JP2007187414A - Indoor unit for air conditioner - Google Patents

Indoor unit for air conditioner Download PDF

Info

Publication number
JP2007187414A
JP2007187414A JP2006007296A JP2006007296A JP2007187414A JP 2007187414 A JP2007187414 A JP 2007187414A JP 2006007296 A JP2006007296 A JP 2006007296A JP 2006007296 A JP2006007296 A JP 2006007296A JP 2007187414 A JP2007187414 A JP 2007187414A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger group
refrigerant
indoor unit
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007296A
Other languages
Japanese (ja)
Inventor
Kazuhisa Mishiro
一寿 三代
Ryuta Onishi
竜太 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006007296A priority Critical patent/JP2007187414A/en
Publication of JP2007187414A publication Critical patent/JP2007187414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indoor unit for an air conditioner improving the performance of a heat exchanger and causing no degradation of productivity. <P>SOLUTION: The indoor unit 10 for the air conditioner 1 comprises a blower fan 12 and a heat exchanger group comprising a plurality of heat exchangers 11a, 11b, 112a, 112b arranged around the blower fan 12. Refrigerant passages with almost the same pipe diameter are formed in the respective heat exchangers 111a, 111b, 112a, 112b constituting the heat exchanger group. The heat exchanger group includes a first heat exchanger group 111 and a second heat exchanger group 112. The pipe diameter of the refrigerant passages 113 of the respective heat exchangers 111a, 111b constituting the first heat exchanger group 111 is different from that of the refrigerant passages 114 of the respective heat exchangers 112a, 112b constituting the second heat exchanger group 112. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、一般的には空気調和機の室内機に関し、特定的には空気調和機の室内機における熱交換器の構成に関するものである。   The present invention generally relates to an indoor unit of an air conditioner, and particularly relates to a configuration of a heat exchanger in the indoor unit of the air conditioner.

従来から、複数の熱交換器がほぼ逆V字形状に配置された空気調和機の室内機が知られている。これらの熱交換器内には、ほぼ同一の管径の冷媒流路が形成されている。   Conventionally, an indoor unit of an air conditioner in which a plurality of heat exchangers are arranged in a substantially inverted V shape is known. In these heat exchangers, refrigerant flow paths having substantially the same pipe diameter are formed.

また、たとえば、特開2001−174047号公報(特許文献1)では、熱交換効率を改善するために、熱交換器において径の異なる複数の伝熱管を用い、暖房運転時に冷媒を最大径伝熱管から順次、細径伝熱管へ流動させ、冷房運転時には最細径伝熱管から順次、太径伝熱管へ流動させる経路を構成するように熱交換器を接続した空気調和機の室内機が提案されている。
特開2001−174047号公報
Further, for example, in Japanese Patent Laid-Open No. 2001-174047 (Patent Document 1), in order to improve heat exchange efficiency, a plurality of heat transfer tubes having different diameters are used in the heat exchanger, and the refrigerant is used as the maximum diameter heat transfer tube during heating operation. An air conditioner indoor unit is proposed that is connected to a heat exchanger so as to form a path that sequentially flows from the thinnest heat transfer tube to the large diameter heat transfer tube during cooling operation. ing.
JP 2001-174047 A

しかしながら、ほぼ同一の管径の冷媒流路がすべての熱交換器に形成されていると、熱交換器の蒸発性能と凝縮性能の両方を最大限に発揮させることが困難な場合がある。   However, if refrigerant channels having substantially the same pipe diameter are formed in all the heat exchangers, it may be difficult to maximize both the evaporation performance and the condensation performance of the heat exchanger.

また、特開2001−174047号公報(特許文献1)に記載された空気調和機の室内機では、同一の熱交換器ブロック内に異なる管径の冷媒通路を形成しているため、逆に室内機の生産性が悪くなり、製造コストが高くなるという問題がある。   Moreover, in the indoor unit of the air conditioner described in Japanese Patent Application Laid-Open No. 2001-174047 (Patent Document 1), the refrigerant passages having different pipe diameters are formed in the same heat exchanger block. There is a problem that the productivity of the machine deteriorates and the manufacturing cost increases.

そこで、この発明の目的は、熱交換器の性能を向上させることができるとともに、生産性を低下させることがない空気調和機の室内機を提供することである。   Accordingly, an object of the present invention is to provide an indoor unit of an air conditioner that can improve the performance of a heat exchanger and does not reduce productivity.

この発明に従った空気調和機の室内機は、送風ファンと、この送風ファンの周囲に配置された複数の熱交換器からなる熱交換器群とを備える。熱交換器群を構成する各々の熱交換器内では、ほぼ同一の管径の冷媒流路が形成されている。熱交換器群は、第1の熱交換器群と第2の熱交換器群とを含む。第1の熱交換器群を構成する各熱交換器の冷媒流路の管径は、第2の熱交換器群を構成する各熱交換器の冷媒流路の管径と異なる。   An indoor unit of an air conditioner according to the present invention includes a blower fan and a heat exchanger group including a plurality of heat exchangers arranged around the blower fan. In each heat exchanger constituting the heat exchanger group, refrigerant channels having substantially the same pipe diameter are formed. The heat exchanger group includes a first heat exchanger group and a second heat exchanger group. The pipe diameter of the refrigerant flow path of each heat exchanger constituting the first heat exchanger group is different from the pipe diameter of the refrigerant flow path of each heat exchanger constituting the second heat exchanger group.

