JP2007192168A - Control valve for steam turbine and steam turbine electrical power plant - Google Patents

Control valve for steam turbine and steam turbine electrical power plant Download PDF

Info

Publication number
JP2007192168A
JP2007192168A JP2006012656A JP2006012656A JP2007192168A JP 2007192168 A JP2007192168 A JP 2007192168A JP 2006012656 A JP2006012656 A JP 2006012656A JP 2006012656 A JP2006012656 A JP 2006012656A JP 2007192168 A JP2007192168 A JP 2007192168A
Authority
JP
Japan
Prior art keywords
steam
valve
wall
control valve
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012656A
Other languages
Japanese (ja)
Other versions
JP4619958B2 (en
Inventor
Osamu Shindo
藤 蔵 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006012656A priority Critical patent/JP4619958B2/en
Publication of JP2007192168A publication Critical patent/JP2007192168A/en
Application granted granted Critical
Publication of JP4619958B2 publication Critical patent/JP4619958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Valve Housings (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steam control valve which is inexpensive even in a plant under the temperature condition of main steam or reheating steam exceeding approximately 600°C. <P>SOLUTION: A valve casing is constituted by a double wall, namely, an outer wall 20, and an inner wall 21. The outside steam chamber 25 formed between the inner and outer walls is divided into the upstream and the downstream at a valve sheet. Thus, at least two independent steam chambers, namely, an upper steam chamber 25a and a lower steam chamber 25b are constituted. Then steam or a fluid is circulated from the independent systems of the outside steam chamber through the medium of an interlock valve. At the time of rapid closing of a steam valve, the upper steam chamber 25a is controlled so that it has almost the same pressure as the system which is on the side more upstream than a main valve 7, and the lower steam chamber 25b is controlled so that it has almost the same pressure as the system which is on the side more downstream than the main valve 7. Thus, the deformation can be prevented in the inner wall caused by pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば高温蒸気流路に設けられる蒸気タービン用制御弁、及びその制御弁を備えた蒸気タービン発電プラントに関する。   The present invention relates to a steam turbine control valve provided, for example, in a high-temperature steam flow path, and a steam turbine power plant including the control valve.

一般に、蒸気タービン発電プラントにおいては、蒸気タービンに供給される駆動用蒸気を制御するために、主蒸気止め弁,蒸気加減弁,組合せ再熱蒸気弁等の種々の制御弁が付設されている。   In general, in a steam turbine power plant, various control valves such as a main steam stop valve, a steam control valve, and a combined reheat steam valve are attached in order to control driving steam supplied to the steam turbine.

図14は、一般的な蒸気タービン発電プラントの概略構成を示す系統図であり、ボイラー100で発生した蒸気は主蒸気止め弁101、蒸気加減弁102を通過し高圧タービン103で仕事をした後、逆止弁104を経由して再びボイラー100の再熱器にて加熱され、再熱蒸気止め弁105、インターセプト弁106を経て中圧タービン107、低圧タービン108へ流入し仕事をする。低圧タービン108で仕事をした蒸気は復水器109で復水され、給水ポンプ110にて昇圧され再びボイラー100に供給されるように循環する。   FIG. 14 is a system diagram showing a schematic configuration of a general steam turbine power plant. After the steam generated in the boiler 100 passes through the main steam stop valve 101 and the steam control valve 102 and works in the high pressure turbine 103, FIG. It is heated again by the reheater of the boiler 100 via the check valve 104 and flows into the intermediate pressure turbine 107 and the low pressure turbine 108 via the reheat steam stop valve 105 and the intercept valve 106 to work. The steam that has worked in the low-pressure turbine 108 is condensed in the condenser 109, circulated so as to be supplied to the boiler 100 again after being pressurized by the feed water pump 110.

また、プラントの運用効率を高めるために、プラントによっては主蒸気止め弁101の前からボイラー100の再熱器の前に接続された高圧タービンバイパス弁111やボイラー100の再熱器の後から復水器109に接続された低圧タービンバイパス弁112が設置され、タービンの運転に係わらずボイラー系統単独の循環運転が出来るようになっている。   In addition, in order to increase the operation efficiency of the plant, depending on the plant, the high pressure turbine bypass valve 111 connected before the main steam stop valve 101 and before the reheater of the boiler 100 or after the reheater of the boiler 100 is restored. A low-pressure turbine bypass valve 112 connected to the water unit 109 is installed so that the boiler system can be circulated independently of the operation of the turbine.

図15は、上記蒸気タービン発電プラントの蒸気加減弁等に使用される従来の蒸気制御弁の縦断面図であり、弁胴部1に上蓋2をボルト3にて固定することにより圧力容器状の弁ケーシング4が形成され、その弁ケーシング4内には、弁棒5を介して弁座6に対して接離される主弁7が配設されるとともに、その主弁7の外周部に蒸気中の異物を捕捉するストレーナ8が設けられている。上記弁棒5は案内片9により保持されており、その弁棒5の端部に主弁7を上下方向に作動させる駆動装置(図示せず)が設置されている。   FIG. 15 is a longitudinal sectional view of a conventional steam control valve used for a steam control valve of the steam turbine power plant, and a pressure vessel-like shape is obtained by fixing an upper lid 2 to the valve body 1 with a bolt 3. A valve casing 4 is formed. In the valve casing 4, a main valve 7 that is brought into contact with and separated from the valve seat 6 via a valve stem 5 is disposed, and steam is placed in the outer periphery of the main valve 7. A strainer 8 is provided for capturing the foreign matter. The valve stem 5 is held by a guide piece 9, and a drive device (not shown) for operating the main valve 7 in the vertical direction is installed at the end of the valve stem 5.

しかして、蒸気管(図示せず)を流れる蒸気は、矢印Aに示すように弁ケーシング4により形成される蒸気室4a内に流入し、主弁7と弁座6の間に形成される流路を通過して矢印Bへと流出する。また、弁ケーシング4には弁座前ドレン排出口10、弁座後ドレン排出口11が設けられており、タービン起動時に蒸気室4aの内部に蓄積されたドレンを排出する機能を有している。   Thus, the steam flowing through the steam pipe (not shown) flows into the steam chamber 4a formed by the valve casing 4 as shown by the arrow A, and the flow formed between the main valve 7 and the valve seat 6 is. Pass through the road and flow to arrow B. Further, the valve casing 4 is provided with a drain outlet 10 before the valve seat and a drain outlet 11 after the valve seat, and has a function of discharging the drain accumulated in the steam chamber 4a when the turbine is started. .

ところで、火力発電プラントの蒸気条件の高温・高圧化は、その効率向上に寄与する非常に重要かつ基本的な要因であり、上記各蒸気制御弁はボイラーにて発生した高温の蒸気が直接作用するため非常に厳しい環境下での使用となる。   By the way, high-temperature and high-pressure steam conditions in thermal power plants are very important and fundamental factors that contribute to the improvement of efficiency, and each steam control valve acts directly on high-temperature steam generated in a boiler. Therefore, it will be used in a very severe environment.

特に、室温程度まで各タービン103、107、108の温度が低下した状態から低圧タービン108などに蒸気を送出して起動を行うコールドスタート(冷気起動)の際には、その上流側に設置されている主蒸気止め弁101をはじめとする各蒸気制御弁には従来に比較してかなり高温・高圧の蒸気がそのまま供給される。すると、蒸気室4aが急激に加熱されて、弁ケーシング4の内側から外側に向かって大きな温度勾配が生じ、最悪の場合には弁ケーシング4にひび割れ等の致命的な損傷が生じる可能性がある。   In particular, at the time of cold start (cold start) in which steam is sent to the low-pressure turbine 108 or the like from a state where the temperature of each turbine 103, 107, 108 is lowered to about room temperature, it is installed on the upstream side. The steam control valves including the main steam stop valve 101 are supplied with steam of considerably higher temperature and pressure as compared with the conventional steam control valve. Then, the steam chamber 4a is rapidly heated, and a large temperature gradient is generated from the inside to the outside of the valve casing 4. In the worst case, the valve casing 4 may be fatally damaged such as a crack. .

そこで、このような急激な温度勾配が弁ケーシング4に生じることを避けるために、蒸気制御弁の蒸気室4aの内部を2重構造とする技術が提案されている(例えば、特許文献1参照)。すなわち、従来の蒸気室(外部蒸気室)の内部に空隙を設けて内部蒸気室を設け、この外部蒸気室と内部蒸気室の間に暖気用の蒸気を流すことにより、各蒸気室の壁に生じる温度勾配を低減させようとするものである。このような構造であれば、内部蒸気室の外側に流通する暖気用蒸気により、例えば高温・高圧の蒸気が内部蒸気室に流入しようとしても、内部蒸気室の壁には、大きな温度勾配は生じなくなり、かつ外部蒸気室も従来と同程度の温度勾配で済むことになる。   Therefore, in order to avoid such a steep temperature gradient in the valve casing 4, a technique has been proposed in which the inside of the steam chamber 4a of the steam control valve has a double structure (see, for example, Patent Document 1). . That is, a space is provided in the interior of a conventional steam chamber (external steam chamber) to provide an internal steam chamber, and by flowing warming steam between the external steam chamber and the internal steam chamber, It is intended to reduce the temperature gradient that occurs. With such a structure, even if, for example, high-temperature and high-pressure steam tries to flow into the internal steam chamber due to the steam for warm air flowing outside the internal steam chamber, a large temperature gradient is generated on the wall of the internal steam chamber. In addition, the external steam chamber has a temperature gradient similar to the conventional one.

