形成する。そのため,湧昇流発生海底人工堤1を着底させる工程で,湧昇流発生海底人工堤1の設置面を制御せずに,湧昇流を発生させるための傾斜面を得ることができる。   As described above, when the upwelling generation submarine artificial dam 1 settles on the seabed 190, the upwelling generation submarine artificial levee 1 is not shown in either of FIGS. 6 (b) and 6 (c). Even if it is landed in the direction, a vertical surface of about 90 degrees or an inclined surface of about 60 degrees is formed. Therefore, it is possible to obtain an inclined surface for generating the upwelling flow without controlling the installation surface of the upwelling generated seabed artificial levee 1 in the process of landing the upwelling generated seabed artificial levee 1.

次に,図7A〜図7Fを参照して,本発明の第1の実施形態にかかる湧昇流発生海底人工堤1の施工方法について説明する。   Next, with reference to FIG. 7A-FIG. 7F, the construction method of the upwelling generation submarine artificial dam 1 concerning the 1st Embodiment of this invention is demonstrated.

まず,湧昇流発生海底人工堤1を構築する工程について説明する。図7Aは,本実施形態にかかる鋼管トラス構造体100の構築状況を示す説明図である。図7Aに示すように,鋼管トラス構造体100の構成部品,例えば連結材120は,起重機170によって吊り上げられ,連結箇所まで輸送される。鋼管トラス構造体100の構築は,主鋼管110と連結材120を連結し,遮蔽板130を配設することによって行われ,このような鋼管トラス構造体100の構築は,例えば地上で行われる。   First, the process of constructing the upwelling seabed artificial dam 1 will be described. FIG. 7A is an explanatory diagram showing a construction state of the steel pipe truss structure 100 according to the present embodiment. As shown in FIG. 7A, the components of the steel pipe truss structure 100, such as the connecting material 120, are lifted by the hoist 170 and transported to the connecting location. The construction of the steel pipe truss structure 100 is performed by connecting the main steel pipe 110 and the connecting member 120 and disposing the shielding plate 130. The construction of the steel pipe truss structure 100 is performed on the ground, for example.

従来技術である特許文献1の技術では,湧昇流発生のための構造物は,海底にコンクリートブロックを積載して構成されるため,当該構造物の施工は,洋上から構築箇所にコンクリートブロックを投下する方法で行われた。湧昇流を発生させる程度の大規模な構造物を構築するためには,多数のコンクリートブロックが必要である。また,コンクリートブロックは重量が大きいため,台船で構築箇所の洋上まで運搬することができる量は限定された。そのため,所定の構造物が完成するまで,複数回コンクリートブロックを台船で輸送する必要があり,施工期間が長期にわたる上,施工コストが嵩むという問題があった。   In the technology of Patent Document 1 which is a conventional technology, a structure for generating upwelling flow is constructed by loading concrete blocks on the sea floor. It was done by the method of dropping. In order to construct a large-scale structure that generates upwelling flow, a large number of concrete blocks are required. In addition, because the concrete block is heavy, the amount that can be transported to the offshore of the construction site by a trolley was limited. For this reason, it is necessary to transport the concrete block several times by trolley until a predetermined structure is completed, which causes a problem that the construction period is long and the construction cost increases.

これに対し,本実施形態では,鋼管トラス構造体100は,比較的少ない構成部品数からなるため,施工期間を短縮することができる。また,本実施形態にかかる湧昇流発生海底人工堤1は,完成品に至るまで地上で構築され,当該完成品の湧昇流発生海底人工堤1を設置箇所まで輸送するため,輸送は1回で済ませることができる。また,本実施形態にかかる湧昇流発生海底人工堤1の施工方法は,洋上での作業期間に比べて地上での作業期間が長いため,安全性が高い。   On the other hand, in this embodiment, since the steel pipe truss structure body 100 is composed of a relatively small number of components, the construction period can be shortened. Further, the upwelling generation submarine artificial dam 1 according to the present embodiment is constructed on the ground up to the finished product, and the completed upwelling generation submarine artificial levee 1 is transported to the installation location. Can be done in a single time. Moreover, the construction method of the upwelling seabed artificial levee 1 according to the present embodiment has a high safety because the work period on the ground is longer than the work period on the ocean.

なお,鋼管トラス構造体100の構築は,ユニット単位で行ってもよい。例えば,鋼管トラス構造体100を軸方向の所定の長さで等分したユニットごとに区切り,それぞれのユニットをまず構築する。この場合,各ユニットを構築後,それぞれのユニットを結合して,完成品の鋼管トラス構造体100を構築する。   The construction of the steel pipe truss structure 100 may be performed on a unit basis. For example, the steel pipe truss structure 100 is divided into units equally divided by a predetermined length in the axial direction, and each unit is first constructed. In this case, after each unit is constructed, the respective units are coupled to construct a finished steel pipe truss structure 100.

次に,湧昇流発生海底人工堤1を設置箇所の洋上まで輸送する工程を説明する。図7Bは,本実施形態にかかる湧昇流発生海底人工堤1の輸送状況を示す説明図である。   Next, the process of transporting the upwelling submarine artificial dam 1 to the offshore of the installation location will be described. FIG. 7B is an explanatory diagram showing a transport situation of the upwelling generation submarine artificial dam 1 according to the present embodiment.

図7Bに示すように,地上で構築された完成品の湧昇流発生海底人工堤1は,例えば台船によって洋上を輸送される。具体的には,湧昇流発生海底人工堤1は台船150に積載され,タグボート160によって牽引される。台船輸送は,湧昇流発生海底人工堤1の積載地から設置場所まで長距離である場合に適している。湧昇流発生海底人工堤1は,全長が例えば100m〜200mであるが,主鋼管110や鋼管の連結材120は中空であるため,同規模の構造物をコンクリートや中実の鋼製部品によって構築したときよりも,軽量であるため,輸送工程は容易かつ迅速となる。   As shown in FIG. 7B, the finished upwelling submarine artificial dam 1 constructed on the ground is transported offshore by, for example, a trolley. Specifically, the upwelling generation submarine artificial dam 1 is loaded on a trolley 150 and pulled by a tugboat 160. The carrier transportation is suitable for a long distance from the loading place of the submarine artificial dam 1 where the upwelling flow is generated to the installation place. The upwelling generation submarine artificial dam 1 has a total length of, for example, 100 m to 200 m. However, since the main steel pipe 110 and the steel pipe connecting material 120 are hollow, a structure of the same scale is made of concrete or solid steel parts. Because it is lighter than when constructed, the transportation process is easier and faster.

