JP2007198027A - In-situ permeability testing method and device - Google Patents

In-situ permeability testing method and device Download PDF

Info

Publication number
JP2007198027A
JP2007198027A JP2006018418A JP2006018418A JP2007198027A JP 2007198027 A JP2007198027 A JP 2007198027A JP 2006018418 A JP2006018418 A JP 2006018418A JP 2006018418 A JP2006018418 A JP 2006018418A JP 2007198027 A JP2007198027 A JP 2007198027A
Authority
JP
Japan
Prior art keywords
water
earth structure
cylinder
pressure head
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006018418A
Other languages
Japanese (ja)
Other versions
JP4844924B2 (en
Inventor
Masato Suzuki
正人 鈴木
Atsushi Sakamoto
篤 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Original Assignee
JDC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp filed Critical JDC Corp
Priority to JP2006018418A priority Critical patent/JP4844924B2/en
Publication of JP2007198027A publication Critical patent/JP2007198027A/en
Application granted granted Critical
Publication of JP4844924B2 publication Critical patent/JP4844924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-situ permeability testing method for measuring a coefficient of permeability in situ easily and in a short time, and to provide an in-situ permeability testing method. <P>SOLUTION: The in-situ permeability testing method is provided for measuring a coefficient of the permeability of an earth structure 11. By the method, one of openings of a cylinder 12 is embedded in the ground of a surface layer of the earth structure 11, and a tensiometer 30 for measuring a pressure head of the earth structure 11 is set in the ground at a depth equal to that of the lower edge of the opening of the embedded cylinder 12, or at a location close to the ground surface, and water is poured into the cylinder 12. Then the water in the cylinder 12 is infiltrated from the ground surface of the earth structure 11 while a water level in the cylinder 12 is kept at a constant level by a Mariotte pipe 14, and based on changes in percolating water volume and the pressure head of the earth structure 11, the coefficient of the permeability of the earth structure 11 is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特に廃棄処分場覆土等の土構造物における鉛直遮水性を評価するために好適な原位置透水試験方法及びその装置に関する。   The present invention relates to an in-situ permeability test method and apparatus suitable for evaluating vertical water impermeability particularly in soil structures such as waste disposal ground cover.

地中に産業廃棄物を埋設して表面を覆土した廃棄物処分場では、地表から浸透して覆土を通過する雨水が廃棄物層へ達すると汚染されて汚水となる。この汚水が地下水源に達すると地下水を汚染して周辺環境に多大な影響を及ぼすこととなる。したがって汚水はこのまま公共水域へ放流せずに浄化する必要がある。この際、雨水等の浸透水の浸透量は、前記覆土の遮水性に大きく影響する。よって遮水性を制御することにより、汚水の排出量が少なくなれば、汚水の浄化処理に伴う費用を削減することが可能となる。   In a waste disposal site where industrial waste is buried in the ground and the surface is covered with soil, rainwater that permeates from the surface and passes through the covered soil is contaminated and becomes sewage. When this sewage reaches the groundwater source, it will contaminate the groundwater and greatly affect the surrounding environment. Therefore, it is necessary to purify the sewage without releasing it into the public water area. At this time, the amount of permeated water such as rainwater greatly affects the water-imperviousness of the cover soil. Therefore, by controlling the water shielding, if the amount of discharged sewage is reduced, it is possible to reduce the cost associated with the sewage purification process.

そこで、覆土を構築する際には、土の中を水が移動する速度を表した透水係数を管理することが重要である。一般に、透水係数の測定においては、直接測定することは行なわれず、土の締固め密度から推定している。その大きな理由は、従来の透水試験法は時間と費用が掛かりすぎ、現場の日常の品質管理には適していないからである。土構造物の透水試験法としては、施工対象となる原位置で土の積層状態を崩さないようにそのままの状態を維持した試料を採取して試験室で測定する室内透水試験と、原位置で直接行う原位置透水試験とがある。   Therefore, when constructing the cover soil, it is important to manage the hydraulic conductivity representing the speed at which water moves through the soil. In general, in the measurement of hydraulic conductivity, direct measurement is not performed, but estimation is based on the compaction density of the soil. The main reason is that the conventional permeability test method takes too much time and money and is not suitable for daily quality control in the field. The soil permeability test method includes an in-situ permeability test in which a sample that is maintained in its original state is maintained at the original location to be constructed and is measured in the laboratory. There are direct in-situ permeability tests.

室内透水試験は、測定地盤から試料をブロック状に切り出し、破損に気をつけながら試験室へ運搬する。そして試験室でブロックから円柱状の試料を削り出し、その円柱状試料をひと回り大きな容器に入れ、試料と容器の間隙をセメントミルクやベントナイトで止水処理した後、室内透水試験装置にセットして実施される。   In the indoor water permeability test, a sample is cut out from the measurement ground into a block shape and transported to the test room while paying attention to breakage. Then, a cylindrical sample is cut out from the block in the test room, the cylindrical sample is put in a large container, and the gap between the sample and the container is water-stopped with cement milk or bentonite. To be implemented.

一方、原位置透水試験法は、図5に示すように、測定対象となる土構造物1に試験孔2を掘り、孔壁の崩壊を防ぐために試験孔2の内部に砕石3を入れる。そして、試験孔2内に注水し、試験孔2内の水と気密水槽4とを定水位保持管5及び注水管6を介して接続することによって試験孔2内の水位を一定に保ちながら試験孔2から土構造物1に浸透させることができる。気密水槽4内に配置したスケール7により試験孔2内への浸透水量を測定する。そして単位時間当たりの浸透水量が一定となるまで測定し、所定の式により透水係数を算出することができる。(例えば特許文献1、非特許文献1)
特開2000−352042号公報 「地盤調査の方法と解説」、社団法人地盤工学会、2004年6月、p413〜421
On the other hand, in the in-situ permeability test method, as shown in FIG. 5, the test hole 2 is dug in the earth structure 1 to be measured, and the crushed stone 3 is put inside the test hole 2 in order to prevent the collapse of the hole wall. Then, water is poured into the test hole 2 and the water in the test hole 2 and the airtight water tank 4 are connected via the constant water level holding pipe 5 and the water injection pipe 6 while maintaining the water level in the test hole 2 constant. The soil structure 1 can be infiltrated from the hole 2. The amount of permeated water into the test hole 2 is measured by a scale 7 arranged in the airtight water tank 4. And it measures until the amount of osmotic water per unit time becomes constant, and can calculate a hydraulic conductivity by a predetermined formula. (For example, Patent Document 1, Non-Patent Document 1)
JP 2000-352042 A “Method and explanation of ground survey”, Geotechnical Society of Japan, June 2004, p413-421