この発明の空気調和機の室内機は、冷媒流路の管径が異なる複数の熱交換器群を備えているので、熱交換器を通過する冷媒の状態に応じて熱交換器の冷媒流路の管径が変化するように複数の熱交換器群を組み合わせることができる。このため、冷媒の状態に応じて冷媒流路内における冷媒の流通抵抗を小さくすることができるので、熱交換器の効率を高めることができ、冷房運転時、暖房運転時において熱交換器の性能を向上させることができる。   Since the indoor unit of the air conditioner of the present invention includes a plurality of heat exchanger groups having different refrigerant flow path diameters, the refrigerant flow path of the heat exchanger according to the state of the refrigerant passing through the heat exchanger A plurality of heat exchanger groups can be combined so that the tube diameter of the tube changes. For this reason, since the flow resistance of the refrigerant in the refrigerant flow path can be reduced according to the state of the refrigerant, the efficiency of the heat exchanger can be increased, and the performance of the heat exchanger during cooling operation and heating operation Can be improved.

また、この発明の空気調和機の室内機においては、熱交換器群を構成する各々の熱交換器内では、ほぼ同一の管径の冷媒流路が形成されているので、室内機の生産性を悪化させることもない。したがって、熱交換器の性能を向上させることができるとともに、生産性を低下させることがない。   Further, in the indoor unit of the air conditioner of the present invention, since the refrigerant flow channels having substantially the same pipe diameter are formed in each heat exchanger constituting the heat exchanger group, the productivity of the indoor unit Does not worsen. Therefore, the performance of the heat exchanger can be improved and productivity is not lowered.

この発明の空気調和機の室内機においては、第1の熱交換器群は当該室内機の前面側に配置され、第2の熱交換器群は当該室内機の後面側に配置されることが好ましい。   In the indoor unit of the air conditioner of the present invention, the first heat exchanger group may be disposed on the front side of the indoor unit, and the second heat exchanger group may be disposed on the rear side of the indoor unit. preferable.

この場合、第1の熱交換器群を構成する各熱交換器の冷媒流路の管径は相対的に太く、第2の熱交換器群を構成する各熱交換器の冷媒流路の管径は相対的に細いことが好ましい。   In this case, the pipe diameter of the refrigerant flow path of each heat exchanger constituting the first heat exchanger group is relatively large, and the refrigerant flow pipe of each heat exchanger constituting the second heat exchanger group. The diameter is preferably relatively thin.

このようにすることにより、室内機内の前面側と後面側において冷媒流路を形成するための配管に必要な空間を有効に活用することができる。また、暖房運転時においては、室内機の前面側に冷媒流路の管径が太い熱交換器群が配置されるので、空気の吸入量が相対的に大きい前面側において熱交換効率を高めることができる。   By doing in this way, space required for piping for forming a refrigerant channel in the front side and back side in an indoor unit can be used effectively. In addition, during heating operation, a heat exchanger group with a large refrigerant channel diameter is arranged on the front side of the indoor unit, so that heat exchange efficiency is increased on the front side where the air intake amount is relatively large. Can do.

また、この発明の空気調和機の室内機においては、第1の熱交換器群を構成する各熱交換器の第1の冷媒流路の管径は相対的に太く、第2の熱交換器群を構成する各熱交換器の第2の冷媒流路の管径は相対的に細く、冷房運転時には、冷媒が第2の冷媒流路から第1の冷媒流路に流通するように構成されていることが好ましい。   In the indoor unit of the air conditioner of the present invention, the diameter of the first refrigerant channel of each heat exchanger constituting the first heat exchanger group is relatively large, and the second heat exchanger The tube diameter of the second refrigerant channel of each heat exchanger constituting the group is relatively thin, and the refrigerant is configured to flow from the second refrigerant channel to the first refrigerant channel during the cooling operation. It is preferable.

このようにすることにより、暖房運転時における凝縮性能を維持することができるとともに、冷房運転時では、冷媒の気液二相状態において液体の体積が相対的に大きい状態から気体の体積が相対的に大きい状態に移行する過程で、冷媒流路内における冷媒の流通抵抗を小さくすることができるので、冷房運転時における蒸発性能を向上させることができる。   In this way, it is possible to maintain the condensation performance during the heating operation, and during the cooling operation, the gas volume is relatively increased from the relatively large volume of the liquid in the gas-liquid two-phase state of the refrigerant. In the process of shifting to a large state, the flow resistance of the refrigerant in the refrigerant channel can be reduced, so that the evaporation performance during the cooling operation can be improved.

この場合、第2の冷媒流路が分岐する数は、第1の冷媒流路が分岐する数と同じ、または第1の冷媒流路が分岐する数よりも多いことが好ましい。   In this case, it is preferable that the number of the second refrigerant flow paths is the same as the number of the first refrigerant flow paths or more than the number of the first refrigerant flow paths.

さらに、この発明の空気調和機の室内機は、第1の熱交換器群が除湿運転の際に蒸発器となり、第2の熱交換器群が除湿運転の際に凝縮器となるように構成され、第1の熱交換器群と第2の熱交換器群との間の冷媒流路に配置され、除湿運転の際に絞りとして作用する膨張機構をさらに備えることが好ましい。   Furthermore, the indoor unit of the air conditioner according to the present invention is configured such that the first heat exchanger group serves as an evaporator during the dehumidifying operation, and the second heat exchanger group serves as a condenser during the dehumidifying operation. It is preferable to further include an expansion mechanism that is disposed in the refrigerant flow path between the first heat exchanger group and the second heat exchanger group and acts as a throttle during the dehumidifying operation.

