JP4429950B2 - Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method - Google Patents

Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method Download PDF

Info

Publication number
JP4429950B2
JP4429950B2 JP2005092655A JP2005092655A JP4429950B2 JP 4429950 B2 JP4429950 B2 JP 4429950B2 JP 2005092655 A JP2005092655 A JP 2005092655A JP 2005092655 A JP2005092655 A JP 2005092655A JP 4429950 B2 JP4429950 B2 JP 4429950B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
combustion exhaust
methane
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005092655A
Other languages
Japanese (ja)
Other versions
JP2006272079A (en
Inventor
正樹 本道
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005092655A priority Critical patent/JP4429950B2/en
Publication of JP2006272079A publication Critical patent/JP2006272079A/en
Application granted granted Critical
Publication of JP4429950B2 publication Critical patent/JP4429950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin

Description

本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒、該酸化触媒を用いて硫黄酸化物を含む燃焼排ガス中のメタンを酸化除去する方法及び該酸化触媒の製造方法に関する。   The present invention relates to a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide in a low temperature region, a method for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide using the oxidation catalyst, and the oxidation catalyst. It relates to the manufacturing method.

ボイラー、加熱炉、あるいはガスエンジンやガスタービンなどの燃料としては天然ガス、都市ガス、軽油、灯油などの炭化水素が使用される。それら燃料を燃焼させた排ガスには窒素酸化物(NOX)、硫黄酸化物(SOX)、一酸化炭素(CO)、あるいは臭気物質、ばいじん等のほか、未燃焼の炭化水素が含まれており、環境汚染の原因となるので無害にして排出する必要がある。この点は、コージェネレーションシステムやGHP(Gas Heat Pump)における希薄燃焼ガスエンジンからの排ガスについても同様である。 Hydrocarbons such as natural gas, city gas, light oil and kerosene are used as fuel for boilers, heating furnaces, gas engines and gas turbines. The exhaust gas from burning these fuels contains nitrogen oxides (NO x ), sulfur oxides (SO x ), carbon monoxide (CO), odorous substances, soot, and unburned hydrocarbons. It must be discharged harmlessly because it causes environmental pollution. The same applies to exhaust gas from a lean combustion gas engine in a cogeneration system or GHP (Gas Heat Pump).

希薄燃焼ガスエンジンのような希薄燃焼方式の場合には、その燃焼排ガス中に少量の炭化水素、特にメタン、窒素酸化物、一酸化炭素等とともに、多量の酸素及び水蒸気が共存することになる。従来、燃焼排ガス中の3成分すなわち炭化水素、窒素酸化物、一酸化炭素を同時に除去、浄化する三元触媒による処理法が開発されている。ところが、三元触媒による処理法は酸素が殆んど存在しない燃焼排ガスに対してしか有効に適用することはできず、三元触媒は酸素過剰で且つ燃焼排ガス中の炭化水素がとりわけメタンである場合には有効に作用しない。   In the case of a lean combustion system such as a lean combustion gas engine, a large amount of oxygen and water vapor coexist in the combustion exhaust gas together with a small amount of hydrocarbons, particularly methane, nitrogen oxide, carbon monoxide and the like. Conventionally, a treatment method using a three-way catalyst has been developed that simultaneously removes and purifies three components in combustion exhaust gas, that is, hydrocarbon, nitrogen oxide, and carbon monoxide. However, the treatment method using a three-way catalyst can be effectively applied only to combustion exhaust gas in which almost no oxygen is present. The three-way catalyst is oxygen-excess and the hydrocarbon in the combustion exhaust gas is especially methane. In some cases it does not work effectively.

従来、炭化水素の酸化触媒としてはパラジウム、白金、ロジウムなどの貴金属が用いられているが、それら貴金属触媒は担体に担持した形で使用され、その担体としてはアルミナやジルコニアなどが知られている。しかし、炭化水素が特にメタンの場合、その酸化にはパラジウムが有効とされており、白金についてはそれ単独では有効でなく、補助的に使用されているだけである。   Conventionally, noble metals such as palladium, platinum and rhodium have been used as hydrocarbon oxidation catalysts, but these noble metal catalysts are used in a form supported on a carrier, and alumina and zirconia are known as the carrier. . However, when the hydrocarbon is methane in particular, palladium is effective for its oxidation, and platinum is not effective by itself and is only used as an auxiliary.

例えば、特開2000−33266号公報や特開2000−254505号公報には、酸化スズ担体にパラジウムを担持してなる触媒が硫黄酸化物による触媒活性の阻害に対して高い抵抗性を示すことが示されている。このうち特開2000−33266号公報には、酸化スズ担体にパラジウムと白金を担持してなる触媒についても開示されているが、白金はパラジウムと一緒に補足的に使用されるに過ぎない。この点、特開2001−190931号公報においても同様である。   For example, in Japanese Unexamined Patent Publication No. 2000-33266 and Japanese Unexamined Patent Publication No. 2000-254505, a catalyst in which palladium is supported on a tin oxide carrier exhibits high resistance to inhibition of catalytic activity by sulfur oxide. It is shown. Of these, JP-A-2000-33266 discloses a catalyst in which palladium and platinum are supported on a tin oxide carrier, but platinum is only used together with palladium. This also applies to JP 2001-190931 A.

特開2000−33266号公報JP 2000-33266 A 特開2000−254505号公報JP 2000-254505 A 特開2001−190931号公報JP 2001-190931 A

また、例えば希薄燃焼ガスエンジンからの排ガスの温度は500℃以下、通常500−400℃程度と低いため、酸化触媒によるメタンの酸化は困難である。特に450℃以下という低温域においては、酸化触媒は、排ガス中に含まれる微量の硫黄酸化物の蓄積による被毒劣化が著しく、これによりメタンの酸化除去性能は経時的に劣化してしまい、実用に供し得る十分な耐久性が得られないのが現状である。   Further, for example, since the temperature of exhaust gas from a lean combustion gas engine is as low as 500 ° C. or less, usually about 500-400 ° C., it is difficult to oxidize methane with an oxidation catalyst. Particularly in the low temperature range of 450 ° C. or less, the oxidation catalyst is significantly deteriorated in poisoning due to accumulation of a small amount of sulfur oxide contained in the exhaust gas. However, the present situation is that sufficient durability that can be used for this is not obtained.

本発明者らは、従来、メタンの酸化活性貴金属と考えられていたパラジウムを一切含まず、単独では有効でないと考えられていた白金を単独で酸化スズに担持した触媒が低温域、特に450℃以下という低温域におけるメタンの酸化除去触媒として有効であり、しかも高い耐SOX性を有することを見い出し、酸化スズに白金を担持させてなるメタン酸化除去用触媒及びこの触媒による燃焼排ガス中のメタンの酸化除去方法を先に出願している(WO 2004/103554 A1)。 The inventors of the present invention include a catalyst that does not contain any palladium that is conventionally considered to be an oxidation-active noble metal for methane, and that is platinum alone supported on tin oxide, which is considered to be ineffective alone. It has been found that it is effective as a catalyst for removing methane oxidation in the low temperature range as described below, and also has high SO X resistance, and a catalyst for removing methane oxidation comprising platinum supported on tin oxide, and methane in combustion exhaust gas by this catalyst. Has already filed an application for the method of removing oxidization (WO 2004/103554 A1).