しかしながら室内透水試験法によれば、現場で試料を採取してから試験用の供試体を作製するまでに熟練技術を要する多くの工程を含むばかりでなく、試料採取から試験結果を得るまでには相当の時間と費用が必要であった。   However, according to the indoor permeability test method, it does not only include many processes that require skilled skills from taking a sample in the field to producing a test specimen, but also obtaining test results from sampling. Considerable time and expense were required.

一方、上記の原位置透水試験法は、素掘り孔に水を注入して水を試験孔の全周囲に浸透させて試験を行っている。透水係数の算出にあたっては測定対象である土構造物は等方性であると仮定している。しかし土構造物は転圧の影響などから水平方向と鉛直方向の透水係数は必ずしも同一ではないため、この方法によれば降雨の浸透に直接影響を及ぼす鉛直方向の透水係数を正しく評価することはできなかった。   On the other hand, in the above-mentioned in-situ permeability test method, the test is performed by injecting water into the digging hole and allowing the water to permeate all around the test hole. In calculating the hydraulic conductivity, it is assumed that the earth structure to be measured is isotropic. However, because the soil structure does not necessarily have the same hydraulic conductivity in the horizontal and vertical directions due to the effect of rolling pressure, etc., this method does not accurately evaluate the vertical hydraulic conductivity that directly affects rainfall infiltration. could not.

また特許文献1の透水試験法によれば、測定手段となる電極を地中深く埋め込んでいるため、埋め込み作業に手間がかかるとともに、地表から電極までの距離が長く浸透時間も長くなる。
本発明は、これら従来法の問題点に鑑みてなされたもので、原位置で容易にかつ短時間で鉛直方向の透水係数を測定することを目的とする。
Further, according to the water permeability test method of Patent Document 1, since the electrode serving as the measuring means is embedded deeply in the ground, the embedding work takes time and the distance from the ground surface to the electrode is long and the permeation time is also long.
The present invention has been made in view of the problems of these conventional methods, and an object of the present invention is to measure the hydraulic conductivity in the vertical direction easily and in a short time at the original position.

本発明に係る原位置透水試験方法は、土構造物の透水係数を測定する原位置透水試験方法であって、前記土構造物の表層の地中にいずれか一方の開口を埋設した筒体の内部に注水し、前記筒体内の水位を一定に保ちながら前記筒体の水を前記土構造物の地表から浸透させ、埋設した前記筒体の前記開口の下端部の深さと同等又は地表側の地中の圧力水頭を計測し、前記土構造物の浸透水量の変化と前記圧力水頭の変化とに基づいて、前記土構造物の透水係数を求めることを特徴としている。   The in-situ permeability test method according to the present invention is an in-situ permeability test method for measuring a permeability coefficient of a soil structure, and is a cylindrical body in which one of the openings is embedded in the surface layer of the soil structure. Water is poured into the cylinder, and the water in the cylinder is infiltrated from the ground surface of the earth structure while keeping the water level in the cylinder constant, and is equal to the depth of the lower end of the opening of the buried cylinder or on the surface side. The pressure head in the ground is measured, and the hydraulic conductivity of the earth structure is obtained based on the change in the amount of seepage water of the earth structure and the change in the pressure head.

本発明に係る原位置透水試験装置は、土構造物の測定対象域を囲い、下端部を前記測定対象域の表層に埋設し、内部に水を充填し、前記土構造物の地表から表層部へ前記水を浸透させる筒体と、前記筒体内の水位を一定に保ちながら前記土構造物への浸透水量を測定するマリオット管と、前記筒体内の前記土構造物に埋設し、前記土構造物の圧力水頭を測定するテンシオメータと、を備えたことを特徴としている。   The in-situ permeability test apparatus according to the present invention surrounds a measurement target area of a soil structure, embeds a lower end portion in a surface layer of the measurement target area, and fills the inside with water, and from the surface of the soil structure to a surface layer part. A cylinder for infiltrating the water, a Marriott tube for measuring the amount of water penetrating into the earth structure while keeping the water level in the cylinder constant, and the earth structure embedded in the earth structure in the cylinder And a tensiometer for measuring the pressure head of the object.

上記構成による本願発明によれば、筒体の開口の下端部を土構造物の表層から内部に埋込んでいる。またテンシオメータの先端部は埋設した筒体の下端部の深さと同等またはそれよりも浅い地表側の地中に設置している。このため、埋設した円筒管の管壁によって土構造物の測定対象域における水平方向の浸透流を抑制して鉛直方向の浸透流に限定することができる。   According to this invention by the said structure, the lower end part of the opening of a cylinder is embedded inside from the surface layer of a soil structure. The tip of the tensiometer is installed in the ground on the ground side which is equal to or shallower than the depth of the lower end of the buried cylinder. For this reason, the horizontal osmotic flow in the measurement target area of the earth structure can be suppressed by the tube wall of the buried cylindrical tube, and the osmotic flow can be limited to the vertical osmotic flow.

また筒体の内側であって土構造物に配置したテンシオメータで圧力水頭を測定するとともに、円筒管の周辺に配置したマリオット管により土構造物に浸透する水の流量を測定している。このため、予め求めた解析値とこれらの測定値を対比し、透水係数を求めることができる。   In addition, the pressure head is measured with a tensiometer located in the earth structure inside the cylinder, and the flow rate of water penetrating the earth structure is measured with a Marriott pipe arranged around the cylindrical pipe. For this reason, the hydraulic conductivity can be obtained by comparing the analytical value obtained in advance with these measured values.

