JP2007204822A - Plating method - Google Patents

Plating method Download PDF

Info

Publication number
JP2007204822A
JP2007204822A JP2006026730A JP2006026730A JP2007204822A JP 2007204822 A JP2007204822 A JP 2007204822A JP 2006026730 A JP2006026730 A JP 2006026730A JP 2006026730 A JP2006026730 A JP 2006026730A JP 2007204822 A JP2007204822 A JP 2007204822A
Authority
JP
Japan
Prior art keywords
plating
film
ceramic electronic
electronic component
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026730A
Other languages
Japanese (ja)
Inventor
Izumi Masuda
いづみ 増田
Masahiko Konno
正彦 今野
Masaru Hasebe
勝 長谷部
Yoshihiro Kamibayashi
義広 上林
Yukimare Abe
幸希 阿部
Daiki Sato
大樹 佐藤
Hidetoshi Watanabe
秀利 渡辺
Tomonori Sugiyama
智紀 杉山
Kazuhiro Shibuya
和博 渋谷
Makoto Takahashi
誠 高橋
Mitsuharu Koike
光晴 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006026730A priority Critical patent/JP2007204822A/en
Publication of JP2007204822A publication Critical patent/JP2007204822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Ceramic Capacitors (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method where plating elongation can be evaded without performing coating treatment for blocking plating on the surface of an element assembly. <P>SOLUTION: A ceramic electronic component 1 comprising an element assembly 2 composed of a Zn-containing ceramic material and a plurality of plating substrate films 41 arranged on the surface of the element assembly at intervals each other is prepared. Then, electroplating is performed on the ceramic electronic component 1 with a plating liquid in which the concentration of Zn ions is controlled to 0 to 100 ppm, and a plating film 43 is precipitated on the surface of the plating substrate film 41. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チップ状セラミック電子部品の端子電極を形成するためのめっき方法に関する。   The present invention relates to a plating method for forming a terminal electrode of a chip-like ceramic electronic component.

チップ状セラミック電子部品として、従来より種々のタイプのものが知られているが、そのうちの一つに、Znを含有するセラミック材料から構成された素体の表面に、互いに間隔を隔てて、複数の端子電極を設けたタイプのものが知られている。例えば、酸化亜鉛系チップバリスタや、亜鉛含有フェライトをコアとして用いたチップインダクタ等がその代表例である。   Various types of chip-shaped ceramic electronic components have been known in the past. One of them is a plurality of chip-shaped ceramic electronic components spaced apart from each other on the surface of an element body made of a ceramic material containing Zn. A type provided with a terminal electrode is known. For example, zinc oxide chip varistors, chip inductors using zinc-containing ferrite as a core are typical examples.

この種のチップ状セラミック電子部品において、端子電極を形成するには、予め形成されためっき下地膜の上にめっき膜を形成するプロセスをとる。めっき膜を形成するための方法として、予め、めっき下地膜を形成したセラミック電子部品を、めっき液に浸漬(ジャブ漬け)し、めっき下地膜の表面にめっき膜を析出させる方法が知られている。   In this type of chip-shaped ceramic electronic component, in order to form a terminal electrode, a process of forming a plating film on a pre-formed plating base film is taken. As a method for forming a plating film, a method in which a ceramic electronic component on which a plating base film has been formed in advance is immersed in a plating solution (soaked in a jab) and the plating film is deposited on the surface of the plating base film is known. .

しかし、この方法によると、めっき下地膜の表面のみならず、素体の表面にもめっき膜が析出する「めっき伸び」の現象が発生し、端子電極間の絶縁耐圧が低下し、最悪の場合には端子電極間短絡を招いてしまうことがあった。特に最近は、この種のセラミック電子部品の小型化に伴い、端子電極の配置間隔も狭められる傾向にあり、めっき伸びによる端子電極間の絶縁耐圧の低下、端子電極間の短絡が、極めて生じやすくなっている。   However, according to this method, not only the surface of the plating base film but also the surface of the element body, the phenomenon of “plating elongation” occurs, and the withstand voltage between the terminal electrodes decreases, which is the worst case. In some cases, a short circuit between terminal electrodes may be caused. Particularly recently, with the miniaturization of this kind of ceramic electronic components, the spacing between the terminal electrodes tends to be narrowed, and it is very easy to cause a decrease in the withstand voltage between the terminal electrodes due to plating elongation and a short circuit between the terminal electrodes. It has become.

