JP2007165178A - Manufacturing method of cathode for field emission lamp - Google Patents

Manufacturing method of cathode for field emission lamp Download PDF

Info

Publication number
JP2007165178A
JP2007165178A JP2005361789A JP2005361789A JP2007165178A JP 2007165178 A JP2007165178 A JP 2007165178A JP 2005361789 A JP2005361789 A JP 2005361789A JP 2005361789 A JP2005361789 A JP 2005361789A JP 2007165178 A JP2007165178 A JP 2007165178A
Authority
JP
Japan
Prior art keywords
cylindrical body
plasma
wire
cathode
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361789A
Other languages
Japanese (ja)
Other versions
JP4827515B2 (en
Inventor
Minami Ko
南 江
Hirooki O
宏興 王
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2005361789A priority Critical patent/JP4827515B2/en
Publication of JP2007165178A publication Critical patent/JP2007165178A/en
Application granted granted Critical
Publication of JP4827515B2 publication Critical patent/JP4827515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new manufacturing method of wire-shaped cathode for field emission lamp. <P>SOLUTION: The manufacturing method uses a plasma generating device having a vacuum chamber 12 and a metallic cylindrical body 14 arranged in the vacuum chamber 12, introducing plasma generating gas in the cylindrical body 14, and generating a plasma in an internal space of the cylindrical body 14 by impressing plasma generating voltage on the cylindrical body; and comprises a first step arranging a wire 16 made of carbon in the cylindrical body 14; a second step forming a metallic film on a surface of a wire 16 by sputtering the cylindrical body by generating plasma for sputtering in the cylindrical body 14; a third step turning the metallic film into metallic fine particles by conducting current and heating the wire 16; and a fourth step generating needle-shaped carbon film by generating a plasma for etching in the cylindrical body 14, and etching the surface of the wire with the metallic fine particles as masks. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界放射型ランプ用陰極の製造方法に関する。電界放射型ランプは、管タイプ、フラットタイプ、等の種々のタイプのランプが含まれるものであり、ランプの大小、形状を問わない。   The present invention relates to a method for manufacturing a cathode for a field emission lamp. The field emission lamp includes various types of lamps such as a tube type and a flat type, and the size and shape of the lamp are not limited.

電界放射型ランプにおいて、ランプ管内面に蛍光体付きの陽極を形成し、この陽極に電界電子放出源として陰極を対向配置し、陽陰極間に電界を印加して陰極から電子を放出(電界放射)させ、放出した電子を蛍光体に電子衝突させて蛍光体を励起発光させるようになっている。そして、このワイヤ状陰極には導体ワイヤの表面に電子放出用の炭素膜が成膜されており、この炭素膜への電界集中により電子放出が行われるようになっている。   In a field emission lamp, an anode with a phosphor is formed on the inner surface of a lamp tube, a cathode is disposed opposite to the anode as a field electron emission source, and an electric field is applied between the cathode and cathode to emit electrons from the cathode (field emission). And the emitted electrons are caused to collide with the phosphor to cause the phosphor to excite and emit light. In this wire-like cathode, a carbon film for electron emission is formed on the surface of the conductor wire, and electron emission is performed by electric field concentration on the carbon film.

以下、電界放射は、真空に放出される電流密度を記述するファウラノルドハイム(Fowler−Nordheim)の式で表すことができることが知られている。この式は、
I=sAF2/φexp(−B3/2/F)
F=βV
で与えられる。
In the following, it is known that field emission can be represented by the Fowler-Nordheim equation describing the current density emitted into the vacuum. This formula is
I = sAF 2 / φexp (−B 3/2 / F)
F = βV
Given in.

ただし、Iは電界放射電流、sは電界放射面積、Aは定数、Fは電界強度、φは仕事関数、Bは定数、βは電界集中係数、Vは印加電圧である。   Where I is a field emission current, s is a field emission area, A is a constant, F is an electric field strength, φ is a work function, B is a constant, β is an electric field concentration factor, and V is an applied voltage.