次に,湧昇流発生海底人工堤1を設置箇所の洋上に浮遊させる工程について説明する。図7Cは,本実施形態にかかる湧昇流発生海底人工堤1の設置現場の到着状況を示す説明図である。   Next, the process of floating the upwelling generation submarine artificial dam 1 on the installation site will be described. FIG. 7C is an explanatory diagram showing an arrival situation at the installation site of the upwelling generation submarine artificial dam 1 according to the present embodiment.

図7Cに示すように,設置箇所の洋上に到着した湧昇流発生海底人工堤1は,例えばシンキングバージによって,設置箇所の洋上に浮遊させる。具体的には,まず,台船150に海水を注水し,台船150を沈降させていく。台船150は,海水が注水されるにつれて,重さが増すため,浮遊状態から徐々に海中へと沈降する。次に,台船150は,湧昇流発生海底人工堤1と離れて沈降していく。このとき,湧昇流発生海底人工堤1は,注水口117及び排気口116が閉鎖された状態となっているので,洋上に浮遊する状態となる。その後,台船150は,タグボート160によって牽引され,湧昇流発生海底人工堤1下部から離隔される。   As shown in FIG. 7C, the upwelling generation submarine artificial dam 1 that has arrived on the ocean at the installation site is floated on the ocean at the installation site, for example, by a sinking barge. Specifically, first, seawater is poured into the trolley 150 to sink the trolley 150. Since the weight of the trolley 150 increases as the seawater is injected, the trolley 150 gradually sinks from the floating state into the sea. Next, the trolley 150 separates from the seabed artificial dam 1 where the upwelling flow is generated. At this time, the upwelling seabed artificial levee 1 is in a state of floating on the ocean because the water injection port 117 and the exhaust port 116 are closed. Thereafter, the trolley 150 is pulled by the tugboat 160 and separated from the lower part of the submarine artificial dam 1 where the upwelling flow is generated.

洋上に浮遊された湧昇流発生海底人工堤1は,注水口117及び排気口116を閉鎖させており,主鋼管110の中空空間119には,空気が存在している。従って,湧昇流発生海底人工堤1は,湧昇流発生海底人工堤1の自重による重力と浮力との均衡によって,洋上で浮遊する(図7D参照)。   The upwelling seabed artificial levee 1 floating on the ocean has closed the water injection port 117 and the exhaust port 116, and air exists in the hollow space 119 of the main steel pipe 110. Therefore, the upwelling seabed artificial levee 1 floats on the ocean due to the balance between gravity and buoyancy due to its own weight (see FIG. 7D).

次に,湧昇流発生海底人工堤1の主鋼管110の中空空間119に海水を注水する工程について説明する。図7Dは,同実施形態にかかる湧昇流発生海底人工堤1の注水状況を示す説明図である。   Next, a process of pouring seawater into the hollow space 119 of the main steel pipe 110 of the upwelling seabed artificial dam 1 will be described. FIG. 7D is an explanatory diagram showing a water injection situation of the upwelling generation seabed artificial dam 1 according to the embodiment.

図7Dに示すように,鋼管トラス構造体100内部の中空空間(主鋼管110の中空空間119と,連結材120の中空空間をいう)に海水を注水する。具体的には,主鋼管110の注水口117に設けられた注水用バルブと,排気口116に設けられた排気用バルブを開放する。このとき,注水口117から鋼管トラス構造体100内部の中空空間に注水される海水量を,注水用バルブ及び排気用バルブによって調整する。かかる調整によって,鋼管トラス構造体100内部の中空空間に海水が急速に注水されることを防止できる。   As shown in FIG. 7D, seawater is poured into the hollow space inside the steel pipe truss structure 100 (referring to the hollow space 119 of the main steel pipe 110 and the hollow space of the connecting member 120). Specifically, the water injection valve provided at the water injection port 117 of the main steel pipe 110 and the exhaust valve provided at the exhaust port 116 are opened. At this time, the amount of seawater injected from the water injection port 117 into the hollow space inside the steel pipe truss structure 100 is adjusted by the water injection valve and the exhaust valve. By such adjustment, seawater can be prevented from being rapidly poured into the hollow space inside the steel pipe truss structure 100.

次に,湧昇流発生海底人工堤1の設置箇所に湧昇流発生海底人工堤1を沈降させる工程について説明する。図7Eは,同実施形態にかかる湧昇流発生海底人工堤1の沈降状況を示す説明図である。   Next, the process of sinking the upwelling seabed artificial dam 1 at the place where the upwelling seabed artificial dam 1 is installed will be described. FIG. 7E is an explanatory diagram showing a subsidence state of the upwelling generation artificial seabed 1 according to the embodiment.

図7Eに示すように,注水され始めた湧昇流発生海底人工堤1は,湧昇流発生海底人工堤1及び海水の自重によって,湧昇流発生海底人工堤1にかかる浮力を受けながら,海底190に沈降していく。湧昇流発生海底人工堤1の沈降速度は,当該重力と浮力の均衡によって決定される。従って,注水口117及び排気口116それぞれに設けられた注水用バルブ及び排気用バルブの開閉によって,鋼管トラス構造体100内部の中空空間に注水される海水量を調整する。注入される海水量の調整は,中空空間に空気が残留するようにして,湧昇流発生海底人工堤1が急速に沈降せず,徐々に海底190の設置箇所へ沈降するように制御する。   As shown in FIG. 7E, the upwelling generation submarine artificial dam 1 that has begun to receive water is subjected to the buoyancy applied to the upwelling generation submarine artificial dam 1 by the weight of the upwelling generation submarine artificial dam 1 and the seawater. It sinks to the seabed 190. The subsidence speed of upwelling seabed artificial levee 1 is determined by the balance between gravity and buoyancy. Therefore, the amount of seawater injected into the hollow space inside the steel pipe truss structure 100 is adjusted by opening and closing the water injection valve and the exhaust valve provided at the water injection port 117 and the exhaust port 116, respectively. The adjustment of the amount of injected seawater is controlled so that air remains in the hollow space so that the upwelling seabed artificial levee 1 does not sink rapidly but gradually sinks to the place where the seabed 190 is installed.