一方、内部蒸気室を設ける代わりに、蒸気室内壁を遮熱体で被覆して、この遮熱体の外部を大気により冷却することにより、蒸気室に高温・高圧の蒸気が流通しても内壁には温度勾配が生じないようにする技術も提案されている(例えば、特許文献2参照)。
特公平7−54089号公報 特開昭58−124009号公報
On the other hand, instead of providing an internal steam chamber, the wall of the steam chamber is covered with a heat shield, and the outside of the heat shield is cooled by the atmosphere, so that the inner wall can be Has also proposed a technique for preventing a temperature gradient (see, for example, Patent Document 2).
Japanese Patent Publication No. 7-54089 Japanese Patent Laid-Open No. 58-124209

わが国の火力発電プラントの蒸気条件は標準的に主蒸気圧力24.1MPa、主蒸気温度538℃、再熱蒸気温度566℃が採用されてきた。しかし、オイルショック以来、省エネルギ化が強力に推進され、その後の地球温暖化問題に対する急速な関心の高まりから火力発電プラントの高効率化が押し進められ主蒸気や再熱蒸気温度は、593℃、600℃、610℃というようにステップ的に上昇してきている。   As the steam conditions of Japanese thermal power plants, a main steam pressure of 24.1 MPa, a main steam temperature of 538 ° C., and a reheat steam temperature of 566 ° C. have been adopted. However, since the oil shock, energy conservation has been strongly promoted, and since the subsequent rapid interest in global warming, the efficiency of thermal power plants has been promoted, and the main steam and reheat steam temperatures are 593 ° C, The temperature rises stepwise such as 600 ° C. and 610 ° C.

昨今の趨勢は、主蒸気や再熱蒸気温度についてより高温化の方向にあり、さらに630℃、650℃、700℃、725℃以上の蒸気温度の採用が検討されている。   The current trend is toward higher temperatures for the main steam and reheat steam temperatures, and the adoption of steam temperatures of 630 ° C., 650 ° C., 700 ° C., and 725 ° C. or higher is being studied.

このように概ね600℃を超すような主蒸気や再熱蒸気温度条件では、従来からこれら弁装置の弁ケーシング材料として使用されているクロム−モリブデン−バナジウム鋼に代表されるフェライト系合金などの耐熱合金鋼の使用が困難となり、自ずとオーステナイト系耐熱鋼を使わなければならない。このことは、従来にも増して製造コストが急騰し採算上大きな問題となる。   Under such main steam and reheat steam temperature conditions generally exceeding 600 ° C., heat resistance of ferritic alloys such as chromium-molybdenum-vanadium steel, which has been conventionally used as a valve casing material of these valve devices, is known. Use of alloy steel becomes difficult, and austenitic heat-resistant steel must be used. This is a big problem in profitability because the manufacturing cost is soaring as compared with the prior art.

そのため、上記特許文献1および2に開示の技術では、高価な耐熱鋼の使用を極力減らし、弁ケーシングについては従来材の使用を可能とするとともに、直接高温・高圧の蒸気に曝される部分にのみ限定して耐熱鋼を使用するというものである。しかし、これらの文献には、実際の蒸気タービン発電プラントの運用を考慮した蒸気弁の構造および蒸気タービン発電プラントの蒸気系統は一切開示されていない。   Therefore, in the techniques disclosed in Patent Documents 1 and 2, the use of expensive heat-resistant steel is reduced as much as possible, the valve casing can be used with conventional materials, and directly exposed to high-temperature and high-pressure steam. Only heat-resistant steel is used. However, these documents do not disclose the structure of the steam valve and the steam system of the steam turbine power plant considering the actual operation of the steam turbine power plant.

本発明は、このような点に鑑み、概ね600℃を越すような主蒸気や再熱蒸気温度条件のプラントにおいても、廉価なコストの蒸気制御弁を用いた蒸気タービン発電プラントの提供を目的とする。   In view of these points, the present invention aims to provide a steam turbine power plant using a steam control valve at a low cost, even in a plant having a main steam or reheat steam temperature exceeding 600 ° C. To do.

請求項1に係る発明は、蒸気タービンに供給される駆動用蒸気を制御する蒸気タービン用制御弁であって、前記制御弁の弁ケーシングを耐圧容器として機能する外壁と、温度隔壁として機能する内壁とからなる少なくとも2重壁により構成するとともに、前記内壁の肉厚を前記外壁の肉厚より薄く構成し、前記外壁と内壁の間に形成された外側蒸気室内には蒸気または流体を流通させるようにした蒸気タービン用制御弁において、前記外側蒸気室は、弁座部を基準に、少なくとも2個以上の独立した蒸気室に分割されていることを特徴とする。   The invention according to claim 1 is a steam turbine control valve for controlling the driving steam supplied to the steam turbine, wherein the valve casing of the control valve functions as a pressure vessel, and the inner wall functions as a temperature partition. The inner wall is made thinner than the outer wall, and steam or fluid is circulated in the outer steam chamber formed between the outer wall and the inner wall. In the steam turbine control valve, the outer steam chamber is divided into at least two independent steam chambers based on the valve seat portion.

請求項2に係る発明は、請求項1に係る発明において、分割された各蒸気室には、それぞれ異なる条件の蒸気または流体が流通されることを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, steam or fluid having different conditions are circulated in each of the divided steam chambers.

請求項3に係る発明は、請求項1または2に係る発明において、分割された各蒸気室を通過した後、その蒸気室から排出された蒸気または流体は、蒸気タービンまたは蒸気タービンサイクルの途中段落において熱回収されることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the steam or fluid discharged from the steam chamber after passing through each of the divided steam chambers is an intermediate stage of a steam turbine or a steam turbine cycle. It is characterized in that the heat is recovered.

請求項4に係る発明は、請求項1乃至3のいずれかに係る発明において、耐圧容器として機能する外壁はフェライト系耐熱鋼、Cr−Mo鋼もしくはCr−Mo−V鋼により形成され、温度隔壁として機能する内壁はオーステナイト系耐熱鋼、またはNi基耐熱合金鋼により形成されていることを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the outer wall functioning as a pressure vessel is formed of ferritic heat resistant steel, Cr-Mo steel or Cr-Mo-V steel, The inner wall that functions as is formed of austenitic heat-resisting steel or Ni-base heat-resisting alloy steel.

請求項5に係る発明は、ボイラと、このボイラの下流側に接続されるとともに、このボイラからの蒸気温度を低減させる減温器と、この減温器の下流側を分岐して一方を請求項1記載の制御弁の外側蒸気室のうち、弁座部より上流側に設けられた蒸気室に導くとともに、他方を請求項1記載の制御弁の外側蒸気室のうち、弁座部より下流側に設けられた蒸気室にインターロック弁を介して導く一方、前記上流側に設けられた蒸気室内の導入蒸気はこの蒸気室の流体出口下流に設けられたインターロック弁を介して蒸気タービンに回収するとともに、前記下流側に設けられた蒸気室内の導入蒸気は流体出口から蒸気タービンに回収することを特徴とする。   The invention according to claim 5 is connected to a boiler, a downstream side of the boiler, a temperature reducer for reducing the steam temperature from the boiler, and a branching of the downstream side of the temperature reducer to claim one of them. The outer steam chamber of the control valve according to claim 1 is led to a steam chamber provided upstream from the valve seat portion, and the other is downstream from the valve seat portion of the outer steam chamber of the control valve according to claim 1. The steam introduced into the steam chamber provided on the upstream side is guided to the steam turbine via the interlock valve provided downstream of the fluid outlet of the steam chamber. While collecting, the introduction | transduction vapor | steam in the steam chamber provided in the said downstream is collect | recovered to a steam turbine from a fluid exit.

請求項6に係る発明は、請求項5に係る発明において、前記インターロック弁は、前記制御弁が急閉した際に、同時に急閉することを特徴とする。   The invention according to claim 6 is characterized in that, in the invention according to claim 5, the interlock valve suddenly closes simultaneously when the control valve is suddenly closed.