電界集中係数βは、印加電圧Vを、先端部分の形状や素子の幾何学的形状により電界強度F(V/cm)を変換する係数である。電界放射電流Iは、仕事関数φが小さい材料ほど、また、電界集中係数βが大きいほど、強くなり、電界放射電流Iが増大する。電子は仕事関数φであるポテンシャル障壁により固体中に閉じ込められている。この固体表面に電界が強く集中し、ポテンシャル障壁が1nm以下程度にまで薄くなると、電子はその波動性によるトンネリング現象により固体から真空に放射される確率が急激に増大する。このように、電界集中により電子が真空に放射される現象を電界放射(電界電子放出)という。電界放射電流Iは、ポテンシャル障壁に衝突する電子の入射密度と、ポテンシャル障壁をトンネリングする確率との積を全エネルギー領域で積分することにより求めることができ、ファウラノルドハイムの式は、そのことを上記式で表したものである。このような電界放射を行う炭素膜として例えば、特許文献1ないし3等で、高アスペクト比のカーボンナノチューブが多数開発されてきている。   The electric field concentration coefficient β is a coefficient for converting the applied voltage V into electric field strength F (V / cm) according to the shape of the tip portion or the geometric shape of the element. The field emission current I becomes stronger as the work function φ is smaller and the field concentration factor β is larger, and the field emission current I increases. Electrons are confined in the solid by a potential barrier having a work function φ. When the electric field is strongly concentrated on the surface of the solid and the potential barrier is thinned to about 1 nm or less, the probability of electrons being emitted from the solid to the vacuum rapidly increases due to the tunneling phenomenon due to the wave nature. A phenomenon in which electrons are radiated to a vacuum due to electric field concentration is called field emission (field electron emission). The field emission current I can be obtained by integrating the product of the incident density of electrons colliding with the potential barrier and the probability of tunneling the potential barrier in the entire energy region, and the Fowler-Nordheim equation expresses that It is expressed by the above formula. For example, Patent Documents 1 to 3 and the like have developed many carbon nanotubes having a high aspect ratio as carbon films that perform such field emission.

このカーボンナノチューブは、針状に炭素膜を化学的気相蒸着(CVD)等により成膜したものであり、極めて細長く、その先端部分の曲率半径rが小さくなって電界集中係数βが大きくなり、電界放射特性に優れたものとなる。   This carbon nanotube is a needle-like carbon film formed by chemical vapor deposition (CVD) or the like, which is very long and thin, the radius of curvature r at the tip thereof is reduced, and the electric field concentration coefficient β is increased. Excellent field emission characteristics.

しかしながら、カーボンナノチューブの場合、印加電圧を増大させて電界放射電流Iを増大させていくに際しては、或る印加電圧を超えると、それ以上は、電界放射電流Iが増大しなくなって飽和してしまう、という大きな課題がある。そのため、カーボンナノチューブを電子放出源として、各種のデバイス、装置等に用いる場合、例えば、電界放射型ランプに用いる場合、印加電圧の調整でその発光輝度を調整する場合、その調整範囲が極めて制約されたものとなる。また、カーボンナノチューブでは上記課題以外にも、先端高さが揃いにくくばらつきやすい、先端がゆらぎやすい、基板上に機械的に支持しにくいから安定性にかける、カーボンナノチューブに電流を流し込むための基板との電気的コンタクトがとりにくい、カーボンナノチューブが多数密集すると、電界集中が起こりにくく、電子放出特性が容易に損なわれてしまうこと、等の多数の課題がある。   However, in the case of carbon nanotubes, when the applied voltage is increased to increase the field emission current I, when the applied voltage exceeds a certain applied voltage, the field emission current I does not increase any more and is saturated. There is a big problem. Therefore, when using carbon nanotubes as an electron emission source in various devices, apparatuses, etc., for example, in a field emission lamp, when adjusting the emission luminance by adjusting the applied voltage, the adjustment range is extremely limited. It will be. In addition to the above-mentioned problems, the tip height of the carbon nanotube is difficult to align and easily vary, the tip is likely to fluctuate, and it is difficult to mechanically support the substrate. There are a number of problems such as the difficulty of making electrical contact, and the concentration of a large number of carbon nanotubes makes it difficult for electric field concentration to occur and the electron emission characteristics are easily impaired.

そこで、本出願人は、特願2005−244409(平成17年8月25日出願)で上記課題を解決した発明について出願(発明の名称「炭素膜、電子放出源および電界放射型照明ランプ」)(先行出願)したのである。この先行出願においては、ファウラノルドハイムの式における電界集中係数βが、任意の位置での先端までの高さをh、半径をrとして、h/rの式で表され、かつ、その半径が任意の位置から先端に向かうにつれて小さくなる形状を備えた針状炭素膜である。   Therefore, the present applicant has filed an application for the invention that has solved the above problems in Japanese Patent Application No. 2005-244409 (filed on August 25, 2005) (title of the invention "carbon film, electron emission source and field emission illumination lamp"). (Prior application). In this prior application, the electric field concentration factor β in the Fowler-Nordheim equation is represented by the equation h / r, where h is the height to the tip at an arbitrary position and r is the radius, and the radius is It is a needle-like carbon film having a shape that decreases from an arbitrary position toward the tip.