次に,湧昇流発生海底人工堤1を設置箇所に着底させる工程について説明する。図7Fは,同実施形態にかかる湧昇流発生海底人工堤1の着底状況を示す説明図である。   Next, the process of landing the upwelling generation submarine artificial dam 1 at the installation location will be described. FIG. 7F is an explanatory diagram showing a landing state of the upwelling generation seabed artificial dam 1 according to the embodiment.

湧昇流発生海底人工堤1の着底時の速度は,湧昇流発生海底人工堤1に衝撃を与えず,破損しないような速度とする。湧昇流発生海底人工堤1の設置は,効率よく湧昇流を発生させるように,湧昇流発生海底人工堤1の長手方向を,海底190を水平に流れる底層流の向きに対して,ほぼ垂直の向きとする。   The speed at the time of landing of the upwelling seabed artificial levee 1 is set so as not to damage and damage the upwelling seabed artificial dam 1. Installation of the upwelling artificial submarine levee 1 is to set the longitudinal direction of the upwelling artificial submarine levee 1 to the direction of the bottom layer flow that flows horizontally through the submarine 190 so as to generate the upwelling flow efficiently. The direction is almost vertical.

湧昇流発生海底人工堤1の着底後は,注水口117に設けられた注水用バルブ及び排気口116に設けられた排気用バルブを,例えば遠隔操作によって開放し,鋼管トラス構造体100内部の中空空間に残留した空気を全て排出する。その結果,中空空間全てに海水が満たされるので,湧昇流発生海底人工堤1及び中空空間に注水された海水の重力によって,湧昇流発生海底人工堤1が海底190で滑動することを防止できる。   After the bottom-floor artificial levee 1 has settled, the water injection valve provided at the water injection port 117 and the exhaust valve provided at the exhaust port 116 are opened, for example, by remote operation, so that the inside of the steel pipe truss structure 100 All air remaining in the hollow space is discharged. As a result, since all the hollow space is filled with seawater, it is prevented that the artificial seabed 1 generated by the upwelling flow and the seawater injected into the hollow space 1 slide on the seabed 190 due to the gravity of the seawater injected into the hollow space. it can.

次に,図8A〜図8Cを参照して,本実施形態にかかる湧昇流発生海底人工堤1の施工方法の変更例について説明する。なお,図7A〜図7Fを参照して説明した湧昇流発生海底人工堤1の施工方法とは,輸送工程,浮遊工程が異なるが,他の工程は同じであるため,詳細な説明は省略する。   Next, with reference to FIG. 8A-FIG. 8C, the example of a change of the construction method of the upwelling generation submarine artificial dam 1 concerning this embodiment is demonstrated. In addition, although the transportation process and the floating process are different from the construction method of the upwelling generation submarine artificial dam 1 described with reference to FIGS. 7A to 7F, the other processes are the same, and the detailed description is omitted. To do.

まず,湧昇流発生海底人工堤1を設置箇所の洋上まで,湧昇流発生海底人工堤1を輸送する工程を説明する。図8Aは,同実施形態にかかる湧昇流発生海底人工堤1の輸送状況の変更例を示す説明図である。   First, the process of transporting the upwelling seabed artificial levee 1 to the offshore of the installation site will be described. FIG. 8A is an explanatory diagram showing a modification example of the transport status of the upwelling generation seabed artificial levee 1 according to the embodiment.

図8Aに示すように,本変更例において,地上で構築された完成形の湧昇流発生海底人工堤1は,浮遊曳航によって輸送される。具体的には,湧昇流発生海底人工堤1は,洋上に浮遊された状態でタグボート160によって牽引される。湧昇流発生海底人工堤1は,主鋼管110や鋼管の連結材120が中空であるため,主鋼管110の注水口117に設けられた注水用バルブ及び排気口116に設けられた排気用バルブを閉鎖し,主鋼管110の中空空間119に空気が存在する状態とすることにより,湧昇流発生海底人工堤1を洋上に浮遊させることができる。   As shown in FIG. 8A, in this modified example, the completed upwelling generation submarine artificial dam 1 constructed on the ground is transported by floating towing. Specifically, the upwelling generation submarine artificial dam 1 is pulled by the tugboat 160 in a state of floating on the ocean. Since the main steel pipe 110 and the connecting material 120 of the steel pipe are hollow in the upwelling seabed artificial levee 1, a water injection valve provided at the water injection port 117 of the main steel pipe 110 and an exhaust valve provided at the exhaust port 116. Is closed, and air is present in the hollow space 119 of the main steel pipe 110, so that the upwelling generation seabed artificial levee 1 can be suspended on the ocean.

また,湧昇流発生海底人工堤1は,同規模の構造物をコンクリートや中実の鋼製部品によって構築するときよりも,軽量である。そのため,湧昇流発生海底人工堤1は,洋上に浮遊させることができるため,浮遊曳航が可能となる。浮遊曳航は,台船が不要となるため,輸送コストを低減させることができる。   Also, the upwelling submarine artificial dam 1 is lighter than when a structure of the same scale is constructed with concrete or solid steel parts. For this reason, the upwelling seabed artificial levee 1 can be suspended on the ocean, and floating towing becomes possible. Floating towing eliminates the need for a trolley and can reduce transportation costs.

次に,湧昇流発生海底人工堤1を設置箇所の洋上に浮遊させる工程について説明する。図8Bは,同実施形態にかかる湧昇流発生海底人工堤1の設置現場の到着状況の変更例を示す説明図である。   Next, the process of floating the upwelling generation submarine artificial dam 1 on the installation site will be described. FIG. 8B is an explanatory diagram showing a modification example of the arrival status of the installation site of the upwelling generation artificial seabed 1 according to the embodiment.