以上説明したように、本発明は、弁ケーシングを外壁と内壁により2重壁によって構成するとともに、内外壁間に形成された外側蒸気室を弁座部分で上流と下流に分割して、少なくとも2個の独立した上部蒸気室および下部蒸気室として構成するとともに、該外側蒸気室のそれぞれに独立した系統からインターロック止弁を介して蒸気または流体を流通させるように構成したので、例えば蒸気弁が急速に閉鎖した場合においても、上部蒸気室には主弁より上流側の系統とほぼ同一の圧力が負荷されるとともに、下部蒸気室は主弁より下流側の系統とほぼ同一圧力になるように制御されるので、内壁が圧力により大きく変形することはなくなるため、蒸気タービンに供給される駆動用蒸気と直接接する内壁は温度隔壁としての機能を持たせ、また外壁は耐圧容器としての機能を持たせることができる。また、圧力容器となる外壁はフェライト系耐熱鋼等の従来材料を用い、温度隔壁の機能を有する内壁のみに、オーステナイト系耐熱鋼やNi基耐熱合金(固溶強化型超耐熱合金)等を用いる等それぞれの蒸気室の材料を自由に組合せて使い分けすることが可能となり、概ね600℃を超すような主蒸気や再熱蒸気温度条件のプラントにおいても、廉価なコストの蒸気制御弁を得ることができる。   As described above, according to the present invention, the valve casing is constituted by the outer wall and the inner wall by the double wall, and the outer steam chamber formed between the inner and outer walls is divided into the upstream and the downstream at the valve seat portion, so that at least 2 Since it is configured as an independent upper steam chamber and a lower steam chamber and steam or fluid is circulated from each independent system of the outer steam chamber via an interlock stop valve, for example, a steam valve Even when it closes rapidly, the upper steam chamber is loaded with almost the same pressure as the system upstream of the main valve, and the lower steam chamber is almost the same pressure as the system downstream of the main valve. Since the inner wall is not greatly deformed by pressure because it is controlled, the inner wall directly in contact with the driving steam supplied to the steam turbine has a function as a temperature partition. The outer wall can have a function as a pressure vessel. Also, the outer wall used as the pressure vessel is made of conventional materials such as ferritic heat-resistant steel, and austenitic heat-resistant steel or Ni-base heat-resistant alloy (solid solution strengthened super heat-resistant alloy) is used only for the inner wall that functions as a temperature partition. It is possible to freely combine and use the materials of each of the steam chambers, and it is possible to obtain a steam control valve at a low cost even in a plant having a main steam or reheat steam temperature condition exceeding 600 ° C. it can.

まず、本発明の実施の形態を説明する前に、その前提となる技術を図6乃至図13を用いて説明する。   First, before explaining the embodiment of the present invention, the presupposed technology will be explained with reference to FIGS.

図6は本発明の前提とする技術ににおける主蒸気止め弁101の断面形状を示す図であり、図15に示す従来構造と同一部品には同一部品符号を附し、その詳細な説明は省略する。   FIG. 6 is a diagram showing a cross-sectional shape of the main steam stop valve 101 according to the technology premised on the present invention. The same parts as those of the conventional structure shown in FIG. 15 are denoted by the same reference numerals, and detailed description thereof is omitted. To do.

図6に示すように、主蒸気止め弁の弁ケーシングは、圧力容器を形成する肉厚の外壁20及び温度隔壁を形成する薄肉の内壁21によって2重壁に構成されている。すなわち、上記外壁20は圧力容器を形成する肉厚の弁胴部20aとその弁胴部20aにボルト20bにより固着された上蓋20cにより構成されており、その弁胴部20a内に温度隔壁を形成する薄肉の内部弁胴21aが配設され、その内部弁胴21aにボルト21bにより内蓋21cを固着することにより内壁21が形成されている。上記内部弁胴21aには弁座21dが形成されており、上記内部弁胴21aにより形成された内部蒸気室内には、上記弁座21dに協働する主弁7及びストレーナ8が設けられている。   As shown in FIG. 6, the valve casing of the main steam stop valve is constituted by a double wall by a thick outer wall 20 forming a pressure vessel and a thin inner wall 21 forming a temperature partition. That is, the outer wall 20 is composed of a thick valve body 20a forming a pressure vessel and an upper lid 20c fixed to the valve body 20a by bolts 20b, and a temperature partition is formed in the valve body 20a. The inner wall 21 is formed by fixing an inner lid 21c with a bolt 21b to the inner valve body 21a. A valve seat 21d is formed in the internal valve body 21a, and a main valve 7 and a strainer 8 that cooperate with the valve seat 21d are provided in an internal steam chamber formed by the internal valve body 21a. .

また、上記弁胴部20aには入口短管22及び出口短管23が設けられており、その入口短管22と出口短管23には、弁座前ドレン排出口10と弁座後ドレン排出口11が加工されている。これらの入口短管22や出口短管23は、ボイラーや蒸気タービンと図示しない蒸気配管に突合わせ溶接にて取り付けられるが、各短管の先端に一体的にフランジを形成しフランジ取付けとしても良い。   The valve body 20a is provided with an inlet short pipe 22 and an outlet short pipe 23. The inlet short pipe 22 and the outlet short pipe 23 are provided with a drain outlet 10 before the valve seat and a drain outlet after the valve seat. The outlet 11 is processed. The inlet short pipe 22 and the outlet short pipe 23 are attached to a boiler, a steam turbine, and a steam pipe (not shown) by butt welding, but a flange may be integrally formed at the tip of each short pipe to be attached to the flange. .

図7は、図6に示す主蒸気止め弁101を使用したプラントの系統図であり、ボイラー100で発生した蒸気は上記主蒸気止め弁101および蒸気加減弁102を経て高圧タービン103に供給される。一方、主蒸気止め弁101の上流側から分岐された分岐管には減圧減温装置26が接続されており、ボイラー100から発生した主蒸気の一部が主蒸気止め弁101の上流から分岐し、上記減圧減温装置26においてそれぞれの運用条件に応じて調整されて、上記蒸気止め弁101の流体入口27から前記外壁20及び内壁21によって形成されている外側蒸気室25に供給される。上記外側蒸気室25を通過した蒸気は流体出口28から排出され、高圧タービン103の抽気段に導入される。   FIG. 7 is a system diagram of a plant using the main steam stop valve 101 shown in FIG. 6, and steam generated in the boiler 100 is supplied to the high-pressure turbine 103 through the main steam stop valve 101 and the steam control valve 102. . On the other hand, a decompression and temperature reducing device 26 is connected to the branch pipe branched from the upstream side of the main steam stop valve 101, and a part of the main steam generated from the boiler 100 branches from the upstream side of the main steam stop valve 101. The decompression and temperature reduction device 26 is adjusted according to the respective operating conditions and supplied from the fluid inlet 27 of the steam stop valve 101 to the outer steam chamber 25 formed by the outer wall 20 and the inner wall 21. The steam that has passed through the outer steam chamber 25 is discharged from the fluid outlet 28 and introduced into the extraction stage of the high-pressure turbine 103.

ここで、減圧減温装置26について図8を用いて説明する。   Here, the decompression and temperature reduction device 26 will be described with reference to FIG.

減圧減温装置26は調圧弁30より図9の特性の如く、蒸気弁内に供給される蒸気タービン駆動用蒸気圧力P1に対して出口の流体圧力P2が同等かまたは若干低圧となる差圧Dを持たせ、かつその圧力は少なくとも内側蒸気室の設計応力以下となる圧力(又は差圧)に圧力制御を行うように差圧調節器31にて演算され調整される。同時に冷却水調節弁32から供給された冷却水は、減温管33に設置されたスプレーノズル34から噴射される。この時の減温管33内部温度は図10の特性の如く、蒸気弁内に供給される蒸気タービン駆動用蒸気温度T1に対して流体温度T2が若干低温となる温度差Cを持たせ、かつその温度は高くとも既存のフェライト系耐熱合金鋼が使用可能な、例えば600℃程度以下に温度制御を行うように温度調節器35にて演算調整され、蒸気弁内に供給される蒸気温度T1が600℃以上になった場合にも、外側蒸気室25に流通する流体温度は600℃を設定温度として一定温度制御に移行する特性となっている。   As shown in FIG. 9, the pressure reduction and temperature reduction device 26 has a differential pressure D at which the outlet fluid pressure P2 is equal to or slightly lower than the steam pressure P1 for driving the steam turbine supplied into the steam valve. And the pressure is calculated and adjusted by the differential pressure regulator 31 so as to control the pressure to a pressure (or differential pressure) that is at least the design stress of the inner steam chamber. At the same time, the cooling water supplied from the cooling water control valve 32 is sprayed from a spray nozzle 34 installed in the temperature reducing pipe 33. The internal temperature of the temperature reducing pipe 33 at this time has a temperature difference C at which the fluid temperature T2 is slightly lower than the steam temperature T1 for driving the steam turbine supplied into the steam valve, as shown in the characteristics of FIG. Even if the temperature is high, the existing ferritic heat-resistant alloy steel can be used. For example, the temperature is adjusted by the temperature regulator 35 so as to control the temperature to about 600 ° C. or less, and the steam temperature T1 supplied into the steam valve is Even when the temperature is 600 ° C. or higher, the temperature of the fluid flowing through the outer steam chamber 25 has a characteristic of shifting to constant temperature control with 600 ° C. as a set temperature.

これら外側蒸気室25に流通する流体の流量は、当該主蒸気止め弁101に流入する蒸気流量(蒸気熱量)に応じて増減させ過度の冷却や加熱を防止するように流量調整され、この流量制御には内壁21内蒸気および外側蒸気室25内蒸気の温度監視を行うための図示しない温度検出器を設置しており、冷却や加熱による過度の温度あるいは温度差が設定値(目標値)以上と認められた場合には、外側蒸気室25に流通する流体の流量を減圧減温装置26によって増減することは説明するまでもない。   The flow rate of the fluid flowing through these outer steam chambers 25 is increased or decreased in accordance with the flow rate of steam (steam heat amount) flowing into the main steam stop valve 101, and the flow rate is adjusted to prevent excessive cooling or heating. Is provided with a temperature detector (not shown) for monitoring the temperature of the steam in the inner wall 21 and the steam in the outer steam chamber 25, and an excessive temperature or temperature difference due to cooling or heating exceeds a set value (target value). When it is recognized, it goes without saying that the flow rate of the fluid flowing through the outer steam chamber 25 is increased or decreased by the decompression and temperature reduction device 26.