ところで、電界放射型ランプには、陽極に対して陰極をワイヤ状に対向配置し、このワイヤ状に延びた陰極表面の全体から電子を放出させるものがある。このようなワイヤの表面に上記針状炭素膜を成膜して陰極を製造するに際して、本出願人は、安価に製造できること、高い生産性で量産することができること、に加えて、電界放射型ランプの大型大面積化に対応してより長尺なワイヤ状の陰極を製造することができる製造技術について検討した。
特開2005−314206 特開2005−314204 特開2005−272271
By the way, in some field emission lamps, a cathode is disposed opposite to an anode in a wire shape, and electrons are emitted from the entire surface of the cathode extending in the wire shape. In manufacturing the cathode by forming the acicular carbon film on the surface of such a wire, the present applicant can manufacture it at low cost, mass production with high productivity, field emission type A manufacturing technique capable of manufacturing a longer wire-like cathode in response to an increase in the area of a large lamp was investigated.
JP-A-2005-314206 JP-A-2005-314204 JP-A-2005-272271

本発明は、電界放射型ランプ用陰極にワイヤ表面に針状炭素膜を安価で高歩留まりで成膜可能として、当該陰極を低いコストで量産することができ、そのうえ、長尺ないしは超長尺なワイヤ状陰極をも容易に製造できる新規な製造方法を提供することを目的としている。   The present invention makes it possible to form a needle-like carbon film on a wire surface on a wire emission field cathode at a low cost with a high yield, and to mass-produce the cathode at a low cost. It aims at providing the novel manufacturing method which can manufacture a wire-shaped cathode easily.

(1)本発明第1に係る電界放射型ランプ用陰極の製造方法は、真空チャンバと、真空チャンバ内に配置される金属製の筒状体とを備え、上記筒状体にプラズマ発生用ガスを導入しかつプラズマ発生用電圧を印加して筒状体の内部空間にプラズマを発生させるプラズマ発生装置を用いて、筒状体に炭素からなるワイヤを配置する第1ステップと、筒状体内にスパッタ用のプラズマを発生させて筒状体をスパッタリングしてワイヤ表面に金属膜を成膜する第2ステップと、ワイヤに通電加熱して金属膜を多数の金属微粒子にする第3ステップと、筒状体内に高周波のエッチング用プラズマを発生させて金属微粒子をマスクにしてワイヤ表面をエッチングして針状炭素膜を生成する第4ステップと、を含むことを特徴とする。   (1) A method of manufacturing a cathode for a field emission lamp according to the first aspect of the present invention includes a vacuum chamber and a metal cylinder disposed in the vacuum chamber, and the plasma generating gas is provided in the cylinder. And applying a plasma generation voltage to generate plasma in the inner space of the cylindrical body, using a plasma generator to place a wire made of carbon in the cylindrical body, and in the cylindrical body A second step of generating a plasma for sputtering to sputter a cylindrical body to form a metal film on the surface of the wire; a third step of energizing and heating the wire to convert the metal film into a large number of metal fine particles; And a fourth step of generating a needle-like carbon film by generating a high-frequency etching plasma in the rod and etching the wire surface using the metal fine particles as a mask.

上記金属微粒子は、好ましくは直径1〜100nm程度である。金属微粒子の生成間隔は、針状炭素膜の電界集中作用を確保することができる程度であることが好ましい。   The metal fine particles preferably have a diameter of about 1 to 100 nm. It is preferable that the generation interval of the metal fine particles is such that the electric field concentration action of the acicular carbon film can be secured.

針状炭素膜は、好ましくは直径がnmオーダーで、高さがμmオーダーである。   The acicular carbon film preferably has a diameter on the order of nm and a height on the order of μm.

針状炭素膜は、先端に向かうほど細くなることが好ましい。   The acicular carbon film is preferably thinner toward the tip.

針状炭素膜は、ファウラノルドハイムの式における電界集中係数βが、任意の位置での先端までの高さをh、半径をrとして、h/rの式で表される形状であることが好ましい。   The acicular carbon film has a shape represented by the equation h / r, where the electric field concentration factor β in the Fowler-Nordheim equation is h, where r is the height to the tip at an arbitrary position. preferable.

プラズマ発生用電圧は、高周波であることが好ましい。   The plasma generating voltage is preferably a high frequency.