さらに測定対象域は土構造物の表層部とし、筒体の下端部を埋設している。したがってこれまでの原位置透水試験のように浸透流が定常に達するまで長時間測定を続ける必要はなく、短時間で鉛直方向の透水係数を測定することが可能となる。   Furthermore, the measurement target area is the surface layer part of the earth structure, and the lower end part of the cylinder is embedded. Therefore, it is not necessary to continue the measurement for a long time until the osmotic flow reaches a steady state as in the in-situ permeability test so far, and it is possible to measure the permeability coefficient in the vertical direction in a short time.

本発明の原位置透水試験方法及びその装置の実施の形態について、添付の図面を参照しながら以下詳細に説明する。図1は、本発明に係る原位置透水試験装置の構成概略を示す図である。図示のように原位置透水試験装置10の測定対象となる土構造物11は、例えば産業廃棄物処分場などの覆土層である。   Embodiments of the in-situ permeability test method and apparatus of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of an in-situ permeability test apparatus according to the present invention. As shown in the figure, the soil structure 11 to be measured by the in-situ permeability test apparatus 10 is a covering layer such as an industrial waste disposal site.

土構造物11の表面には筒体を配置している。本実施形態では筒体として円筒管12を用いている。円筒管12は、一対の開口のいずれか一方を土構造物11に埋め込み、上側の開口から注水できるようにしている。そして円筒管12の壁部12aは、内部に注水することによって生じる水圧に対し十分な強度と、注水した水が壁面から外部に漏れないような遮水性を具備している。また円筒管12の下端部12bは、前記土構造物11の表面から内部に任意に設定した深さに埋め込んである。本実施形態に係る円筒体12の下端部12bの埋め込み深さは、土構造物11の表層部、すなわち地表から数cmの深さに設定している。埋め込み深さを土構造物11の地表から数cmの深さに設定することによって、原位置透水試験装置10の設置を容易にするとともに、浸透時間を短くすることができる。なお筒体の断面形状は、実施形態の円筒形状のほかにも楕円形状、矩形形状、多角形状など測定対象を囲う隔壁を備えた構造であればこれに限定されるものではない。   A cylinder is arranged on the surface of the earth structure 11. In the present embodiment, a cylindrical tube 12 is used as a cylindrical body. The cylindrical tube 12 has one of a pair of openings embedded in the earth structure 11 so that water can be injected from the upper opening. The wall portion 12a of the cylindrical tube 12 has a sufficient strength against the water pressure generated by pouring water into the interior and water shielding properties so that the poured water does not leak from the wall surface to the outside. Further, the lower end 12b of the cylindrical tube 12 is embedded at a depth arbitrarily set from the surface of the earth structure 11 to the inside. The embedding depth of the lower end portion 12b of the cylindrical body 12 according to the present embodiment is set to a depth of several centimeters from the surface layer portion of the earth structure 11, that is, the ground surface. By setting the embedding depth to a depth of several centimeters from the ground surface of the earth structure 11, the in-situ permeability test apparatus 10 can be easily installed and the infiltration time can be shortened. In addition to the cylindrical shape of the embodiment, the cross-sectional shape of the cylindrical body is not limited to this as long as the structure includes a partition wall that surrounds the measurement target, such as an elliptical shape, a rectangular shape, or a polygonal shape.

前記円筒管12の周辺にはマリオット管14を設けてある。このマリオット管14の上下の端部には複数のバルブを介して配管18が接続している。本体の上部には一対の通気バルブ16を設け、本体への通気、遮断を切り替え可能にしている。また本体の下部には一対の注水バルブ17を設け、本体へ注水あるいは排水することができるように構成している。下端部の注水バルブ17を備えた配管の一方は、注水ホース20を界して円筒管12の壁部12aの接続口と接続し、円筒管12内に注水可能に形成している。またマリオット管14内に設置する大気連通管22は、マリオット管14の本体を長手方向にスライド可能に形成し、設置位置を調整することができる。そして円筒管12の所定の水の高さHを設定する際、大気連通管22の下端部を地表からHの高さに合わせると、大気圧によって円筒管12内部の水の高さHに調整することができる。これにより円筒管12内部の水の高さHを一定に保持することができる。またマリオット管14の外周にはスケール24を配置し、管内部に充填した水26が円筒体12へ流出する水量を計測することができる。   A Marriott tube 14 is provided around the cylindrical tube 12. A pipe 18 is connected to the upper and lower ends of the Marriott pipe 14 via a plurality of valves. A pair of ventilation valves 16 are provided in the upper part of the main body so that the ventilation and blocking of the main body can be switched. In addition, a pair of water injection valves 17 are provided at the lower part of the main body so that water can be injected into or discharged from the main body. One of the pipes provided with the water injection valve 17 at the lower end is connected to the connection port of the wall portion 12a of the cylindrical tube 12 with the water injection hose 20 therebetween, and is formed in the cylindrical tube 12 so that water can be injected. The atmospheric communication pipe 22 installed in the Marriott pipe 14 can be formed so that the body of the Marriott pipe 14 can slide in the longitudinal direction, and the installation position can be adjusted. When the predetermined water height H of the cylindrical tube 12 is set, if the lower end portion of the atmospheric communication tube 22 is adjusted to the height of H from the ground surface, the water height H inside the cylindrical tube 12 is adjusted by atmospheric pressure. can do. Thereby, the height H of the water inside the cylindrical tube 12 can be kept constant. Further, a scale 24 is disposed on the outer periphery of the Marriott tube 14, and the amount of water that flows out of the water 26 filled in the tube into the cylindrical body 12 can be measured.