また、当該蒸気弁の未使用中(蒸気が流れていない間)の外側蒸気室に流体を流通せしめる場合も含め、図8における減圧減温装置26には、差圧調節器31や温度調節器35にその運用状態に従って対応可能なように、図示しない外部制御装置からの制御信号が入力できる構成となっており、その流入する蒸気温度、圧力状態に従って温度制御、圧力制御、流量制御を行うばかりか、蒸気タービンプラントの冷却(プラント停止)過程や蒸気タービンプラントの起動(プラント暖気)過程のあらかじめ決められ設定された冷却速度や暖気速度に応じて温度制御、圧力制御、流量制御を行う流体制御システムとなっている。   Further, including the case where fluid is circulated in the outer steam chamber when the steam valve is not used (while steam is not flowing), the pressure reducing and reducing device 26 in FIG. 35 is configured so that a control signal from an external control device (not shown) can be input according to the operation state, and only temperature control, pressure control, and flow rate control are performed according to the inflowing steam temperature and pressure state. Or, fluid control that performs temperature control, pressure control, and flow rate control according to a predetermined cooling rate and warm-up speed of the steam turbine plant cooling (plant stop) process and steam turbine plant start-up (plant warm-up) process It is a system.

従って、図6に示す主蒸気止め弁では、外壁20は蒸気弁内に供給される圧力P1と同等か又は若干低圧の蒸気圧力が作用する圧力容器となるが、外壁20の内側すなわち外側蒸気室25内は600℃を越すことがない蒸気温度のため、外壁としては従来と同様なフェライト系耐熱鋼が使用可能となる。   Therefore, in the main steam stop valve shown in FIG. 6, the outer wall 20 is a pressure vessel to which a steam pressure equal to or slightly lower than the pressure P1 supplied into the steam valve acts. Since the inside 25 has a steam temperature that does not exceed 600 ° C., the same ferritic heat-resistant steel as the conventional can be used as the outer wall.

一方、内壁21の内面に作用する蒸気温度は、蒸気弁内に供給される蒸気がそのまま作用することになるため、耐食・耐熱性に優れた例えばSUS316やSUS310系のオーステナイト系耐熱鋼や、例えばインコネル625等のNi基耐熱合金(固溶強化型超耐熱合金)が好ましい。なお、設計条件によっては例えば新12Cr鋳鋼、新12Cr鍛鋼のフェライト系耐熱鋼と組み合わせて使用しても問題はない。また、入口短管22や出口短管23の材料は内壁21と同様のオーステナイト系耐熱鋼やNi基耐熱合金(固溶強化型超耐熱合金)が好ましい。   On the other hand, the steam temperature acting on the inner surface of the inner wall 21 is that the steam supplied into the steam valve acts as it is. Ni-based heat-resistant alloys (solid solution strengthened super heat-resistant alloys) such as Inconel 625 are preferred. Depending on the design conditions, there is no problem even if used in combination with, for example, new 12Cr cast steel or new 12Cr forged steel ferritic heat resistant steel. The material of the inlet short tube 22 and the outlet short tube 23 is preferably austenitic heat-resistant steel or Ni-based heat-resistant alloy (solid solution strengthened super heat-resistant alloy) similar to the inner wall 21.

オーステナイト系耐熱鋼は現在主要弁の蒸気室に使用している低合金鋼の材料特性よりも耐力が格段に小さくなり、かつ熱膨張係数も大きくなる。蒸気室の熱応力は一般的に下記の式で表わされる。
σt=α×E×ΔT<σys
ここで
σt:熱応力
α:熱膨張係数
ΔT:温度差
σys:オステナイト系耐熱鋼の耐力値
上式で判る様に熱応力を小さくするためにはΔTを小さくする必要がある。先述の通りオーステナイト系耐熱鋼の材質はσys が非常に低値で、且つαが大きいため尚一層ΔTを小さく押える必要がある。
Austenitic heat-resisting steel has a much lower yield strength and a higher thermal expansion coefficient than the material properties of the low alloy steel currently used in the steam chamber of the main valve. The thermal stress in the steam chamber is generally expressed by the following equation.
σt = α × E × ΔT <σys
Here, σt: thermal stress α: thermal expansion coefficient ΔT: temperature difference σys: proof stress value of austenitic heat-resisting steel As can be seen from the above formula, ΔT needs to be reduced in order to reduce the thermal stress. As described above, the material of the austenitic heat-resistant steel has a very low value of σys and a large α, so it is necessary to further suppress ΔT.

本発明の前提となる技術の内壁は、圧力容器よりむしろ機能的に高温蒸気に曝される単なる温度隔壁となるが、本発明によれば温度差(ΔT)を任意に調整(設定)できることから、上記の要請に対して十分に応えるものである。   The inner wall of the technology that is the premise of the present invention is merely a temperature partition wall that is functionally exposed to high-temperature steam rather than a pressure vessel, but according to the present invention, the temperature difference (ΔT) can be arbitrarily adjusted (set). It fully responds to the above request.

従って、外側蒸気室は圧力容器となるため肉厚は厚肉となり重量も重くなるが、直接高温蒸気が作用すること無く温度が低いため従来材料を用いることが可能なことから、蒸気室全体を高価なオーステナイト系耐熱鋼等で製作するのに比べ、廉価なコストで弁装置を提供することができることになる。   Therefore, since the outer steam chamber is a pressure vessel, the wall thickness is thick and the weight is heavy, but since the temperature is low without direct action of high-temperature steam, conventional materials can be used. Compared to manufacturing with expensive austenitic heat resistant steel or the like, the valve device can be provided at a lower cost.

ここで内外両壁間の外側蒸気室25に供給される流体は600℃を越さない温度であり、内壁21には熱応力の発生が懸念されるが、上述のように、内壁21には大きな蒸気圧力が作用せず圧力容器の機能を持たないことからその肉厚は薄くできること、および内壁21に作用する温度差は常に一定となるように制御されることから、内壁21に発生する熱応力は適正に管理することが可能となる。   Here, the fluid supplied to the outer steam chamber 25 between the inner and outer walls is at a temperature not exceeding 600 ° C., and there is a concern about the generation of thermal stress on the inner wall 21, but as described above, Since the large steam pressure does not act and does not function as a pressure vessel, the thickness can be reduced, and the temperature difference acting on the inner wall 21 is always controlled to be constant. Stress can be managed appropriately.

しかし、それでも内壁21に発生する熱応力が許容値を越える場合には、内壁の数を増やして多層化し、それぞれの多層化された各々の外側蒸気室に、各々の減圧減温装置26を設置して、供給する蒸気温度を内側から外側の外側蒸気室に向かい段階的に減少させた温度設定とすることで、各々の内壁に作用する温度差を小さく押さえることが可能であり、より一層各々の内壁に発生する熱応力を適正に管理することができる。   However, if the thermal stress generated in the inner wall 21 still exceeds the allowable value, the number of inner walls is increased to be multi-layered, and each decompression / temperature reducing device 26 is installed in each multi-layered outer steam chamber. Thus, by setting the temperature of the steam to be supplied in a stepwise manner from the inner side to the outer outer steam chamber, it is possible to suppress the temperature difference acting on each inner wall to a small level. It is possible to appropriately manage the thermal stress generated on the inner wall of the steel.

以上の説明のように、通常の蒸気タービン運転中、少なくとも当該蒸気弁の使用中(蒸気が流れている間)は連続して外側蒸気室に外壁の冷却を目的とした蒸気または流体を流通することができるため、蒸気タービンに供給される駆動用蒸気と直接接する内壁は温度隔壁としての機能を持たせ、また外壁は耐圧容器としての機能を持たせ、各々の肉厚は内、外壁とも同一かまたは内壁のほうが外壁より肉厚を薄く構成することが出来る。   As described above, during normal steam turbine operation, at least during use of the steam valve (while steam is flowing), steam or fluid for the purpose of cooling the outer wall is continuously circulated to the outer steam chamber. Therefore, the inner wall that is in direct contact with the driving steam supplied to the steam turbine has a function as a temperature partition, and the outer wall has a function as a pressure vessel, and each wall has the same thickness as the inner and outer walls. Alternatively, the inner wall can be made thinner than the outer wall.

なお、内壁21の肉厚を薄くした場合には、主弁7が急閉した場合でも弁座21d部分が変形しないように部分的に肉厚を厚くすることや内壁21と外壁20との間に補強リブを追設したり、または内壁21の肉厚形状をハニカム状に構築する等、その構造物としての剛性を高めるための有効な手段を用いることができる。   When the wall thickness of the inner wall 21 is reduced, even when the main valve 7 is suddenly closed, the wall thickness is partially increased so that the valve seat 21d portion is not deformed, or between the inner wall 21 and the outer wall 20. Effective means for increasing the rigidity of the structure can be used, for example, by additionally installing reinforcing ribs, or by building the thick shape of the inner wall 21 into a honeycomb shape.