上記浮遊曳航は,図7Bのような湧昇流発生海底人工堤1を積載する台船150を必要としないため,湧昇流発生海底人工堤1を台船150から洋上に下ろす作業が省略できる。図8Bに示すように,湧昇流発生海底人工堤1の設置箇所の洋上で,湧昇流発生海底人工堤1とタグボート160との係留を解除することによって,湧昇流発生海底人工堤1は設置箇所の洋上に浮遊させられる。注水口117に設けられた注水用バルブ及び排気口116に設けられた排気用バルブを閉鎖させており,鋼管トラス構造体100内部の中空空間は空気が存在していることから,湧昇流発生海底人工堤1は,洋上で浮遊する。   The floating towing does not require the pontoon 150 for loading the upwelling generation submarine artificial dam 1 as shown in FIG. 7B, so that the work of lowering the upwelling generation submarine artificial levee 1 from the trolley 150 to the ocean can be omitted. . As shown in FIG. 8B, by releasing the mooring between the upwelling generation submarine artificial levee 1 and the tugboat 160 on the ocean where the upwelling generation submarine artificial levee 1 is installed, Is suspended on the ocean where it is installed. Since the water injection valve provided in the water injection port 117 and the exhaust valve provided in the exhaust port 116 are closed, and air exists in the hollow space inside the steel pipe truss structure 100, the upwelling flow is generated. Submarine artificial levee 1 floats on the ocean.

図8Cは,同実施形態にかかる湧昇流発生海底人工堤1の注水状況の変更例を示す説明図である。注水口117及び排気口116にそれぞれ設けられた注水用バルブ及び排気用バルブを開放することにより,鋼管トラス構造体100内部の中空空間に海水を注水する。注水工程は,図7Dを参照して説明した上記注水工程と同様にして行うため,詳細な説明は省略する。   FIG. 8C is an explanatory diagram illustrating a modification example of the water injection state of the upwelling generation seabed artificial dam 1 according to the embodiment. Seawater is injected into the hollow space inside the steel pipe truss structure 100 by opening the water injection valve and the air exhaust valve respectively provided at the water injection port 117 and the exhaust port 116. Since the water injection process is performed in the same manner as the water injection process described with reference to FIG. 7D, detailed description thereof is omitted.

次に,図9を参照して,本実施形態にかかる湧昇流発生海底人工堤1の施工方法の沈降工程の変更例について説明する。図9は,同実施形態にかかる湧昇流発生海底人工堤1の沈降状況の変更例を示す説明図である。   Next, with reference to FIG. 9, the example of a change of the subsidence process of the construction method of the upwelling generation submarine artificial dam 1 concerning this embodiment is demonstrated. FIG. 9 is an explanatory view showing a modification example of the subsidence state of the upwelling generation artificial seabed 1 according to the embodiment.

上記の沈降工程の説明では,湧昇流発生海底人工堤1を沈降させる際,湧昇流発生海底人工堤1を介錯せず,そのまま沈降させる場合を説明した。本変更例では,ワイヤ270による介錯をしながら,湧昇流発生海底人工堤1を沈降させる。具体的には,例えば,ワイヤ270は,湧昇流発生海底人工堤1を介錯するため,台船250とタグボート260とに係留される。ワイヤ270の長さの調整は,台船250上のウインチ252で行う。   In the description of the subsidence process described above, the case where the upwelling generation submarine artificial dam 1 is submerged without being intervened in the upwelling generation submarine artificial dam 1 is described. In this modified example, the submarine artificial dam 1 generating the upwelling current is submerged while being interleaved by the wire 270. Specifically, for example, the wire 270 is moored to the trolley 250 and the tugboat 260 in order to intervene the upwelling generation seabed artificial levee 1. The length of the wire 270 is adjusted by the winch 252 on the carriage 250.

これにより,湧昇流発生海底人工堤1は,ワイヤ270によって拘束されるので,湧昇流発生海底人工堤1を,正確な向きに設置することができる。なお,湧昇流発生海底人工堤1は,鋼管トラス構造体100内部の中空空間に空気を残留させて,重力と浮力との均衡によって,緩やかな速度で沈降させることができる。そのため,湧昇流発生海底人工堤1の沈降工程は,大型の起重機船を使用することなく,ウインチなどを使用する簡易な方法で行うことができる利点を有する。   As a result, the upwelling generation submarine artificial dam 1 is restrained by the wire 270, so that the upwelling generation submarine artificial levee 1 can be installed in an accurate orientation. The upwelling submarine artificial dam 1 can be allowed to sink at a moderate speed by allowing air to remain in the hollow space inside the steel truss structure 100 and balancing the gravity and buoyancy. Therefore, the subsidence process of the upwelling generation submarine artificial dam 1 has an advantage that it can be performed by a simple method using a winch or the like without using a large hoist ship.

(第2の実施形態)
次に,図10を参照して,本発明の第2の実施形態にかかる湧昇流発生海底人工堤2について説明する。図10は,本発明の第2の実施形態にかかる湧昇流発生海底人工堤2を示す斜視図である。なお,湧昇流発生海底人工堤2は,上記湧昇流発生海底人工堤1と比べて,鋼管トラス構造体100の機能構成は同じであるため,その機能構成についての詳細な説明は省略する。
(Second Embodiment)
Next, with reference to FIG. 10, the upwelling generation submarine artificial dam 2 according to the second embodiment of the present invention will be described. FIG. 10 is a perspective view showing the upwelling generation submarine artificial dam 2 according to the second embodiment of the present invention. In addition, since the functional structure of the steel pipe truss structure 100 is the same in the upwelling generation submarine artificial dam 2 as compared with the upwelling generation submarine artificial levee 1, detailed description of the functional configuration is omitted. .

本実施形態にかかる湧昇流発生海底人工堤2は,例えば,図10に示すとおり3つの鋼管トラス構造体100から構成される。3つの鋼管トラス構造体100は,それぞれ異なる3方向を向くように形成されており,例えば中心材210を中心として120°ずつの間隔で相互に接続されている。1つの鋼管トラス構造体100の長さLは,例えば,3つの鋼管トラス構造体100の総長が200mとなるように,67mとすることができる。 The upwelling generation seabed artificial levee 2 according to the present embodiment is composed of, for example, three steel pipe truss structures 100 as shown in FIG. The three steel pipe truss structures 100 are formed so as to face three different directions, and are connected to each other at intervals of 120 ° with the center member 210 as the center, for example. The length L 3 of one steel truss structure 100, for example, as the total length of three steel truss structure 100 is 200 meters, it can be 67m.