円筒管12の内部にはテンシオメータ(圧力水頭計)30を配置してある。テンシオメータ30の先端部のポーラスカップ32は、円筒管12内の土構造物11の地中に挿入してある。またテンシオメータ30の上端部は、計測ケーブル34を介して円筒管12の外部に設置した表示器36に接続している。表示器36はテンシオメータの測定した圧力水頭を円筒管12の外側から表示可能に構成している。またテンシオメータ30は、先端部のポーラスカップ32が円筒管12の下端部12bと同等の深さ35又はわずかに浅い位置、すなわち土構造物11の地表側の地中になるように円筒管12内部の土構造物11に設置されている。これにより圧力水頭を測定するテンシオメータ30の測定部は、円筒体12の壁部12aの内側に配置されて、地表から浸透する浸透水の水平方向の流れを遮断して、鉛直方向に限定することができる。   A tensiometer (pressure head meter) 30 is disposed inside the cylindrical tube 12. The porous cup 32 at the tip of the tensiometer 30 is inserted into the earth structure 11 in the cylindrical tube 12. The upper end portion of the tensiometer 30 is connected to a display device 36 installed outside the cylindrical tube 12 via a measurement cable 34. The indicator 36 is configured to display the pressure head measured by the tensiometer from the outside of the cylindrical tube 12. Further, the tensiometer 30 is arranged so that the porous cup 32 at the tip end is located at a depth 35 or slightly shallower equivalent to the lower end portion 12b of the cylindrical tube 12, that is, inside the cylindrical tube 12 so as to be in the ground on the ground surface side of the earth structure 11. The earth structure 11 is installed. Thereby, the measurement part of the tensiometer 30 for measuring the pressure head is arranged inside the wall part 12a of the cylindrical body 12 to block the horizontal flow of the permeated water penetrating from the ground surface and limited to the vertical direction. Can do.

次に、上記構成による原位置透水試験装置の原位置透水試験方法について説明する。まず円筒管12の一対の開口のうちいずれか一方の開口の下端部12bを土構造物11の外表面から任意の深さ、すなわち地表から数cmの深さに埋設する。そしてテンシオメータ30の先端部のポーラスカップ32を円筒体12の内部の土構造物11の地表から挿入し、埋め込んだ円筒体12の下端部12bと同等以下の浅い位置、すなわち下端部12bと同等の深さ又はそれよりも土構造物11の地表側の浅い位置に設置する。テンシオメータ30は計測ケーブル34を介して外部に配置した表示器36に接続している。   Next, the in-situ permeability test method of the in-situ permeability test apparatus having the above configuration will be described. First, the lower end portion 12b of one of the pair of openings of the cylindrical tube 12 is embedded at an arbitrary depth from the outer surface of the earth structure 11, that is, a depth of several centimeters from the ground surface. And the porous cup 32 of the front-end | tip part of the tensiometer 30 is inserted from the ground surface of the earth structure 11 inside the cylindrical body 12, and it is equivalent to the shallow position below the lower end part 12b of the embedded cylindrical body 12, ie, equivalent to the lower end part 12b. It is installed at a depth or a shallower position on the ground surface side of the earth structure 11 than that. The tensiometer 30 is connected to an indicator 36 arranged outside via a measurement cable 34.

円筒管12の周辺に設置したマリオット管14の注水ホース20から円筒管12の壁部12aに水を送り、注水ホース20内の空気を管外部に追い出して管内部を水で満たした後、マリオット管14の通気バルブ16及び注水バルブ17を全て閉塞する。そして土構造物内の初期の圧力水頭の測定値を表示器36により測定し記録する。   After water is sent from the water injection hose 20 of the Marriott pipe 14 installed around the cylindrical pipe 12 to the wall portion 12a of the cylindrical pipe 12, the air inside the water injection hose 20 is expelled to the outside of the pipe and the pipe is filled with water. All of the ventilation valve 16 and the water injection valve 17 of the pipe 14 are closed. Then, the measured value of the initial pressure head in the earth structure is measured by the display 36 and recorded.

ついで円筒管12の内部へ任意に設定した高さHまで注水して、マリオット管14の通水バルブ17aを開く。円筒管12内に注水すると地表から水が浸透し始める。マリオット管14の大気連通管22によって円筒管12の水の高さHは一定に保持されながら、マリオット管14本体の水が円筒管12内部に流出する。通水バルブ17を開いてからの所定の経過時間ごと、そのときのマリオット管14内の水位、及び圧力水頭を測定する。このときマリオット管14内の水位は管外周に取り付けたスケールにより測定する、また圧力水頭は表示器36によって測定値が表示される。なお、円筒管12内の水が土構造物11へ浸透するとそれと同量の水がマリオット管14から円筒管12内へ移動するので、マリオット管14内の水位変化から土構造物への浸透水量が得られる。   Next, water is poured into the cylindrical pipe 12 to a arbitrarily set height H, and the water passage valve 17a of the Marriott pipe 14 is opened. When water is poured into the cylindrical tube 12, water begins to permeate from the ground surface. The water in the Marriott pipe 14 flows into the cylindrical pipe 12 while the water height H of the cylindrical pipe 12 is kept constant by the atmospheric communication pipe 22 of the Marriott pipe 14. The water level and the pressure head in the Marriott pipe 14 at that time are measured every predetermined elapsed time after the water valve 17 is opened. At this time, the water level in the Marriott tube 14 is measured by a scale attached to the outer periphery of the tube, and the measured value of the pressure head is displayed on the display 36. When the water in the cylindrical tube 12 permeates into the earth structure 11, the same amount of water moves from the Marriott tube 14 into the cylindrical tube 12, so that the amount of infiltrated water into the earth structure from the change in the water level in the Marriott tube 14 Is obtained.