めっき伸びを防止するための手法として、めっき下地膜のまわりの素体表面を例えば電気絶縁層で被覆することにより、素体表面へのめっき付着を阻止する技術が知られている(特許文献1参照)が、このようなめっき阻止用被覆処理は手間がかかり、生産効率の悪化及び生産コストの上昇を招く。
特開平5−251210号公報
As a technique for preventing plating elongation, a technique is known in which the surface of an element body around a plating base film is covered with, for example, an electrical insulating layer, thereby preventing plating adhesion to the element surface (Patent Document 1). However, such a plating-inhibiting coating process is time-consuming and causes a deterioration in production efficiency and an increase in production cost.
JP-A-5-251210

本発明の課題は、素体表面にめっき阻止用被覆処理を施すことなく、めっき伸びを回避し得るめっき方法を提供することである。   The subject of this invention is providing the plating method which can avoid plating elongation, without performing the coating process for metal-plating prevention to the element body surface.

上述した課題を解決するため、本発明に係るめっき方法では、Znを含有するセラミック材料から構成された素体と、前記素体の表面に互いに間隔を隔てて配置された複数の端子電極用めっき下地膜とを含むセラミック電子部品を用意し、次に、Znイオン濃度を0ppm以上100ppm以下に管理しためっき液中で、前記セラミック電子部品に対する電気めっき処理を行い、前記めっき下地膜上にめっき膜を形成する。   In order to solve the above-described problems, in the plating method according to the present invention, an element body made of a ceramic material containing Zn and a plurality of terminal electrode platings arranged on the surface of the element body at intervals from each other. A ceramic electronic component including a base film is prepared, and then an electroplating process is performed on the ceramic electronic component in a plating solution in which a Zn ion concentration is controlled to be 0 ppm or more and 100 ppm or less, and a plating film is formed on the plating base film. Form.

発明者等は、素体表面でのめっき伸びについて、その原因を究明すべく、鋭意研究した結果、めっき液中のZnイオン濃度が大きな要因となっていることを見い出した。即ち、Znを含有するセラミック材料から構成された素体の場合、ZnがZnイオンとしてめっき液中に溶け出す可能性があり、めっき液のZnイオン濃度を管理する必要がある。   As a result of intensive studies to find out the cause of the plating elongation on the surface of the element body, the inventors have found that the Zn ion concentration in the plating solution is a major factor. That is, in the case of an element body made of a ceramic material containing Zn, Zn may be dissolved in the plating solution as Zn ions, and it is necessary to control the Zn ion concentration of the plating solution.

発明者等の実験によれば、Znイオン濃度が100ppmを超えると、めっき伸びが顕著であるが、Znイオン濃度を100ppm以下の範囲に保つと、めっき伸びを抑え得ることが確認された。従って、Znイオン濃度を100ppm以下の範囲に保つことにより、素体表面に、めっき阻止用被覆処理を施すことなく、めっき伸びを抑え、めっき伸びによる端子電極間の耐電圧低下及び端子電極間の短絡を回避できることになる。   According to experiments by the inventors, it has been confirmed that when the Zn ion concentration exceeds 100 ppm, the plating elongation is remarkable, but when the Zn ion concentration is kept in the range of 100 ppm or less, the plating elongation can be suppressed. Therefore, by keeping the Zn ion concentration in a range of 100 ppm or less, the surface of the element body is not subjected to plating-inhibiting coating treatment, thereby suppressing plating elongation, lowering the withstand voltage between terminal electrodes due to plating elongation, and between terminal electrodes. A short circuit can be avoided.

以上述べたように、本発明によれば、素体表面にめっき阻止用被覆処理を施すことなく、めっき伸びによる端子電極間の短絡を回避し得るめっき方法を提供することである。   As described above, according to the present invention, it is an object of the present invention to provide a plating method capable of avoiding a short circuit between terminal electrodes due to plating elongation without performing a plating prevention coating process on the surface of the element body.

図1は、本発明に係るめっき方法の一実施形態に用いられるセラミック電子部品を示す断面図、図2は、図1に示したセラミック電子部品の平面図である。図示のセラミック電子部品1は、めっき処理を施す前のチップバリスタであるが、他のセラミック電子部品、例えば、チップインダクタであってもよい。このセラミック電子部品1は、素体2と、内部導体膜3と、端子電極用めっき下地膜41とを含む。   FIG. 1 is a sectional view showing a ceramic electronic component used in an embodiment of a plating method according to the present invention, and FIG. 2 is a plan view of the ceramic electronic component shown in FIG. The illustrated ceramic electronic component 1 is a chip varistor before plating, but may be another ceramic electronic component such as a chip inductor. The ceramic electronic component 1 includes an element body 2, an internal conductor film 3, and a terminal electrode plating base film 41.

素体2は、長さ方向X、幅方向Y及び厚さ方向Zで定義される略直方体形状である。素体2を構成するセラミック材料については、チップバリスタの場合、酸化亜鉛系のセラミック材料を挙げることができ、チップインダクタの場合、NiZn系またはNiCuZn系のセラミック材料を挙げることができる。   The element body 2 has a substantially rectangular parallelepiped shape defined by the length direction X, the width direction Y, and the thickness direction Z. Examples of the ceramic material constituting the element body 2 include a zinc oxide-based ceramic material in the case of a chip varistor, and a NiZn-based or NiCuZn-based ceramic material in the case of a chip inductor.