また、これら内、外壁は、形状や材質の特性に応じ、その素材は各々鋳造または鍛造や圧延の製造手段により、また整形(造形)はプレスまたは機械加工や製缶溶接の加工手段により、これら異種の製造方法を組合せて構成することが可能である。   In addition, these inner and outer walls are formed by casting, forging, or rolling manufacturing means according to the shape and material characteristics, and shaping (modeling) is performed by pressing, machining, or can-welding processing means. It is possible to configure by combining different kinds of manufacturing methods.

以上に説明の構成とすれば、下記のように運用の幅が広がることが明白であり、さらに有効なプラント運用が可能となる。   With the configuration described above, it is clear that the range of operation is expanded as described below, and more effective plant operation is possible.

(1) プラント停止等の蒸気が流れない蒸気タービンの冷却過程において、該外側蒸気室に内、外壁の冷却を目的として蒸気または空気等の流体を流通せしめることにより、特に蒸気温度の高い蒸気タービンプラントにおいては早期に蒸気弁本体を冷却することが可能となり、保守点検(分解点検)開始までの時間短縮を図ることができる。 (1) In a steam turbine cooling process in which steam does not flow, such as when the plant is shut down, a steam turbine having a particularly high steam temperature is provided by circulating a fluid such as steam or air in the outer steam chamber for the purpose of cooling the inner and outer walls. In the plant, it is possible to cool the steam valve body at an early stage, and it is possible to shorten the time until the start of maintenance inspection (disassembly inspection).

(2) プラント起動等の蒸気が流れない蒸気タービンの暖気過程において、該外側蒸気室にタービンの起動前に蒸気または流体を流通せしめることにより、早期に蒸気弁本体を昇温(加熱)することが可能となり、起動時間の短縮に有効である。 (2) In the process of warming up the steam turbine where steam does not flow, such as when starting a plant, the steam valve body is heated (heated) at an early stage by allowing steam or fluid to flow through the outer steam chamber before starting the turbine. It is possible to reduce the startup time.

すでに説明の内外壁間の外側蒸気室に流通する流体の供給源は、図7において当該蒸気弁装置の上流側直前から当該蒸気弁装置に流入する蒸気を分岐して減圧減温装置26に流入させているが、その他図14に示す再熱蒸気止め弁105等の低圧の再熱蒸気ラインに設置される蒸気弁では、例えば特に図示していないが高圧タービン103の抽気蒸気、または蒸気タービンサイクル途中段からの分岐蒸気を外側蒸気室25に流通する流体の供給源とすることで目的が達成出来る。   The supply source of the fluid flowing into the outer steam chamber between the inner and outer walls already described is branched from the steam flowing into the steam valve device immediately before the upstream side of the steam valve device in FIG. In other steam valves installed in a low-pressure reheat steam line such as the reheat steam stop valve 105 shown in FIG. 14, for example, although not particularly shown, the extracted steam of the high-pressure turbine 103 or the steam turbine cycle The object can be achieved by using the branched steam from the middle stage as a supply source of the fluid flowing through the outer steam chamber 25.

また図11に示すように、蒸気タービン以外の新たに準備した供給源40から単独に流通せしめる場合や図12示すように供給源選択装置41を設け、上流側直前からの分岐と蒸気タービン以外の新たに準備した供給源40のいずれかを任意に選択できるようにし、たとえば蒸気タービンプラントの冷却(プラント停止)過程や蒸気タービンプラントの起動(プラント暖気)過程の場合には、新たに準備した供給源40を選択すること等ができる。なお、蒸気タービン以外の新たに準備した供給源40からの流体は、蒸気に限らず窒素(N2ガス)や空気等、蒸気タービンプラントの冷却(プラント停止)過程や蒸気タービンプラントの起動(プラント暖気)過程の目的に応じて流体の種類を選定しても目的が達成出来る。   Also, as shown in FIG. 11, when a supply source 40 other than the steam turbine is circulated independently or as shown in FIG. 12, a supply source selection device 41 is provided, and a branch from immediately before the upstream side and other than the steam turbine are provided. Any one of the newly prepared supply sources 40 can be arbitrarily selected. For example, in the case of a steam turbine plant cooling (plant shutdown) process or a steam turbine plant startup (plant warming) process, a newly prepared supply is provided. The source 40 can be selected. In addition, the fluid from the newly prepared supply source 40 other than the steam turbine is not limited to steam, such as nitrogen (N2 gas) and air, and the process of cooling the steam turbine plant (plant shutdown) and starting the steam turbine plant (plant warming) ) The purpose can be achieved even if the type of fluid is selected according to the purpose of the process.

一方、すでに説明の両壁間の外側蒸気室を通過した蒸気は、図7において再び蒸気タービンの抽気段落に接続して熱回収しているが、その他図示していないが蒸気タービンサイクル途中段に接続して熱回収する方法や、図13に示すようにタービンプラント以外に暖房として消費することや専用の熱回収装置42を新たに設け熱回収することも可能である。   On the other hand, the steam that has already passed through the outer steam chamber between the two walls already described is connected to the extraction stage of the steam turbine again in FIG. 7 to recover the heat. It is also possible to connect and recover heat, to consume as heating other than the turbine plant as shown in FIG. 13, or to newly provide a dedicated heat recovery device 42 and recover heat.

このように、内外壁間の外側蒸気室に流通する蒸気等の流体の供給源やその外側蒸気室を通過した蒸気等の流体の回収先やそれらの方法や手段の組合せは多種多様であり、ここではそれらを限定するものではない。   As described above, the supply source of fluid such as steam flowing through the outer steam chamber between the inner and outer walls, the recovery destination of the fluid such as steam that has passed through the outer steam chamber, and combinations of methods and means thereof are diverse. They are not limited here.

以上説明した前提技術を踏まえて、本発明の実施の形態を説明する。   The embodiment of the present invention will be described based on the base technology described above.

図1は、本発明の第1の実施の形態である主蒸気止め弁101の断面形状を示す図である。なお、図1において、図6に示す構造と同一部品には同一符号を付し、その詳細な説明は省略する。   FIG. 1 is a view showing a cross-sectional shape of a main steam stop valve 101 according to the first embodiment of the present invention. In FIG. 1, the same components as those shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第1の実施の形態と前提技術との大きな相違点は、内壁21を弁座部分にて2分割としたことである。   The major difference between the first embodiment and the base technology is that the inner wall 21 is divided into two at the valve seat portion.

すなわち、弁ケーシングを外壁20及び内壁21により2重壁によって構成するとともに、内外両壁20,21間に形成された外側蒸気室25を弁座部分にて上流と下流に分割して、少なくとも2個の独立した上部蒸気室25a、及び下部蒸気室25bとし、該外側蒸気室のそれぞれに独立した系統から蒸気または流体を流通せしめるように構成したものである。   That is, the valve casing is constituted by a double wall by the outer wall 20 and the inner wall 21, and the outer steam chamber 25 formed between the inner and outer walls 20, 21 is divided into upstream and downstream at the valve seat portion, so that at least 2 The individual upper steam chamber 25a and lower steam chamber 25b are configured such that steam or fluid is circulated from an independent system to each of the outer steam chambers.

本実施の形態の大きな目的は、蒸気弁の本来の機能に係わる改善である。すなわち図6において、通常の運転状態では主弁7は弁座21dから離れ、主弁7と弁座21dとから形成される幾何学空間をボイラーからの蒸気が流れる。蒸気タービンに異常が発生すると、これら蒸気弁は閉鎖するように動作するため、主弁7は再び弁座21dに着座し流入蒸気を遮断する。この時、弁座21dの上流はボイラーからの蒸気圧力が存在し、一方弁座21dの下流は接続先の圧力(最悪は復水器109の器内圧力である真空)まで低下するが、内、外壁の間に設けた外側蒸気室25には減圧減温装置26からの蒸気が供給され続けていることから、特に内壁21の弁座21dの下流に位置した部分には、瞬時に外圧が作用し外圧容器となってしまうため大きな変形を生ずることが懸念される。   The main purpose of this embodiment is to improve the original function of the steam valve. That is, in FIG. 6, in a normal operation state, the main valve 7 is separated from the valve seat 21d, and steam from the boiler flows through a geometric space formed by the main valve 7 and the valve seat 21d. When an abnormality occurs in the steam turbine, these steam valves operate so as to close, so that the main valve 7 sits again on the valve seat 21d and shuts off the incoming steam. At this time, the steam pressure from the boiler is present upstream of the valve seat 21d, while the downstream of the valve seat 21d is reduced to the pressure at the connection destination (the worst is the vacuum that is the internal pressure of the condenser 109). Since the steam from the decompression and temperature reducing device 26 continues to be supplied to the outer steam chamber 25 provided between the outer walls, the outer pressure is instantaneously applied particularly to the portion of the inner wall 21 located downstream of the valve seat 21d. There is a concern that a large deformation occurs due to the action and the external pressure vessel.