次に、得られた圧力水頭と浸透水量の測定値に基づき透水係数kの算出方法について説明する。図2、図3は一例として、原位置透水試験装置の円筒管の直径が300mm、円筒管下端の土構造物への埋設深度が50mm、円筒管内の水位Hが100mm、テンシオメータのポーラスカップが円筒管の中央部であって深さ40mmに設置したときの経過時間と、浸透水量又は圧力水頭との変化を一般的な有限要素法浸透流解析によって求めたグラフである。図2は縦軸に浸透水量(cm/時間)、横軸に透水試験の経過時間(h)をとり、A:透水係数k=1×10−3cm/sec、B:k=1×10−6cm/secのグラフをそれぞれ示す。図3は縦軸に圧力水頭(cm)、横軸に透水試験の経過時間(h)をとり、A:透水係数k=1×10−3cm/sec、B:k=1×10−6cm/secのグラフをそれぞれ示す。 Next, a method for calculating the hydraulic conductivity k will be described based on the obtained pressure head and the measured value of the amount of osmotic water. 2 and 3 show, as an example, the diameter of the cylindrical tube of the in-situ permeability test apparatus is 300 mm, the depth of embedding in the earth structure at the bottom of the cylindrical tube is 50 mm, the water level H in the cylindrical tube is 100 mm, and the porous cup of the tensiometer is cylindrical. It is the graph which calculated | required the change with the general finite element method osmotic flow analysis of the elapsed time when it installs in the center part of a pipe | tube and the depth of 40 mm, and the amount of osmotic water or a pressure head. In FIG. 2, the vertical axis represents the amount of permeated water (cm 3 / hour), the horizontal axis represents the elapsed time (h) of the water permeability test, A: water permeability coefficient k = 1 × 10 −3 cm / sec, B: k = 1 × Each graph shows 10 −6 cm / sec. FIG. 3 shows the pressure head (cm) on the vertical axis and the elapsed time (h) of the water permeability test on the horizontal axis. A: hydraulic conductivity k = 1 × 10 −3 cm / sec, B: k = 1 × 10 −6 Each graph of cm / sec is shown.

例えば経過時間ごと浸透水量と圧力水頭を測定し、得られた測定値を有限要素法浸透流解析による解析値に基づくグラフにプロットする。プロットした点を結んで得られた曲線から近似する透水係数の曲線を選択し、透水係数kを求めることができる。また有限要素法浸透流解析によってこの他にも任意の透水係数kを解析し、経過時間ごとの圧力水頭と浸透水量からなる測定結果を有限要素法によって求めた解析結果と測定結果とを対比することによって測定箇所の透水係数を求めることができる。なお、透水係数は浸透水量あるいは圧力水頭のいずれか一方の値よって求めるようにしてもよいが、好ましくは浸透水量と圧力水頭の両方の測定値から透水係数を求めるようにすればより正確な値を求めることができる。   For example, the amount of osmotic water and the pressure head are measured for each elapsed time, and the obtained measurement values are plotted on a graph based on the analysis values by finite element method osmotic flow analysis. A permeability coefficient curve can be obtained by selecting an approximate permeability coefficient curve from curves obtained by connecting the plotted points. In addition, an arbitrary hydraulic conductivity k is analyzed by the finite element method osmotic flow analysis, and the measurement result obtained by the finite element method is compared with the measurement result obtained from the pressure head and the amount of osmotic water for each elapsed time. Thus, the hydraulic conductivity of the measurement location can be obtained. The permeability coefficient may be determined by either the amount of osmotic water or the pressure head, but it is preferably a more accurate value if the permeability coefficient is determined from the measured values of both the amount of osmotic water and the pressure head. Can be requested.

ところで透水試験装置で測定した測定結果は、上記有限要素法浸透流解析によって求める他に、簡易式を利用して透水係数を求めることもできる。図4は透水係数を簡易に算定する算定式の説明図である。   By the way, in addition to obtaining the measurement result measured by the water permeability test apparatus by the finite element method osmotic flow analysis, the water permeability coefficient can also be obtained by using a simple formula. FIG. 4 is an explanatory diagram of a calculation formula for simply calculating the hydraulic conductivity.

図4(1)に示すように、一般に土壌中の水の流れはダルシー則(Q=kiA)に従い、透水係数kは、2点間の流動差の関係を表す動水勾配iを用いて、次のように表すことができる。

Figure 2007198027

なお
k:透水係数(cm/sec)、Q:流量(cm/sec)、
i:動水勾配、A:土の断面積(cm
Δh:水頭差(cm)、L:土の距離(cm)
をそれぞれ示す。 As shown in FIG. 4 (1), the flow of water in the soil generally follows Darcy's law (Q = kiA), and the hydraulic conductivity k uses a hydraulic gradient i representing the relationship between the flow differences between two points. It can be expressed as:
Figure 2007198027

K: hydraulic conductivity (cm / sec), Q: flow rate (cm 3 / sec),
i: Hydrodynamic gradient, A: Cross-sectional area of soil (cm 2 )
Δh: water head difference (cm), L: soil distance (cm)
Respectively.

ここで、本実施形態に係る原位置透水試験装置では、図4(2)に示すように上記L:土の距離は、Z:圧力水頭の測定深さ(cm)、すなわち埋設したテンシオメータの先端部に相当する。   Here, in the in-situ permeability test apparatus according to the present embodiment, as shown in FIG. 4 (2), the distance of L: soil is Z: the measurement depth (cm) of the pressure head, that is, the tip of the embedded tensiometer. It corresponds to the part.

また本実施形態に係る原位置透水試験装置では、測定対象域の下部の圧力水頭をテンシオメータで測定し得られた測定値Pから、円筒間内に注水した水の高さHを一定に保持しているため、測定対象域の上部の圧力水頭との水頭差Δhを求めることができる。すなわち測定対象域の下部の圧力水頭をPとすると、測定対象域の上部の圧力水頭は円筒管内の水の高さHと、圧力水頭の測定深さZから数2に示すように

Figure 2007198027
と表すことができる。
ここで、Δh:水頭差、Z:圧力水頭の測定深さ(cm)
H:水の高さ(cm)、P:圧力水頭(cm)
をそれぞれ示す。 In the in-situ permeability test apparatus according to the present embodiment, the height H of the water poured into the space between the cylinders is kept constant from the measured value P obtained by measuring the pressure head at the lower part of the measurement target area with a tensiometer. Therefore, the head difference Δh from the pressure head at the top of the measurement target area can be obtained. In other words, if the pressure head at the lower part of the measurement target area is P, the pressure head at the upper part of the measurement target area is expressed by the following formula 2 from the height H of the water in the cylindrical tube and the measurement depth Z of the pressure head.
Figure 2007198027
It can be expressed as.
Here, Δh: head difference, Z: measured depth of pressure head (cm)
H: Water height (cm), P: Pressure head (cm)
Respectively.