本発明第1の製造方法においては、針状炭素膜を製造するために、第1ステップでプラズマスパッタ、第2ステップで熱処理、第3ステップでプラズマエッチングという3ステップを備えるが、この3ステップを同一のプラズマ発生装置で実施することができるものであり、安価で量産性に優れかつ長尺なワイヤ状陰極を製造することができる。   In the first manufacturing method of the present invention, in order to manufacture the acicular carbon film, the first step includes plasma sputtering in the first step, heat treatment in the second step, and plasma etching in the third step. It can be implemented with the same plasma generator, and can produce a long, wire-like cathode that is inexpensive, excellent in mass productivity.

すなわち、従来の製造方法により、針状炭素膜を備えた電界放射型ランプ用陰極を製造する場合、プラズマスパッタ装置と、熱処理装置と、プラズマエッチング装置とが必要であり、極めて高価となる上に、量産性も落ちるとともに、長尺なワイヤ状陰極を製造することが困難である。   That is, when a field emission lamp cathode having a needle-like carbon film is manufactured by a conventional manufacturing method, a plasma sputtering device, a heat treatment device, and a plasma etching device are required, which is extremely expensive. Further, mass productivity is lowered, and it is difficult to manufacture a long wire cathode.

これに対して、本発明第1では、1台のプラズマ発生装置により、上記第1ないし第3ステップを実施することができるので、安価に済むとともに、量産性も向上する。また、筒状体を用いるので、長尺なワイヤ状陰極を製造する場合では、その長尺寸法に合わせて筒状体を延長して長尺なワイヤ状陰極を製造することができる。   On the other hand, according to the first aspect of the present invention, the first to third steps can be performed by one plasma generator, so that the cost is low and the mass productivity is improved. Moreover, since a cylindrical body is used, when manufacturing a long wire-like cathode, a cylindrical body can be extended according to the long dimension, and a long wire-like cathode can be manufactured.

(2)本発明第2に係る電界放射型ランプ用陰極の製造方法は、真空チャンバと、真空チャンバ内に配置される金属製の筒状体とを備え、上記筒状体にプラズマ発生用ガスを導入しかつプラズマ発生用電圧を印加して筒状体の内部空間にプラズマを発生させるプラズマ発生装置を用いて、筒状体に金属からなるワイヤを配置する第1ステップと、筒状体内に炭素膜成膜用のプラズマを発生させてワイヤ表面に炭素膜を成膜する第2ステップと、筒状体内にスパッタ用のプラズマを発生させて筒状体をスパッタして炭素膜表面に金属膜を成膜する第3ステップと、ワイヤに通電加熱して金属膜を多数の金属微粒子にする第4ステップと、筒状体内にエッチング用プラズマを発生させて金属微粒子をマスクにしてワイヤ表面をエッチングして針状炭素膜を生成する第5ステップと、を含むことを特徴とする。   (2) A method of manufacturing a cathode for a field emission lamp according to the second aspect of the present invention includes a vacuum chamber and a metal cylindrical body disposed in the vacuum chamber, and the plasma generating gas is provided in the cylindrical body. And applying a plasma generation voltage to generate plasma in the internal space of the cylindrical body, and using the plasma generator to place a wire made of metal on the cylindrical body, and in the cylindrical body A second step of generating a carbon film on the wire surface by generating a plasma for forming a carbon film, and a sputtering film is generated in the cylindrical body to sputter the cylindrical body to form a metal film on the surface of the carbon film. The third step of forming a film, the fourth step of energizing and heating the wire to turn the metal film into a large number of metal fine particles, and generating the etching plasma in the cylindrical body to etch the wire surface using the metal fine particles as a mask Needle shape Characterized in that it comprises a fifth step of generating Motomaku, the.

この製造方法では上記(1)の作用効果に加えてワイヤが金属であるので機械的な強度が高い、針状炭素膜を備えたワイヤ状陰極を製造することができる。   In this manufacturing method, in addition to the effect (1), a wire-like cathode having a needle-like carbon film having high mechanical strength can be produced because the wire is a metal.

筒状体の形状は何等限定されないが、例えばコイル状、円筒状、柵状、籠状、あるいは対向した2つ一対の筒体等を例示することができる。   Although the shape of a cylindrical body is not limited at all, For example, a coil shape, a cylindrical shape, a fence shape, a bowl shape, or two pairs of cylindrical bodies facing each other can be exemplified.