内部導体膜3は、素体2の内部に埋設されている。詳しくは、内部導体膜3は、素体2の内部において厚さ方向Zに間隔を隔てて配置されており、長さ方向Xの一端が素体2の長さ方向Xの端面23または24に導出されている。   The internal conductor film 3 is embedded in the element body 2. Specifically, the inner conductor film 3 is arranged in the thickness direction Z with an interval inside the element body 2, and one end in the length direction X is on the end face 23 or 24 in the length direction X of the element body 2. Has been derived.

端子電極用めっき下地膜(以下、めっき下地膜と称する)41は、図2に示すように、素体2の表面に形成されている。図示の実施例では、素体2の長さ方向Xの一端面23に、2つのめっき下地膜41が幅方向Yの間隔を隔てて形成され、同様に素体2の長さ方向Xの他端面24に、2つのめっき下地膜41が幅方向Yの間隔を隔てて形成されている。図示では、めっき下地膜41が何らかの膜を介さず直接、素体2の表面に形成された構造となっているが(図1参照)、このような構造に限定されることはない。例えば、端子電極と、素体の表面との間に何らかの膜が介在した構造でもよい。   A terminal electrode plating base film (hereinafter referred to as a plating base film) 41 is formed on the surface of the element body 2 as shown in FIG. In the illustrated embodiment, two plating base films 41 are formed on one end face 23 in the length direction X of the element body 2 with an interval in the width direction Y. Two plating base films 41 are formed on the end face 24 at an interval in the width direction Y. In the figure, the plating base film 41 is formed directly on the surface of the element body 2 without any film (see FIG. 1), but is not limited to such a structure. For example, a structure in which some film is interposed between the terminal electrode and the surface of the element body may be used.

更に、めっき下地膜41は、素体2の長さ方向Xの端面23または24において内部導体膜3に接続されている(図1参照)。めっき下地膜41は、例えばAgを主成分として構成され、素体2に導電性ペーストを塗布して焼き付けることにより形成することができる。   Further, the plating base film 41 is connected to the internal conductor film 3 at the end face 23 or 24 in the length direction X of the element body 2 (see FIG. 1). The plating base film 41 is composed mainly of Ag, for example, and can be formed by applying and baking a conductive paste on the element body 2.

図1、図2に図示したセラミック電子部品1は、めっき下地膜41にめっき膜を付着させるべく、めっき処理に付される。めっき処理工程を図3に示す。ここでは、電気めっき処理の一つの態様としてバレルめっきが採用されている。詳しく説明すると、セラミック電子部品1を通電用メディア77とともにバレル容器79に入れ、バレル容器79ごとめっき液53に浸漬する。そして、バレル容器79を回転させながら、セラミック電子部品1に通電を行う。めっき液53は、Niめっき膜を析出させるためのNiめっき液であり、Niイオン(Ni+)を含んでいる。電極板73は、Niから構成されており、直流電源71に接続されている。 The ceramic electronic component 1 shown in FIGS. 1 and 2 is subjected to a plating process in order to attach a plating film to the plating base film 41. The plating process is shown in FIG. Here, barrel plating is employed as one aspect of the electroplating process. More specifically, the ceramic electronic component 1 is put in the barrel container 79 together with the energization medium 77 and immersed in the plating solution 53 together with the barrel container 79. Then, the ceramic electronic component 1 is energized while rotating the barrel container 79. The plating solution 53 is a Ni plating solution for depositing a Ni plating film, and contains Ni ions (Ni + ). The electrode plate 73 is made of Ni and connected to a DC power source 71.

図4は、図3に示された工程においてセラミック電子部品の状態を示す図である。図3及び図4に示すように、電極板73をアノード、セラミック電子部品1のめっき下地膜41をカソードとし、電極板73とめっき下地膜41との間に、直流電源71による直流電圧を印加する。これにより、めっき下地膜41の表面にNiめっき膜43を析出させることができる。   FIG. 4 is a diagram showing a state of the ceramic electronic component in the process shown in FIG. As shown in FIGS. 3 and 4, the electrode plate 73 is an anode, the plating base film 41 of the ceramic electronic component 1 is a cathode, and a DC voltage is applied between the electrode plate 73 and the plating base film 41 by a DC power source 71. To do. Thereby, the Ni plating film 43 can be deposited on the surface of the plating base film 41.