湧昇流発生海底人工堤2において,鋼管トラス構造体100は,鋼管トラス構造体100の軸方向の端部102が相互に接合されている。なお,鋼管トラス構造体100は,端部102が中心材210に接合することにより,中心材210を介して間接的に相互に接合されてもよい。   In the upwelling seabed artificial levee 2, the steel pipe truss structure 100 is joined to the ends 102 in the axial direction of the steel pipe truss structure 100. Note that the steel pipe truss structure 100 may be indirectly joined to each other via the central member 210 by joining the end portion 102 to the central member 210.

中心材210には,海面180側上部に設置された3本の主鋼管110が接合されている。また,中心材210は,海底190に接地しており,海底190から垂直方向に延設される。かかる構成において,中心材210は,海面180側上部に設置された3本の主鋼管110を支持することができ,中心材210が設けられないときに比べて,湧昇流発生海底人工堤2全体の強度を高めることができる。   Three main steel pipes 110 installed at the upper part on the sea surface 180 side are joined to the central member 210. The central member 210 is in contact with the seabed 190 and extends from the seabed 190 in the vertical direction. In such a configuration, the central member 210 can support the three main steel pipes 110 installed at the upper part on the sea surface 180 side, and compared to the case where the central member 210 is not provided, the upwelling generation submarine artificial dam 2 is provided. The overall strength can be increased.

本実施形態において,遮蔽板130は,海底190で水平方向に流れる底層流を遮断し,湧昇流を発生させる。上述した本発明の第1の実施形態にかかる湧昇流発生海底人工堤1のような直線構造では,底層流を確実に遮断できるように,沈降時または着底時に設置方向の調整が必要である。一方,本実施形態にかかる湧昇流発生海底人工堤2では,遮蔽板130が3方向に向いているため,どの方向に設置されても底層流を遮断することができる。そのため,本実施形態にかかる湧昇流発生海底人工堤2の施工方法では,沈降工程や着底工程における湧昇流発生海底人工堤2の設置方向の調整を省略することができ,湧昇流発生海底人工堤2の施工が容易となる。   In the present embodiment, the shielding plate 130 blocks the bottom layer flow flowing in the horizontal direction on the seabed 190 and generates the upwelling flow. In the above-described linear structure like the upwelling generation submarine artificial dam 1 according to the first embodiment of the present invention, the installation direction needs to be adjusted at the time of subsidence or landing so that the bottom layer flow can be reliably interrupted. is there. On the other hand, in the upwelling seabed artificial levee 2 according to the present embodiment, the shielding plate 130 faces three directions, so that the bottom layer flow can be interrupted regardless of which direction it is installed. Therefore, in the construction method of the upwelling generation seabed artificial levee 2 according to the present embodiment, adjustment of the installation direction of the upwelling generation seabed artificial dam 2 in the subsidence and landing processes can be omitted, and the upwelling flow Construction of the generated seabed artificial levee 2 becomes easy.

また,本実施形態にかかる湧昇流発生海底人工堤2は,遮蔽板130が120°の間隔で3方向に向いているため,海底190を流れる底層流の向きが変わっても,適切に湧昇流を発生させることができる。   Moreover, since the shield plate 130 is directed in three directions at intervals of 120 °, the artificial seabed 2 with the upwelling flow according to the present embodiment is appropriately springed even if the direction of the bottom current flowing through the seabed 190 changes. Ascending current can be generated.

なお,本実施形態では,湧昇流発生海底人工堤2を構成する鋼管トラス構造体100の設置数は3つとしたが,これに限定されず,4つ以上としてもよい。例えば,鋼管トラス構造体100を4つとした場合,鋼管トラス構造体100は,中心材210を中心として,例えば90°ずつの間隔で相互に接続される。   In the present embodiment, the number of steel pipe truss structures 100 constituting the upwelling generation seabed artificial levee 2 is three, but is not limited to this, and may be four or more. For example, when the number of steel pipe truss structures 100 is four, the steel pipe truss structures 100 are connected to each other at intervals of, for example, 90 ° with the center member 210 as the center.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,上述した実施形態においては,本実施形態にかかる湧昇流発生海底人工堤1の主鋼管110は,両方の端部114が封止されることによって,密閉された中空空間119が形成される場合について説明した。しかし,図11に示すように,主鋼管110内部において,密閉された中空空間119に隔壁118が設けられてもよい。隔壁118は,例えば,湧昇流発生海底人工堤1全体のバランスを考慮して,主鋼管110の中空空間119に,例えば約10m〜20mの間隔で設置される。このように隔壁118を設けることによって,密閉された中空空間119が複数形成される。この場合,注水口117及び排気口116は,隔壁118で区切られたそれぞれの密閉された中空空間119ごとに,それぞれ少なくとも1箇所ずつ形成される。   For example, in the above-described embodiment, the main steel pipe 110 of the upwelling generation submarine artificial dam 1 according to the present embodiment forms a sealed hollow space 119 by sealing both ends 114. Explained the case. However, as shown in FIG. 11, a partition wall 118 may be provided in a sealed hollow space 119 inside the main steel pipe 110. The partition wall 118 is installed in the hollow space 119 of the main steel pipe 110 at an interval of, for example, about 10 m to 20 m in consideration of, for example, the balance of the upwelling seabed artificial levee 1 as a whole. By providing the partition wall 118 in this way, a plurality of sealed hollow spaces 119 are formed. In this case, the water injection port 117 and the exhaust port 116 are formed at least one place for each sealed hollow space 119 separated by the partition wall 118.