筒状体の周壁をコイル状や網目状とした場合、その螺旋径、螺旋ピッチを調整して筒状体の形状を調整することにより、所望密度のプラズマを発生させることができる。また、筒状体の周壁をコイル状や網目状とした場合、弾性を持たせて、プラズマ発生時に筒状体が熱膨張した場合等においては、そのコイル状や網目状の形状により熱膨張を吸収することができ、熱膨張による応力を緩和することができ、筒状体の寿命を伸ばすことができるようになる。筒状体の周壁を複数の電線により筒状体の筒軸方向に平行に円周方向等間隔に配置した柵状や籠状にした場合、筒状体と基板との間にプラズマを高効率で発生させることができるようになる。   When the peripheral wall of the cylindrical body is coiled or mesh-shaped, plasma having a desired density can be generated by adjusting the shape of the cylindrical body by adjusting the helical diameter and the helical pitch. In addition, when the cylindrical body has a coiled or mesh-like peripheral wall, it has elasticity, and when the cylindrical body thermally expands during plasma generation, the thermal expansion is caused by the coiled or mesh-like shape. It can be absorbed, stress due to thermal expansion can be relieved, and the lifetime of the cylindrical body can be extended. When the peripheral wall of the cylindrical body is made into a fence shape or a bowl shape that is arranged at equal intervals in the circumferential direction parallel to the cylindrical axis direction of the cylindrical body with a plurality of electric wires, high efficiency of plasma is generated between the cylindrical body and the substrate Can be generated at.

本発明により製造した針状炭素膜を備えたワイヤは電界放射型ランプのワイヤ状陰極(冷陰極電子源)とし、このワイヤ状陰極と対向する陽極との間の電界印加により電子放出させ、この電子を蛍光体に衝突させて該蛍光体を励起発光する電界放射型ランプに適用することができる。   A wire having a needle-like carbon film manufactured according to the present invention is used as a wire-like cathode (cold cathode electron source) of a field emission lamp, and electrons are emitted by applying an electric field between the wire-like cathode and an anode facing the cathode. The present invention can be applied to a field emission lamp that emits light by exciting electrons by colliding with the phosphor.

本発明によれば、表面に針状炭素膜を備えたワイヤ状陰極を安価にかつ高い量産性で製造することができることに加えて長尺なワイヤ状陰極をも製造することができる。   According to the present invention, in addition to being able to produce a wire-like cathode having a needle-like carbon film on its surface at low cost and with high productivity, it is also possible to produce a long wire-like cathode.

以下、添付した図面を参照して、本発明の実施の形態に係る電界放射型ランプ用陰極の製造方法を説明する。   Hereinafter, a method for manufacturing a cathode for a field emission lamp according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は同製造方法の実施に用いるプラズマ発生装置の構成を模式的に示す図である。このプラズマ発生装置10は、真空チャンバ12を備える。真空チャンバ12はガス導入口12aとガス排出口12bとを備える。真空チャンバ12の内部には金属材例えばSUS等の鉄材からなる断面円形の筒状体14が配置されている。筒状体14は、コイル構造になっている。筒状体14の内部空間には炭素からなるワイヤ16が配置されている。筒状体14は一方向にストレートに延びており、筒状体14の内部空間は一方向に長く延びる円筒形のプラズマ発生用の空間をなしている。ワイヤ16はこの内部空間に配置されて細長に延びた構造になっている。筒状体16の内周面とワイヤ16の外周面とはその延設方向に所要の空間を隔てて相対向している。筒状体14の両端はプラズマ発生用電圧源としての高周波電源18に接続されている。ワイヤ16の両端は通電加熱用電源としての交流電源20が接続され、かつ、その一端側には直流電源22の負極に接続されて直流負バイアスが印加されている。   FIG. 1 is a diagram schematically showing a configuration of a plasma generator used for carrying out the manufacturing method. The plasma generator 10 includes a vacuum chamber 12. The vacuum chamber 12 includes a gas inlet 12a and a gas outlet 12b. Inside the vacuum chamber 12, a cylindrical body 14 having a circular cross section made of a metal material such as an iron material such as SUS is disposed. The cylindrical body 14 has a coil structure. A wire 16 made of carbon is disposed in the internal space of the cylindrical body 14. The cylindrical body 14 extends straight in one direction, and the internal space of the cylindrical body 14 forms a cylindrical plasma generation space extending long in one direction. The wire 16 is disposed in this internal space and has a structure extending in an elongated shape. The inner peripheral surface of the cylindrical body 16 and the outer peripheral surface of the wire 16 are opposed to each other with a required space in the extending direction. Both ends of the cylindrical body 14 are connected to a high-frequency power source 18 as a plasma generating voltage source. Both ends of the wire 16 are connected to an AC power source 20 as a power source for energization heating, and one end thereof is connected to the negative electrode of the DC power source 22 and applied with a DC negative bias.