上述しためっき処理工程において、何らの考慮もされなければ、めっき下地膜41の表面のみならず素体2の表面にもめっき膜が析出する「めっき伸び」の現象が発生し、完成品したセラミック電子部品において、隣り合う端子電極間の絶縁耐圧が低下し、最悪の場合には端子電極間短絡を招いてしまうことがあったことは前述したとおりである。   In the above-described plating process, if no consideration is given, a “plating elongation” phenomenon occurs in which the plating film is deposited not only on the surface of the plating base film 41 but also on the surface of the element body 2, and the finished ceramic As described above, in an electronic component, the withstand voltage between adjacent terminal electrodes is lowered, and in the worst case, a short circuit between the terminal electrodes may be caused.

そこで、本発明では、Znイオン濃度を0ppm以上100ppm以下に管理しためっき液53でセラミック電子部品1にめっきを行う。発明者等の実験によれば、Znイオン濃度を100ppm以下に保つことにより、素体2の表面に、めっき阻止用被覆処理を施すことなく、めっき伸びを抑え、めっき伸びによる隣り合うめっき下地膜41−41間の耐電圧低下及び短絡を回避できることがわかった。Znイオン濃度が100ppmを超えると、めっき伸びが次第に顕著になる。その理由は、必ずしも明確ではないが、次のように推測される。   Therefore, in the present invention, the ceramic electronic component 1 is plated with the plating solution 53 in which the Zn ion concentration is controlled to 0 ppm or more and 100 ppm or less. According to the experiments by the inventors, by keeping the Zn ion concentration at 100 ppm or less, the surface of the element body 2 is not subjected to the plating-inhibiting coating treatment, and the plating elongation is suppressed. It was found that a withstand voltage drop and a short circuit between 41 and 41 can be avoided. When the Zn ion concentration exceeds 100 ppm, the plating elongation becomes more prominent. The reason is not necessarily clear, but is presumed as follows.

即ち、Znは酸にもアルカリにも弱い。このため、めっき処理の際、Znを含有するセラミック材料から構成された素体2がめっき液に触れると、素体2が少なからず溶解し、ZnがZnイオンとしてめっき液中に溶け出す可能性がある。めっき液53中のZnイオンは、めっき処理量、めっき処理回数が増加するに伴って増加し、めっき液53中のZnイオン濃度が上昇する。その結果、素体2の表面に付着するZnイオンが増加し、付着したZnイオンをベースにして、めっき下地膜41から連続して延びるように、めっき皮膜が形成され、いわゆる「めっき伸び」が発生するというものである。   That is, Zn is weak against both acid and alkali. For this reason, when the element body 2 made of a ceramic material containing Zn is in contact with the plating solution during the plating process, the element body 2 may be dissolved not a little, and Zn may be dissolved into the plating solution as Zn ions. There is. The Zn ions in the plating solution 53 increase as the amount of plating treatment and the number of plating treatments increase, and the Zn ion concentration in the plating solution 53 increases. As a result, the number of Zn ions adhering to the surface of the element body 2 increases, and a plating film is formed so as to continuously extend from the plating base film 41 on the basis of the adhering Zn ions. It occurs.

本発明では、Znイオン濃度を0ppm以上100ppm以下に管理しためっき液53でセラミック電子部品1にめっきを行うから、めっき液53中のZnイオン濃度を、上述した範囲に制限できる。このため、めっき伸びを抑えることができる。   In the present invention, since the ceramic electronic component 1 is plated with the plating solution 53 in which the Zn ion concentration is controlled to 0 ppm or more and 100 ppm or less, the Zn ion concentration in the plating solution 53 can be limited to the above-described range. For this reason, plating elongation can be suppressed.

めっき液53のZnイオン濃度をかかる範囲内に管理するための手法としては、めっき液53のZnイオン濃度を計測し、計測値に応じてめっき液53を新たなものに交換する手法のほか、めっき液53を一定量だけかけ流しする手法などを採用することができる。   As a method for managing the Zn ion concentration of the plating solution 53 within this range, in addition to the method of measuring the Zn ion concentration of the plating solution 53 and replacing the plating solution 53 with a new one according to the measured value, A technique of pouring a certain amount of the plating solution 53 can be employed.

最終製品としての端子電極のめっき膜の層数は、めっき膜の担うべき役割に応じて異なる。チップ状のセラミック電子部品においては、回路基板上の導体パターンに対して、端子電極がはんだ付けされるので、図3及び図4に示しためっき工程の後、Niめっき膜41の上に、はんだ付け性の良好なめっき膜、例えばSnめっき膜を形成する。   The number of plating films of the terminal electrode as the final product varies depending on the role that the plating film should play. In the chip-like ceramic electronic component, since the terminal electrode is soldered to the conductor pattern on the circuit board, the solder is formed on the Ni plating film 41 after the plating step shown in FIGS. A plating film having good adhesion, for example, an Sn plating film is formed.