室温を上下させることが可能な除湿運転(再熱除湿運転)として、圧縮機からの高温高圧の冷媒を、室外熱交換器を介して、室内機の中で加熱器としての機能を果たす熱交換器部分に送り、吸入空気が加熱され、加熱器としての機能を果たす熱交換器部分からの冷媒を膨張機構によって低温低圧にして、冷却器としての機能を果たす熱交換器部分に流入させて除湿を行う冷凍サイクルの構成が知られている。このような冷凍サイクルにおいて、この発明の空気調和機の室内機において上記のように構成することにより、第1の熱交換器群を冷却器としての機能を果たす熱交換器部分、第2の熱交換器部分を加熱器としての機能を果たす熱交換器部分にすることができ、第1の熱交換器群と第2の熱交換器群との間に膨張機構を配置することができる。この場合、第1の熱交換器群と第2の熱交換器群とは冷媒流路の管径が異なるが、第1の熱交換器群と第2の熱交換器群との間に配置される膨張機構をモジュール化して一つのユニットとして構成することができる。これにより、熱交換器を含む室内機の生産性を向上させることができる。   As a dehumidifying operation that can raise and lower the room temperature (reheat dehumidifying operation), heat exchange is performed by using high-temperature and high-pressure refrigerant from the compressor as a heater in the indoor unit via the outdoor heat exchanger. The intake air is heated and the refrigerant from the heat exchanger part that functions as a heater is cooled to low temperature and low pressure by the expansion mechanism and flows into the heat exchanger part that functions as a cooler to dehumidify. A configuration of a refrigeration cycle for performing is known. In such a refrigeration cycle, by configuring the indoor unit of the air conditioner of the present invention as described above, the first heat exchanger group functions as a cooler, and the second heat The exchanger portion can be a heat exchanger portion that functions as a heater, and an expansion mechanism can be disposed between the first heat exchanger group and the second heat exchanger group. In this case, the first heat exchanger group and the second heat exchanger group have different refrigerant flow path diameters, but are arranged between the first heat exchanger group and the second heat exchanger group. The expansion mechanism can be modularized and configured as a single unit. Thereby, the productivity of the indoor unit including the heat exchanger can be improved.

以上のようにこの発明によれば、空気調和機の室内機において熱交換器の性能を向上させることができるとともに、生産性を低下させることがない。   As described above, according to the present invention, the performance of the heat exchanger can be improved in the indoor unit of the air conditioner, and productivity is not reduced.

以下、この発明の一つの実施の形態を図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、この発明の一つの実施の形態として空気調和機の冷凍サイクルを示す図(A)、その冷凍サイクルにて室内熱交換器中の分岐を示す図(B)である。   FIG. 1: is a figure (A) which shows the refrigerating cycle of an air conditioner as one embodiment of this invention, and is a figure (B) which shows the branch in an indoor heat exchanger in the refrigerating cycle.

図1(A)に示すように、空気調和機1は室内機10と室外機20とを備える。室内機10は、室内熱交換器11と、室内ファン12とを備える。室外機20は、圧縮機21と、四方弁24と、室外熱交換器25と、室外ファン26と、膨張弁28とを備える。   As shown in FIG. 1A, the air conditioner 1 includes an indoor unit 10 and an outdoor unit 20. The indoor unit 10 includes an indoor heat exchanger 11 and an indoor fan 12. The outdoor unit 20 includes a compressor 21, a four-way valve 24, an outdoor heat exchanger 25, an outdoor fan 26, and an expansion valve 28.

室内ファン12は、室内熱交換器11に室内空気を通過させるためのものであり、室内ファンモータ13によって駆動される。圧縮機21は、圧縮機モータ22によって駆動され、その吸込み側にはアキュムレータ23が接続されている。室外ファン26は、室外熱交換器25に室外空気を通過させるためのものであり、室外ファンモータ27によって駆動される。   The indoor fan 12 is for passing indoor air through the indoor heat exchanger 11 and is driven by an indoor fan motor 13. The compressor 21 is driven by a compressor motor 22, and an accumulator 23 is connected to the suction side. The outdoor fan 26 is for passing outdoor air through the outdoor heat exchanger 25 and is driven by an outdoor fan motor 27.

室内機10と室外機20の接続経路には二つのバルブが設けられ、室内機10と室外機20の各構成要素は、順次、冷媒配管によって接続されて周知の冷凍サイクルを構成する。   Two valves are provided in the connection path between the indoor unit 10 and the outdoor unit 20, and each component of the indoor unit 10 and the outdoor unit 20 is sequentially connected by a refrigerant pipe to form a known refrigeration cycle.

冷房運転時には、冷媒は、実線の矢印で示すように、圧縮機21、四方弁24、室外熱交換器25、膨張弁28、室内熱交換器11、四方弁24、アキュムレータ23および圧縮機21の順の経路で循環する。この場合、室外熱交換器25は凝縮器として機能し、室内熱交換器11は蒸発器として機能する。   During the cooling operation, the refrigerant is stored in the compressor 21, the four-way valve 24, the outdoor heat exchanger 25, the expansion valve 28, the indoor heat exchanger 11, the four-way valve 24, the accumulator 23, and the compressor 21 as indicated by solid arrows. Cycles in order. In this case, the outdoor heat exchanger 25 functions as a condenser, and the indoor heat exchanger 11 functions as an evaporator.