かかる構成により,本実施形態にかかる湧昇流発生海底人工堤1の施工方法の沈降工程において,主鋼管110の中空空間119に海水を注入する場合,それぞれの中空空間119ごとに設けられたバルブの開閉を調整することができる。そのため,注水する空間と注水しない空間とに分けることができ,隔壁118を設けない場合と比べて,注水された海水が主鋼管110の中空空間119で一方に偏ることを防止できる。その結果,湧昇流発生海底人工堤1を沈降させる際,湧昇流発生海底人工堤1を傾斜させることなく,鋼管トラス構造体100の長手方向のバランスを維持させて,水平に沈降させることができる。   With this configuration, when seawater is injected into the hollow space 119 of the main steel pipe 110 in the subsidence process of the construction method of the upwelling seabed artificial levee 1 according to the present embodiment, a valve provided for each hollow space 119. Can be adjusted. Therefore, it can be divided into a space where water is poured and a space where water is not poured, and the injected seawater can be prevented from being biased to one side in the hollow space 119 of the main steel pipe 110 as compared with the case where the partition wall 118 is not provided. As a result, when substituting the upwelling seabed artificial levee 1, the longitudinal balance of the steel pipe truss structure 100 is maintained without causing the upwelling seabed artificial levee 1 to be tilted and horizontally subsidized. Can do.

また,湧昇流発生海底人工堤1を地上で構築する際,湧昇流発生海底人工堤1は,隔壁で区切られたユニットごとに構築してもよい。この場合,各ユニットを構築後,それぞれのユニットを結合して,湧昇流発生海底人工堤1を完成させることができる。   Further, when the upwelling generation submarine artificial dam 1 is constructed on the ground, the upwelling generation submarine artificial levee 1 may be constructed for each unit separated by a partition wall. In this case, after the units are constructed, the units can be combined to complete the upwelling seabed artificial levee 1.

また,例えば,図12に示すように,本変更例では,主鋼管110に衝撃緩衝材212が形成される。衝撃緩衝材212は,例えばゴム製とすることができる。かかる構成において,衝撃緩衝材212は,湧昇流発生海底人工堤1の着底時における衝撃を緩衝することできるので,着底時に湧昇流発生海底人工堤1が破損することを防止できる。   Further, for example, as shown in FIG. 12, in this modified example, an impact buffer material 212 is formed on the main steel pipe 110. The shock absorbing material 212 can be made of rubber, for example. In such a configuration, the impact buffering material 212 can buffer the impact when the upwelling generation seabed artificial levee 1 is landed, so that the upwelling flow generation seabed artificial dam 1 can be prevented from being damaged at the time of landing.

また,例えば,上述した実施形態においては,湧昇流発生海底人工堤1,2は,海底190に1つだけ設置する場合について説明したが,近接する箇所に複数設置してもよい。例えば,湧昇流発生海底人工堤1の長手方向の長さLを100mとし,湧昇流発生海底人工堤1を長手方向に2つ並置することによって,全長200mの湧昇流発生海底人工堤を構成することができる。また,湧昇流発生海底人工堤1,2を複数設置する場合,湧昇流発生海底人工堤1,2の設置方向が相異なるように設置してもよい。 Further, for example, in the above-described embodiment, the case where only one upwelling seabed artificial levee 1 and 2 is installed on the seabed 190 is described, but a plurality of them may be installed in close proximity. For example, the longitudinal length L 1 of the upwelling occurrence seabed artificial dam 1 and 100 m, by juxtaposing two upwelling occurrence seabed artificial dam 1 in the longitudinal direction, upwelling occurrence seabed artificial full-length 200m A dyke can be constructed. Moreover, when installing a plurality of upwelling generation submarine artificial dams 1 and 2, the installation directions of the upwelling generation submarine artificial dams 1 and 2 may be installed differently.

本発明の第1の実施形態にかかる湧昇流発生海底人工堤1を示す斜視図である。It is a perspective view which shows the upwelling generation | occurrence | production seabed artificial dam 1 concerning the 1st Embodiment of this invention. 同実施形態にかかる湧昇流発生海底人工堤1を示す側面図である。It is a side view which shows the upwelling generation submarine artificial dam 1 concerning the embodiment. 図1のA−A線で切断した断面図である。It is sectional drawing cut | disconnected by the AA line of FIG. 同実施形態にかかる湧昇流発生海底人工堤1の変更例を示す側面図である。It is a side view which shows the example of a change of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の変更例を示す側面図である。It is a side view which shows the example of a change of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の変更例を示す側面図である。It is a side view which shows the example of a change of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる鋼管トラス構造体100の構築状況を示す説明図である。It is explanatory drawing which shows the construction condition of the steel pipe truss structure body 100 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の輸送状況を示す説明図である。It is explanatory drawing which shows the transport condition of the upwelling generation | occurrence | production seabed artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の設置現場の到着状況を示す説明図である。It is explanatory drawing which shows the arrival condition of the installation site of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の注水状況を示す説明図である。It is explanatory drawing which shows the water injection condition of the upwelling flow generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の沈降状況を示す説明図である。It is explanatory drawing which shows the subsidence condition of the upwelling generation | occurrence | production seabed artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の着底状況を示す説明図である。It is explanatory drawing which shows the landing situation of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の輸送状況の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the transport condition of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の設置現場の到着状況の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the arrival condition of the installation field of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の注水状況の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the water injection condition of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 同実施形態にかかる湧昇流発生海底人工堤1の沈降状況の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the subsidence condition of the upwelling generation | occurrence | production submarine artificial dam 1 concerning the embodiment. 本発明の第2の実施形態にかかる湧昇流発生海底人工堤2を示す斜視図である。It is a perspective view which shows the upwelling generation | occurrence | production submarine artificial wall 2 concerning the 2nd Embodiment of this invention. 本発明の第1の実施形態にかかる湧昇流発生海底人工堤1の変更例を示す斜視図である。It is a perspective view which shows the example of a change of the upwelling generation | occurrence | production seabed artificial dam 1 concerning the 1st Embodiment of this invention. 同実施形態にかかる湧昇流発生海底人工堤1の変更例を示す斜視図である。It is a perspective view which shows the example of a change of the upwelling generation submarine artificial dam 1 concerning the embodiment.