Snめっき膜の形成にあたっては、図5に示すように、セラミック電子部品1を、Snめっき液55に浸漬することにより、再度電気めっきを行う。図5において、図3に現れた構成部分と同一性ある構成部分には、同一の参照符号を付し、重複説明を省略する。Snめっき液55は、Snイオン(Sn+)を含んでいる。電極板75は、Snから構成される。 In forming the Sn plating film, the electroplating is performed again by immersing the ceramic electronic component 1 in the Sn plating solution 55 as shown in FIG. In FIG. 5, the same reference numerals are given to the same components as those shown in FIG. 3, and the duplicate description will be omitted. The Sn plating solution 55 contains Sn ions (Sn + ). The electrode plate 75 is made of Sn.

図6は、図5に示された工程においてセラミック電子部品の状態を示す図である。図5及び図6に示すように、電極板75をアノード、セラミック電子部品1のNiめっき膜43をカソードとし、電極板75とNiめっき膜43との間に、直流電源71による直流電圧を印加する。これにより、本来のめっき下地膜41のみならず、Niめっき膜43をもめっき下地膜として、その表面にSnめっき膜45を析出させることができる。   FIG. 6 is a diagram showing a state of the ceramic electronic component in the process shown in FIG. As shown in FIGS. 5 and 6, the electrode plate 75 is an anode, the Ni plating film 43 of the ceramic electronic component 1 is a cathode, and a DC voltage is applied between the electrode plate 75 and the Ni plating film 43 by a DC power source 71. To do. Thereby, not only the original plating base film 41 but also the Ni plating film 43 can be used as the plating base film, and the Sn plating film 45 can be deposited on the surface thereof.

図5及び図6に示しためっき工程においても、Znイオン濃度を0ppm以上100ppm以下に管理しためっき液55でセラミック電子部品1にめっきを行う。めっき液55のZnイオン濃度をかかる数値範囲に管理することによる効果、及び、めっき液55のZnイオン濃度を管理するための手法については、図3及び図4に示しためっき工程で述べたのと同様であり、重複説明を省略する。   Also in the plating steps shown in FIGS. 5 and 6, the ceramic electronic component 1 is plated with a plating solution 55 in which the Zn ion concentration is controlled to be 0 ppm or more and 100 ppm or less. The effects of managing the Zn ion concentration of the plating solution 55 within such a numerical range and the technique for managing the Zn ion concentration of the plating solution 55 have been described in the plating step shown in FIGS. This is the same as in FIG.

図7は、上述しためっき方法により得られたセラミック電子部品を示す断面図、図8は、図7に示したセラミック電子部品の平面図である。図示のセラミック電子部品は、素体2と、内部導体膜3と、複数の端子電極4とを有する。端子電極4のそれぞれは、めっき下地膜41と、Niめっき膜43と、Snめっき膜45とを含んでいる。図示において、先の図面に現れた構成部分と同一性ある構成部分には、同一の参照符号を付し、重複説明をできるだけ省略する。   7 is a cross-sectional view showing the ceramic electronic component obtained by the plating method described above, and FIG. 8 is a plan view of the ceramic electronic component shown in FIG. The illustrated ceramic electronic component includes an element body 2, an internal conductor film 3, and a plurality of terminal electrodes 4. Each of the terminal electrodes 4 includes a plating base film 41, a Ni plating film 43, and a Sn plating film 45. In the drawing, the same reference numerals are given to the same components as those shown in the previous drawings, and the duplicated description will be omitted as much as possible.

めっき下地膜41、Niめっき膜43及びSnめっき膜45は、この順序で素体2の面上に積層された構造となっている。Niめっき膜43は、膜中のZn濃度が1wt%以下となっている。Niめっき膜43のこのような組成は、図3に示したNiめっき工程で、Niめっき液53のZnイオン濃度を0ppm以上100ppm以下に管理することにより、得ることができる。   The plating base film 41, the Ni plating film 43, and the Sn plating film 45 are stacked on the surface of the element body 2 in this order. The Ni plating film 43 has a Zn concentration of 1 wt% or less in the film. Such a composition of the Ni plating film 43 can be obtained by managing the Zn ion concentration of the Ni plating solution 53 to 0 ppm or more and 100 ppm or less in the Ni plating step shown in FIG.

同様に、Snめっき膜45も、膜中のZn濃度が1wt%以下となっている。Snめっき膜45のこのような組成は、図4に示したSnめっき工程で、Snめっき液55のZnイオン濃度を0ppm以上100ppm以下に管理することにより、得ることができる。   Similarly, the Sn plating film 45 also has a Zn concentration of 1 wt% or less. Such a composition of the Sn plating film 45 can be obtained by managing the Zn ion concentration of the Sn plating solution 55 to 0 ppm or more and 100 ppm or less in the Sn plating step shown in FIG.