暖房運転時には、冷媒は、破線の矢印で示すように、圧縮機21、四方弁24、室内熱交換器11、膨張弁28、室外熱交換器25、四方弁24、アキュムレータ23および圧縮機21の順の経路で循環する。この場合、室内熱交換器11は凝縮器として機能し、室外熱交換器25は蒸発器として機能する。   During the heating operation, as indicated by the broken-line arrows, the refrigerant passes through the compressor 21, the four-way valve 24, the indoor heat exchanger 11, the expansion valve 28, the outdoor heat exchanger 25, the four-way valve 24, the accumulator 23, and the compressor 21. Cycles in order. In this case, the indoor heat exchanger 11 functions as a condenser, and the outdoor heat exchanger 25 functions as an evaporator.

室内熱交換器11は、第1の熱交換器群111と第2の熱交換器群112とから構成されている。   The indoor heat exchanger 11 includes a first heat exchanger group 111 and a second heat exchanger group 112.

図2は、この発明の一つの実施の形態として空気調和機の室内機における送風ファンと熱交換器の配置を示す概略的な側面図である。   FIG. 2 is a schematic side view showing the arrangement of the blower fan and the heat exchanger in the indoor unit of the air conditioner as one embodiment of the present invention.

図2に示すように、第1の熱交換器群111と第2の熱交換器群112は、それぞれ、複数の熱交換器ブロックから構成され、ほぼ逆V字形状に送風ファン12の周囲に配置されている。第1の熱交換器群111は、たとえば、二つの熱交換器、前面側下部熱交換器111aと前面側上部熱交換器111bとから構成されている。第2の熱交換器群112は、たとえば、二つの熱交換器、後面側上部熱交換器112aと後面側下部熱交換器112bとから構成されている。第1の熱交換器群111を構成する前面側下部熱交換器111aと前面側上部熱交換器111b、第2の熱交換器群112を構成する後面側上部熱交換器112aと後面側下部熱交換器112bの各々の熱交換器ブロック内では、ほぼ同一の管径の冷媒流路が形成されている。第1の熱交換器群111を構成する前面側下部熱交換器111aと前面側上部熱交換器111bの第1の冷媒流路113の管径は、第2の熱交換器群112を構成する後面側上部熱交換器112aと後面側下部熱交換器112bの第2の冷媒流路114の管径と異なる。具体的には、第1の冷媒流路113の管径は相対的に太く、第2の冷媒流路114の管径は相対的に細い。たとえば、第1の冷媒流路113の管径は第2の冷媒流路114の管径に対して1.6倍以下である。   As shown in FIG. 2, each of the first heat exchanger group 111 and the second heat exchanger group 112 includes a plurality of heat exchanger blocks, and has a substantially inverted V shape around the blower fan 12. Has been placed. The first heat exchanger group 111 includes, for example, two heat exchangers, a front side lower heat exchanger 111a and a front side upper heat exchanger 111b. The second heat exchanger group 112 includes, for example, two heat exchangers, a rear side upper heat exchanger 112a and a rear side lower heat exchanger 112b. Front side lower heat exchanger 111a and front side upper heat exchanger 111b constituting the first heat exchanger group 111, rear side upper heat exchanger 112a and rear side lower heat constituting the second heat exchanger group 112 In each heat exchanger block of the exchanger 112b, refrigerant flow paths having substantially the same pipe diameter are formed. The diameters of the first refrigerant channels 113 of the front side lower heat exchanger 111a and the front side upper heat exchanger 111b constituting the first heat exchanger group 111 constitute the second heat exchanger group 112. It differs from the tube diameter of the 2nd refrigerant | coolant flow path 114 of the rear surface side upper heat exchanger 112a and the rear surface side lower heat exchanger 112b. Specifically, the tube diameter of the first refrigerant channel 113 is relatively large, and the tube diameter of the second refrigerant channel 114 is relatively thin. For example, the tube diameter of the first refrigerant channel 113 is 1.6 times or less than the tube diameter of the second refrigerant channel 114.

このように冷媒流路の管径が異なる第1の熱交換器群111と第2の熱交換器群112を備えているので、熱交換器を通過する冷媒の状態に応じて熱交換器の冷媒流路の管径が変化するように第1の熱交換器群111と第2の熱交換器群112を組み合わせることができる。このため、冷媒の状態に応じて冷媒流路内における冷媒の流通抵抗を小さくすることができるので、熱交換器の効率を高めることができ、冷房運転時、暖房運転時において熱交換器の性能を向上させることができる。   As described above, since the first heat exchanger group 111 and the second heat exchanger group 112 having different pipe diameters of the refrigerant flow paths are provided, the heat exchangers of the heat exchangers are arranged according to the state of the refrigerant passing through the heat exchanger. The first heat exchanger group 111 and the second heat exchanger group 112 can be combined so that the pipe diameter of the refrigerant flow path changes. For this reason, since the flow resistance of the refrigerant in the refrigerant flow path can be reduced according to the state of the refrigerant, the efficiency of the heat exchanger can be increased, and the performance of the heat exchanger during cooling operation and heating operation Can be improved.

また、この発明の空気調和機1の室内機10においては、第1の熱交換器群111と第2の熱交換器群112を構成する各々の熱交換器内では、ほぼ同一の管径の冷媒流路が形成されているので、室内機の生産性を悪化させることもない。したがって、熱交換器の性能を向上させることができるとともに、生産性を低下させることがない。   Moreover, in the indoor unit 10 of the air conditioner 1 of this invention, in each heat exchanger which comprises the 1st heat exchanger group 111 and the 2nd heat exchanger group 112, it is the pipe diameter of substantially the same. Since the refrigerant flow path is formed, the productivity of the indoor unit is not deteriorated. Therefore, the performance of the heat exchanger can be improved and productivity is not lowered.