符号の説明Explanation of symbols

1,2 湧昇流発生海底人工堤
100 鋼管トラス構造体
102 端部け
110 主鋼管
112 格点部
114 端部
116 排気口
117 注水口
118 隔壁
119 中空空間
120 連結材
130,230,330 遮蔽板
132 接合材
134 スリット
136a,136b 端部
150,250 台船
160,260 タグボート
170 クレーン
180 海面
190 海底
210 中心材
212 衝撃緩衝材
252 ウインチ
270 ワイヤ
1, 2 Upwelling generation artificial seabed 100 Steel pipe truss structure 102 End part 110 Main steel pipe 112 Grade part 114 End part 116 Exhaust port 117 Water injection port 118 Bulkhead 119 Hollow space 120 Connecting material 130, 230, 330 Shielding plate 132 Bonding material 134 Slit 136a, 136b End portion 150, 250 Cargo ship 160, 260 Tug boat 170 Crane 180 Sea surface 190 Sea bottom 210 Center material 212 Shock absorbing material 252 Winch 270 Wire

Claims (10)

仮想三角柱の軸方向の3つの稜に対応するようにそれぞれ配置された3本の主鋼管と,前記主鋼管を相互に連結する複数の連結材とからなる鋼管トラス構造体と;
前記鋼管トラス構造体の外周面または内部に前記主鋼管の軸方向に延設され,相異なる面角度を有する少なくとも2枚の遮蔽板と;
を備え,
前記主鋼管内部の中空空間は,密閉されており,前記密閉された中空空間に注水可能に構成されたことを特徴とする,湧昇流発生海底人工堤。
A steel pipe truss structure comprising three main steel pipes arranged so as to correspond to the three ridges in the axial direction of the virtual triangular prism, and a plurality of connecting members for connecting the main steel pipes to each other;
At least two shielding plates extending in the axial direction of the main steel pipe on the outer peripheral surface or inside of the steel pipe truss structure and having different surface angles;
With
A submarine artificial levitation generating upwelling current, wherein a hollow space inside the main steel pipe is sealed, and water can be poured into the sealed hollow space.
前記連結材は,鋼管で構成されており,前記連結材内部の中空空間に注水可能に構成されたことを特徴とする,請求項1に記載の湧昇流発生海底人工堤。   The upwelling flow generation submarine artificial dam according to claim 1, wherein the connecting member is formed of a steel pipe and is configured such that water can be injected into a hollow space inside the connecting member. 前記遮蔽板は,前記鋼管トラス構造体内部に,相異なる面角度を有するよう3枚配設され,
前記3枚の遮蔽板の一側端部は,3本の前記主鋼管にそれぞれ接合され,
前記3枚の遮蔽板の他側端部は,前記鋼管トラス構造体内部において相互に接合されていることを特徴とする,請求項1または2に記載の湧昇流発生海底人工堤。
Three shielding plates are disposed in the steel pipe truss structure so as to have different surface angles,
One end of each of the three shielding plates is joined to each of the three main steel pipes,
3. The upwelling generation submarine artificial dam according to claim 1, wherein the other end portions of the three shielding plates are joined to each other inside the steel pipe truss structure. 4.
少なくとも3つの前記鋼管トラス構造体を備え,
前記鋼管トラス構造体の軸方向の一端は,相互に接合されていることを特徴とする,請求項1〜3のいずれかに記載の湧昇流発生海底人工堤。
Comprising at least three steel pipe truss structures,
The upwelling generation submarine artificial dam according to any one of claims 1 to 3, wherein ends of the steel pipe truss structure in the axial direction are joined to each other.
前記主鋼管内部において,前記密閉された中空空間を区分する1または2以上の隔壁を備えることを特徴とする,請求項1〜4のいずれかに記載の湧昇流発生海底人工堤。   The upwelling flow generation submarine artificial dam according to any one of claims 1 to 4, further comprising one or more partition walls that divide the sealed hollow space inside the main steel pipe. 衝撃緩衝材が,前記主鋼管の外周面に設けられていることを特徴とする,請求項1〜5のいずれかに記載の湧昇流発生海底人工堤。   The upwelling generation submarine artificial dam according to any one of claims 1 to 5, wherein an impact buffer is provided on an outer peripheral surface of the main steel pipe. 請求項1〜6のいずれかに記載の湧昇流発生海底人工堤を設置箇所の洋上に浮遊させる工程と;
海水を前記湧昇流発生海底人工堤の主鋼管内部の密閉された中空空間に注水する工程と;
前記湧昇流発生海底人工堤を前記設置箇所に沈降させる工程と;
を含むことを特徴とする,湧昇流発生海底人工堤の施工方法。
A step of floating the upwelling generation submarine artificial dam according to any one of claims 1 to 6 on the ocean at an installation location;
Injecting seawater into a sealed hollow space inside the main steel pipe of the upwelling generation seabed artificial levee;
Sinking the upwelling generation submarine artificial dam to the installation location;
A method for constructing an artificial submarine embankment that generates upwelling currents.
前記沈降工程では,前記湧昇流発生海底人工堤の浮力を利用して,沈降させることを特徴とする,請求項7に記載の湧昇流発生海底人工堤の施工方法。   The method for constructing an artificial submarine levee according to claim 7, wherein the subsidence step is performed by using a buoyancy of the artificial submarine levee. 前記湧昇流発生海底人工堤を設置箇所の洋上に浮遊させる工程より前に,
前記湧昇流発生海底人工堤を構築する工程と;
前記設置箇所の洋上まで前記湧昇流発生海底人工堤を輸送する工程と;
をさらに含むことを特徴とする,請求項7または8に記載の湧昇流発生海底人工堤の施工方法。
Before the step of floating the upwelling seabed artificial levee on the ocean at the installation location,
Constructing the upwelling generation submarine artificial levee;
Transporting the upwelling generation submarine artificial dam to the offshore of the installation location;
The method for constructing an artificial seabed with upwelling flow generation according to claim 7 or 8, further comprising:
前記輸送工程は,前記湧昇流発生海底人工堤の浮力を利用して,前記湧昇流発生海底人工堤を洋上に浮遊させて輸送することを特徴とする,請求項9に記載の湧昇流発生海底人工堤の施工方法。   10. The upwelling according to claim 9, wherein the transporting step uses the buoyancy of the upwelling generation submarine artificial levee to float and transport the upwelling generation submarine artificial levee offshore. How to construct a flow-generating submarine artificial levee.
JP2006023583A 2006-01-31 2006-01-31 Artificial seabed with upwelling flow and its construction method Active JP4539989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023583A JP4539989B2 (en) 2006-01-31 2006-01-31 Artificial seabed with upwelling flow and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023583A JP4539989B2 (en) 2006-01-31 2006-01-31 Artificial seabed with upwelling flow and its construction method