以上の構成を備えたプラズマ発生装置10を用いた実施の形態1の針状炭素膜の製造方法を図2を参照して説明する。   A method of manufacturing the acicular carbon film of the first embodiment using the plasma generator 10 having the above configuration will be described with reference to FIG.

まず、真空チャンバ12のガス導入口12aからスパッタ用ガスの一例としてアルゴンガスを導入する。筒状体14の両端にプラズマ発生用電圧源である高周波電源18から高周波電圧を印加する。図2(a)の断面を有するワイヤ16に直流電源22の直流負バイアスを印加する。   First, argon gas is introduced as an example of a sputtering gas from the gas inlet 12 a of the vacuum chamber 12. A high frequency voltage is applied to both ends of the cylindrical body 14 from a high frequency power source 18 which is a plasma generating voltage source. A DC negative bias of the DC power supply 22 is applied to the wire 16 having the cross section of FIG.

また、ワイヤ16の両端に交流電源の交流電圧を印加する。これによって、スパッタ用のアルゴンプラズマが発生し、このアルゴンプラズマ中に存在するアルゴンイオンにより筒状体14がターゲット材としてスパッタされ、ワイヤ16表面に金属膜(鉄膜)24が成膜される。このときのワイヤ16の一部断面を図2(b)に示す。なお、金属膜24はμmオーダー厚の薄膜であり、ワイヤ16は数mm径であるが、図2(a)ないし図2(e)は理解のため、寸法関係を無視し誇張して示している。   Further, an AC voltage of an AC power source is applied to both ends of the wire 16. Thereby, argon plasma for sputtering is generated, and the cylindrical body 14 is sputtered as a target material by argon ions existing in the argon plasma, and a metal film (iron film) 24 is formed on the surface of the wire 16. A partial cross section of the wire 16 at this time is shown in FIG. The metal film 24 is a thin film having a thickness on the order of μm, and the wire 16 has a diameter of several millimeters. However, for the sake of understanding, FIG. 2A to FIG. Yes.

次に、ワイヤ16は交流電圧の印加で加熱されていて高温であるので、成膜された金属膜24はこの加熱により多数の金属微粒子26になる。図2(c)にその様子を示す。ワイヤ16表面の金属膜24が微粒子化することにより、ワイヤ16の表面において、金属微粒子26が存在しない表面が露出する。   Next, since the wire 16 is heated by application of an alternating voltage and has a high temperature, the formed metal film 24 becomes a large number of metal fine particles 26 by this heating. This is shown in FIG. By forming the metal film 24 on the surface of the wire 16 into fine particles, the surface of the wire 16 where the metal fine particles 26 do not exist is exposed.

次に、真空チャンバ12中にアルミ材からなる筒状体14を配置し、その筒状体14内に図2(c)に示すワイヤ16を配置する。そして、真空チャンバ12にエッチング用のガスの一例である酸素ガスを導入するとともに、筒状体14の両端に高周波電源18の高周波電圧を印加し、ワイヤ16に直流電源22の直流負バイアスを印加し、ワイヤ16の両端に交流電源の交流電圧を印加する。これによって、筒状体14内にエッチング用のプラズマである酸素プラズマが発生する。このとき、筒状体14表面は薄く酸化されている。ワイヤ16は、その表面に金属微粒子26が付着している部分はエッチングされず、金属微粒子26が付着せずワイヤ16の表面が露出している部分は図2(d)で示すようにエッチングされて、金属微粒子26の下方に針状炭素膜28が生成される。金属微粒子26は針状炭素膜28上に存在してもよいが、適宜、酸処理により図2(e)で示すように除去してワイヤ16表面に針状炭素膜のみを作製することができる。   Next, a cylindrical body 14 made of an aluminum material is arranged in the vacuum chamber 12, and a wire 16 shown in FIG. 2C is arranged in the cylindrical body 14. Then, oxygen gas, which is an example of an etching gas, is introduced into the vacuum chamber 12, a high-frequency voltage of the high-frequency power source 18 is applied to both ends of the cylindrical body 14, and a DC negative bias of the DC power source 22 is applied to the wire 16. Then, an AC voltage of an AC power source is applied to both ends of the wire 16. As a result, oxygen plasma, which is plasma for etching, is generated in the cylindrical body 14. At this time, the surface of the cylindrical body 14 is thinly oxidized. The portion of the wire 16 where the metal fine particles 26 adhere to the surface is not etched, and the portion where the metal fine particles 26 do not adhere and the surface of the wire 16 is exposed is etched as shown in FIG. Thus, a needle-like carbon film 28 is generated below the metal fine particles 26. The metal fine particles 26 may be present on the acicular carbon film 28, but can be appropriately removed by acid treatment as shown in FIG. 2 (e) to produce only the acicular carbon film on the surface of the wire 16. .