得られた数式2を数式1に代入すると

Figure 2007198027

となる。
ここで、Q:円筒管内への浸透水量(cm/sec)、A:円筒管断面積(cm
をそれぞれ示す。 Substituting the obtained Equation 2 into Equation 1
Figure 2007198027

It becomes.
Here, Q: amount of permeated water into the cylindrical tube (cm 3 / sec), A: cross-sectional area of the cylindrical tube (cm 2 )
Respectively.

上記簡易式(数式3)によれば、予め試験装置の測定深さZ、水の高さH、円筒管断面積Aを特定しておけば、テンシオメータによる圧力水頭の測定値P及びマリオット管による浸透水量Qに基づいて透水係数kを算出することができる。また測定対象域の上下両面の圧力水頭が既知であるため、短時間で鉛直方向の透水係数を測定することができる。よってこれまでの原位置透水試験装置のように浸透流が定常に達するまで長時間測定を続ける必要がない。なお数式3は浸透流を鉛直方向のみの流れに制限して導いていたものである。   According to the above simplified formula (Formula 3), if the measurement depth Z, water height H, and cylindrical tube cross-sectional area A of the test apparatus are specified in advance, the measured value P of the pressure head by a tensiometer and the Marriott tube Based on the permeated water amount Q, the water permeability coefficient k can be calculated. Moreover, since the pressure heads on the upper and lower surfaces of the measurement target area are known, the hydraulic conductivity in the vertical direction can be measured in a short time. Therefore, it is not necessary to continue measurement for a long time until the osmotic flow reaches a steady state as in the conventional in-situ permeability test apparatus. Equation 3 is derived by limiting the osmotic flow to a flow only in the vertical direction.

このような原位置透水試験装置によれば、土構造物の表層部を測定対象域とすると共に、測定対象域の地表からの浸透流を鉛直方向に制限しているので、土構造物の浸透水量の変化と圧力水頭の変化とに基づいて、短時間で容易に透水係数を測定することができる。   According to such an in-situ permeability test apparatus, the surface layer portion of the earth structure is set as the measurement target area, and the infiltration flow from the surface of the measurement target area is restricted in the vertical direction. Based on the change in the amount of water and the change in the pressure head, the hydraulic conductivity can be easily measured in a short time.

本発明の実施形態に係る原位置透水試験装置の構成概略を示す図である。It is a figure which shows the structure outline of the in-situ permeability test apparatus which concerns on embodiment of this invention. 有限要素法により求めた浸透水量と経過時間の説明図である。It is explanatory drawing of the amount of osmotic water and elapsed time which were calculated | required by the finite element method. 有限要素法により求めた圧力水頭と経過時間の説明図である。It is explanatory drawing of the pressure head calculated | required by the finite element method, and elapsed time. 透水係数を簡易に算定する算定式の説明図である。It is explanatory drawing of the calculation formula which calculates a hydraulic conductivity simply. 従来の原位置透水試験装置の構成概略を示す図である。It is a figure which shows the structure outline of the conventional in-situ permeability test apparatus.

符号の説明Explanation of symbols

1………土構造物、2………試験孔、3………砕石、4………気密水槽、5………定水位保持管、6………注水管、7………スケール、10………原位置透水試験装置、11………土構造物、12………円筒管、14………マリオット管、16………通気バルブ、17………通水バルブ、18………配管、20………注水ホース、22………大気連通管、24………スケール、26………水、30………テンシオメータ、32………ポーラスカップ、34………計測ケーブル、36………表示器。 1 ......... Soil structure, 2 ...... Test hole, 3 ......... Crumble, 4 ...... Airtight water tank, 5 ...... Constant water level holding pipe, 6 ...... Water injection pipe, 7 ...... Scale, 10 ......... In-situ permeability test equipment, 11 ......... Earth structure, 12 ......... Cylindrical tube, 14 ......... Marriott tube, 16 ...... Ventilation valve, 17 ...... Water passage valve, 18 ... … Piping, 20 ……… Water injection hose, 22 ……… Air communication pipe, 24 ……… Scale, 26 ……… Water, 30 ……… Tensiometer, 32 ……… Porous cup, 34 ……… Measurement cable, 36: Display.

Claims (2)

土構造物の透水係数を測定する原位置透水試験方法であって、
前記土構造物の表層の地中にいずれか一方の開口を埋設した筒体の内部に注水し、前記筒体内の水位を一定に保ちながら前記筒体の水を前記土構造物の地表から浸透させ、
埋設した前記筒体の前記開口の下端部の深さと同等又は地表側の地中の圧力水頭を計測し、
前記土構造物の浸透水量の変化と前記圧力水頭の変化とに基づいて、前記土構造物の透水係数を求めることを特徴とする原位置透水試験方法。
An in-situ permeability test method for measuring the permeability coefficient of a soil structure,
Water is injected into the inside of the cylinder in which one of the openings is embedded in the ground surface of the soil structure, and water in the cylinder penetrates from the ground surface of the earth structure while keeping the water level in the cylinder constant. Let
Measure the pressure head in the ground on the surface side equivalent to the depth of the lower end of the opening of the buried cylinder,
An in-situ permeability test method, wherein a permeability coefficient of the earth structure is obtained based on a change in the amount of seepage water of the earth structure and a change in the pressure head.
土構造物の測定対象域を囲い、下端部を前記測定対象域の表層に埋設し、内部に水を充填し、前記土構造物の地表から表層へ前記水を浸透させる筒体と、
前記筒体内の水位を一定に保ちながら前記土構造物への浸透水量を測定するマリオット管と、
前記筒体内の前記土構造物に埋設し、前記土構造物の圧力水頭を測定するテンシオメータと、
を備えたことを特徴とする原位置透水試験装置。
A cylinder that surrounds the measurement target area of the earth structure, has a lower end embedded in a surface layer of the measurement target area, filled with water, and penetrates the water from the ground surface of the earth structure to the surface layer,
A Marriott tube for measuring the amount of water penetrating into the earth structure while keeping the water level in the cylinder constant;
A tensiometer embedded in the earth structure in the cylinder and measuring the pressure head of the earth structure;
An in-situ permeability test apparatus characterized by comprising:
JP2006018418A 2006-01-27 2006-01-27 In-situ permeability test method Active JP4844924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018418A JP4844924B2 (en) 2006-01-27 2006-01-27 In-situ permeability test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018418A JP4844924B2 (en) 2006-01-27 2006-01-27 In-situ permeability test method