このような事象を改善するために、図6に示す温度隔壁を構成した内壁21と外壁20により形成された外側蒸気室25は、本実施の形態である図1では弁座21d部分にて上下に2分割され、上部蒸気室25aと下部蒸気室25bから成り立っている。上部蒸気室25aを形成する上部内壁21aには弁座21dが形成されており、その下端が外壁20の内面に溶接等の接続手段により完全に密着するように固定され、かつ上部内壁21aには下部蒸気室25bを形成する下部内壁21bが溶接等の接続手段により完全に密着し一体化されている。 In order to improve such an event, the outer steam chamber 25 formed by the inner wall 21 and the outer wall 20 constituting the temperature partition shown in FIG. 6 is moved up and down at the valve seat 21d portion in FIG. The upper steam chamber 25a and the lower steam chamber 25b are divided into two. The upper inner wall 21a 1 forming the upper steam chamber 25a is formed with a valve seat 21d, the lower end is fixed to completely close contact by connection means such as welding to the inner surface of the outer wall 20 and an upper inner wall 21a 1 lower inner wall 21b 1 of forming a lower steam chamber 25b are in close contact and integrated by connecting means such as welding to.

蒸気入口A部分の上部内壁21aは、入口短管22と図2に示すように高温割れや熱影響部(HAZ)の鋭敏化を防止する目的に、開先角度を大きめとしてたとえばV開先で60〜80°に設定したTIG溶接24等の手段にて完全に密着するように固定され、蒸気出口B部分の下部内壁21bも同様に出口短管23に固定される。入口短管22と出口短管23には、弁座前ドレン排出口10と弁座後ドレン排出口11が加工されている。入口短管22や出口短管23は、ボイラーや蒸気タービンと図示しない蒸気配管に突合わせ溶接にて取り付けられるが、各短管の先端に一体的にフランジを形成し、蒸気配管とフランジ取付けとしても良い。 Upper inner wall 21a 1 of the steam inlet A portion, in order to prevent sensitization of hot cracking and HAZ as shown in inlet short tube 22 and Figure 2 (HAZ), for example, V groove included angle as large in is fixed so as to completely close contact with means such as TIG welding 24 set at 60-80 °, the lower inner wall 21b 1 of the steam outlet portion B is also fixed in the same manner as the outlet short pipe 23. The inlet short pipe 22 and the outlet short pipe 23 are processed with a pre-valve drain discharge port 10 and a post-valve drain discharge port 11. The inlet short pipe 22 and the outlet short pipe 23 are attached to a boiler, a steam turbine, and a steam pipe (not shown) by butt welding. A flange is integrally formed at the tip of each short pipe, and the steam pipe and the flange are attached. Also good.

このように、本発明では、該外側蒸気室を弁座部分にて上流と下流に分割して、少なくとも2個の独立した外側蒸気室を設けていることが大きな特徴である。   As described above, the present invention is characterized in that at least two independent outer steam chambers are provided by dividing the outer steam chamber into upstream and downstream at the valve seat portion.

この外側蒸気室には、図3に示すように減圧減温装置26からの蒸気が、図1の上部流体入口27aからそれぞれの運用条件に応じて調整されて供給され、やがて上部流体出口28aから常時開のインターロック止弁44を介して排出されるように流れる。また、減圧減温装置26から分岐したもう一方の蒸気は、常時開のインターロック止弁45を介して図1の下部流体入口27bから供給され、やがて下部流体出口28bから排出されるように流れ、再び蒸気タービンの抽気段落に接続して熱回収される。   As shown in FIG. 3, steam from the decompression / temperature reduction device 26 is supplied to the outer steam chamber after being adjusted from the upper fluid inlet 27a of FIG. 1 according to the respective operating conditions, and eventually from the upper fluid outlet 28a. It flows to be discharged through a normally open interlock stop valve 44. Further, the other steam branched from the depressurization / temperature reducing device 26 is supplied from the lower fluid inlet 27b of FIG. 1 through the normally open interlock stop valve 45 and flows so as to be discharged from the lower fluid outlet 28b. Then, heat is recovered by connecting to the extraction stage of the steam turbine again.

また、例えば蒸気タービンに異常が発生し主弁7が弁座21dに着座し流入蒸気を遮断した場合には、弁座21dの上流はボイラーからの蒸気圧力が存在し、一方弁座21dの下流は接続先の圧力(最悪は復水器113の器内圧力である真空)まで低下する。しかし、本実施の形態においては、常時開のインターロック止弁44とインターロック止弁45が、主弁7が弁座21dに着座し流入蒸気を遮断したことを条件に急閉するように構成されている。したがって、主弁7が弁座21dに着座し流入蒸気を遮断した場合においても、上部蒸気室25aには減圧減温装置26からの蒸気が供給され、下部蒸気室25bには減圧減温装置26からの蒸気が供給されなくなり、接続先の圧力(最悪は復水器113の器内圧力である真空)が作用するようになるため、上部内壁21a及び下部内壁21bは圧力がバランスし、上部内壁21a及び下部内壁21b が変形することはない。 Further, for example, when an abnormality occurs in the steam turbine and the main valve 7 is seated on the valve seat 21d and shuts off the incoming steam, the steam pressure from the boiler exists upstream of the valve seat 21d, while the downstream of the valve seat 21d. Decreases to the pressure at the connection destination (the worst is the vacuum that is the internal pressure of the condenser 113). However, in the present embodiment, the normally open interlock stop valve 44 and the interlock stop valve 45 are configured to close rapidly on condition that the main valve 7 is seated on the valve seat 21d and shuts off the incoming steam. Has been. Therefore, even when the main valve 7 is seated on the valve seat 21d and shuts off the incoming steam, the steam from the decompression / temperature reduction device 26 is supplied to the upper steam chamber 25a, and the decompression / temperature reduction device 26 is supplied to the lower steam chamber 25b. Since the steam from is not supplied and the pressure of the connection destination (vacuum which is the internal pressure of the condenser 113 in the worst case) acts, the upper inner wall 21a 1 and the lower inner wall 21b 1 are balanced in pressure, The upper inner wall 21a 1 and the lower inner wall 21b 1 are not deformed.

図3では、一つの減圧減温装置26から蒸気を供給しているが、上部蒸気室25aと下部蒸気室25bに各々に減圧減温装置26を設置することも可能であり、またすでに説明の図11〜図13のような系統と組み合わせて運用することが出来る。   In FIG. 3, steam is supplied from one decompression / temperature reduction device 26, but it is also possible to install the decompression / temperature reduction device 26 in each of the upper steam chamber 25a and the lower steam chamber 25b. It can be used in combination with the system shown in FIGS.

また、外側蒸気室の数を多層化したり分割化する場合に、それぞれの外側蒸気室に段階的に低下させた蒸気温度を供給するには、それぞれの外側蒸気室に応じた減圧減温装置26を個別に設置することも可能である。   In addition, when the number of outer steam chambers is multi-layered or divided, in order to supply the steam temperature gradually decreased to each outer steam chamber, the decompression and temperature reduction device 26 corresponding to each outer steam chamber is provided. It is also possible to install them individually.

図4は本発明の他の実施の形態を示す図である。なお、図中、図1に示す構造と同一部品には同一符号を付し、その詳細な説明は省略する。   FIG. 4 is a diagram showing another embodiment of the present invention. In the figure, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

この実施の形態の大きな相違点は、弁ケーシングが内,外、少なくとも2重壁により構成され、その間に外側蒸気室を設けた蒸気弁であるが、弁座部を基準に外側蒸気室が弁座の上流側にのみ設けられ、弁座の下流側には内壁が設けられていない点である。   The major difference between this embodiment is a steam valve in which the valve casing is composed of inner and outer walls and at least a double wall and an outer steam chamber is provided between them. The outer steam chamber is a valve based on the valve seat. It is provided only on the upstream side of the seat, and the inner wall is not provided on the downstream side of the valve seat.

また、従来の蒸気弁を例示した図15では弁棒5に一体的に結合された主弁7を弁座6の下流側から駆動するものであるが、図4では主弁7を上下方向に作動させるアクチュエータ(図示せず)が端部に設置された弁棒5が、上蓋50cを貫通して弁座50dの上流側から駆動するような構造であり、弁座50dの下流は出口管55となっている。   Further, in FIG. 15 exemplifying a conventional steam valve, the main valve 7 integrally coupled to the valve stem 5 is driven from the downstream side of the valve seat 6, but in FIG. 4, the main valve 7 is moved vertically. A valve stem 5 having an actuator (not shown) to be actuated installed at the end thereof is driven from the upstream side of the valve seat 50d through the upper lid 50c. The downstream side of the valve seat 50d is an outlet pipe 55. It has become.

この実施の形態の大きな目的は、従来構造を示す図15において、弁座6の上流蒸気室は蒸気中の異物を捕捉するストレーナ8などが格納されること、及び弁座6の下流蒸気室は弁棒5を保持するための案内片9などが格納されるため、その蒸気室は自ずと大きくなり熱応力的には不適切な構造であったことから可能な限り蒸気室の大きさを小型にすることである。その結果、弁座6の下流側に内壁を設置する必要がなくなった。   The main purpose of this embodiment is that in FIG. 15 showing the conventional structure, the upstream steam chamber of the valve seat 6 stores a strainer 8 and the like that captures foreign matters in the steam, and the downstream steam chamber of the valve seat 6 Since the guide piece 9 and the like for holding the valve stem 5 are stored, the steam chamber naturally becomes large and the structure is inappropriate for thermal stress. Therefore, the size of the steam chamber is made as small as possible. It is to be. As a result, there is no need to install an inner wall on the downstream side of the valve seat 6.