さらに、第1の熱交換器群111は室内機10の前面側に配置され、第2の熱交換器群112は室内機10の後面側に配置されるとともに、第1の熱交換器群111を構成する各熱交換器111a、111bの第1の冷媒流路113の管径は相対的に太く、第2の熱交換器群112を構成する各熱交換器112a、112bの第2の冷媒流路114の管径は相対的に細いので、室内機10内の前面側と後面側において冷媒流路を形成するための配管に必要な空間を有効に活用することができる。また、暖房運転時においては、室内機10の前面側に冷媒流路の管径が太い第1の熱交換器群111が配置されるので、空気の吸入量が相対的に大きい前面側において熱交換効率を高めることができる。   Further, the first heat exchanger group 111 is disposed on the front side of the indoor unit 10, and the second heat exchanger group 112 is disposed on the rear surface side of the indoor unit 10, and the first heat exchanger group 111. The tube diameter of the first refrigerant flow path 113 of each heat exchanger 111a, 111b constituting the heat exchanger 111a is relatively thick, and the second refrigerant of each heat exchanger 112a, 112b constituting the second heat exchanger group 112 Since the pipe diameter of the flow path 114 is relatively thin, the space required for piping for forming the refrigerant flow path on the front side and the rear side in the indoor unit 10 can be effectively utilized. Further, during the heating operation, the first heat exchanger group 111 having a large refrigerant flow path diameter is disposed on the front side of the indoor unit 10, so that heat is generated on the front side where the air intake amount is relatively large. Exchange efficiency can be improved.

冷房運転時には、冷媒は、図1(A)に示す実線の矢印のように、第2の熱交換器群112から、第1の熱交換器群111に流れる。図2に示すように、第1の熱交換器群111を構成する各熱交換器111a、111bの第1の冷媒流路113の管径は相対的に太く、第2の熱交換器群112を構成する各熱交換器112a、112bの第2の冷媒流路114の管径は相対的に細い。したがって、冷房運転時に冷媒は細い第2の冷媒流路114から、太い第1の冷媒流路113に流通するように室内熱交換器11が構成されている。   During the cooling operation, the refrigerant flows from the second heat exchanger group 112 to the first heat exchanger group 111 as indicated by a solid line arrow shown in FIG. As shown in FIG. 2, the tube diameter of the first refrigerant flow path 113 of each of the heat exchangers 111a and 111b constituting the first heat exchanger group 111 is relatively large, and the second heat exchanger group 112. The pipe diameter of the second refrigerant flow path 114 of each of the heat exchangers 112a and 112b that constitute the heat exchanger 112a is relatively thin. Therefore, the indoor heat exchanger 11 is configured so that the refrigerant flows from the thin second refrigerant flow path 114 to the thick first refrigerant flow path 113 during the cooling operation.

このようにすることにより、暖房運転時における凝縮性能を維持することができるとともに、冷房運転時では、冷媒の気液二相状態において液体の体積が相対的に大きい状態から気体の体積が相対的に大きい状態に移行する過程で、冷媒流路内における冷媒の流通抵抗を小さくすることができるので、冷房運転時における蒸発性能を向上させることができる。   In this way, it is possible to maintain the condensation performance during the heating operation, and during the cooling operation, the gas volume is relatively increased from the relatively large volume of the liquid in the gas-liquid two-phase state of the refrigerant. In the process of shifting to a large state, the flow resistance of the refrigerant in the refrigerant channel can be reduced, so that the evaporation performance during the cooling operation can be improved.

また、図1(B)に示すように、第1の熱交換器群111を構成する各熱交換器111a、111bの太い第1の冷媒流路113は、たとえば、分岐流路113a、113b、113cと3つに分岐されている。第2の熱交換器群112を構成する各熱交換器112a、112bの細い第2の冷媒流路114は、たとえば、分岐流路114a、114b、114c、114dと4つに分岐されている。   Further, as shown in FIG. 1B, the thick first refrigerant flow paths 113 of the heat exchangers 111a and 111b constituting the first heat exchanger group 111 are, for example, branched flow paths 113a and 113b, It is branched into 113c and three. The thin second refrigerant flow path 114 of each heat exchanger 112a, 112b constituting the second heat exchanger group 112 is branched into, for example, four branch flow paths 114a, 114b, 114c, 114d.

このように、細い第2の冷媒流路114が分岐する数を、太い第1の冷媒流路113が分岐する数と同じ、または第1の冷媒流路113が分岐する数よりも多くすることにより、冷房運転時に、冷媒の気液二相状態において液体の体積が相対的に大きい状態から気体の体積が相対的に大きい状態に移行する過程で、冷媒流路内における冷媒の流通抵抗をさらに小さくすることができるので、冷房運転時における蒸発性能をさらに向上させることができる。   In this way, the number of thin second refrigerant flow paths 114 to be branched is the same as the number of thick first refrigerant flow paths 113 or larger than the number of first refrigerant flow paths 113 to branch. Thus, during cooling operation, in the process of transition from a relatively large volume of liquid in a gas-liquid two-phase state of the refrigerant to a relatively large volume of gas, the flow resistance of the refrigerant in the refrigerant flow path is further increased. Since it can be made smaller, the evaporation performance during cooling operation can be further improved.