次に、めっき液のZnイオン濃度と、めっき伸びとの関係について、実験データを挙げて説明する。   Next, the relationship between the Zn ion concentration of the plating solution and the plating elongation will be described with reference to experimental data.

<実験1>
まず、Niめっきに関する実験データについて説明する。この実験では、図1及び図2に示したセラミック電子部品を用い、図3及び図4のNiめっき工程でNiめっき液のZnイオン濃度を様々な値に設定し、Niめっき膜を形成した。Niめっき液のZnイオン濃度を0ppm、10ppm、50ppm、100ppm及び300ppmとしたものを、それぞれ、サンプル1〜5とする。更に、各サンプル1〜5についてNiめっき膜の外観を確認し、めっき伸び量を調べた。
<Experiment 1>
First, experimental data related to Ni plating will be described. In this experiment, the ceramic electronic component shown in FIGS. 1 and 2 was used, and in the Ni plating process of FIGS. 3 and 4, the Zn ion concentration of the Ni plating solution was set to various values to form a Ni plating film. Samples 1 to 5 were prepared by setting the Zn ion concentration of the Ni plating solution to 0 ppm, 10 ppm, 50 ppm, 100 ppm, and 300 ppm, respectively. Furthermore, about each sample 1-5, the external appearance of Ni plating film was confirmed and the plating elongation amount was investigated.

図9は、Niめっき液のZnイオン濃度とめっき伸び量との関係を示すグラフである。図9において、横軸にNiめっき液のZnイオン濃度(ppm)をとり、縦軸にめっき伸び量(mm)をとってある。   FIG. 9 is a graph showing the relationship between the Zn ion concentration of the Ni plating solution and the plating elongation. In FIG. 9, the horizontal axis represents the Zn ion concentration (ppm) of the Ni plating solution, and the vertical axis represents the plating elongation (mm).

図9に示すように、Niめっき液のZnイオン濃度が0ppm以上100ppm以下のとき(サンプル1〜4)、Niめっき膜のめっき伸び量は0.04mm未満に抑えられた。   As shown in FIG. 9, when the Zn ion concentration of the Ni plating solution was 0 ppm or more and 100 ppm or less (samples 1 to 4), the plating elongation of the Ni plating film was suppressed to less than 0.04 mm.

これに対し、Niめっき液のZnイオン濃度が100ppmを超えると(サンプル5)、Niめっき膜のめっき伸び量は急激に増大し、0.04mm以上になった。   On the other hand, when the Zn ion concentration of the Ni plating solution exceeded 100 ppm (Sample 5), the amount of plating elongation of the Ni plating film increased rapidly and became 0.04 mm or more.

従って、Niめっき液のZnイオン濃度を0ppm以上100ppm以下とすることにより、Niめっき膜のめっき伸びを抑制することができることがわかる。   Therefore, it can be understood that the plating elongation of the Ni plating film can be suppressed by setting the Zn ion concentration of the Ni plating solution to 0 ppm or more and 100 ppm or less.

更に、Niめっき膜について定量分析を行い、Niめっき膜中のZn濃度を求めたところ、Niめっき液のZnイオン濃度が100ppmのとき(サンプル4)、Niめっき膜中のZn濃度は1wt%以下となった。これに対し、Niめっき液のZnイオン濃度が300ppmのとき(サンプル5)、Niめっき膜中のZn濃度は10wt%以上となった。   Furthermore, quantitative analysis was performed on the Ni plating film, and the Zn concentration in the Ni plating film was determined. When the Zn ion concentration of the Ni plating solution was 100 ppm (sample 4), the Zn concentration in the Ni plating film was 1 wt% or less. It became. In contrast, when the Zn ion concentration of the Ni plating solution was 300 ppm (sample 5), the Zn concentration in the Ni plating film was 10 wt% or more.

<実験2>
次に、Snめっきに関する実験データについて説明する。この実験では、図1及び図2に示したセラミック電子部品を用い、図3及び図4のNiめっき工程を行った後、図5及び図6のSnめっき工程でSnめっき液のZnイオン濃度を様々な値に設定し、Snめっき膜を形成した。Snめっき液のZnイオン濃度を0ppm、100ppm、200ppm及び300ppmとしたものを、それぞれ、サンプル6〜9とする。なお、各サンプルのデータ数Nは300とした。更に、各サンプル6〜9についてSnめっき膜の外観を確認し、めっき伸び不良率を調べた。
<Experiment 2>
Next, experimental data related to Sn plating will be described. In this experiment, using the ceramic electronic component shown in FIGS. 1 and 2, after performing the Ni plating process of FIGS. 3 and 4, the Zn ion concentration of the Sn plating solution was changed in the Sn plating process of FIGS. Various values were set and Sn plating films were formed. Samples 6 to 9 were prepared by setting the Zn ion concentration of the Sn plating solution to 0 ppm, 100 ppm, 200 ppm, and 300 ppm, respectively. The number of data N for each sample was 300. Furthermore, the external appearance of the Sn plating film was confirmed for each of Samples 6 to 9, and the plating elongation defect rate was examined.