次に、図3を参照して実施の形態2の製造方法を説明する。   Next, the manufacturing method of Embodiment 2 is demonstrated with reference to FIG.

実施の形態2においては、筒状体14内に金属材例えば鉄材からなるワイヤ16を配置する。図3(a)にこのワイヤ16の一部断面を示す。この配置の完了後に、筒状体14の両端に高周波電源18の高周波電圧を印加し、ワイヤ16の両端に交流電源20の交流電圧を印加し、ワイヤ16に直流電源22の直流負バイアスを印加するとともに、真空チャンバ12のガス導入口12aから炭素膜成膜用のガスの一例である炭化水素ガスと水素ガスとを導入する。これによって、筒状体14内に水素プラズマが発生し、ワイヤ16表面に炭素膜30が成膜される。この炭素膜30の成膜状態を図3(b)に示す。なお、炭素膜30はμmオーダー厚の薄膜であり、ワイヤ16は数mm径であるが、図3(a)ないし図3(f)は理解のため寸法関係を無視して誇張して示している。   In the second embodiment, a wire 16 made of a metal material such as an iron material is disposed in the cylindrical body 14. FIG. 3A shows a partial cross section of the wire 16. After this arrangement is completed, the high frequency voltage of the high frequency power supply 18 is applied to both ends of the cylindrical body 14, the AC voltage of the AC power supply 20 is applied to both ends of the wire 16, and the DC negative bias of the DC power supply 22 is applied to the wire 16. At the same time, a hydrocarbon gas and a hydrogen gas, which are examples of a carbon film forming gas, are introduced from the gas inlet 12 a of the vacuum chamber 12. As a result, hydrogen plasma is generated in the cylindrical body 14, and the carbon film 30 is formed on the surface of the wire 16. The film formation state of the carbon film 30 is shown in FIG. The carbon film 30 is a thin film having a thickness on the order of μm, and the wire 16 has a diameter of several millimeters. However, FIG. 3A to FIG. Yes.

次に、炭素膜30表面にプラズマスパッタリングにより金属膜32を成膜する。これには、真空チャンバ12のガス導入口12aからアルゴンガスを導入する。筒状体14の両端に高周波電源18の高周波電圧を印加する。ワイヤ16に直流電源22の直流負バイアスを印加する。また、ワイヤ16の両端に交流電源20の交流電圧を印加する。これによって、スパッタ用のアルゴンプラズマが発生し、このアルゴンプラズマ中に存在するアルゴンイオンにより筒状体14がターゲット材としてスパッタされ、炭素膜30表面に金属膜(鉄膜)32が成膜される。図3(c)にそのときのワイヤ16の一部断面を示す。   Next, a metal film 32 is formed on the surface of the carbon film 30 by plasma sputtering. For this purpose, argon gas is introduced from the gas inlet 12 a of the vacuum chamber 12. A high frequency voltage of a high frequency power source 18 is applied to both ends of the cylindrical body 14. A DC negative bias of the DC power supply 22 is applied to the wire 16. Further, an AC voltage of the AC power supply 20 is applied to both ends of the wire 16. As a result, sputtering argon plasma is generated, and the cylindrical body 14 is sputtered as a target material by argon ions existing in the argon plasma, and a metal film (iron film) 32 is formed on the surface of the carbon film 30. . FIG. 3C shows a partial cross section of the wire 16 at that time.

次に、ワイヤ16は交流電圧の印加で加熱されていて高温であるので、成膜された金属膜32はこの加熱により多数の金属微粒子34になる。図3(d)にその様子を示す。炭素膜30表面の金属膜32が微粒子化することにより、炭素膜30表面のうち金属微粒子34が存在しない表面が露出する。   Next, since the wire 16 is heated by application of an alternating voltage and has a high temperature, the formed metal film 32 becomes a large number of metal fine particles 34 by this heating. This is shown in FIG. By forming the metal film 32 on the surface of the carbon film 30 into fine particles, the surface of the carbon film 30 on which the metal fine particles 34 do not exist is exposed.