図3は、この発明のもう一つの実施の形態として空気調和機の冷凍サイクルを示す図(A)、その冷凍サイクルにて室内熱交換器中の分岐を示す図(B)である。図3に示される冷凍サイクルは、室内熱交換器の構成が図1と異なるが、その他の構成は図1と同様である。   FIG. 3: is a figure (A) which shows the refrigerating cycle of an air conditioner as another embodiment of this invention, and is a figure (B) which shows the branch in an indoor heat exchanger in the refrigerating cycle. The refrigeration cycle shown in FIG. 3 is different from FIG. 1 in the configuration of the indoor heat exchanger, but the other configurations are the same as those in FIG.

図3(A)に示す冷凍サイクルにおいて、室温を上下させることが可能な除湿運転(再熱除湿運転)として、圧縮機21からの高温高圧の冷媒を、室外熱交換器25を介して、開放状態の膨張弁28を通過させ、室内機10の中で加熱器としての機能を果たす熱交換器部分112に送り、吸入空気が加熱され、加熱器としての機能を果たす熱交換器部分112からの冷媒を膨張機構14によって低温低圧にして、冷却器としての機能を果たす熱交換器部分111に流入させて除湿を行う。   In the refrigeration cycle shown in FIG. 3 (A), as a dehumidifying operation (reheat dehumidifying operation) capable of raising and lowering the room temperature, the high-temperature and high-pressure refrigerant from the compressor 21 is released through the outdoor heat exchanger 25. Is passed through the expansion valve 28 in the state and sent to the heat exchanger portion 112 that functions as a heater in the indoor unit 10, and the intake air is heated and is supplied from the heat exchanger portion 112 that functions as a heater. The refrigerant is dehumidified by making the refrigerant low-temperature and low-pressure by the expansion mechanism 14 and flowing into the heat exchanger portion 111 that functions as a cooler.

この発明のもう一つの実施の形態では、図3(A)に示される空気調和機1の室内機10において、図2に示される第1の熱交換器群111が除湿運転の際に蒸発器となり、第2の熱交換器群112が除湿運転の際に凝縮器となるように構成され、膨張機構14が第1の熱交換器群111と第2の熱交換器群112との間の冷媒流路に配置され、除湿運転の際に絞りとして作用する。   In another embodiment of the present invention, in the indoor unit 10 of the air conditioner 1 shown in FIG. 3 (A), the first heat exchanger group 111 shown in FIG. And the second heat exchanger group 112 is configured to be a condenser during the dehumidifying operation, and the expansion mechanism 14 is provided between the first heat exchanger group 111 and the second heat exchanger group 112. It arrange | positions at a refrigerant | coolant flow path and acts as a diaphragm | throttle in the case of a dehumidification operation.

このような冷凍サイクルにおいて、第1の熱交換器群111を冷却器としての機能を果たす熱交換器部分、第2の熱交換器部分112を加熱器としての機能を果たす熱交換器部分にすることができ、第1の熱交換器群111と第2の熱交換器群112との間に膨張機構14を配置することができる。この場合、第1の熱交換器群111と第2の熱交換器群112とは冷媒流路の管径が異なるが、第1の熱交換器群111と第2の熱交換器群112との間に配置される膨張機構14をモジュール化して一つのユニットとして構成することができる。これにより、室内熱交換器11を含む室内機10の生産性を向上させることができる。膨張機構14は、膨張弁を含み、入側と出側にて冷媒流路の管径が異なる接続口を配置した一つの配管接続ユニットとして構成することができる。   In such a refrigeration cycle, the first heat exchanger group 111 is a heat exchanger portion that functions as a cooler, and the second heat exchanger portion 112 is a heat exchanger portion that functions as a heater. The expansion mechanism 14 can be disposed between the first heat exchanger group 111 and the second heat exchanger group 112. In this case, the first heat exchanger group 111 and the second heat exchanger group 112 are different in the pipe diameter of the refrigerant flow path, but the first heat exchanger group 111 and the second heat exchanger group 112 are different from each other. The expansion mechanism 14 disposed between the two can be modularized and configured as one unit. Thereby, the productivity of the indoor unit 10 including the indoor heat exchanger 11 can be improved. The expansion mechanism 14 includes an expansion valve, and can be configured as a single pipe connection unit in which connection ports having different refrigerant flow path diameters are arranged on the inlet side and the outlet side.

また、この発明の空気調和機1の室内機10のもう一つの実施の形態において、室内機10の前面側に配置される太い冷媒流路の第1の熱交換器群111と、室内機10の後面側に配置される細い冷媒流路の第2の熱交換器群112との断面積をほぼ同一にすることによって、再熱除湿運転時において凝縮性能と蒸発性能のバランスがよくなるので、熱交換効率を高めることができる。   Moreover, in another embodiment of the indoor unit 10 of the air conditioner 1 of the present invention, the first heat exchanger group 111 having a thick refrigerant channel disposed on the front side of the indoor unit 10, and the indoor unit 10 By making the cross-sectional area of the second heat exchanger group 112 of the narrow refrigerant flow path disposed on the rear surface side substantially the same, the balance between the condensation performance and the evaporation performance is improved during the reheat dehumidification operation. Exchange efficiency can be improved.