WO 2004/103554 A1WO 2004/103554 A1

上記メタンの酸化除去用触媒は燃焼排ガス中のメタンの酸化除去用として非常に有効であるが、引き続き当該触媒の実用化に向けて追求したところ、耐久性の点でさらに改善の余地があることが分かった。すなわち、本発明は、耐久性を改善した白金を酸化スズに担持してなる、硫黄酸化物を含む燃焼排ガス中のメタン酸化除去用触媒及び当該触媒による燃焼排ガス中のメタンを長期にわたり有効に酸化除去する方法を提供することを目的とし、また、その酸化触媒の製造方法を提供することを目的とする。   The above methane removal catalyst is very effective for removal of methane in combustion exhaust gas. However, when the catalyst is continuously pursued for practical use, there is room for further improvement in terms of durability. I understood. That is, the present invention provides a catalyst for removing oxidation of methane in combustion exhaust gas containing sulfur oxide, which is obtained by supporting platinum with improved durability on tin oxide, and effectively oxidizing methane in the combustion exhaust gas by the catalyst over a long period of time. It aims at providing the method of removing, and also aims at providing the manufacturing method of the oxidation catalyst.

本発明は、硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒である。そして、酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなることを特徴とする。   The present invention is a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide in a low temperature range. And it is characterized by carrying iridium as a co-catalyst with respect to the catalyst which carried platinum on tin oxide.

また、本発明は、硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去方法である。そして、該燃焼排ガスを酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなるメタンの酸化除去用触媒に低温域で通すことによりメタンを酸化除去することを特徴とする。   Moreover, this invention is the oxidation removal method of the methane in the combustion exhaust gas containing a sulfur oxide. The combustion exhaust gas is passed through a methane oxidation removal catalyst in which iridium is supported as a co-catalyst with respect to a catalyst in which platinum is supported on tin oxide, so that methane is oxidized and removed.

さらに、本発明は、酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなる、硫黄酸化物を含む燃焼排ガス中のメタンの低温酸化除去用触媒の製造方法である。そして、白金化合物及びイリジウム化合物を酸化スズに対して白金化合物及びイリジウム化合物の水溶液による含浸法または平衡吸着法により担持させた後、焼成することを特徴とする。   Furthermore, the present invention is a method for producing a low-temperature oxidative removal catalyst for methane in combustion exhaust gas containing sulfur oxide, wherein iridium is supported as a co-catalyst on a catalyst in which platinum is supported on tin oxide. The platinum compound and the iridium compound are supported on the tin oxide by an impregnation method using an aqueous solution of the platinum compound and the iridium compound or an equilibrium adsorption method, and then fired.

本発明の触媒は、酸化スズ(SnO2)に対して白金及びイリジウムを担持してなるメタンの酸化触媒であり、硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する触媒である。本発明によれば、酸化スズに、触媒成分としての白金と助触媒成分としてイリジウムを担持することにより、500℃以下、特に450−350℃という低温域においてメタンを長期にわたり極めて有効に酸化除去することができる。 The catalyst of the present invention is an oxidation catalyst for methane formed by supporting platinum and iridium with respect to tin oxide (SnO 2 ), and is a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range. . According to the present invention, platinum as a catalyst component and iridium as a promoter component are supported on tin oxide to oxidize and remove methane very effectively over a long period of time at a low temperature of 500 ° C. or lower, particularly 450 to 350 ° C. be able to.

その製造法としては、酸化スズに対して白金とイリジウムを均一に担持させ得る手法であれば特に限定はないが、好ましくは含浸法や平衡吸着法が適用される。担体である酸化スズは多孔質であればよい。酸化スズは、特に20〜50nmの範囲内にピーク細孔径があり、その範囲内に全細孔容積の60%以上の細孔容積を有するものであるのが好ましい。   The production method is not particularly limited as long as it is a method capable of uniformly supporting platinum and iridium on tin oxide, but an impregnation method or an equilibrium adsorption method is preferably applied. The tin oxide as the carrier may be porous. Tin oxide preferably has a peak pore diameter in the range of 20 to 50 nm, and preferably has a pore volume of 60% or more of the total pore volume in the range.

白金の原料としては白金化合物を用いる。その例としては白金の硝酸塩、塩化物、酢酸塩、錯塩(テトラアンミン白金塩、ジニトロジアンミン白金等)などが挙げられるが、これらに限定さけない。イリジウムの原料としてはイリジウム化合物を用いる。その例としてはハロゲン化イリジウム、ハロゲン化イリジウム酸(ヘキサクロロイリジウム酸等)などが挙げられるが、これらに限定されない。   A platinum compound is used as a raw material for platinum. Examples thereof include, but are not limited to, platinum nitrate, chloride, acetate, complex salts (tetraammine platinum salt, dinitrodiammine platinum, etc.), and the like. As the iridium raw material, an iridium compound is used. Examples thereof include, but are not limited to, iridium halides, iridium halides (such as hexachloroiridium acid), and the like.

一例として含浸法の場合、酸化スズに白金化合物及びイリジウム化合物を含浸させて担持する。その順序としては、(a)白金化合物の水溶液に粉末状等の酸化スズを投入、含浸後、乾燥焼成し、これにイリジウム化合物の水溶液を投入、含浸後、乾燥焼成する、(b)イリジウム化合物の水溶液に粉末状等の酸化スズを投入、含浸後、乾燥焼成し、これに白金化合物の水溶液を投入、含浸後、乾燥焼成する、(c)白金化合物及びイリジウム化合物の水溶液、すなわち白金化合物及びイリジウム化合物を含む水溶液に粉末状等の酸化スズを投入、含浸後、乾燥焼成することにより行うことができる。含浸に際しては適宜撹伴する。   As an example, in the impregnation method, tin oxide is impregnated with a platinum compound and an iridium compound and supported. The order is as follows: (a) tin oxide in powder form is put into an aqueous solution of platinum compound, impregnated, and then dried and fired; an aqueous solution of iridium compound is put into this, impregnated, and then dried and fired; (b) iridium compound (C) An aqueous solution of a platinum compound and an iridium compound, that is, an aqueous solution of a platinum compound and an iridium compound, i.e., an aqueous solution of a platinum compound and an iridium compound. It can be carried out by putting tin oxide such as powder in an aqueous solution containing an iridium compound, impregnating it, and then drying and firing. The impregnation is appropriately stirred.

これら(a)〜(c)のいずれの順序でも耐久性向上に有効であるが、このうち(a)の順序で担持するのが耐久性向上に最も効果的である。ここで、白金化合物水溶液、イリジウム化合物水溶液のpHについては、酸性域からアルカリ性域まで広い範囲でよいが、そのpH値をより大きくするのが好ましく、これによってメタンの酸化性能をより向上させることができる。そのpH値は12以上であるのが特に好ましい。   Any of these orders (a) to (c) is effective in improving the durability, but among these, supporting in the order (a) is most effective in improving the durability. Here, the pH of the platinum compound aqueous solution and the iridium compound aqueous solution may be in a wide range from the acidic range to the alkaline range, but it is preferable to increase the pH value, thereby further improving the oxidation performance of methane. it can. The pH value is particularly preferably 12 or more.

本酸化触媒における酸化スズ担体に対する白金の担持量は、酸化スズに対して0.025〜15.0wt%の範囲であり、より好ましくは0.8〜9.0wt%の範囲である。白金の担持量が0.025wt%を下回る場合にもなお有効であるが、その分触媒効果は減少する。その担持量が15.0wt%程度を上回る場合にも同様に有効な触媒効果が得られるが、白金を15wt%程度まで担持させていれば所期の触媒効果が得られるのでコスト等の面からしても上限15.0wt%程度で十分である。もちろん、上記範囲0.025〜15.0wt%の前後としても差支えない。   The amount of platinum supported on the tin oxide carrier in the present oxidation catalyst is in the range of 0.025 to 15.0 wt%, more preferably in the range of 0.8 to 9.0 wt% with respect to tin oxide. Although it is still effective when the supported amount of platinum is less than 0.025 wt%, the catalytic effect is reduced accordingly. An effective catalytic effect can be obtained when the loading amount exceeds about 15.0 wt%. However, if platinum is supported up to about 15 wt%, the desired catalytic effect can be obtained, so from the viewpoint of cost and the like. Even so, an upper limit of about 15.0 wt% is sufficient. Of course, the range may be around 0.025 to 15.0 wt%.

酸化スズ担体に対するイリジウムの担持量は、Ptの担持量に対して10〜50wt%であるのが好ましい。酸化スズに対する白金の担持量の好ましい範囲は0.025〜15.0wt%の範囲であるので、この場合のイリジウムの担持量は0.0025〜7.5wt%である。本発明の酸化触媒をハニカム状の形態とする場合には、これらに準じた量の白金及びイリジウムを担持させる。   The amount of iridium supported on the tin oxide support is preferably 10 to 50 wt% with respect to the amount of Pt supported. Since the preferable range of platinum loading with respect to tin oxide is in the range of 0.025 to 15.0 wt%, the iridium loading in this case is 0.0025 to 7.5 wt%. When the oxidation catalyst of the present invention is in the form of honeycomb, platinum and iridium in amounts corresponding to these are supported.

また、白金については、酸化スズに対して分割担持することによりメタンの酸化性能を格段に向上させることができる。白金の分割担持は、酸化スズに対して白金化合物の水溶液を2回以上に繰り返して担持する。例えば1回で白金を2wt%(白金換算)担持し、この担持を2回、3回というように複数回繰り返して、4wt%、6wt%というように担持する。当該Ptの分割担持は2回以上5回以下であるのが好ましい。前述(c)のとおり、白金及びイリジウムを同時に担持する場合には、白金の分割担持に合わせてイリジウムについても分割担持してよい。   Moreover, about platinum, the oxidation performance of methane can be remarkably improved by carrying | supporting separately with respect to a tin oxide. In the divided support of platinum, an aqueous solution of a platinum compound is repeatedly supported on tin oxide two or more times. For example, platinum is supported at 2 wt% (platinum conversion) at a time, and this support is repeated a plurality of times, such as 2 times and 3 times, and is supported at 4 wt% and 6 wt%. It is preferable that the divided loading of Pt is performed 2 times or more and 5 times or less. As described above (c), when platinum and iridium are simultaneously supported, iridium may be separately supported in accordance with the divided support of platinum.

触媒の形態としては粉末状、粒状、顆粒状(含:球状)、ペレット(円筒型、環状型)状、タブレット(錠剤)状、あるいはハニカム(モノリス体)状等適宜の形状として使用することができる。なお、本発明ではこれら形状の触媒に排ガスを通す必要があるため、粉末状の場合には、これを充填した触媒層から逸散しないように所定粒度範囲に整粒するかまたは造粒し、あるいは加圧成形や押出し成形して用いるのが望ましい。このうち押出し成形の場合には適宜所定長さに切断してペレット化して使用される。   The catalyst may be used in an appropriate shape such as powder, granule, granule (including sphere), pellet (cylindrical or annular), tablet (tablet), or honeycomb (monolith). it can. In the present invention, since it is necessary to pass exhaust gas through the catalyst of these shapes, in the case of powder, it is sized or granulated in a predetermined particle size range so as not to dissipate from the catalyst layer filled with this, Alternatively, it is desirable to use after pressure molding or extrusion molding. Of these, in the case of extrusion molding, it is cut into a predetermined length and pelletized.

本触媒の形態としてハニカム(モノリス体)状の形態は好ましい形状である。特に希薄燃焼ガスエンジンからの排ガスを処理する場合には、好ましくはハニカム状として用いられる。ハニカム状触媒の製造態様としては、例えば、ハニカム状の基材に酸化スズをウォッシュコート法で担持した後、前述(a)〜(c)のいずれかの順序で、白金及びイリジウムを担持する。これらの担持は、白金の場合もイリジウムの場合も、その化合物の水溶液を酸化スズを担持したハニカム状基材にウォッシュコート法で担持する。白金及びイリジウムを同時に担持する場合には、白金化合物及びイリジウム化合物の水溶液を酸化スズを担持したハニカム状基材にウォッシュコート法で担持する。次いで、常法により乾燥させ、焼成する。   As a form of the present catalyst, a honeycomb (monolith body) form is a preferred form. In particular, when treating exhaust gas from a lean combustion gas engine, it is preferably used in the form of a honeycomb. As a manufacturing mode of the honeycomb-shaped catalyst, for example, tin oxide is supported on a honeycomb-shaped base material by a wash coat method, and then platinum and iridium are supported in any order of the above-described (a) to (c). In the case of platinum or iridium, these supports are supported by a wash coat method on an aqueous solution of the compound on a honeycomb substrate supporting tin oxide. When platinum and iridium are simultaneously supported, an aqueous solution of a platinum compound and an iridium compound is supported on a honeycomb-shaped substrate supporting tin oxide by a wash coat method. Next, it is dried and fired by a conventional method.

ハニカム状の基材としてはセラミックス製またはメタル製の基材を使用することができる。セラミックスの好ましい例としてはコージェライトが挙げられ、メタルの好ましい例としてはステンレス鋼や鉄ーアルミニウムークロム系合金などが挙げられる。   A ceramic or metal substrate can be used as the honeycomb substrate. Preferable examples of ceramics include cordierite, and preferable examples of metals include stainless steel and iron-aluminum-chromium alloys.

従来、貴金属触媒は、排ガス中のSO2により被毒して性能劣化を来すことが知られている。これに対して、本発明に係る酸化スズ担体に白金及びイリジウムを担持した酸化触媒は、高い耐SOX性を有し、従来における認識とは全く逆に、排ガス中のSO2の存在により、反ってメタンの酸化除去活性が向上する。 Conventionally, it is known that a precious metal catalyst is poisoned by SO 2 in exhaust gas and causes performance deterioration. On the other hand, the oxidation catalyst in which platinum and iridium are supported on the tin oxide support according to the present invention has high SO x resistance and, contrary to the conventional recognition, due to the presence of SO 2 in the exhaust gas, On the other hand, the oxidation removal activity of methane is improved.

本発明のメタンの酸化触媒を使用する装置としては固定床流通型反応装置などを用いることができる。図1は本発明の酸化触媒を使用する装置態様例を示す図である。図1中、Aは被処理燃焼排ガス導入管、Bは酸化触媒層(反応管)、Cは処理済み燃焼排ガスの導出管であり、矢印(→)は燃焼排ガスの流れ方向を示している。本酸化触媒は、図1のような装置態様とは限らず、燃焼排ガス流に対して配置し得る態様であれば各種装置態様で使用される。ハニカム状の本酸化触媒を図1のような触媒層にセットするには、その断面開口が燃焼排ガスの流れ方向に向くように配置される。   As the apparatus using the methane oxidation catalyst of the present invention, a fixed bed flow type reaction apparatus or the like can be used. FIG. 1 is a view showing an example of an apparatus using the oxidation catalyst of the present invention. In FIG. 1, A is a treated exhaust gas introduction pipe, B is an oxidation catalyst layer (reaction pipe), C is a treated exhaust gas outlet pipe, and an arrow (→) indicates the flow direction of the combustion exhaust gas. The present oxidation catalyst is not limited to the apparatus mode as shown in FIG. 1, and may be used in various apparatus modes as long as it can be arranged with respect to the combustion exhaust gas flow. In order to set the honeycomb-shaped main oxidation catalyst in the catalyst layer as shown in FIG. 1, the cross-sectional opening is arranged so as to face the flow direction of the combustion exhaust gas.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, it cannot be overemphasized that this invention is not limited to an Example.

《実施例1》
本実施例1は、Pt/SnO2触媒に対して各種金属を添加担持し、耐久性向上の有無を探査するのに行った実験である。
Example 1
Example 1 is an experiment conducted for exploring the presence or absence of durability improvement by adding and supporting various metals on a Pt / SnO 2 catalyst.

〈ペレット触媒の調製〉
Pt/SnO2触媒及びこれに表1に示す各種金属を担持したペレット触媒を含浸法により調製した。調製で用いる触媒担体粉末は、酸化スズ(関東化学社製)を昇温速度1℃/minで600℃とし、3時間焼成して得た。Pt担持時のPt水溶液は、所定量のジニトロジアンミン白金〔Pt(NO22(NH22〕をアンモニア水で溶解した水溶液を用い、これに硝酸水溶液を加えることでpHを調製した。各金属については、Vはバナジン酸アンモニウム、Wはタングステン酸アンモニウム、Moはモリブデン酸アンモニウム、Bはホウ酸(H3BO3)を用い、その他の各金属については硝酸塩を用い、それらの所定量をそれぞれ蒸留水に溶解した溶液として用いた。Ir担持時のIr水溶液は、所定量のヘキサクロロイリジウム酸(H2IrCl6)を蒸留水に溶解した溶液を用いた。
<Preparation of pellet catalyst>
A Pt / SnO 2 catalyst and a pellet catalyst carrying various metals shown in Table 1 were prepared by an impregnation method. The catalyst carrier powder used in the preparation was obtained by firing tin oxide (manufactured by Kanto Chemical Co., Ltd.) at 600 ° C. at a temperature rising rate of 1 ° C./min for 3 hours. The aqueous Pt solution at the time of carrying Pt was an aqueous solution in which a predetermined amount of dinitrodiammine platinum [Pt (NO 2 ) 2 (NH 2 ) 2 ] was dissolved in aqueous ammonia, and the pH was adjusted by adding an aqueous nitric acid solution thereto. For each metal, V is ammonium vanadate, W is ammonium tungstate, Mo is ammonium molybdate, B is boric acid (H 3 BO 3 ), and nitrates are used for each of the other metals. Were used as solutions dissolved in distilled water. As the Ir aqueous solution at the time of Ir loading, a solution in which a predetermined amount of hexachloroiridium acid (H 2 IrCl 6 ) was dissolved in distilled water was used.

触媒担体粉末とPt水溶液の所定量をフラスコに入れ、ロータリーエバポレータにより、50℃で減圧乾燥させた後、残った粉末を175℃で6時間、次いで275℃で12時間乾燥した。その後、昇温速度10℃/minで200℃とし、この温度に3時間保持した後、昇温速度1℃/minで270℃とし、この温度に6時間保持し、さらに昇温速度1℃/minで550℃とし、この温度に3時間保持して焼成してPt/SnO2触媒粉末を得た。この触媒粉末をPt/SnO2のペレット触媒及び各金属担持のPt/SnO2ペレット触媒の調製に使用した。 Predetermined amounts of catalyst carrier powder and aqueous Pt solution were placed in a flask and dried under reduced pressure at 50 ° C. using a rotary evaporator. The remaining powder was dried at 175 ° C. for 6 hours and then at 275 ° C. for 12 hours. Thereafter, the temperature was raised to 200 ° C. at a rate of temperature increase of 10 ° C./min, held at this temperature for 3 hours, then set to 270 ° C. at a rate of temperature increase of 1 ° C./min, held at this temperature for 6 hours, The Pt / SnO 2 catalyst powder was obtained by firing at a temperature of 550 ° C. for 3 minutes and holding at this temperature for 3 hours. This catalyst powder was used to prepare the Pt / a SnO 2 catalyst pellets and Pt / SnO 2 catalyst pellets of each metal loading.

得られたPt/SnO2触媒粉末のうちの1部を採り、打錠成形器により500kg/cm2で成形した後、355−710μm(=35−31メッシュ)に分級した。こうしてPt/SnO2のペレット触媒を得た。 One part of the obtained Pt / SnO 2 catalyst powder was taken and molded at 500 kg / cm 2 with a tableting machine, and then classified into 355-710 μm (= 35-31 mesh). A Pt / SnO 2 pellet catalyst was thus obtained.

また、前記各金属の化合物の水溶液のそれぞれに、前記得られたPt/SnO2触媒粉末を添加混合し、前記Pt/SnO2触媒粉末の調製と同様にして各金属を担持したPt/SnO2触媒粉末を得た。得られた各触媒粉末を打錠成形器により500kg/cm2で成形した後、355−710μm(=35−31メッシュ)に分級した。こうして各金属を担持したPt/SnO2ペレット触媒を得た。各金属の担持量は表1に示している。 Further, the each of the aqueous solutions of the compounds of each metal, the resulting Pt / SnO 2 catalyst powder was added and mixed, the Pt / SnO 2 catalyst powder Pt / SnO 2 carrying the metal in a manner similar to the preparation of A catalyst powder was obtained. Each of the obtained catalyst powders was molded at 500 kg / cm 2 by a tableting machine and then classified into 355-710 μm (= 35-31 mesh). Thus, a Pt / SnO 2 pellet catalyst carrying each metal was obtained. Table 1 shows the amount of each metal supported.

〈性能試験〉
上記〈ペレット触媒の調製〉で得た各種ペレット触媒を用いて、図1に示すような通常の固定床流通型反応装置を用いて触媒耐久試験を実施した。試験条件は下記のとおりである。排ガス温度(=反応温度):400℃、空間速度(SV):160,000h-1(全流量3.35L/min、触媒体積1.26cm3)、排ガスすなわち試験ガス:CH4=2000ppm(volppm、以下同じ)、CO=820ppm、NO=80ppm、CO2=4.9%(vol%、以下同じ)、O2=10.5%、H2O=10%、SO2=1ppm、N2=バランス。これら試験条件は、特に記載しない限り、以下の実施例についても同じである。
<performance test>
Using the various pellet catalysts obtained in the above <Preparation of pellet catalyst>, a catalyst durability test was carried out using an ordinary fixed bed flow type reactor as shown in FIG. The test conditions are as follows. Exhaust gas temperature (= reaction temperature): 400 ° C., space velocity (SV): 160,000 h −1 (total flow rate 3.35 L / min, catalyst volume 1.26 cm 3 ), exhaust gas, that is, test gas: CH 4 = 2000 ppm (vol ppm) ), CO = 820 ppm, NO = 80 ppm, CO 2 = 4.9% (vol%, the same applies hereinafter), O 2 = 10.5%, H 2 O = 10%, SO 2 = 1 ppm, N 2 = Balance. These test conditions are the same for the following examples unless otherwise specified.

試験ガスの分析は、FID式全炭化水素計、赤外線式CO/CO2計、化学発光式NOX計及び磁気式酸素計からなる排ガス分析計(堀場製作所製)を用いて行った。CH4酸化除去活性は、反応管前後のCH4の濃度差から評価した。酸化除去活性〔=メタン除去率(%)〕は下記式により求めた。これらの点は、特に記載しない限り、以下の性能試験についても同じである。表1に本性能試験の結果を示している。 The analysis of the test gas was performed using an exhaust gas analyzer (manufactured by Horiba Seisakusho) consisting of a FID total hydrocarbon meter, an infrared CO / CO 2 meter, a chemiluminescent NO x meter, and a magnetic oxygen meter. The CH 4 oxidation removal activity was evaluated from the difference in CH 4 concentration before and after the reaction tube. The oxidation removal activity [= methane removal rate (%)] was determined by the following formula. These points are the same for the following performance tests unless otherwise specified. Table 1 shows the results of this performance test.

Figure 0004429950
Figure 0004429950

Figure 0004429950
Figure 0004429950

表1のとおり、金属を担持しないPt/SnO2触媒ではCH4除去率56.3%を示している。また、18種の金属のうち、Irを担持したPt/SnO2触媒を除く、17種の金属をそれぞれ担持したPt/SnO2触媒では、いずれも金属を担持しないPt/SnO2触媒のCH4除去率56.3%を下回り、耐久性向上に何の効果もなく、反って阻害している。これに対して、Irを担持したPt/SnO2触媒では耐久性が向上している。Ir担持量0.2wt%でCH4除去率69.0%、Ir担持量2wt%でCH4除去率63.9%を示している。このように数多くの金属のうち、唯一Irを担持したPt/SnO2触媒だけがPt/SnO2触媒の耐久性を改善することができる。 As shown in Table 1, the Pt / SnO 2 catalyst not supporting a metal shows a CH 4 removal rate of 56.3%. Further, among the 18 kinds of metals, except for the Pt / SnO 2 catalyst carrying Ir, except for the Pt / SnO 2 catalyst carrying 17 kinds of metal, CH 4 of the Pt / SnO 2 catalyst which does not carry any metal. The removal rate is less than 56.3%, which has no effect on improving durability and inhibits warping. On the other hand, durability is improved in the Pt / SnO 2 catalyst supporting Ir. The CH 4 removal rate is 69.0% when the Ir loading amount is 0.2 wt%, and the CH 4 removal rate is 63.9% when the Ir loading amount is 2 wt%. As described above, among the many metals, only the Pt / SnO 2 catalyst supporting Ir can improve the durability of the Pt / SnO 2 catalyst.

《実施例2》
本実施例2は、実施例1の結果を踏まえて、Ir担持量如何によるPt/SnO2触媒の性能試験を行った実施例である。Pt/SnO2触媒及びIr担持量を変えたPt/SnO2触媒を実施例1の〈ペレット触媒の調製〉と同様にして調製した。比較のため、同様にして、SnO2にIrのみを担持したものも調製した。こうして得られた各触媒について実施例1の〈性能試験〉と同様にして性能試験を行った。表2に本性能試験の結果を示している。
Example 2
The present Example 2 is an example in which the performance test of the Pt / SnO 2 catalyst according to the Ir loading amount was performed based on the result of the Example 1. A Pt / SnO 2 catalyst and a Pt / SnO 2 catalyst with different Ir loading were prepared in the same manner as in <Preparation of pellet catalyst> in Example 1. For comparison, in the same manner it was also prepared that carries Ir only SnO 2. Each catalyst thus obtained was subjected to a performance test in the same manner as in <Performance Test> in Example 1. Table 2 shows the results of this performance test.

表2のとおり、Irを担持しないPt/SnO2触媒ではCH4除去率56.3%である。これに対して、Irを0.1wt%担持したPt/SnO2触媒ではCH4除去率58.5%となり、Irを0.2wt%担持したPt/SnO2触媒では69.0%、Irを0.5wt%担持したPt/SnO2触媒では67.9%、Irを1.0wt%担持したPt/SnO2触媒では69.1%のCH4除去率を示し、Pt/SnO2触媒にIrを担持することにより、いずれも耐久性が向上している。また、SnO2にIrのみを担持したものでのCH4除去率は5.9%であり、CH4除去能は殆ど認められない。このことは、Irは、それ自体ではCH4除去触媒能を持たず、助触媒として耐久性に寄与することを示している。 As shown in Table 2, the Pt / SnO 2 catalyst not supporting Ir has a CH 4 removal rate of 56.3%. In contrast, the Pt / SnO 2 catalyst supporting 0.1 wt% of Ir has a CH 4 removal rate of 58.5%, the Pt / SnO 2 catalyst supporting 0.2 wt% of Ir is 69.0%, and Ir 67.9% at 0.5 wt% loaded with Pt / SnO 2 catalyst, the Pt / SnO 2 catalyst 1.0 wt% carrying Ir indicates CH 4 removal rate of 69.1%, Ir in Pt / SnO 2 catalyst In any case, the durability is improved. Further, in the case where only Ir is supported on SnO 2 , the CH 4 removal rate is 5.9%, and the CH 4 removal ability is hardly recognized. This indicates that Ir itself does not have a CH 4 removal catalytic ability and contributes to durability as a promoter.

Figure 0004429950
Figure 0004429950

《実施例3》
本実施例3は、SnO2に対するPt、Irの担持順序如何によるPt/SnO2触媒の性能試験を行った実施例である。実施例1の〈ペレット触媒の調製〉と同様にして、(a)SnO2に対してPtを担持し、次いでIrを担持する、(b)SnO2に対してIrを担持し、次いでPtを担持する、(c)SnO2に対してPtとIrを同時に担持する、の各順序で調製した。またこれらはpHを変えて調製した。Ptの担持量は2.0wt%、Irの担持量は0.2wt%とした。こうして得られた各触媒について実施例1の〈性能試験〉と同様にして性能試験を行った。
Example 3
Embodiment 3 is an embodiment of performing Pt, performance tests of Pt / SnO 2 catalyst by carrying the order whether the Ir against SnO 2. In the same manner as in <Preparation of pellet catalyst> in Example 1, (a) Pt is supported on SnO 2 and then Ir is supported. (B) Ir is supported on SnO 2 and then Pt is supported. It was prepared in the following order: (c) Simultaneously supporting Pt and Ir on SnO 2 . These were prepared by changing the pH. The supported amount of Pt was 2.0 wt%, and the supported amount of Ir was 0.2 wt%. Each catalyst thus obtained was subjected to a performance test in the same manner as in <Performance Test> in Example 1.

表3に本性能試験の結果を示している。表3には、比較のため、SnO2にPtのみを担持したPt/SnO2触媒のデータを併記している。表3のとおり、Irをいずれの順序で担持した場合にも、Irを担持しないPt/SnO2触媒に対して耐久性が改善されている。そのうちでも、Ptを担持し、次いでIrを担持した場合が耐久性が最も改善されている。 Table 3 shows the results of this performance test. Table 3, for comparison, are also shown the data of Pt / SnO 2 catalyst carrying Pt only SnO 2. As shown in Table 3, when Ir is supported in any order, durability is improved with respect to the Pt / SnO 2 catalyst not supporting Ir. Among them, the durability is most improved when Pt is supported and then Ir is supported.

Figure 0004429950
Figure 0004429950

《実施例4》
本実施例4は、ハニカム基材を用い、SnO2にPtのみを担持したPt/SnO2触媒とSnO2にPtとIrを担持したIr−Pt/SnO2触媒による性能試験を行った実施例である。
Example 4
The fourth embodiment, using a honeycomb substrate, performed were performance tested by Ir-Pt / SnO 2 catalyst only carrying loaded with Pt / SnO 2 catalyst and the SnO 2 Pt and Ir Pt on SnO 2 Example It is.

〈ハニカム触媒の調製〉
コージェライト製ハニカムに対して、SnO2粉末の水性スラリーを用いたウォッシュコート法によりSnO2をコートした。その後、ジニトロジアンミン白金〔Pt(NO22(NH22〕をアンモニア水に溶解し、アンモニア水、硝酸水溶液を用いてpH=12に調製した水溶液中に上記SnO2担持のハニカムを室温で3時間浸漬した後、引き上げて、175℃で6時間、次いで275℃で12時間乾燥した。この工程を数回繰り返した後、昇温速度10℃/minで200℃とし、この温度に3時間保持した後、昇温速度1℃/minで270℃とし、この温度に6時間保持し、さらに昇温速度1℃/minで550℃とし、この温度に3時間保持して焼成してPt/SnO2ハニカム触媒を得た。こうして同じ条件でPt/SnO2ハニカム触媒を複数個作製した。
<Preparation of honeycomb catalyst>
A cordierite honeycomb was coated with SnO 2 by a wash coating method using an aqueous slurry of SnO 2 powder. Thereafter, dinitrodiammine platinum [Pt (NO 2 ) 2 (NH 2 ) 2 ] is dissolved in aqueous ammonia, and the above-mentioned SnO 2 -supported honeycomb is placed in an aqueous solution prepared at pH = 12 using aqueous ammonia and nitric acid. After being immersed for 3 hours, it was pulled up and dried at 175 ° C. for 6 hours and then at 275 ° C. for 12 hours. After repeating this process several times, the temperature was increased to 200 ° C. at a temperature increase rate of 10 ° C./min, held at this temperature for 3 hours, then increased to 270 ° C. at a temperature increase rate of 1 ° C./min, held at this temperature for 6 hours, Further, the temperature was increased to 550 ° C. at a rate of temperature increase of 1 ° C./min, and this temperature was maintained for 3 hours and fired to obtain a Pt / SnO 2 honeycomb catalyst. Thus, a plurality of Pt / SnO 2 honeycomb catalysts were produced under the same conditions.

また、塩化イリジウム酸(H2IrCl6)を蒸留水に溶解した水溶液中に、上記で得られたPt/SnO2ハニカム触媒を室温で3時間浸漬した後、引き上げて、175℃で6時間、次いで275℃で12時間乾燥した。この工程を数回繰り返した後、昇温速度10℃/minで200℃とし、この温度に3時間保持した後、昇温速度1℃/minで270℃とし、この温度に6時間保持し、さらに昇温速度1℃/minで550℃とし、この温度に3時間保持して焼成してIr−Pt/SnO2ハニカム触媒を得た。 Further, the Pt / SnO 2 honeycomb catalyst obtained above was immersed in an aqueous solution in which chloroiridic acid (H 2 IrCl 6 ) was dissolved in distilled water for 3 hours at room temperature, then pulled up, and heated at 175 ° C. for 6 hours. Subsequently, it dried at 275 degreeC for 12 hours. After repeating this process several times, the temperature was increased to 200 ° C. at a temperature increase rate of 10 ° C./min, held at this temperature for 3 hours, then increased to 270 ° C. at a temperature increase rate of 1 ° C./min, held at this temperature for 6 hours, Further, the temperature was raised to 550 ° C. at a temperature rising rate of 1 ° C./min, and this temperature was maintained for 3 hours, followed by firing to obtain an Ir—Pt / SnO 2 honeycomb catalyst.

〈性能試験〉
上記〈ハニカム触媒の調製〉で得たPt/SnO2ハニカム触媒及びIr−Pt/SnO2ハニカム触媒を用いて、図1に示すような通常の固定床流通型反応装置を用いて触媒耐久試験を実施した。試験条件は下記のとおりである。排ガス温度(=反応温度):400℃、空間速度(SV):40,000h-1(全流量3.35L/min、触媒形状20mm(直径)×8mm(長さ)(触媒体積2.51cm3)、排ガス=希薄燃焼ガスエンジンの実機排ガス、実機排ガス組成:CH4=1800〜2000ppm、THC(CH4を含む全炭化水素濃度)=2700〜3200ppm、CO=200〜400ppm、NOX=200〜400ppm、SO2=0.1〜0.5ppm、CO2=7〜8%、O2=5〜6%(ドライガス組成)。なお、各成分の濃度に幅があるのはその範囲内で変動したことを示している。
<performance test>
Using the Pt / SnO 2 honeycomb catalyst and the Ir-Pt / SnO 2 honeycomb catalyst obtained in the above <Preparation of honeycomb catalyst>, a catalyst endurance test was conducted using a normal fixed bed flow type reactor as shown in FIG. Carried out. The test conditions are as follows. Exhaust gas temperature (= reaction temperature): 400 ° C., space velocity (SV): 40,000 h −1 (total flow rate 3.35 L / min, catalyst shape 20 mm (diameter) × 8 mm (length) (catalyst volume 2.51 cm 3 ), Exhaust gas = actual exhaust gas of lean combustion gas engine, actual exhaust gas composition: CH 4 = 1800 to 2000 ppm, THC (total hydrocarbon concentration including CH 4 ) = 2700 to 3200 ppm, CO = 200 to 400 ppm, NO X = 200 to 400 ppm, SO 2 = 0.1 to 0.5 ppm, CO 2 = 7 to 8%, O 2 = 5 to 6% (dry gas composition) Note that there is a range in the concentration of each component within that range. It shows that it fluctuated.

試験ガスの分析は、赤外線式メタン分析計(島津製作所製)、FID式全炭化水素計、赤外線式CO/CO2計、化学発光式NOX計及び磁気式酸素計からなる排ガス分析計(堀場製作所製)を用いて行った。図2に本性能試験の結果を示している。図2のとおり、Irを担持しないPt/SnO2触媒の場合、メタン除去率は初期段階で89%であり、以降徐々に低下し、1000時間経過時で80%、2000時間経過時で63%、3000時間経過時で54%と低下し、4000時間経過時においては45%にまで低下している。 The test gas was analyzed by an exhaust gas analyzer (Horiba) consisting of an infrared methane analyzer (manufactured by Shimadzu Corporation), an FID total hydrocarbon meter, an infrared CO / CO 2 meter, a chemiluminescent NO x meter, and a magnetic oxygen meter. (Manufactured by Seisakusho). FIG. 2 shows the results of this performance test. As shown in FIG. 2, in the case of a Pt / SnO 2 catalyst not supporting Ir, the methane removal rate is 89% at the initial stage, and then gradually decreases, 80% after 1000 hours, and 63% after 2000 hours. It decreases to 54% at the lapse of 3000 hours and decreases to 45% at the lapse of 4000 hours.

これに対して、Irを担持したIr−Pt/SnO2触媒の場合、メタン除去率は初期段階で91%であり、以降徐々に低下はするが、Irを担持しないPt/SnO2触媒に比べてその程度は小さく、1000時間経過時で83%、2000時間経過時で78%、3000時間経過時で69%を維持し、4000時間経過時においても64%のメタン除去率を示している。このように、Pt/SnO2触媒にIrを担持することにより、耐久性が改善され、長期間にわたり高いメタン除去率を維持している。 On the other hand, in the case of an Ir—Pt / SnO 2 catalyst supporting Ir, the methane removal rate is 91% at the initial stage and gradually decreases thereafter, but compared with a Pt / SnO 2 catalyst not supporting Ir. The degree is small, 83% after 1000 hours, 78% after 2000 hours, 69% after 3000 hours, and 64% methane removal rate after 4000 hours. Thus, by supporting Ir on the Pt / SnO 2 catalyst, durability is improved and a high methane removal rate is maintained over a long period of time.

《実施例5》
本実施例5は、Pt/SnO2触媒に対するIr担持による耐久性改善効果の要因解明の一環として試みた実験である。実施例1の〈ペレット触媒の調製〉と同様にして製造した、Irを担持しないPt/SnO2触媒(Pt=2wt%)及びIrを担持したIr−Pt/SnO2触媒(Pt=2wt%、Ir=0.2wt%)を、熱劣化加速試験として、1000℃の空気雰囲気中に10時間保持した。そして自然冷却後、X線回折法により分析した。表4にその結果を示している。表4中、結晶子径D(nm)は、Scherrerの式:D=K・λ/(β・cosθ)により算出した。ここで、KはScherrer定数、λは使用X線管球の波長、βは半値幅、θは回折角を示す。
Example 5
Example 5 is an experiment which was attempted as part of the elucidation of the cause of the durability improvement effect by Ir loading on the Pt / SnO 2 catalyst. Ir-supported Pt / SnO 2 catalyst (Pt = 2 wt%) and Ir-supported Ir-Pt / SnO 2 catalyst (Pt = 2 wt%) produced in the same manner as in <Preparation of pellet catalyst> in Example 1 Ir = 0.2 wt%) was held in an air atmosphere at 1000 ° C. for 10 hours as a thermal deterioration acceleration test. And after natural cooling, it analyzed by the X ray diffraction method. Table 4 shows the results. In Table 4, the crystallite diameter D (nm) was calculated by Scherrer's formula: D = K · λ / (β · cos θ). Here, K is a Scherrer constant, λ is the wavelength of the X-ray tube used, β is a half width, and θ is a diffraction angle.

表4のとおり、Pt/SnO2触媒でのPtの平均結晶子径(=平均粒子径)は52nmであった。これに対して、Pt/SnO2触媒にIrを担持したIr−Pt/SnO2触媒でのPtの平均結晶子径は41nmであり、IrによるPtの粗大化が抑制されている。このことから、Pt/SnO2触媒に対してIrを担持することによりPtの粗大化(シンタリング)が抑制され、その結果耐熱性が向上し、触媒としての耐久性が向上するものと推認される。 As shown in Table 4, the average crystallite diameter (= average particle diameter) of Pt in the Pt / SnO 2 catalyst was 52 nm. In contrast, the average crystallite size of Pt in Ir-Pt / SnO 2 catalyst supporting Ir on Pt / SnO 2 catalyst was 41 nm, coarsening of Pt by Ir is suppressed. From this, it is presumed that by supporting Ir on the Pt / SnO 2 catalyst, coarsening (sintering) of Pt is suppressed, and as a result, heat resistance is improved and durability as a catalyst is improved. The

Figure 0004429950
Figure 0004429950

本発明のメタンの酸化除去用触媒を使用する装置態様例を示す図The figure which shows the example of an apparatus aspect which uses the oxidation removal catalyst of methane of this invention 実施例4の結果を示す図The figure which shows the result of Example 4

符号の説明Explanation of symbols

A 被処理排ガス導入管
B 酸化触媒層(反応管)
C 処理済み排ガスの導出管
A treated exhaust gas introduction pipe B oxidation catalyst layer (reaction pipe)
C Outlet pipe for treated exhaust gas

Claims (11)

硫黄酸化物を含む燃焼排ガス中のメタンを低温域において酸化除去するための触媒であって、酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒。   A catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxides in a low temperature range, wherein iridium is supported as a co-catalyst on a catalyst in which platinum is supported on tin oxide. Catalyst for oxidation removal of methane in exhaust gas. 請求項1の燃焼排ガス中のメタンの酸化除去用触媒において、前記低温域が450〜350℃の範囲の低温域であることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒。   The catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 1, wherein the low temperature range is a low temperature range of 450 to 350 ° C. 請求項1または2の燃焼排ガス中のメタンの酸化除去用触媒において、前記酸化触媒が粒状、顆粒状、ペレット状またはタブレット状であることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒。   The catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 1 or 2, wherein the oxidation catalyst is in the form of particles, granules, pellets or tablets. 請求項1または2の燃焼排ガス中のメタンの酸化除去用触媒において、前記酸化触媒がハニカム状であることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒。   The catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 1 or 2, wherein the oxidation catalyst has a honeycomb shape. 請求項1〜4のいずれか1項の燃焼排ガス中のメタンの酸化除去用触媒において、前記燃焼排ガスが希薄燃焼ガスエンジンからの燃焼排ガスであることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒。   5. The catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 1, wherein the combustion exhaust gas is combustion exhaust gas from a lean combustion gas engine. Catalyst. 硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去方法であって、該燃焼排ガスを酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなるメタンの酸化除去用触媒に低温域で通すことによりメタンを酸化除去することを特徴とする燃焼排ガス中のメタンの酸化除去方法。   A method for oxidizing and removing methane from a combustion exhaust gas containing sulfur oxide, wherein the combustion exhaust gas is used as a catalyst for supporting iridium as a catalyst for supporting platinum on tin oxide at a low temperature. A method for oxidizing and removing methane in combustion exhaust gas, characterized in that methane is oxidized and removed by passing through an area. 請求項6の燃焼排ガス中のメタンの酸化除去方法において、前記低温域が450〜350℃の範囲の低温域であることを特徴とする燃焼排ガス中のメタンの酸化除去方法。   The method for oxidizing and removing methane in combustion exhaust gas according to claim 6, wherein the low temperature range is a low temperature range of 450 to 350 ° C. 請求項6または7の燃焼排ガス中のメタンの酸化除去方法において、前記燃焼排ガスが希薄燃焼ガスエンジンからの燃焼排ガスであることを特徴とする燃焼排ガス中のメタンの酸化除去方法。   The method for oxidizing and removing methane in combustion exhaust gas according to claim 6 or 7, wherein the combustion exhaust gas is combustion exhaust gas from a lean combustion gas engine. 酸化スズに白金を担持した触媒に対して助触媒としてイリジウムを担持させてなる、硫黄酸化物を含む燃焼排ガス中のメタンの酸化除去用触媒の製造方法であって、白金化合物及びイリジウム化合物を酸化スズに対して白金化合物及びイリジウム化合物の水溶液による含浸法または平衡吸着法により担持した後、焼成することを特徴とする燃焼排ガス中のメタンの酸化除去用触媒の製造方法。   A method for producing a catalyst for oxidizing and removing methane in combustion exhaust gas containing sulfur oxide, comprising iridium supported as a co-catalyst for a catalyst in which platinum is supported on tin oxide, wherein the platinum compound and the iridium compound are oxidized. A method for producing a catalyst for oxidation removal of methane in combustion exhaust gas, characterized in that the catalyst is supported by an impregnation method or an equilibrium adsorption method with an aqueous solution of a platinum compound and an iridium compound on tin and then calcined. 請求項9の燃焼排ガス中のメタンの酸化除去用触媒の製造方法において、酸化スズに対して白金化合物を担持した後、イリジウム化合物を担持し、焼成することを特徴とする燃焼排ガス中のメタンの酸化除去用触媒の製造方法。   The method for producing a catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 9, wherein a platinum compound is supported on tin oxide, and then an iridium compound is supported and calcined. A method for producing an oxidation removal catalyst. 請求項9または10の燃焼排ガス中のメタンの酸化除去用触媒の製造方法において、白金化合物の水溶液としてpH=12以上の白金化合物の水溶液を用いることを特徴とする燃焼排ガス中のメタンの酸化除去用触媒の製造方法。
11. The method for producing a catalyst for oxidizing and removing methane in combustion exhaust gas according to claim 9 or 10, wherein an aqueous solution of a platinum compound having a pH = 12 or more is used as the platinum compound aqueous solution. For producing a catalyst for use.
JP2005092655A 2005-03-28 2005-03-28 Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method Active JP4429950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092655A JP4429950B2 (en) 2005-03-28 2005-03-28 Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092655A JP4429950B2 (en) 2005-03-28 2005-03-28 Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2006272079A JP2006272079A (en) 2006-10-12
JP4429950B2 true JP4429950B2 (en) 2010-03-10

Family

ID=37207338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092655A Active JP4429950B2 (en) 2005-03-28 2005-03-28 Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4429950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230119A1 (en) 2020-05-15 2021-11-18 田中貴金属工業株式会社 Methane combustion catalyst and method for manufacturing same, and method for purifying combustion exhaust gas
WO2022149319A1 (en) 2021-01-07 2022-07-14 田中貴金属工業株式会社 Methane combustion catalyst, production method therefor, and combustion exhaust gas cleaning method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030818B2 (en) * 2007-03-08 2012-09-19 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP5030880B2 (en) * 2007-08-08 2012-09-19 大阪瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP5541873B2 (en) * 2008-03-27 2014-07-09 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP5541874B2 (en) * 2008-03-27 2014-07-09 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP6670386B2 (en) * 2016-08-17 2020-03-18 三井金属鉱業株式会社 Methane oxidation catalyst
EP3673992B1 (en) * 2017-08-22 2024-02-07 Mitsui Mining & Smelting Co., Ltd. Methane oxidizing catalyst
WO2021132335A1 (en) * 2019-12-27 2021-07-01 国立大学法人京都大学 Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst
US20230211317A1 (en) 2020-06-09 2023-07-06 Mitsui Mining & Smelting Co., Ltd. Composition for forming undercoat layer, undercoat layer, as well as exhaust gas purification catalyst and exhaust gas purification apparatus including undercoat layer
US20240058790A1 (en) * 2021-01-07 2024-02-22 Tanaka Kikinzoku Kogyo K.K. Methane combustion catalyst and method for producing same, and method for purifying combustion exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230119A1 (en) 2020-05-15 2021-11-18 田中貴金属工業株式会社 Methane combustion catalyst and method for manufacturing same, and method for purifying combustion exhaust gas
KR20220137145A (en) 2020-05-15 2022-10-11 다나카 기킨조쿠 고교 가부시키가이샤 Methane combustion catalyst and method for producing same, and method for purifying combustion exhaust gas
EP4151310A4 (en) * 2020-05-15 2023-10-25 Tanaka Kikinzoku Kogyo K.K. Methane combustion catalyst and method for manufacturing same, and method for purifying combustion exhaust gas
WO2022149319A1 (en) 2021-01-07 2022-07-14 田中貴金属工業株式会社 Methane combustion catalyst, production method therefor, and combustion exhaust gas cleaning method

Also Published As

Publication number Publication date
JP2006272079A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
JP2003245547A (en) Catalyst for exhaust gas treatment and method for exhaust gas treatment
JP4917003B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP2009262132A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
JP4283037B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP4779461B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP2003205238A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4568640B2 (en) Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same
JP4494068B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP4522512B2 (en) Low concentration hydrocarbon oxidation catalyst in exhaust gas and method for producing the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP4901072B2 (en) Hydrocarbon removal catalyst and hydrocarbon removal method thereof
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JP4960580B2 (en) Hydrocarbon removal catalyst and hydrocarbon removal method thereof
JP2000107602A (en) Oxidation catalyst for unburned hydrocarbon in waste gas and its preparation
JPH11128688A (en) Purification of waste gas
JPH0557191A (en) Catalyst for purifying exhaust gas of diesel engine
JP2003305365A (en) Aqueous gas treatment catalyst and waste gas treatment method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2006055768A (en) Exhaust gas cleaning catalyst and its manufacturing method
JP2001340758A (en) Catalyst for oxidizing unburned hydrocarbon contained in exhaust gas and method of producing the same
JP2003275596A (en) Catalyst for treating waste gas and waste gas treatment method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JP2009056459A (en) Catalyst and method for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4429950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250