ボルト50bにより上蓋50cが固着された弁胴部50aからなる外壁50の内部には、内部弁胴51a、内蓋51c、ボルト51bからなる温度隔壁を構成する内壁51が配設されている。また内壁51の内部には従来と同様にストレーナ8や主弁7が組み立てられている。   Inside the outer wall 50 comprising the valve body 50a to which the upper lid 50c is secured by the bolt 50b, an inner wall 51 constituting a temperature partition comprising the inner valve body 51a, the inner lid 51c and the bolt 51b is disposed. In addition, a strainer 8 and a main valve 7 are assembled inside the inner wall 51 as in the conventional case.

上記上蓋50cには、弁棒5を囲繞するように第1の弁棒リーク蒸気溝52a及び第2の弁棒リーク蒸気溝52bが形成されている。上記第1の弁棒リーク蒸気溝52aはバイパス孔53により流体入口27に連通されており、第2の弁棒リーク溝52bは弁棒リークオフ管54に連通されている。また、内蓋51cの一部は、弁棒5を包囲しながら上蓋50cの第1の弁棒リーク蒸気溝52aまで差し込まれている。   The upper lid 50 c is formed with a first valve rod leak steam groove 52 a and a second valve rod leak steam groove 52 b so as to surround the valve rod 5. The first valve stem leak steam groove 52 a is communicated with the fluid inlet 27 by a bypass hole 53, and the second valve stem leak groove 52 b is communicated with a valve stem leak-off pipe 54. A part of the inner lid 51c is inserted up to the first valve stem leak steam groove 52a of the upper lid 50c while surrounding the valve stem 5.

しかして、弁棒5からのリークオフ蒸気は第1の弁棒リーク蒸気溝52aにて、流体入口27から分岐されたバイパス穴53から供給された流体と混合し、やがて第2の弁棒リーク蒸気溝52bに到達後、弁棒リークオフ管54から排出される。このようにして、蒸気弁内に供給される蒸気タービン駆動用蒸気が、内外壁間に設けられた外側蒸気室25に混入しないように防止される。   Thus, the leak-off steam from the valve stem 5 is mixed with the fluid supplied from the bypass hole 53 branched from the fluid inlet 27 in the first valve stem leak steam groove 52a, and then the second valve stem leak steam is finally obtained. After reaching the groove 52b, it is discharged from the valve stem leak-off pipe 54. In this way, steam for driving the steam turbine supplied into the steam valve is prevented from entering the outer steam chamber 25 provided between the inner and outer walls.

蒸気入口部分Aの内壁51aは、入口短管22と図2に示すように高温割れや熱影響部(HAZ)の鋭敏化を防止する目的に、開先角度を大きめとしてたとえばV開先で60〜80°に設定したTIG溶接等の手段にて完全に密着するように固定されるとともに、蒸気出口部分Bの出口管55に図5に示すように高温割れや熱影響部(HAZ)の鋭敏化を防止する目的に、開先角度を大きめとしてたとえばV開先で60〜80°に設定したTIG溶接等の手段にて完全に密着するように固定されている。   The inner wall 51a of the steam inlet portion A has, for example, a V groove with a large groove angle in order to prevent hot cracking and sensitization of the heat affected zone (HAZ) as shown in FIG. It is fixed so as to be completely adhered by means such as TIG welding set at ˜80 °, and at the outlet pipe 55 of the steam outlet portion B, as shown in FIG. For the purpose of preventing the deformation, the groove angle is set to be large, for example, by means of TIG welding or the like set to 60 to 80 ° with a V groove, and is fixed so as to be completely adhered.

外壁50と溶接にて一体化された出口管55には弁座50dが形成されており、当該出口管55部分には内壁は設置されていない。入口短管22には、弁座前ドレン排出口10が加工されるが、出口管55にはドレン溜りが存在しないことから、弁座後ドレン排出口は設置されていない。   A valve seat 50d is formed in the outlet pipe 55 integrated with the outer wall 50 by welding, and no inner wall is installed in the outlet pipe 55 portion. Although the drain outlet 10 before a valve seat is processed in the inlet short pipe 22, since the drain pipe does not exist in the outlet pipe 55, the drain outlet after a valve seat is not installed.

入口短管22や出口管55は、ボイラーや蒸気タービンと図示しない蒸気配管に突合わせ溶接にて取り付けられるが、各短管の先端に一体的にフランジを形成し、蒸気配管とフランジ取付けとしても良い。内壁51と外壁50の間に設けた外側蒸気室25には、図1に示す本発明の実施の形態と同じように温度制御、圧力制御、流量制御を行う流体制御システムが接続されており、同様な効果や作用が得られるので説明は省略する。   The inlet short pipe 22 and the outlet pipe 55 are attached to a boiler or a steam turbine and a steam pipe (not shown) by butt welding, but a flange is integrally formed at the tip of each short pipe so that the steam pipe and the flange can be attached. good. A fluid control system that performs temperature control, pressure control, and flow rate control is connected to the outer steam chamber 25 provided between the inner wall 51 and the outer wall 50 in the same manner as the embodiment of the present invention shown in FIG. Since similar effects and actions can be obtained, description thereof is omitted.

以上説明の本発明の実施の形態において、内壁の強度上必要な肉厚は、図1や図4に示す胴の形状が胴長の場合よりも、球体に構成すると半分の肉厚で良いことは機械工学的に知られている。   In the embodiment of the present invention described above, the wall thickness required for the strength of the inner wall may be half as thick as a sphere compared to the case where the body shape shown in FIGS. Is known in mechanical engineering.

例えば、図1または図4において弁座を基準に内壁部分をそれぞれ概略球体に形成することは可能であり、肉厚が薄くできることは熱応力的強度が良好な結果となる。   For example, in FIG. 1 or FIG. 4, it is possible to form the inner wall portions in a substantially spherical shape with reference to the valve seat, and the reduction in the thickness results in good thermal stress strength.

しかも球形の場合は比較的均一化された肉厚にすることが可能で応力集中に関する強度的見地からも好都合であり、結果的に熱応力の集中する箇所を低減でき蒸気室強度を向上させることができることは容易に推定できる。   Moreover, in the case of a spherical shape, it is possible to obtain a relatively uniform wall thickness, which is advantageous from the viewpoint of strength related to stress concentration, and as a result, it is possible to reduce the location where thermal stress is concentrated and to improve the steam chamber strength. Can be easily estimated.

本発明の一実施の形態の断面図。1 is a cross-sectional view of an embodiment of the present invention. 本発明における部分詳細断面を示す図。The figure which shows the partial detailed cross section in this invention. 本発明の一実施の形態のプラント系統図を示す図。The figure which shows the plant system diagram of one embodiment of this invention. 本発明の他の実施の形態の断面図。Sectional drawing of other embodiment of this invention. 本発明の他の実施の形態における部分詳細断面を示す図。The figure which shows the partial detailed cross section in other embodiment of this invention. 本発明の前提となる技術を示す図。The figure which shows the technique used as the premise of this invention. 本発明の前提となる技術のプラント系統図を示す図。The figure which shows the plant system diagram of the technique used as the premise of this invention. 本発明の前提となる技術における減圧減温装置の系統図。The system diagram of the pressure reduction and temperature reduction apparatus in the technique used as the premise of this invention. 本発明の前提となる技術における蒸気圧力特性を示す図。The figure which shows the steam pressure characteristic in the technique used as the premise of this invention. 本発明の前提となる技術における蒸気温度特性を示す図。The figure which shows the steam temperature characteristic in the technique used as the premise of this invention. 本発明の前提となる他の技術のプラント系統図を示す図。The figure which shows the plant system diagram of the other technique used as the premise of this invention. 本発明の前提となる他の技術のプラント系統図を示す図。The figure which shows the plant system diagram of the other technique used as the premise of this invention. 本発明の前提となる他の技術のプラント系統図を示す図。The figure which shows the plant system diagram of the other technique used as the premise of this invention. 従来のプラント系統図を示す図。The figure which shows the conventional plant system diagram. 従来の蒸気弁の断面図。Sectional drawing of the conventional steam valve.