さらに、図3(B)に示すように、第1の熱交換器群111(冷却器)を構成する各熱交換器111a、111bの太い第1の冷媒流路113は、たとえば、分岐流路113a、113b、113cと3つに分岐されている。第2の熱交換器群112(加熱器)を構成する各熱交換器112a、112bの細い第2の冷媒流路114は、たとえば、分岐流路114a、114b、114c、114dと4つに分岐されている。   Further, as shown in FIG. 3B, the thick first refrigerant channel 113 of each of the heat exchangers 111a and 111b constituting the first heat exchanger group 111 (cooler) is, for example, a branched channel. There are three branches 113a, 113b and 113c. The thin second refrigerant flow path 114 of each heat exchanger 112a, 112b constituting the second heat exchanger group 112 (heater) is branched into, for example, four branch flow paths 114a, 114b, 114c, 114d. Has been.

このように、加熱器を構成する細い第2の冷媒流路114が分岐する数を、冷却器を構成する太い第1の冷媒流路113が分岐する数と同じ、または第1の冷媒流路113が分岐する数よりも多くすることにより、除湿運転時に、冷却器の能力に比べて加熱器の能力を同程度以上にすることができるので、再熱除湿運転における熱交換効率をさらに高くすることができる。   Thus, the number of the thin second refrigerant flow paths 114 constituting the heater branches is the same as the number of the thick first refrigerant flow paths 113 constituting the cooler or the first refrigerant flow paths. By increasing the number of branches 113 more than the number of branches, the capacity of the heater can be made equal to or higher than the capacity of the cooler during the dehumidifying operation, so that the heat exchange efficiency in the reheat dehumidifying operation is further increased. be able to.

なお、上記の実施の形態では、図2に示すように、前面側に第1の熱交換器群111として二つの熱交換器、前面側下部熱交換器111aと前面側上部熱交換器111bを配置し、後面側に第2の熱交換器群112として二つの熱交換器、後面側上部熱交換器112aと後面側下部熱交換器112bとを配置しているが、前面側に配置される熱交換器の数、後面側に配置される熱交換器の数は限定されるものではない。たとえば、後面側に配置される第2の熱交換器群を構成する熱交換器の数を一つにしてもよい。   In the above embodiment, as shown in FIG. 2, two heat exchangers, a front side lower heat exchanger 111a and a front side upper heat exchanger 111b, are provided on the front side as the first heat exchanger group 111. Two heat exchangers, a rear side upper heat exchanger 112a and a rear side lower heat exchanger 112b are arranged as the second heat exchanger group 112 on the rear side, but are arranged on the front side. The number of heat exchangers and the number of heat exchangers arranged on the rear side are not limited. For example, the number of heat exchangers constituting the second heat exchanger group arranged on the rear surface side may be one.

以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものである。   The embodiment disclosed above should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the scope of claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of claims.

この発明の一つの実施の形態として空気調和機の冷凍サイクルを示す図(A)、その冷凍サイクルにて室内熱交換器中の分岐を示す図(B)である。It is the figure (A) which shows the refrigerating cycle of an air conditioner as one embodiment of this invention, and the figure (B) which shows the branch in an indoor heat exchanger in the refrigerating cycle. この発明の一つの実施の形態として空気調和機の室内機における送風ファンと熱交換器の配置を示す概略的な側面図である。It is a schematic side view which shows arrangement | positioning of the ventilation fan and heat exchanger in the indoor unit of an air conditioner as one embodiment of this invention. この発明のもう一つの実施の形態として空気調和機の冷凍サイクルを示す図(A)、その冷凍サイクルにて室内熱交換器中の分岐を示す図(B)である。It is the figure (A) which shows the refrigerating cycle of an air conditioner as another embodiment of this invention, and the figure (B) which shows the branch in an indoor heat exchanger in the refrigerating cycle.

符号の説明Explanation of symbols

1:空気調和機、10:室内機、11:室内熱交換器、12:室内ファン、14:膨張機構、111:第1の熱交換器群、111a,111b,112a,112b:熱交換器、112:第2の熱交換器群、113:第1の冷媒流路、113a,113b,113c,114a,114b,114c,114d: 分岐流路、114:第2の冷媒流路。   1: air conditioner, 10: indoor unit, 11: indoor heat exchanger, 12: indoor fan, 14: expansion mechanism, 111: first heat exchanger group, 111a, 111b, 112a, 112b: heat exchanger, 112: 2nd heat exchanger group, 113: 1st refrigerant flow path, 113a, 113b, 113c, 114a, 114b, 114c, 114d: Branch flow path, 114: 2nd refrigerant flow path.

Claims (6)