Publications (2)

Publication Number Publication Date
JP2007198027A true JP2007198027A (en) 2007-08-09
JP4844924B2 JP4844924B2 (en) 2011-12-28

Family

ID=38452893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018418A Active JP4844924B2 (en) 2006-01-27 2006-01-27 In-situ permeability test method

Country Status (1)

Country Link
JP (1) JP4844924B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127832A (en) * 2006-11-20 2008-06-05 Maeda Corp In-situ permeability testing device and in-situ permeability measuring system
JP2010163801A (en) * 2009-01-16 2010-07-29 Sumitomo Mitsui Construction Co Ltd Permeability testing apparatus
JP2011179168A (en) * 2010-02-26 2011-09-15 Taisei Corp Block sampling method and tracer test method using the same
RU2450266C2 (en) * 2008-09-23 2012-05-10 ГНУ Сибирский научно-исследовательский институт земледелия и химизации сельского хозяйства, Сибирское отделение РАСХН Device for determining water permeability of soil
CN102495196A (en) * 2011-12-04 2012-06-13 中国科学院东北地理与农业生态研究所 Field water evapotranspiration detection method and device for paddy fields
KR200475581Y1 (en) * 2013-07-31 2014-12-12 대한민국 Water level control type soil infiltration velocity measuring apparatus
JP2016024012A (en) * 2014-07-18 2016-02-08 株式会社 サンライト建設 Disk permeameter and water permeability coefficient automatic measurement method
JP2016084586A (en) * 2014-10-23 2016-05-19 前田建設工業株式会社 Method for determining appropriate air feeding pressure to caisson work room in pneumatic caisson method
CN106996902A (en) * 2017-04-28 2017-08-01 浙江科技学院 Foundation Pit bottom stability test device containing artesian water stratum
CN107340234A (en) * 2017-08-29 2017-11-10 西北农林科技大学 A kind of device and method for determining soil cohesion
CN108267370A (en) * 2018-01-31 2018-07-10 浙江大学 A kind of one-dimensional cylinder test device and method for simulating the kinetic head boundary effect soil body
CN108593513A (en) * 2018-01-31 2018-09-28 浙江大学 A kind of experimental rig and method for simulating the dynamic artesian water effect soil body
CN109406294A (en) * 2018-12-17 2019-03-01 浙江理工大学 MBT refuse soil permeability apparatus and its method for measuring infiltration coefficient
CN109900615A (en) * 2019-03-13 2019-06-18 镇江市建设工程质量检测中心有限公司 Soil permeability coefficient test device and its test method
JP2019199766A (en) * 2018-05-17 2019-11-21 ランデックス工業株式会社 Ground permeability testing device
CN110907610A (en) * 2019-12-24 2020-03-24 湖南理工学院 Detection equipment and detection method for compactness of rolled laminated structure
JP2021501891A (en) * 2017-11-06 2021-01-21 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Instructions for soil additives for improving soil infiltration and / or controlling soil water repellency
CN112285319A (en) * 2020-09-15 2021-01-29 江苏大学 Determining device for determining flow of upper-type dripper of underground drip irrigation pipe and positive pressure of soil water
CN113218842A (en) * 2021-04-30 2021-08-06 中建五局土木工程有限公司 On-site testing method and on-site testing device for unsaturated permeability coefficient
CN113970493A (en) * 2021-09-23 2022-01-25 中国电建集团华东勘测设计研究院有限公司 Testing device and testing method for shear stress-strain curve test sample under large-scale direct shearing of on-site coarse-grained soil
CN117054315A (en) * 2023-10-13 2023-11-14 东北林业大学 Frozen soil permeability coefficient measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135927A (en) * 1983-01-26 1984-08-04 Yokogawa Hokushin Electric Corp Analog-digital converter
JPH07244040A (en) * 1994-03-07 1995-09-19 Asia Kosoku Kk Method and device for measuring soil moisture
JP2000352042A (en) * 1999-06-10 2000-12-19 Kumagai Gumi Co Ltd In-situ permeability test method and permeability coefficient measuring device
JP2002365201A (en) * 2001-06-08 2002-12-18 Kajima Corp Method and apparatus for automatic permeability test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135927A (en) * 1983-01-26 1984-08-04 Yokogawa Hokushin Electric Corp Analog-digital converter
JPH07244040A (en) * 1994-03-07 1995-09-19 Asia Kosoku Kk Method and device for measuring soil moisture
JP2000352042A (en) * 1999-06-10 2000-12-19 Kumagai Gumi Co Ltd In-situ permeability test method and permeability coefficient measuring device
JP2002365201A (en) * 2001-06-08 2002-12-18 Kajima Corp Method and apparatus for automatic permeability test