図10は、Snめっき液のZnイオン濃度とめっき伸び不良率との関係を示すグラフである。図10において、横軸にSnめっき液のZnイオン濃度(ppm)をとり、縦軸にめっき伸び不良率(%)をとってある。   FIG. 10 is a graph showing the relationship between the Zn ion concentration of the Sn plating solution and the plating elongation defect rate. In FIG. 10, the horizontal axis represents the Zn ion concentration (ppm) of the Sn plating solution, and the vertical axis represents the plating elongation defect rate (%).

図10に示すように、Snめっき液のZnイオン濃度が0ppm以上100ppm以下のとき(サンプル6及び7)、Snめっき膜のめっき伸び量は低い値になり、めっき伸び不良率は10%以下に抑えられた。   As shown in FIG. 10, when the Zn ion concentration of the Sn plating solution is 0 ppm or more and 100 ppm or less (samples 6 and 7), the plating elongation amount of the Sn plating film is low, and the plating elongation defect rate is 10% or less. It was suppressed.

これに対し、Snめっき液のZnイオン濃度が100ppmを超えると(サンプル8及び9)、Snめっき膜のめっき伸び量は急激に増大し、めっき伸び不良率は20%以上になった。   On the other hand, when the Zn ion concentration of the Sn plating solution exceeded 100 ppm (samples 8 and 9), the plating elongation amount of the Sn plating film increased rapidly, and the plating elongation defect rate was 20% or more.

従って、Snめっき液のZnイオン濃度を0ppm以上100ppm以下とすることにより、Snめっき膜のめっき伸びを抑制することができることがわかる。   Therefore, it can be understood that the plating elongation of the Sn plating film can be suppressed by setting the Zn ion concentration of the Sn plating solution to 0 ppm or more and 100 ppm or less.

また、ここでは、Niめっきに関する実験結果と、Snめっきに関する実験結果とについて説明を行ったが、他のめっき種についても、同様な実験結果が得られる。   Moreover, although the experimental result regarding Ni plating and the experimental result regarding Sn plating have been described here, similar experimental results can be obtained for other plating types.

本発明に係るめっき方法の一実施形態に用いられるセラミック電子部品を示す断面図である。It is sectional drawing which shows the ceramic electronic component used for one Embodiment of the plating method which concerns on this invention. 図1に示したセラミック電子部品の平面図である。It is a top view of the ceramic electronic component shown in FIG. 本発明に係るめっき方法の一実施形態に含まれる工程を示す図である。It is a figure which shows the process included in one Embodiment of the plating method which concerns on this invention. 図3に示された工程においてセラミック電子部品の状態を示す図である。It is a figure which shows the state of a ceramic electronic component in the process shown by FIG. 図3及び図4に示した工程の後の工程を示す図である。It is a figure which shows the process after the process shown in FIG.3 and FIG.4. 図5に示された工程においてセラミック電子部品の状態を示す図である。It is a figure which shows the state of a ceramic electronic component in the process shown by FIG. 図1乃至図6に示しためっき方法により得られたセラミック電子部品を示す断面図である。It is sectional drawing which shows the ceramic electronic component obtained by the plating method shown in FIG. 1 thru | or FIG. 図7に示したセラミック電子部品の平面図である。It is a top view of the ceramic electronic component shown in FIG. Niめっき液のZnイオン濃度とめっき伸び量との関係を示すグラフである。It is a graph which shows the relationship between Zn ion concentration of Ni plating solution, and the amount of plating elongation. Snめっき液のZnイオン濃度とめっき伸び不良率との関係を示すグラフである。It is a graph which shows the relationship between Zn ion concentration of Sn plating solution, and a plating elongation defect rate.

符号の説明Explanation of symbols

1 セラミック電子部品
2 素体
43 Niめっき膜
45 Snめっき膜
DESCRIPTION OF SYMBOLS 1 Ceramic electronic component 2 Element body 43 Ni plating film 45 Sn plating film

Claims (4)