送風ファンと、
この送風ファンの周囲に配置された複数の熱交換器からなる熱交換器群とを備え、
前記熱交換器群を構成する各々の熱交換器内では、ほぼ同一の管径の冷媒流路が形成され、
前記熱交換器群は、第1の熱交換器群と第2の熱交換器群とを含み、
前記第1の熱交換器群を構成する各熱交換器の冷媒流路の管径は、前記第2の熱交換器群を構成する各熱交換器の冷媒流路の管径と異なることを特徴とする、空気調和機の室内機。
A blower fan,
A heat exchanger group comprising a plurality of heat exchangers arranged around the blower fan,
In each heat exchanger constituting the heat exchanger group, a refrigerant flow path having substantially the same pipe diameter is formed,
The heat exchanger group includes a first heat exchanger group and a second heat exchanger group,
The pipe diameter of the refrigerant flow path of each heat exchanger that constitutes the first heat exchanger group is different from the pipe diameter of the refrigerant flow path of each heat exchanger that constitutes the second heat exchanger group. An air conditioner indoor unit.
前記第1の熱交換器群は当該室内機の前面側に配置され、前記第2の熱交換器群は当該室内機の後面側に配置されることを特徴とする、請求項1に記載の空気調和機の室内機。   The first heat exchanger group is disposed on a front side of the indoor unit, and the second heat exchanger group is disposed on a rear side of the indoor unit. Air conditioner indoor unit. 前記第1の熱交換器群を構成する各熱交換器の冷媒流路の管径は相対的に太く、前記第2の熱交換器群を構成する各熱交換器の冷媒流路の管径は相対的に細いことを特徴とする、請求項2に記載の空気調和機の室内機。   The pipe diameter of the refrigerant flow path of each heat exchanger constituting the first heat exchanger group is relatively large, and the pipe diameter of the refrigerant flow path of each heat exchanger constituting the second heat exchanger group The air conditioner indoor unit according to claim 2, wherein is relatively thin. 前記第1の熱交換器群を構成する各熱交換器の第1の冷媒流路の管径は相対的に太く、前記第2の熱交換器群を構成する各熱交換器の第2の冷媒流路の管径は相対的に細く、冷房運転時には、冷媒が前記第2の冷媒流路から前記第1の冷媒流路に流通するように構成されていることを特徴とする、請求項1から請求項3までのいずれか1項に記載の空気調和機の室内機。   The tube diameter of the first refrigerant flow path of each heat exchanger that constitutes the first heat exchanger group is relatively large, and the second heat exchanger that constitutes the second heat exchanger group has a second diameter. The pipe diameter of the refrigerant channel is relatively thin, and the refrigerant is configured to flow from the second refrigerant channel to the first refrigerant channel during cooling operation. The indoor unit of an air conditioner according to any one of claims 1 to 3. 前記第2の冷媒流路が分岐する数は、前記第1の冷媒流路が分岐する数と同じ、または前記第1の冷媒流路が分岐する数よりも多いことを特徴とする、請求項4に記載の空気調和機の室内機。   The number of branches of the second refrigerant channel is the same as the number of branches of the first refrigerant channel or more than the number of branches of the first refrigerant channel. 4. An indoor unit for an air conditioner according to 4. 前記第1の熱交換器群が除湿運転の際に蒸発器となり、前記第2の熱交換器群が除湿運転の際に凝縮器となるように構成され、前記第1の熱交換器群と前記第2の熱交換器群との間の冷媒流路に配置され、除湿運転の際に絞りとして作用する膨張機構をさらに備えることを特徴とする、請求項1から請求項5までのいずれか1項に記載の空気調和機の室内機。   The first heat exchanger group is configured as an evaporator during the dehumidifying operation, and the second heat exchanger group is configured as a condenser during the dehumidifying operation, and the first heat exchanger group and 6. The apparatus according to claim 1, further comprising an expansion mechanism disposed in a refrigerant flow path between the second heat exchanger group and acting as a throttle during the dehumidifying operation. The indoor unit of the air conditioner described in item 1.
JP2006007296A 2006-01-16 2006-01-16 Indoor unit for air conditioner Pending JP2007187414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007296A JP2007187414A (en) 2006-01-16 2006-01-16 Indoor unit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007296A JP2007187414A (en) 2006-01-16 2006-01-16 Indoor unit for air conditioner

Publications (1)

Publication Number Publication Date
JP2007187414A true JP2007187414A (en) 2007-07-26

Family

ID=38342701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007296A Pending JP2007187414A (en) 2006-01-16 2006-01-16 Indoor unit for air conditioner

Country Status (1)

Country Link
JP (1) JP2007187414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257744A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2014092295A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Air heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238800A (en) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd Heat-exchanger and air-conditioner
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2001330309A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Air conditioner
JP2004183953A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Indoor unit of air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238800A (en) * 1997-02-21 1998-09-08 Mitsubishi Heavy Ind Ltd Heat-exchanger and air-conditioner
JP2001174047A (en) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2001330309A (en) * 2000-05-22 2001-11-30 Hitachi Ltd Air conditioner
JP2004183953A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Indoor unit of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257744A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating device
JP2014092295A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Air heat exchanger

Similar Documents

Publication Publication Date Title
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
WO2008053752A1 (en) Heat source unit for refrigerating apparatus, and refrigerating apparatus
JP6647406B2 (en) Refrigeration cycle device
WO2015111220A1 (en) Heat exchanger and air conditioning device
JP2011127831A (en) Heat exchanger and refrigerating cycle device including the same
JP2006329511A (en) Heat exchanger
JP2001174047A (en) Indoor unit of air conditioner
CN113167512B (en) Heat exchanger and refrigeration cycle device
JP2012145318A (en) Flow channel switching valve and air conditioner with the same
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
US20200309392A1 (en) Air conditioning apparatus
JP2010216692A (en) Heat exchange device for outdoor unit of air conditioning system
JP4785670B2 (en) Air conditioner indoor unit
CN211650477U (en) Air conditioner indoor unit and air conditioner
JP2007187414A (en) Indoor unit for air conditioner
JP5636676B2 (en) Air conditioner
JP2008121996A (en) Air conditioner
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
KR100784845B1 (en) Air conditioner for cooling and heating having multiple 4-way valve
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP4624146B2 (en) Air conditioner indoor unit
TWI731588B (en) air conditioner
JP2007212108A (en) Air conditioner
JP2002364873A5 (en)
JP6413692B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102