符号の説明Explanation of symbols

7 主弁
20 外壁
21 内壁
21d 弁座
22 入口短管
23 出口短管
25 外側蒸気室
25a 上部蒸気室
25b 下部蒸気室
26 減圧減温装置
27 流体入口
28 流体出口
30 調圧弁
31 差圧調節器
32 冷却水調節弁
33 減温管
34 スプレーノズル
35 温度調節器
40 供給源
41 供給源選択装置
44、45 インターロック止弁
50 外壁
51 内壁
52a 第1の弁棒リーク蒸気溝
52b 第2の弁棒リーク蒸気溝
55 出口管
7 Main valve 20 Outer wall 21 Inner wall 21d Valve seat 22 Inlet short pipe 23 Outlet short pipe 25 Outer steam chamber 25a Upper steam chamber 25b Lower steam chamber 26 Depressurization and temperature reduction device 27 Fluid inlet 28 Fluid outlet 30 Pressure regulating valve 31 Differential pressure regulator 32 Cooling water control valve 33 Temperature reducing pipe 34 Spray nozzle 35 Temperature controller 40 Supply source 41 Supply source selection device 44, 45 Interlock stop valve 50 Outer wall 51 Inner wall 52a First valve rod leak steam groove 52b Second valve rod leak Steam groove 55 outlet pipe

Claims (6)

蒸気タービンに供給される駆動用蒸気を制御する蒸気タービン用制御弁であって、前記制御弁の弁ケーシングを耐圧容器として機能する外壁と、温度隔壁として機能する内壁とからなる少なくとも2重壁により構成するとともに、
前記内壁の肉厚を前記外壁の肉厚より薄く構成し、
前記外壁と内壁の間に形成された外側蒸気室内には蒸気または流体を流通させるようにした蒸気タービン用制御弁において、
前記外側蒸気室は、弁座部を基準に、少なくとも2個以上の独立した蒸気室に分割されていることを特徴とする蒸気タービン用制御弁。
A steam turbine control valve for controlling driving steam supplied to the steam turbine, wherein the valve casing of the control valve includes an outer wall that functions as a pressure vessel and an inner wall that functions as a temperature partition wall. With composition
The inner wall is made thinner than the outer wall,
In a steam turbine control valve configured to circulate steam or fluid in an outer steam chamber formed between the outer wall and the inner wall,
The control valve for a steam turbine, wherein the outer steam chamber is divided into at least two independent steam chambers on the basis of a valve seat portion.
分割された各蒸気室には、それぞれ異なる条件の蒸気または流体が流通されることを特徴とする、請求項1記載の蒸気タービン用制御弁。   2. The steam turbine control valve according to claim 1, wherein steam or fluid having different conditions flows through each of the divided steam chambers. 分割された各蒸気室を通過した後、その蒸気室から排出された蒸気または流体は、蒸気タービンまたは蒸気タービンサイクルの途中段落において熱回収されることを特徴とする、請求項1または2記載の蒸気タービン用制御弁。   The steam or fluid discharged from the steam chamber after passing through each of the divided steam chambers is heat-recovered in an intermediate stage of the steam turbine or the steam turbine cycle according to claim 1 or 2. Control valve for steam turbine. 耐圧容器として機能する外壁はフェライト系耐熱鋼、Cr−Mo鋼もしくはCr−Mo−V鋼により形成され、温度隔壁として機能する内壁はオーステナイト系耐熱鋼、またはNi基耐熱合金鋼により形成されていることを特徴とする、請求項1乃至3のいずれかに記載の蒸気タービン用制御弁。   The outer wall that functions as a pressure vessel is formed of ferritic heat resistant steel, Cr-Mo steel or Cr-Mo-V steel, and the inner wall that functions as a temperature partition is formed of austenitic heat resistant steel or Ni-based heat resistant alloy steel. The steam turbine control valve according to any one of claims 1 to 3, wherein the control valve is a steam turbine control valve. ボイラと、
このボイラの下流側に接続されるとともに、このボイラからの蒸気温度を低減させる減温器と、
この減温器の下流側を分岐して一方を請求項1記載の制御弁の外側蒸気室のうち、弁座部より上流側に設けられた蒸気室に導くとともに、他方を請求項1記載の制御弁の外側蒸気室のうち、弁座部より下流側に設けられた蒸気室にインターロック止弁を介して導く一方、
前記上流側に設けられた蒸気室内の導入蒸気はこの蒸気室の流体出口下流に設けられたインターロック止弁を介して蒸気タービンに回収するとともに、前記下流側に設けられた蒸気室内の導入蒸気は流体出口から蒸気タービンに回収することを特徴とする蒸気タービン発電プラント。
With a boiler,
A temperature reducer that is connected to the downstream side of the boiler and reduces the steam temperature from the boiler,
The downstream side of the temperature reducer is branched, and one of the outer steam chambers of the control valve according to claim 1 is led to a steam chamber provided upstream from the valve seat portion, and the other is directed to claim 1. While the outer steam chamber of the control valve is guided to the steam chamber provided downstream from the valve seat portion via an interlock stop valve,
The introduced steam in the steam chamber provided on the upstream side is recovered by a steam turbine via an interlock stop valve provided downstream of the fluid outlet of the steam chamber, and the introduced steam in the steam chamber provided on the downstream side. Is a steam turbine power plant that collects from a fluid outlet to a steam turbine.
前記インターロック止弁は、前記制御弁が急閉した際に、同時に急閉することを特徴とする、請求項5記載の蒸気タービン用制御弁。   6. The steam turbine control valve according to claim 5, wherein the interlock stop valve is rapidly closed when the control valve is rapidly closed.
JP2006012656A 2006-01-20 2006-01-20 Steam turbine control valve and steam turbine power plant Expired - Fee Related JP4619958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012656A JP4619958B2 (en) 2006-01-20 2006-01-20 Steam turbine control valve and steam turbine power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012656A JP4619958B2 (en) 2006-01-20 2006-01-20 Steam turbine control valve and steam turbine power plant

Publications (2)

Publication Number Publication Date
JP2007192168A true JP2007192168A (en) 2007-08-02
JP4619958B2 JP4619958B2 (en) 2011-01-26

Family

ID=38448060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012656A Expired - Fee Related JP4619958B2 (en) 2006-01-20 2006-01-20 Steam turbine control valve and steam turbine power plant

Country Status (1)

Country Link
JP (1) JP4619958B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043591A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve device
JP2010043590A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve for steam turbine
JP2012211595A (en) * 2008-09-24 2012-11-01 Siemens Ag Steam power generation facility for generating electric energy
WO2015155986A1 (en) * 2014-04-08 2015-10-15 株式会社 東芝 Steam valve
JP2016183608A (en) * 2015-03-26 2016-10-20 三菱日立パワーシステムズ株式会社 Steam valve device
US10480344B2 (en) 2017-05-16 2019-11-19 DOOSAN Heavy Industries Construction Co., LTD Valve module, and steam turbine and power generation system including the same
CN112321030A (en) * 2020-11-30 2021-02-05 西安西热控制技术有限公司 Water vapor treatment process for thermal power plant
CN114763844A (en) * 2021-01-15 2022-07-19 玛珂***分析和开发有限公司 Metering valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666280B2 (en) 2017-02-15 2020-03-13 三菱日立パワーシステムズ株式会社 On-off valve and steam turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124009A (en) * 1982-01-21 1983-07-23 Toshiba Corp Main steam valve device
JP2005048639A (en) * 2003-07-31 2005-02-24 Toshiba Corp Steam valve device and steam turbine power generation plant equipped with steam flow control system including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124009A (en) * 1982-01-21 1983-07-23 Toshiba Corp Main steam valve device
JP2005048639A (en) * 2003-07-31 2005-02-24 Toshiba Corp Steam valve device and steam turbine power generation plant equipped with steam flow control system including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043590A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve for steam turbine
JP2010043591A (en) * 2008-08-11 2010-02-25 Mitsubishi Heavy Ind Ltd Steam valve device
JP2012211595A (en) * 2008-09-24 2012-11-01 Siemens Ag Steam power generation facility for generating electric energy
US10781712B2 (en) 2014-04-08 2020-09-22 Kabushiki Kaisha Toshiba Steam valve
WO2015155986A1 (en) * 2014-04-08 2015-10-15 株式会社 東芝 Steam valve
EP3130764A4 (en) * 2014-04-08 2017-12-27 Kabushiki Kaisha Toshiba Steam valve
JP2016183608A (en) * 2015-03-26 2016-10-20 三菱日立パワーシステムズ株式会社 Steam valve device
US10480344B2 (en) 2017-05-16 2019-11-19 DOOSAN Heavy Industries Construction Co., LTD Valve module, and steam turbine and power generation system including the same
CN112321030A (en) * 2020-11-30 2021-02-05 西安西热控制技术有限公司 Water vapor treatment process for thermal power plant
CN114763844A (en) * 2021-01-15 2022-07-19 玛珂***分析和开发有限公司 Metering valve
JP2022109884A (en) * 2021-01-15 2022-07-28 マルコ システマナリセ ウント エントヴィックルング ゲーエムベーハー metering valve
JP7357703B2 (en) 2021-01-15 2023-10-06 マルコ システマナリセ ウント エントヴィックルング ゲーエムベーハー metering valve
CN114763844B (en) * 2021-01-15 2024-06-11 玛珂***分析和开发有限公司 Metering valve

Also Published As

Publication number Publication date
JP4619958B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619958B2 (en) Steam turbine control valve and steam turbine power plant
CA2625464C (en) Method for warming-up a steam turbine
US7195443B2 (en) Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
US9726082B2 (en) Turbine bypass system
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
US20140150431A1 (en) Steam power plant having a multi-stage steam turbine
JP4208661B2 (en) Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
US7805941B2 (en) Method for starting a steam turbine installation
JP4794254B2 (en) Steam turbine plant and operation method thereof
KR102520288B1 (en) Steam turbine plant and its cooling method
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP5783458B2 (en) Increased output operation method in steam power plant
CA2344137C (en) Steam control apparatus for turbine
JP2010196473A (en) Electric power plant water supply device, and method for controlling the same
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JPH08218811A (en) Cooling method for steam turbine and device therefor
JP7116692B2 (en) Steam turbine power generation equipment and method of operating steam turbine power generation equipment
JP2017072101A (en) Steam turbine system and its control method
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2006183582A (en) Steam valve device and power generation facility incorporating the same
JP4335703B2 (en) Gasification combined power generation system
JPS59134307A (en) Steam turbine plant
Anderson et al. Steam turbine bypass systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4619958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees