JP2007173064A - Nonaqueous electrolyte solution secondary battery and its manufacturing method - Google Patents

Nonaqueous electrolyte solution secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2007173064A
JP2007173064A JP2005369643A JP2005369643A JP2007173064A JP 2007173064 A JP2007173064 A JP 2007173064A JP 2005369643 A JP2005369643 A JP 2005369643A JP 2005369643 A JP2005369643 A JP 2005369643A JP 2007173064 A JP2007173064 A JP 2007173064A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
secondary battery
positive electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369643A
Other languages
Japanese (ja)
Inventor
Atsushi Ueda
敦史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005369643A priority Critical patent/JP2007173064A/en
Publication of JP2007173064A publication Critical patent/JP2007173064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary battery of high capacity and excellent in discharge as well as cycle characteristics through restraint of decomposition of nonaqueous electrolyte solution on the surface of an active material. <P>SOLUTION: The nonaqueous electrolyte solution secondary battery, provided with a cathode plate, an anode plate, a separator or an ion conductive layer, and nonaqueous electrolyte solution, includes a coating layer 9 for passing ion consisting of at least one kind of compound selected from a group composed of compounds insoluble to a nonaqueous solvent with very little solubility but soluble to water, only on the surface where an active material of at least either the cathode plate or the anode plate is in contact with the nonaqueous electrolyte solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオンを利用する非水電解液二次電池に関し、特に高温保存特性および放電特性特性やサイクル寿命特性に優れた非水電解液二次電池およびその製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery using lithium ions, and more particularly to a non-aqueous electrolyte secondary battery excellent in high-temperature storage characteristics, discharge characteristics, and cycle life characteristics, and a method for manufacturing the same.

近年、民生用電子機器のポータブル化、コードレス化が急激に進んでおり、これら電子機器の駆動用電源を担う小型、軽量で高エネルギー密度を有する電池への要望が高まっている。非水電解液二次電池、とりわけリチウムイオン二次電池は、高電圧、高エネルギー密度を有する電池であることから、ノートパソコン、携帯電話、AV機器などを中心に使用されている。特にノート型パソコン等ではパソコンの内部が比較的発熱するため、リチウムイオン二次電池は高温下で長時間使用されることとなり、良好な高温保存特性および放電特性や長いサイクル寿命特性が求められる。   In recent years, consumer electronic devices have become increasingly portable and cordless, and there is an increasing demand for small, lightweight, high energy density batteries that serve as power sources for driving these electronic devices. Non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are batteries having a high voltage and a high energy density, and are therefore mainly used for notebook computers, mobile phones, AV devices and the like. In particular, since notebook computers and the like generate relatively heat inside the personal computer, the lithium ion secondary battery is used at a high temperature for a long time, and good high-temperature storage characteristics, discharge characteristics, and long cycle life characteristics are required.

しかしながら、起電力が高いリチウムイオン二次電池が高温下で使用されると充放電サイクルに伴い、図3の活物質の表面に被覆層を具備しない構成を示す模式図に示したように、活物質8の表面と非水電解液が直接接触し活物質8の表面で非水電解液が分解され、ガス発生や副反応生成物の堆積によりインピーダンスが増大し、充放電特性の低下やサイクル寿命特性の劣化を引き起すという問題があった。   However, when a lithium ion secondary battery having a high electromotive force is used at a high temperature, as shown in the schematic diagram showing a configuration in which the surface of the active material in FIG. The surface of the material 8 and the non-aqueous electrolyte are in direct contact with each other, the non-aqueous electrolyte is decomposed on the surface of the active material 8, the impedance is increased by the generation of gas and by-products, the deterioration of charge / discharge characteristics and the cycle life There was a problem of causing deterioration of characteristics.

そこで図4の予め被覆層を形成した活物質を用いて作製した構成を示す模式図に示したように、活物質8の表面を無機化合物や高分子化合物で予め被覆した活物質8を用いて極板を作製する方法(例えば、特許文献1参照)により、それらの極板を用いて作製された電池において、活物質8の表面の無機化合物や高分子化合物の被覆層9により非水電解液と活物質の反応を抑制する方法が提案されている。
特開2003−217593号公報
Therefore, as shown in the schematic view of the structure produced using the active material in which the coating layer is formed in advance in FIG. 4, the active material 8 whose surface is coated with an inorganic compound or a polymer compound in advance is used. In a battery manufactured using a method of manufacturing an electrode plate (see, for example, Patent Document 1), a non-aqueous electrolyte solution is formed by an inorganic compound or polymer compound coating layer 9 on the surface of the active material 8. A method for suppressing the reaction between the active material and the active material is proposed.
JP 2003-217593 A

しかしながら、無機化合物や高分子化合物で予め被覆した活物質を用いて極板を作製した場合、次のような問題が発生する。以下、図4を参照して説明する。
(1)極板材料は練合時に大きな負荷をかけて分散させるため、被覆層9を予め形成した活物質8は、その負荷により活物質8同士が擦れ合い活物質8の表面の被覆層9が部分的に剥がれて活物質8の表面に露出部10を生じる。そのために充放電サイクルの進行に伴い活物質8の露出部10で非水電解液が分解され、ガス発生や副反応生成物の堆積によりインピーダンスが増大し、充放電特性の低下やサイクル寿命特性の劣化を引き起す。
(2)活物質8の表面と導電剤11、或は活物質8同士が接触する部分にもこの被覆層9が介在するため、活物質8と導電剤11、或は活物質8同士が直接接触できないため極板の導電性が低下し放電特性が低下する。
(3)活物質8同士や活物質8と導電剤11が接触している活物質8自体が露出していない場所にも無機化合物や高分子化合物の被覆層9が存在しており、非水電解液の分解抑制に効果を発揮しない無駄な無機化合物や高分子化合物を含有してしまうため、電池容量の向上において不利となる。
However, when an electrode plate is produced using an active material previously coated with an inorganic compound or a polymer compound, the following problems occur. Hereinafter, a description will be given with reference to FIG.
(1) Since the electrode plate material is dispersed by applying a large load during kneading, the active material 8 in which the coating layer 9 is formed in advance is rubbed against the active material 8 by the load, and the coating layer 9 on the surface of the active material 8 Is partially peeled off to form an exposed portion 10 on the surface of the active material 8. Therefore, as the charge / discharge cycle progresses, the non-aqueous electrolyte is decomposed at the exposed portion 10 of the active material 8, the impedance increases due to gas generation and side reaction product deposition, and the charge / discharge characteristics are reduced and cycle life characteristics are reduced. Causes deterioration.
(2) Since the coating layer 9 is also present at the portion where the surface of the active material 8 and the conductive agent 11 or the active materials 8 are in contact with each other, the active material 8 and the conductive agent 11 or the active materials 8 are directly connected to each other. Since it cannot contact, the electroconductivity of an electrode plate will fall and a discharge characteristic will fall.
(3) A coating layer 9 of an inorganic compound or a polymer compound is also present in a place where the active materials 8 themselves are in contact with each other, or where the active material 8 itself where the active material 8 and the conductive agent 11 are in contact with each other. Since wasteful inorganic compounds and polymer compounds that do not exhibit the effect of suppressing the decomposition of the electrolytic solution are contained, it is disadvantageous in improving the battery capacity.

本発明は、非水電解液二次電池において、充放電サイクルに伴い極板の活物質の表面で非水電解液が分解され、ガス発生や副反応生成物の堆積によりインピーダンスが増大し、充放電特性の低下やサイクル特性の劣化を引き起す課題を解決するものであり、高容量で
且つ放電特性やサイクル寿命特性に優れた非水電解液二次電池を実現することを目的とする。
In the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte is decomposed on the surface of the active material of the electrode plate during the charge / discharge cycle, and the impedance increases due to gas generation and deposition of side reaction products. An object of the present invention is to solve the problems that cause deterioration of discharge characteristics and deterioration of cycle characteristics, and to realize a non-aqueous electrolyte secondary battery having high capacity and excellent discharge characteristics and cycle life characteristics.

上記目的を達成するために本発明は、正極板と、負極板と、セパレータまたはイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、前記正極板および前記負極板の少なくともいずれか一方の活物質の前記非水電解液と接触する表面のみに、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物からなるイオンを通す被覆層を設けたことを特徴とする。   To achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode plate, a negative electrode plate, a separator or an ion conductive layer, and a non-aqueous electrolyte solution, the positive electrode plate and At least one selected from the group consisting of compounds soluble in water or insoluble in a non-aqueous solvent only on the surface of the negative electrode plate in contact with the non-aqueous electrolyte of at least one of the active materials It is characterized by providing a coating layer through which ions made of the above compound pass.

本発明によれば、正極板および負極板の少なくともいずれか一方の活物質の表面が、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物からなるイオンを通す被覆層で覆われており、その被覆層により極板の活物質の表面での非水電解液の分解が抑制されることにより、高容量で且つ放電特性やサイクル寿命特性に優れた非水電解液二次電池を提供できる。   According to the present invention, the surface of the active material of at least one of the positive electrode plate and the negative electrode plate is at least one selected from the group consisting of compounds that are insoluble in a non-aqueous solvent or have extremely low solubility and are soluble in water. It is covered with a coating layer through which ions made of a compound pass, and the coating layer suppresses the decomposition of the non-aqueous electrolyte on the surface of the active material of the electrode plate, resulting in high capacity, discharge characteristics and cycle life characteristics. It is possible to provide a non-aqueous electrolyte secondary battery that is excellent in performance.

本発明においては、正極板と、負極板と、セパレータまたはイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、前記正極板および前記負極板の少なくともいずれか一方の活物質の前記非水電解液と接触する表面のみに、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物からなるイオンを通す被覆層を設けたことを特徴とする。   In the present invention, a nonaqueous electrolyte secondary battery comprising a positive electrode plate, a negative electrode plate, a separator or an ion conductive layer, and a nonaqueous electrolyte solution, wherein at least one of the positive electrode plate and the negative electrode plate Only the surface of one of the active materials that comes into contact with the non-aqueous electrolyte has ions composed of at least one compound selected from the group consisting of compounds that are insoluble or have a very low solubility in a non-aqueous solvent. A covering layer is provided.

この構成によれば、充放電サイクルに伴い極板の活物質の表面で非水電解液が分解され、ガス発生や副反応生成物の堆積によりインピーダンスが増大する課題を解決できるため導電性に優れた、高容量で且つ放電特性やサイクル寿命特性に優れた非水電解液二次電池が得られる効果を奏する。   According to this configuration, the non-aqueous electrolyte is decomposed on the surface of the active material of the electrode plate in accordance with the charge / discharge cycle, and the problem that the impedance increases due to gas generation and deposition of side reaction products is excellent. In addition, the non-aqueous electrolyte secondary battery having a high capacity and excellent discharge characteristics and cycle life characteristics can be obtained.

また、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物は、水溶性ポリマーもしくは無機化合物を用いることが好ましい。活物質を被覆する材料として、非水溶媒に不溶もしくは溶解度が極めて小さいこれらの化合物を用いることにより、形成された活物質表面の被覆層は電池内において非水電解液へ溶解しない(もしくは非常に小さい)ことからさらに長期間の被覆効果を維持することができる。また、水に可溶な化合物であることにより、被覆する際に化合物を溶解する溶剤として水を用いることが可能である。   Moreover, it is preferable to use a water-soluble polymer or an inorganic compound as the compound that is insoluble in a non-aqueous solvent or has a very low solubility and is soluble in water. By using these compounds that are insoluble or have very low solubility in the non-aqueous solvent as the material for coating the active material, the formed active material surface coating layer does not dissolve in the non-aqueous electrolyte in the battery (or very It is possible to maintain a long-term covering effect. Moreover, since it is a compound soluble in water, it is possible to use water as a solvent for dissolving the compound when coating.

水溶性ポリマーの具体例としては、高ビニル化合物、アクリル酸系水溶性ポリマー、エチレンオキサイド系水溶性ポリマー、ビニルアルコール系水溶性ポリマー、セルロース系水溶性ポリマー、マレイン酸及びフマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物等を好ましく用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Specific examples of water-soluble polymers include high vinyl compounds, acrylic acid-based water-soluble polymers, ethylene oxide-based water-soluble polymers, vinyl alcohol-based water-soluble polymers, cellulose-based water-soluble polymers, unsaturated carboxylic acids such as maleic acid and fumaric acid. A saponified product of a copolymer of an acid and a vinyl ester can be preferably used. These may be used alone or in combination of two or more.

無機化合物の具体例としては、リチウムやナトリウム等のアルカリ金属含有無機化合物等があげられる。これらも単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Specific examples of the inorganic compound include alkali metal-containing inorganic compounds such as lithium and sodium. These may be used alone or in combination of two or more.

これらの材料を用いることにより、活物質の表面での非水電解液の分解抑制効果を長期間維持可能な被膜を形成でき、放電特性やサイクル寿命特性に優れた非水電解液二次電池が得られる効果を奏する。   By using these materials, it is possible to form a coating that can maintain the effect of inhibiting decomposition of the non-aqueous electrolyte on the surface of the active material for a long period of time, and a non-aqueous electrolyte secondary battery having excellent discharge characteristics and cycle life characteristics can be obtained. The effect obtained is produced.

製造方法としては、正極板および負極板の少なくともいずれか一方の金属箔上に活物質
層を形成し、この活物質層に、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物を溶解させた水溶液を付着させる工程と、その後水分を乾燥させる工程とを含み、前記活物質層の非水電解液と接触する活物質の表面のみに前記化合物からなるイオンを通す被覆層を均一に形成させた。
As a production method, an active material layer is formed on at least one of the metal foil of the positive electrode plate and the negative electrode plate, and the active material layer is made of a compound that is insoluble in water or has a very low solubility and is soluble in water. Including a step of adhering an aqueous solution in which at least one compound selected from the group is dissolved, and a step of drying the water thereafter, and only on the surface of the active material in contact with the non-aqueous electrolyte of the active material layer A coating layer through which ions composed of the above-mentioned compound pass was uniformly formed.

この製造方法により、正極または負極活物質層の非水電解液と接触する正極活物質または負極活物質の表面のみに前記化合物からなるイオンを通す被覆層を均一に、且つ容易に形成できる。   By this manufacturing method, a coating layer that allows ions made of the above compound to pass through only the surface of the positive electrode active material or the negative electrode active material that is in contact with the non-aqueous electrolyte of the positive electrode or the negative electrode active material layer can be easily and uniformly formed.

尚、正極板、負極板とも、活物質と導電剤と結着剤とから構成されるため、図2にこれら活物質の表面のみに前記化合物からなるイオンを通す被覆層を形成した模式図を示した。よって、以下実施例の正極活物質、負極活物質は図2の活物質8に相当する。   Since both the positive electrode plate and the negative electrode plate are composed of an active material, a conductive agent, and a binder, FIG. 2 is a schematic diagram in which a coating layer that allows ions made of the above compound to pass only on the surface of these active materials. Indicated. Therefore, the positive electrode active material and the negative electrode active material in the following examples correspond to the active material 8 in FIG.

以下、図面を参照して本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

尚、ここで示す図は本発明の電池の一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。
<実施例1>
(電池の作成)
図1は本実施例1の非水電解液二次電池の一実施例を示す一部切欠斜視図であり、図2は本発明の活物質の露出面にのみ被覆層を具備した極板の構成を示す模式図である。
In addition, the figure shown here is an example of the battery of this invention, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.
<Example 1>
(Battery creation)
FIG. 1 is a partially cutaway perspective view showing an embodiment of the nonaqueous electrolyte secondary battery of Example 1, and FIG. 2 shows an electrode plate having a coating layer only on the exposed surface of the active material of the present invention. It is a schematic diagram which shows a structure.

図1に示したように、セパレータを介して帯状の正極板と負極板を複数回渦巻状に巻回して、極板群1が構成される。正極板と負極板にはそれぞれアルミニウム製の正極リード2およびニッケル製の負極リード3を接続している。それをアルミニウム製の電池ケース4内に収容する。正極リード2の他端をアルミニウム製の封口板5にスポット溶接し、また負極リード3の他端は封口板5の中心部にあるニッケル製の負極端子6の下部にスポット溶接する。電池ケース4の開口部周囲と封口板5とをレーザ溶接し、所定量の非水電解液を注入口7から注入する。最後に注入口7をアルミニウム製の栓を用いてレーザー溶接し、電池が完成する。   As shown in FIG. 1, the electrode plate group 1 is configured by winding a belt-like positive electrode plate and a negative electrode plate in a spiral shape through a separator. A positive electrode lead 2 made of aluminum and a negative electrode lead 3 made of nickel are connected to the positive electrode plate and the negative electrode plate, respectively. It is accommodated in a battery case 4 made of aluminum. The other end of the positive electrode lead 2 is spot welded to the aluminum sealing plate 5, and the other end of the negative electrode lead 3 is spot welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5. The periphery of the opening of the battery case 4 and the sealing plate 5 are laser welded, and a predetermined amount of non-aqueous electrolyte is injected from the inlet 7. Finally, the inlet 7 is laser welded using an aluminum stopper to complete the battery.

(1)正極板の作製
LiCo0.94Mg0.05Al0.012を正極活物質とした。この正極活物質100重量部に導電剤11としてアセチレンブラック3重量部、結着剤12としてポリフッ化ビニリデンが5重量部になるようにポリフッ化ビニリデンのN−メチルピロリジノン溶液を調整し、撹拌混合してペースト状の正極合剤を得た。次に、厚さ20μmのアルミニウム箔を集電体とし、その両面に前記ペースト状正極合剤を塗布し、乾燥後圧延ローラーで圧延を行い、所定寸法に裁断して正極板とした。
(1) Production of positive electrode plate LiCo 0.94 Mg 0.05 Al 0.01 O 2 was used as a positive electrode active material. An N-methylpyrrolidinone solution of polyvinylidene fluoride is adjusted to 100 parts by weight of the positive electrode active material so that 3 parts by weight of acetylene black as the conductive agent 11 and 5 parts by weight of polyvinylidene fluoride as the binder 12 are mixed with stirring. Thus, a paste-like positive electrode mixture was obtained. Next, an aluminum foil having a thickness of 20 μm was used as a current collector, the paste-like positive electrode mixture was applied to both surfaces thereof, dried and then rolled with a rolling roller, and cut into predetermined dimensions to obtain a positive electrode plate.

尚、正極用の導電剤11としては、構成された電池において実質的に化学安定な電子伝導性材料であればよい。例えば、グラファイト類、カーボンブラック類、導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などが挙げられ、これらを単独または混合物として用いても良い。   The conductive agent 11 for the positive electrode only needs to be an electron conductive material that is substantially chemically stable in the constructed battery. Examples include graphites, carbon blacks, conductive fibers, metal powders, conductive whiskers, organic conductive materials such as conductive metal oxides or polyphenylene derivatives, and these are used alone or as a mixture. Also good.

正極用の結着剤12としては、熱可塑性樹脂、熱硬化性樹脂などが用いられる。例えば、ポリフッ化ビニリデン(PVDF)の他、ポリテトラフルオロエチレン(PTFE)などが好ましい。   As the positive electrode binder 12, a thermoplastic resin, a thermosetting resin, or the like is used. For example, polytetrafluoroethylene (PTFE) is preferable in addition to polyvinylidene fluoride (PVDF).

(2)負極板の作製
平均粒径が約20μmになるように粉砕、分級した鱗片状黒鉛100重量部と結着剤12のスチレンブタジエンゴム3重量部を混合した後、黒鉛に対しカルボキシメチルセルロースが1%となるようにカルボキシメチルセルロ−ス水溶液を加え、撹拌混合しペースト状負極合剤とした。厚さ15μmの銅箔を集電体とし、その両面にペースト状の負極合剤を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板とした。
(2) Production of negative electrode plate After mixing 100 parts by weight of flaky graphite pulverized and classified so as to have an average particle size of about 20 μm and 3 parts by weight of styrene butadiene rubber of binder 12, carboxymethyl cellulose is added to graphite. A carboxymethyl cellulose aqueous solution was added so as to be 1%, and the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. A copper foil having a thickness of 15 μm was used as a current collector, a paste-like negative electrode mixture was applied to both surfaces thereof, dried and then rolled using a rolling roller, and cut into a predetermined size to obtain a negative electrode plate.

尚、負極活物質としては、例えばリチウムをドープ・脱ドープすることが可能な炭素質を主体とする材料として、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等が挙げられ、これらを単独もしくは2種以上を混合して用いることができる。負極活物質の平均粒径は特に限定されないが、1〜30μmのものが好ましい。   Examples of the negative electrode active material include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and the like, which are mainly carbonaceous materials that can be doped and dedoped with lithium. , Glassy carbons, organic polymer compound fired bodies (phenol resins, furan resins, etc., fired at a suitable temperature and carbonized), carbon fibers, activated carbon, etc., and these may be used alone or in combination of two or more. It can be used by mixing. The average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 30 μm.

負極用の導電剤11としては、電子伝導性材料であれば特に限定されないが、例えば、人造黒鉛、アセチレンブラック、炭素繊維などが好ましい。   The conductive agent 11 for the negative electrode is not particularly limited as long as it is an electron conductive material. For example, artificial graphite, acetylene black, carbon fiber, and the like are preferable.

負極用の結着剤12としては、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体などが好ましい。   As the binder 12 for the negative electrode, styrene butadiene rubber, polyvinylidene fluoride, ethylene-acrylic acid copolymer or (Na +) ion crosslinked product of the above material, ethylene-methacrylic acid copolymer or (Na of the material) A +) ion-crosslinked product, an ethylene-methyl acrylate copolymer, or a (Na +) ion-crosslinked product of the material, an ethylene-methyl methacrylate copolymer, or a (Na +) ion-crosslinked product of the material is preferable.

(3)水溶液の調製
(表1)に示した各化合物の水溶液1〜9を作製した。
(3) Preparation of aqueous solution The aqueous solutions 1-9 of each compound shown in (Table 1) were produced.

(4)非水電解液の調製
エチレンカーボネートとエチルメチルカーボネートを20℃において30:70の体積割合で調整した溶媒に1.0mol/lのLiPF6を溶解したものを用いた。
(4) Preparation of non-aqueous electrolyte A solution prepared by dissolving 1.0 mol / l LiPF 6 in a solvent prepared by adjusting ethylene carbonate and ethyl methyl carbonate at a volume ratio of 30:70 at 20 ° C. was used.

(5)電池の組立
(実施例1の電池A1〜A9)
前記(3)で調整した各化合物の水溶液1〜9を、(1)の正極板の合剤層にグラビア塗布し、その後水分を温風乾燥させて、図2に示したような活物質8の露出面にのみ被覆層9を具備した正極板を作製した。そして、被覆層9を具備した正極板と、負極板および厚さ25μmの微多孔性ポリエチレン樹脂製のセパレータを渦巻状に巻回し、これに前記(4)で調整した非水電解液を注液した後密封栓した。このようにして作製した電池を本発明の実施例1の電池A1からA9とした。
(5) Battery assembly (Batteries A1 to A9 of Example 1)
The aqueous solutions 1 to 9 of the respective compounds prepared in the above (3) are gravure-coated on the mixture layer of the positive electrode plate in (1), and then the water is dried with hot air, so that the active material 8 as shown in FIG. A positive electrode plate having a coating layer 9 only on the exposed surface was prepared. Then, the positive electrode plate provided with the coating layer 9, the negative electrode plate, and a separator made of a microporous polyethylene resin having a thickness of 25 μm are wound in a spiral shape, and the nonaqueous electrolytic solution prepared in the above (4) is injected into this. And then sealed. The batteries thus produced were designated as batteries A1 to A9 of Example 1 of the present invention.

(実施例1の電池B1〜B9)
負極板の合剤層に、前記(3)で調整した各化合物の水溶液1〜9を塗布した以外は電池A1〜A9と同様にして作製した電池を本発明の実施例1の電池B1〜B9とした。
(Batteries B1 to B9 of Example 1)
Batteries produced in the same manner as the batteries A1 to A9, except that the aqueous solutions 1 to 9 of the respective compounds prepared in (3) were applied to the mixture layer of the negative electrode plate, the batteries B1 to B9 of Example 1 of the present invention. It was.

(実施例1の電池C1〜C9)
正極板および負極板の両合剤層に、前記(3)で調整した各化合物の水溶液1〜9を塗布した以外は電池A1〜A9と同様にして作製した電池を本発明の実施例1の電池C1〜C9とした。
(Batteries C1 to C9 of Example 1)
A battery produced in the same manner as the batteries A1 to A9, except that the aqueous solutions 1 to 9 of the respective compounds prepared in (3) above were applied to both the mixture layers of the positive electrode plate and the negative electrode plate, was used in Example 1 of the present invention. The batteries C1 to C9 were used.

(比較例の電池D)
前記(3)で調整した各化合物の水溶液を塗布せず、図3に示したように被覆層を具備しない正極板および負極板を作製した以外は、実施例1と同様にして作製した電池を比較例の電池Dとした。
(Comparative battery D)
A battery produced in the same manner as in Example 1 except that the aqueous solution of each compound prepared in (3) above was not applied and a positive electrode plate and a negative electrode plate not provided with a coating layer were produced as shown in FIG. A battery D of Comparative Example was obtained.

(比較例の電池E、F)
正極活物質および負極活物質のそれぞれに、予め炭酸リチウムおよびポリアクリル酸ナトリウムで被覆処理を行い、図4に示したような正極板および負極板を得た以外は、比較例Dと同様にして作製した電池を比較例の電池Eおよび電池Fとした。
(Comparison batteries B and E)
Each of the positive electrode active material and the negative electrode active material was previously coated with lithium carbonate and sodium polyacrylate to obtain a positive electrode plate and a negative electrode plate as shown in FIG. The produced batteries were referred to as Comparative Example Battery E and Battery F.

(サイクル寿命特性評価)
実施例1および比較例の電池D〜Fを用い、環境温度20℃で充放電サイクルを500回行った。充電条件は最大電流600mA、充電終止電位が4.20Vでの定電圧充電を2時間とした。放電条件は電流値600mA、放電終止電位3.0Vの定電流で行い、500サイクル経過後の放電容量を測定し、初期容量に対する比率で評価結果を示した。
(Cycle life characteristics evaluation)
Using the batteries D to F of Example 1 and Comparative Example, the charge / discharge cycle was performed 500 times at an environmental temperature of 20 ° C. The charging conditions were a constant voltage charge at a maximum current of 600 mA and a charge end potential of 4.20 V for 2 hours. The discharge conditions were a constant current with a current value of 600 mA and a discharge end potential of 3.0 V, the discharge capacity after 500 cycles had been measured, and the evaluation results were shown as a ratio to the initial capacity.

(放電特性評価)
実施例1および比較例の電池D〜Fを用い、環境温度20℃、および0℃で電池容量測定を行った。充電条件は最大電流600mA、充電終止電位が4.20Vでの定電圧充電を2時間とした。放電条件は電流値600mA、放電終止電位3.0Vの定電流で行い、それぞれの電池の放電容量を測定した。それぞれの電池において、20℃の放電容量に対する0℃の放電容量を比率で表し比較を行った。
(Discharge characteristic evaluation)
Using the batteries D to F of Example 1 and Comparative Example, the battery capacity was measured at an environmental temperature of 20 ° C. and 0 ° C. The charging conditions were constant voltage charging with a maximum current of 600 mA and a charge end potential of 4.20 V for 2 hours. The discharge conditions were a constant current with a current value of 600 mA and a discharge end potential of 3.0 V, and the discharge capacity of each battery was measured. In each battery, the discharge capacity at 0 ° C. with respect to the discharge capacity at 20 ° C. was expressed as a ratio and compared.

(表2)に実施例1の電池A1〜A9,B1〜B9,C1〜C9、(表3)に比較例の電池D〜Fの500サイクル後容量維持率、および放電特性の評価結果を示す。   (Table 2) shows the battery A1 to A9, B1 to B9, C1 to C9 of Example 1, and (Table 3) shows the capacity retention rate after 500 cycles and the evaluation results of the discharge characteristics of the batteries D to F of the comparative example. .

500サイクル後容量維持率は(表2)からわかる通り、図2に示したような活物質8の表面に被覆層9を具備する実施例1の電池のなかで、正極板および負極板の両方に被覆処理を施した電池C1〜C9の容量維持率が83%〜87%と最も良好であり、正極板もしくは負極板のいずれか片方に被覆処理を施した電池A1〜A9,B1〜B9についても73%〜80%と良化が認められた。 As can be seen from (Table 2), the capacity retention rate after 500 cycles is shown in FIG. 2 in the battery of Example 1 having the coating layer 9 on the surface of the active material 8. Regarding the batteries A1 to A9 and B1 to B9 in which the capacity maintenance rate of the batteries C1 to C9 subjected to the coating treatment is the best, 83% to 87%, and either the positive electrode plate or the negative electrode plate is coated. Also, the improvement was recognized as 73% to 80%.

一方、(表3)からわかる通り、図3に示したような活物質8の表面に被覆層を具備しない比較例の電池Dの容量維持率は31%と大きく低下した。また、活物質の状態で予め被覆処理を施し、図4に示したような活物質8の表面に露出部10を生じた比較例の電池E,Fの容量維持率は各々58%,61%となり、比較例の電池Dに比べれば改善されているものの実施例1の電池ほどの改善効果は認められなかった。   On the other hand, as can be seen from (Table 3), the capacity retention rate of the battery D of Comparative Example which does not have a coating layer on the surface of the active material 8 as shown in FIG. Further, the capacity retention ratios of the batteries E and F of Comparative Examples in which the exposed portion 10 was generated on the surface of the active material 8 as shown in FIG. Thus, although improved compared to the battery D of the comparative example, the improvement effect as the battery of Example 1 was not recognized.

容量維持率の低下が大きい500サイクル後の比較例の電池Dを分解し観察を行った結果、極板の表面で明らかに非水電解液が涸渇している部位が認められた。そのような部位周辺の正極板のX線回折分析を行うと、正極活物質の結晶構造が変化しており充電の不均一化が発生して正極活物質が顕著に劣化していることがわかった。そのような部位周辺の負極板においては、充電の不均一化によりリチウム析出が認められた。また、活物質の状態で予め被覆処理を施した比較例の電池Eを同様に分解し観察を行った結果、比較例の電池Dに比べれば非水の涸渇は抑制されているが、正極のX線回折分析によれば正極活物質の結晶構造に少なからず変化が認められ、負極板においてもリチウム析出が認められた。これは活物質の状態で形成された被覆層が極板を作製するまでの工程、特に練合時に大き
な負荷がかかり被覆層が剥離したことが原因と考えられる。
As a result of disassembling and observing the battery D of the comparative example after 500 cycles in which the decrease in the capacity retention rate was large, a portion where the nonaqueous electrolyte was clearly depleted was observed on the surface of the electrode plate. When X-ray diffraction analysis of the positive electrode plate around such a part is performed, it is found that the crystal structure of the positive electrode active material has changed, the charge becomes non-uniform, and the positive electrode active material has deteriorated significantly. It was. In the negative electrode plate around such a region, lithium deposition was observed due to nonuniform charging. In addition, as a result of similarly disassembling and observing the battery E of the comparative example that was previously coated in the active material state, non-water depletion was suppressed as compared with the battery D of the comparative example. According to the X-ray diffraction analysis, a considerable change was observed in the crystal structure of the positive electrode active material, and lithium deposition was also observed in the negative electrode plate. This is presumably because the coating layer formed in the state of the active material was subjected to a process until the electrode plate was produced, particularly when a large load was applied during kneading and the coating layer was peeled off.

正極板および負極板の両方に被覆処理をした500サイクル後の実施例1の電池C2を分解し観察を行った結果、極板の表面で非水電解液が涸渇している部位は認められなかった。正極板のX線回折分析によれば正極活物質の結晶構造に顕著な変化はなく、負極板においてもリチウム析出は認められなかった。   As a result of disassembling and observing the battery C2 of Example 1 after 500 cycles in which both the positive electrode plate and the negative electrode plate were coated, a portion where the nonaqueous electrolyte was depleted on the surface of the electrode plate was not recognized. It was. According to the X-ray diffraction analysis of the positive electrode plate, there was no significant change in the crystal structure of the positive electrode active material, and no lithium deposition was observed in the negative electrode plate.

放電特性(0℃/25℃)の評価結果は、実施例1の電池A1〜A9,B1〜B9,C1〜C9および比較例の電池Dが79%〜84%と良好であったのに比べ、比較例の電池E,Fが各々66%,64%と明かに放電特性の低下が認められた。比較例の電池E,Fは、図4に示したように活物質8同士或は活物質8と導電剤11が接触する部分にも被覆層9が介在し導電性が低下したため放電特性の低下を引き起こしたと考えられる。極板作製後に被覆処理を施した実施例1の電池A1〜A9,B1〜B9,C1〜C9および被覆処理を施していない比較例の電池Dは、放電特性の低下は認められなかった。実施例1の電池は、図2に示したように極板状態において非水電解液と接触する活物質8の表面にのみ被覆層9が存在しており、活物質8同士或は活物質8と導電剤11の直接の接触が維持されていることにより放電特性が良好であったと考えられる。比較例の電池Dは図3に示したように活物質8の表面に被覆層を具備しないため導電性が確保され、初期の放電特性は良好であったと考えられる。   The evaluation results of the discharge characteristics (0 ° C./25° C.) were higher than those in which the batteries A1 to A9, B1 to B9, C1 to C9 of Example 1 and the battery D of the comparative example were 79% to 84%. The batteries E and F of the comparative example clearly showed a decrease in discharge characteristics of 66% and 64%, respectively. As shown in FIG. 4, the batteries E and F of the comparative examples have a decrease in discharge characteristics because the covering layer 9 is also interposed between the active materials 8 or portions where the active material 8 and the conductive agent 11 are in contact with each other. It is thought that caused. In the batteries A1 to A9, B1 to B9, C1 to C9 of Example 1 subjected to the coating treatment after the electrode plate was produced, and the battery D of the comparative example not subjected to the coating treatment, no deterioration in discharge characteristics was observed. In the battery of Example 1, as shown in FIG. 2, the coating layer 9 exists only on the surface of the active material 8 in contact with the non-aqueous electrolyte in the electrode plate state. It is considered that the discharge characteristics were good because the direct contact between the conductive material 11 and the conductive agent 11 was maintained. As shown in FIG. 3, the battery D of the comparative example does not have a coating layer on the surface of the active material 8, so that conductivity is ensured and the initial discharge characteristics are considered good.

以上の結果より、実施例1においては活物質8の非水電解液と接触する表面にのみ被覆層9を具備することにより、充放電サイクルにおける活物質8の表面での非水電解液の分解が抑制され、サイクルを経ても非水電解液の涸渇が起こらず、充放電に伴う極板の反応の均一性が保たれることから活物質8が劣化せず、良好なサイクル寿命特性が得られることがわかった。また、活物質8の状態で予め被覆処理を施した場合と比べて、放電特性の低下を引き起こすこともないことがわかった。   From the above results, in Example 1, the coating layer 9 is provided only on the surface of the active material 8 in contact with the non-aqueous electrolyte solution, so that the non-aqueous electrolyte solution is decomposed on the surface of the active material 8 in the charge / discharge cycle. And the non-aqueous electrolyte is not depleted even after cycling, and the uniformity of the reaction of the electrode plate during charging and discharging is maintained, so that the active material 8 does not deteriorate and good cycle life characteristics are obtained. I found out that Moreover, it turned out that it does not cause the fall of a discharge characteristic compared with the case where a coating process is performed previously in the state of the active material 8.

さらに、活物質8同士や活物質8と導電剤11が接触している活物質8自体が露出していない場所に無機化合物や高分子化合物の被覆層9が存在せず、非水電解液の分解抑制に効果を発揮しない無駄な無機化合物や高分子化合物を含有しないため、電池容量の向上において有利となることは明白である。   Furthermore, the coating layer 9 of the inorganic compound or the polymer compound does not exist in a place where the active materials 8 themselves are in contact with each other, or the active material 8 itself where the active material 8 and the conductive agent 11 are in contact with each other. It is clear that it is advantageous in improving battery capacity because it does not contain useless inorganic compounds and polymer compounds that do not exhibit the effect of inhibiting decomposition.

本発明にかかる非水電解液二次電池は、高容量で且つ放電特性やサイクル寿命特性に優れるので非水電解液二次電池として有用である。   The non-aqueous electrolyte secondary battery according to the present invention is useful as a non-aqueous electrolyte secondary battery because of its high capacity and excellent discharge characteristics and cycle life characteristics.

本発明の非水電解液二次電池の一実施例を示す一部切欠斜視図The partially cutaway perspective view showing one embodiment of the nonaqueous electrolyte secondary battery of the present invention 本発明の活物質の露出面にのみ被覆層を具備した極板の構成を示す模式図The schematic diagram which shows the structure of the electrode plate which comprised the coating layer only on the exposed surface of the active material of this invention 比較例の活物質の表面に被覆層を具備しない極板の構成を示す模式図The schematic diagram which shows the structure of the electrode plate which does not comprise a coating layer on the surface of the active material of a comparative example 比較例の予め被覆層を形成した活物質を用いて作製した極板の構成を示す模式図The schematic diagram which shows the structure of the electrode plate produced using the active material which previously formed the coating layer of the comparative example

符号の説明Explanation of symbols

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 注入口
8 活物質
9 被覆層
10 露出部
11 導電剤
12 結着剤


DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Inlet 8 Active material 9 Covering layer 10 Exposed part 11 Conductive agent 12 Binder


Claims (4)

正極板と、負極板と、セパレータまたはイオン導電性層と、非水電解液とを備えた非水電解液二次電池であって、
前記正極板、前記負極板の少なくともいずれか一方の活物質の前記非水電解液と接触する表面のみに、非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物からなるイオンを通す被覆層を設けた非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode plate, a negative electrode plate, a separator or an ion conductive layer, and a non-aqueous electrolyte solution,
The active material of at least one of the positive electrode plate and the negative electrode plate is selected from the group consisting of a compound that is insoluble in a non-aqueous solvent or has a very low solubility and is soluble in water only on the surface in contact with the non-aqueous electrolyte. A nonaqueous electrolyte secondary battery provided with a coating layer through which ions made of at least one kind of compound pass.
前記非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物が水溶性ポリマーからなる請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the compound that is insoluble in the nonaqueous solvent or has a very low solubility and is soluble in water comprises a water-soluble polymer. 前記非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物が無機化合物からなる請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the compound that is insoluble in the nonaqueous solvent or has a very low solubility and is soluble in water comprises an inorganic compound. 正極板と、負極板と、セパレータまたはイオン導電性層と、非水電解液とを備えた非水電解液二次電池の製造方法であって、
前記正極板および前記負極板の少なくともいずれか一方の金属箔上に活物質層を形成し、この活物質層に非水溶媒に不溶もしくは溶解度が極めて小さく水に可溶な化合物からなる群より選択される少なくとも一種類の化合物を溶解させた水溶液を付着させる工程と、その後水分を乾燥させる工程とを含み、前記活物質層の前記非水電解液と接触する活物質の表面のみに前記化合物からなるイオンを通す被覆層を形成させる非水電解液二次電池の製造方法。


A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode plate, a negative electrode plate, a separator or ion conductive layer, and a non-aqueous electrolyte solution,
An active material layer is formed on at least one metal foil of the positive electrode plate and the negative electrode plate, and the active material layer is selected from the group consisting of compounds that are insoluble in a non-aqueous solvent or have extremely low solubility and are soluble in water. A step of adhering an aqueous solution in which at least one kind of compound is dissolved, and a step of drying the water thereafter, from the compound only on the surface of the active material in contact with the non-aqueous electrolyte of the active material layer The manufacturing method of the non-aqueous-electrolyte secondary battery which forms the coating layer which lets the ion which becomes.


JP2005369643A 2005-12-22 2005-12-22 Nonaqueous electrolyte solution secondary battery and its manufacturing method Pending JP2007173064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369643A JP2007173064A (en) 2005-12-22 2005-12-22 Nonaqueous electrolyte solution secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369643A JP2007173064A (en) 2005-12-22 2005-12-22 Nonaqueous electrolyte solution secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007173064A true JP2007173064A (en) 2007-07-05

Family

ID=38299339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369643A Pending JP2007173064A (en) 2005-12-22 2005-12-22 Nonaqueous electrolyte solution secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007173064A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037891A (en) * 2007-08-02 2009-02-19 Panasonic Corp Lithium-ion secondary battery
JP2009245921A (en) * 2008-03-13 2009-10-22 Denso Corp Electrode for secondary battery, method of manufacturing the same, and secondary battery employing the same
JP2010108679A (en) * 2008-10-29 2010-05-13 Panasonic Corp Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
CN101872860A (en) * 2009-04-22 2010-10-27 索尼公司 Positive active material, its manufacture method and nonaqueous electrolyte battery
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP2012248441A (en) * 2011-05-30 2012-12-13 Hitachi Maxell Energy Ltd Cathode active material and cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2018061021A (en) * 2016-09-30 2018-04-12 旭化成株式会社 Nonaqueous alkali metal type power storage element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037891A (en) * 2007-08-02 2009-02-19 Panasonic Corp Lithium-ion secondary battery
JP2009245921A (en) * 2008-03-13 2009-10-22 Denso Corp Electrode for secondary battery, method of manufacturing the same, and secondary battery employing the same
JP2010108679A (en) * 2008-10-29 2010-05-13 Panasonic Corp Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
CN101872860A (en) * 2009-04-22 2010-10-27 索尼公司 Positive active material, its manufacture method and nonaqueous electrolyte battery
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP2012248441A (en) * 2011-05-30 2012-12-13 Hitachi Maxell Energy Ltd Cathode active material and cathode for lithium ion secondary battery and lithium ion secondary battery using the same
US8685573B2 (en) 2011-05-30 2014-04-01 Hitachi Maxell, Ltd. Cathode active material and lithium ion rechargeable battery using the material
JP2018061021A (en) * 2016-09-30 2018-04-12 旭化成株式会社 Nonaqueous alkali metal type power storage element
JP7057085B2 (en) 2016-09-30 2022-04-19 旭化成株式会社 Non-aqueous alkali metal type power storage element

Similar Documents

Publication Publication Date Title
JP5094013B2 (en) ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP5551033B2 (en) Lithium primary battery
JP2007173064A (en) Nonaqueous electrolyte solution secondary battery and its manufacturing method
JP2013137947A (en) Lithium ion secondary battery and method of manufacturing cathode active material for lithium ion secondary battery
JP2005044775A (en) Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2007207675A (en) Lithium secondary cell using ionic liquid
WO2012042764A1 (en) Lithium primary battery and manufacturing method for same
JPWO2019216275A1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20110262812A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
JP2007165224A (en) Nonaqueous electrolytic secondary battery
JP2008251480A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it
JP2006252917A (en) Lithium-ion secondary battery
JP3132281B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JP2008103129A (en) Manufacturing method of nonaqueous electrolyte cell
JP2006228544A (en) Lithium ion secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JPH1186874A (en) Electrode for nonaqueous electrolyte secondary battery or nonaqueous electrolyte capacitor
JPH11126633A (en) Electrolyte for lithium ion battery and lithium ion battery using it
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP2009252431A (en) Nonaqueous electrolyte secondary battery