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127832A (en) * 2006-11-20 2008-06-05 Maeda Corp In-situ permeability testing device and in-situ permeability measuring system
RU2450266C2 (en) * 2008-09-23 2012-05-10 ГНУ Сибирский научно-исследовательский институт земледелия и химизации сельского хозяйства, Сибирское отделение РАСХН Device for determining water permeability of soil
JP2010163801A (en) * 2009-01-16 2010-07-29 Sumitomo Mitsui Construction Co Ltd Permeability testing apparatus
JP2011179168A (en) * 2010-02-26 2011-09-15 Taisei Corp Block sampling method and tracer test method using the same
CN102495196A (en) * 2011-12-04 2012-06-13 中国科学院东北地理与农业生态研究所 Field water evapotranspiration detection method and device for paddy fields
KR200475581Y1 (en) * 2013-07-31 2014-12-12 대한민국 Water level control type soil infiltration velocity measuring apparatus
JP2016024012A (en) * 2014-07-18 2016-02-08 株式会社 サンライト建設 Disk permeameter and water permeability coefficient automatic measurement method
JP2016084586A (en) * 2014-10-23 2016-05-19 前田建設工業株式会社 Method for determining appropriate air feeding pressure to caisson work room in pneumatic caisson method
CN106996902A (en) * 2017-04-28 2017-08-01 浙江科技学院 Foundation Pit bottom stability test device containing artesian water stratum
CN106996902B (en) * 2017-04-28 2023-10-13 浙江科技学院 Foundation pit bottom stability testing device containing pressure-bearing water stratum
CN107340234A (en) * 2017-08-29 2017-11-10 西北农林科技大学 A kind of device and method for determining soil cohesion
CN107340234B (en) * 2017-08-29 2023-07-04 西北农林科技大学 Device and method for measuring soil binding force
JP2021501891A (en) * 2017-11-06 2021-01-21 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Instructions for soil additives for improving soil infiltration and / or controlling soil water repellency
CN108267370A (en) * 2018-01-31 2018-07-10 浙江大学 A kind of one-dimensional cylinder test device and method for simulating the kinetic head boundary effect soil body
CN108593513A (en) * 2018-01-31 2018-09-28 浙江大学 A kind of experimental rig and method for simulating the dynamic artesian water effect soil body
JP2019199766A (en) * 2018-05-17 2019-11-21 ランデックス工業株式会社 Ground permeability testing device
CN109406294A (en) * 2018-12-17 2019-03-01 浙江理工大学 MBT refuse soil permeability apparatus and its method for measuring infiltration coefficient
CN109406294B (en) * 2018-12-17 2024-04-16 浙江理工大学 MBT garbage soil infiltration device and method for measuring infiltration coefficient thereof
CN109900615A (en) * 2019-03-13 2019-06-18 镇江市建设工程质量检测中心有限公司 Soil permeability coefficient test device and its test method
CN109900615B (en) * 2019-03-13 2024-04-26 镇江市建设工程质量检测中心有限公司 Soil permeability coefficient testing device and testing method thereof
CN110907610A (en) * 2019-12-24 2020-03-24 湖南理工学院 Detection equipment and detection method for compactness of rolled laminated structure
CN112285319A (en) * 2020-09-15 2021-01-29 江苏大学 Determining device for determining flow of upper-type dripper of underground drip irrigation pipe and positive pressure of soil water
CN112285319B (en) * 2020-09-15 2023-05-09 江苏大学 Measuring device for determining flow of drip heads on underground drip irrigation pipe and positive pressure of soil water
CN113218842A (en) * 2021-04-30 2021-08-06 中建五局土木工程有限公司 On-site testing method and on-site testing device for unsaturated permeability coefficient
CN113970493A (en) * 2021-09-23 2022-01-25 中国电建集团华东勘测设计研究院有限公司 Testing device and testing method for shear stress-strain curve test sample under large-scale direct shearing of on-site coarse-grained soil
CN117054315A (en) * 2023-10-13 2023-11-14 东北林业大学 Frozen soil permeability coefficient measurement system
CN117054315B (en) * 2023-10-13 2024-01-09 东北林业大学 Frozen soil permeability coefficient measurement system

Also Published As

Publication number Publication date
JP4844924B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4844924B2 (en) In-situ permeability test method
Youngs Hydraulic conductivity of saturated soils
DK1982047T3 (en) VADOSE ZONE PROBE, PROCEDURE AND SYSTEM FOR MONITORING OF SOIL PROPERTIES
JP4757092B2 (en) Groundwater flow evaluation method
US7059174B2 (en) Method and probe for measuring hydraulic conductivity of soil
Amoozegar et al. Methods for measuring hydraulic conductivity and drainable porosity
US20070266800A1 (en) Apparatus and method for measuring soil gases
CN105651677B (en) A kind of Geotechnical Parameter property analyzer that can measure specific yield and infiltration coefficient simultaneously
KR101523067B1 (en) Apparatus for measuring coefficient of permeability and permeability test method using thereof
JP6244280B2 (en) Unsaturated seepage characteristics analysis method by VG model
KR101646987B1 (en) Device for measuring of saturated hydraulic conductivity of unsaturated porous media
CN101692035A (en) Capillary soil water climbing height measuring device
JP6192118B2 (en) In-situ unsaturated permeability test equipment
KR101610232B1 (en) Infiltrometer for infiltrating rate of rock and disposing method thereof
US20060042356A1 (en) Measuring soil permeability in situ
KR101740709B1 (en) Apparatus for measuring coefficient of Interface Permeability AND Permeability test method using thereof
Harnas et al. Physical model for the investigation of capillary-barrier performance made using recycled asphalt
CN108360581A (en) The antifouling divider wall wall permeability coefficient in-situ testing device of penetration type and method
JPH02268249A (en) Water permeability testing method
JP2000352042A (en) In-situ permeability test method and permeability coefficient measuring device
JP3866757B1 (en) Pneumatic caisson method
Simeoni et al. Field performance of fully grouted piezometers
Reynolds et al. 3.4. 2 Laboratory Methods
CA2547413A1 (en) Apparatus and method for measuring soil gases
JP5944730B2 (en) Construction management method for residual soil saturation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250