Znを含有するセラミック材料から構成された素体と、前記素体の表面に互いに間隔を隔てて配置された複数の端子電極用めっき下地膜とを含むセラミック電子部品を用意し、
Znイオン濃度を0ppm以上100ppm以下に管理しためっき液中で前記セラミック電子部品に対する電気めっき処理を行い、前記めっき下地膜上にめっき膜を形成する、
めっき方法。
Preparing a ceramic electronic component including an element body made of a ceramic material containing Zn, and a plurality of terminal electrode plating base films disposed on the surface of the element body at intervals,
Performing an electroplating process on the ceramic electronic component in a plating solution in which the Zn ion concentration is controlled to 0 ppm or more and 100 ppm or less, and forming a plating film on the plating base film;
Plating method.
請求項1に記載されためっき方法であって、
前記めっき液は、Niめっき液またはSnめっき液である
めっき方法。
The plating method according to claim 1,
The plating method, wherein the plating solution is a Ni plating solution or a Sn plating solution.
素体と、複数の端子電極とを含むセラミック電子部品であって、
前記素体は、Znを含有するセラミック材料から構成されており、
前記端子電極は、前記素体の表面に互いに間隔を隔てて配置され、表面にめっき膜を有しており、
前記めっき膜は、請求項1または2に記載されためっき方法により形成されたものである、
セラミック電子部品。
A ceramic electronic component including an element body and a plurality of terminal electrodes,
The element body is made of a ceramic material containing Zn,
The terminal electrodes are spaced from each other on the surface of the element body, and have a plating film on the surface,
The plating film is formed by the plating method according to claim 1 or 2.
Ceramic electronic components.
請求項3に記載されたセラミック電子部品であって、
前記めっき膜中のZn濃度は1wt%以下である、
セラミック電子部品。


The ceramic electronic component according to claim 3,
Zn concentration in the plating film is 1 wt% or less,
Ceramic electronic components.


JP2006026730A 2006-02-03 2006-02-03 Plating method Pending JP2007204822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026730A JP2007204822A (en) 2006-02-03 2006-02-03 Plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026730A JP2007204822A (en) 2006-02-03 2006-02-03 Plating method

Publications (1)

Publication Number Publication Date
JP2007204822A true JP2007204822A (en) 2007-08-16

Family

ID=38484538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026730A Pending JP2007204822A (en) 2006-02-03 2006-02-03 Plating method

Country Status (1)

Country Link
JP (1) JP2007204822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210836A (en) * 2010-03-29 2011-10-20 Murata Mfg Co Ltd Electronic component
JP2015079897A (en) * 2013-10-18 2015-04-23 株式会社村田製作所 Method of manufacturing inductor, and inductor
WO2015146758A1 (en) * 2014-03-26 2015-10-01 株式会社村田製作所 Production method for ceramic electronic components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210836A (en) * 2010-03-29 2011-10-20 Murata Mfg Co Ltd Electronic component
JP2015079897A (en) * 2013-10-18 2015-04-23 株式会社村田製作所 Method of manufacturing inductor, and inductor
WO2015146758A1 (en) * 2014-03-26 2015-10-01 株式会社村田製作所 Production method for ceramic electronic components
JPWO2015146758A1 (en) * 2014-03-26 2017-04-13 株式会社村田製作所 Manufacturing method of ceramic electronic component
US10068705B2 (en) 2014-03-26 2018-09-04 Murata Manufacturing Co., Ltd. Method for manufacturing ceramic electronic component

Similar Documents

Publication Publication Date Title
US8149566B2 (en) Laminated electronic component and manufacturing method therefor
CN111886663B (en) Multilayer ceramic capacitor with ultra-wideband performance
KR100307680B1 (en) Electronic component having a tin alloy plating film
US7576968B2 (en) Plated terminations and method of forming using electrolytic plating
US8587923B2 (en) Laminated electronic component including water repellant and manufacturing method therefor
KR101741132B1 (en) Ceramic electronic component and manufacturing method therefor
US20080239617A1 (en) Multilayer electronic component and method for manufacturing multilayer electronic component
US8547683B2 (en) Laminated ceramic electronic component with directly plated external terminal electrodes and manufacturing method therefor
KR101721628B1 (en) Ceramic electronic component and manufacturing method therefor
US8982533B2 (en) Monolithic electronic component and method for manufacturing monolithic electronic component
US8102640B2 (en) Monolithic ceramic electronic component and method of manufacturing monolithic ceramic electronic component
KR20170127398A (en) Ceramic electronic component
JP2012237033A (en) Electronic component
JP2021019010A (en) Multilayer electronic component and mounting structure of the same
JP2023110018A (en) Multilayer electronic device having improved connectivity and method for making the same
KR100564930B1 (en) Chip shaped electronic device and a method of producing the same
JP5245611B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2007204822A (en) Plating method
JP3735756B2 (en) Chip-shaped electronic component and manufacturing method thereof
US20050229388A1 (en) Multi-layer ceramic chip varistor device surface insulation method
JP5835047B2 (en) Ceramic electronic components
JP5000912B2 (en) Chip varistor
JP2007242715A (en) Method of manufacturing ceramic electronic component
JP4515334B2 (en) Barrel plating method and electronic component manufacturing method
JP4904853B2 (en) Manufacturing method of ceramic electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20080725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091209