Publications (2)

Publication Number Publication Date
JP2007204992A true JP2007204992A (en) 2007-08-16
JP4539989B2 JP4539989B2 (en) 2010-09-08

Family

ID=38484690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023583A Active JP4539989B2 (en) 2006-01-31 2006-01-31 Artificial seabed with upwelling flow and its construction method

Country Status (1)

Country Link
JP (1) JP4539989B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270567A (en) * 2009-05-25 2010-12-02 Nippon Steel Engineering Co Ltd Upwelling-current-generation submarine artificial bank
CN114713439A (en) * 2022-05-12 2022-07-08 绍兴毅龙镭射科技有限公司 Laser film surface coating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974893A (en) * 2010-09-28 2011-02-16 张照华 Tripod plug cage for river closure of flood-resisting buster and watercourse

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101630A (en) * 1981-12-15 1983-06-16 五洋建設株式会社 Artificial fish bank for large and deep sea region
JPS6168917A (en) * 1984-09-11 1986-04-09 Sankiyuu Kk Method of installing off-shore platform
JPS61274011A (en) * 1985-03-25 1986-12-04 エドワ−ド・イ−・ホ−トン Jacket tower structure and technique for anchoring the same
JPS62198345A (en) * 1986-02-25 1987-09-02 株式会社 来島グル−プ協同技術研究所 Method for generating rising stream by towing stream raisingdrum
JPS63233737A (en) * 1987-03-20 1988-09-29 川崎製鉄株式会社 Rising stream generating float structure
JPH059922A (en) * 1991-06-29 1993-01-19 Kumagai Gumi Co Ltd Off-shore foundation structure construction method
JPH08165636A (en) * 1994-12-13 1996-06-25 Ohbayashi Corp Installation structure of floating body structure
JPH10325127A (en) * 1997-05-26 1998-12-08 Kikujirou Masuda Wave dissipating device
JPH11320784A (en) * 1998-05-14 1999-11-24 Nippon Steel Corp Protective sheet for polyolefin coated steel material
JP2000054356A (en) * 1998-08-04 2000-02-22 Masashi Hoshino Connection structure of cylindrical buoy
JP2001090046A (en) * 1999-09-20 2001-04-03 Molten Corp Pier fender partition device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101630A (en) * 1981-12-15 1983-06-16 五洋建設株式会社 Artificial fish bank for large and deep sea region
JPS6168917A (en) * 1984-09-11 1986-04-09 Sankiyuu Kk Method of installing off-shore platform
JPS61274011A (en) * 1985-03-25 1986-12-04 エドワ−ド・イ−・ホ−トン Jacket tower structure and technique for anchoring the same
JPS62198345A (en) * 1986-02-25 1987-09-02 株式会社 来島グル−プ協同技術研究所 Method for generating rising stream by towing stream raisingdrum
JPS63233737A (en) * 1987-03-20 1988-09-29 川崎製鉄株式会社 Rising stream generating float structure
JPH059922A (en) * 1991-06-29 1993-01-19 Kumagai Gumi Co Ltd Off-shore foundation structure construction method
JPH08165636A (en) * 1994-12-13 1996-06-25 Ohbayashi Corp Installation structure of floating body structure
JPH10325127A (en) * 1997-05-26 1998-12-08 Kikujirou Masuda Wave dissipating device
JPH11320784A (en) * 1998-05-14 1999-11-24 Nippon Steel Corp Protective sheet for polyolefin coated steel material
JP2000054356A (en) * 1998-08-04 2000-02-22 Masashi Hoshino Connection structure of cylindrical buoy
JP2001090046A (en) * 1999-09-20 2001-04-03 Molten Corp Pier fender partition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270567A (en) * 2009-05-25 2010-12-02 Nippon Steel Engineering Co Ltd Upwelling-current-generation submarine artificial bank
CN114713439A (en) * 2022-05-12 2022-07-08 绍兴毅龙镭射科技有限公司 Laser film surface coating system
CN114713439B (en) * 2022-05-12 2023-01-24 绍兴毅龙镭射科技有限公司 Laser film surface coating system

Also Published As

Publication number Publication date
JP4539989B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US4014177A (en) Marine pier having deeply submerged storage container
US6659686B2 (en) Precast modular intermodal concrete shapes and methods of installation to form shoreline stabilization, marine and terrestrial structures
US7762205B1 (en) Transport and use of prefabricated components in shoreline and floating structures
CN103228909B (en) For the method installing offshore tower
US4661014A (en) Prefabricated civil engineering module, method for the construction of a structure including said module and resulting structure
CN110382781B (en) Marine structure for laying the foundation of buildings, equipment and wind turbines by gravity in a marine environment
EP2559814A1 (en) Gravity foundation
EP3276086B1 (en) Gravity foundation for the installation of offshore wind turbines
KR101037222B1 (en) Bidding Shipment System of Coastal Pier Using Transfer Pants
JP5136589B2 (en) Reinforcement beam and reinforcement method for underwater structure
JP4539989B2 (en) Artificial seabed with upwelling flow and its construction method
US7007620B2 (en) Modular ships for transporting and installing precast modular intermodal concrete shapes
JP7389893B2 (en) Offshore structures and construction methods
JP6681225B2 (en) How to install a gravity type structure on the bottom of the water
CN102535390B (en) Construction method of anti-wave-type offshore platform
EP2376712A2 (en) A deep-water port
KR101326773B1 (en) Harbor Structures Easily respond to Differential Settlement
CN212709903U (en) Comb type slideway structure
JP2004044200A (en) Jacket structure
NO142535B (en) FRONT DRAWING FOR GREAT DEPTHS.
Flores Ganuza et al. Development of a Modular, Adaptable and Scalable Gravity Anchor System for Various Floating Foundations
CN111846147A (en) Comb type slideway structure
JP6216340B2 (en) Reinforcement method of floater and water structure
WO2022165315A1 (en) Barrier systems and methods
JP2004238814A (en) Bottom seated breakwater and work execution method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4539989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250