次に、真空チャンバ12中にアルミ材からなる筒状体14を配置し、その筒状体14内に図3(d)のワイヤ16を配置する。そして、真空チャンバ12に酸素ガスを導入するとともに、筒状体14の両端に高周波電源18の高周波電圧を印加し、ワイヤ16に直流電源22の直流負バイアスを印加し、ワイヤ16の両端に交流電源20の交流電圧を印加する。これによって、筒状体14内にエッチング用の酸素プラズマが発生する。このとき、筒状体14表面は薄く酸化されている。炭素膜30の表面に金属微粒子32が付着している部分はエッチングされず、金属微粒子32が付着せず表面が露出している炭素膜部分は図3(e)で示すようにエッチングされて、針状炭素膜36が生成される。金属微粒子34は針状炭素膜36上にそのまま存在してもよいが、適宜、酸処理により図3(f)で示すように除去し、ワイヤ16表面に針状炭素膜36のみを作製することができる。   Next, a cylindrical body 14 made of an aluminum material is disposed in the vacuum chamber 12, and the wire 16 in FIG. 3D is disposed in the cylindrical body 14. Then, oxygen gas is introduced into the vacuum chamber 12, a high frequency voltage of the high frequency power supply 18 is applied to both ends of the cylindrical body 14, a DC negative bias of the DC power supply 22 is applied to the wire 16, and AC is applied to both ends of the wire 16. An AC voltage from the power source 20 is applied. Thereby, oxygen plasma for etching is generated in the cylindrical body 14. At this time, the surface of the cylindrical body 14 is thinly oxidized. The portion where the metal fine particles 32 are attached to the surface of the carbon film 30 is not etched, and the carbon film portion where the metal fine particles 32 are not attached and the surface is exposed is etched as shown in FIG. The acicular carbon film 36 is generated. The metal fine particles 34 may exist on the acicular carbon film 36 as they are, but are appropriately removed by acid treatment as shown in FIG. 3 (f) to produce only the acicular carbon film 36 on the surface of the wire 16. Can do.

この針状炭素膜28,36について図4を参照して説明する。   The acicular carbon films 28 and 36 will be described with reference to FIG.

実施の形態の針状炭素膜28,36では、図4(a)で示すように、電界集中係数βが、上記h/rの式で表され、かつ、基部から先端部分S1に向けて半径rvが小さくなる形状を有するから、図4(b)で示す(実線曲線は実施の形態の針状炭素膜により、二点鎖線曲線はカーボンナノチューブによる)ように、印加電圧Vが増大するにつれ先端部分から矢印Aのように電界放射し、さらに印加電圧Vが増大すると、先端部分S1から遠くなる部分S2からも矢印Bのように電界放射が起こり、さらに印加電圧Vが増大すると、先端部分S1からさらに遠くなる部分S3からも矢印Cのように電界放射が起こる。 In the acicular carbon films 28 and 36 of the embodiment, as shown in FIG. 4A, the electric field concentration coefficient β is expressed by the above equation h / r, and the radius from the base portion toward the tip portion S1. since having a shape r v is small, (the needle-like carbon film of the solid curve the embodiment, the chain line curve two points by the carbon nanotubes) shown in FIG. 4 (b) as such, the applied voltage V is increased When the electric field is radiated from the tip portion as indicated by an arrow A and the applied voltage V is further increased, the electric field is emitted from the portion S2 far from the tip portion S1 as indicated by an arrow B, and when the applied voltage V is further increased, the tip portion Field emission also occurs as indicated by an arrow C from a portion S3 farther from S1.

このようにして実施の形態の針状炭素膜28,36では、印加電圧Vの増大により、電界放射電流Iが従来のように印加電圧VがV0を超えても、電界放射電流Iがカーボンナノチューブのように電流I0で飽和せず、それ以上に増大することができる炭素膜である。 In this way, in the acicular carbon films 28 and 36 of the embodiment, even when the applied voltage V exceeds V 0 as in the prior art due to the increase of the applied voltage V, the field emitted current I is carbon. It is a carbon film that does not saturate at a current I 0 and can be increased beyond that, like a nanotube.

これによって、実施の形態の針状炭素膜28,36は、例えば、電界放射型の照明ランプにおいてその発光輝度を任意の輝度に容易に制御することができるようになる。   Thereby, the acicular carbon films 28 and 36 of the embodiment can easily control the emission luminance to an arbitrary luminance in, for example, a field emission type illumination lamp.

図1は本発明の実施の形態に係る電界放射型ランプ用陰極の製造方法の実施に用いるプラズマ発生装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a plasma generating apparatus used for carrying out a manufacturing method of a field emission lamp cathode according to an embodiment of the present invention. 図2は実施の形態1の電界放射型ランプ用陰極の製造方法における各工程でのワイヤの断面図である。FIG. 2 is a cross-sectional view of the wire at each step in the method of manufacturing the cathode for the field emission lamp of the first embodiment. 図3は実施の形態2の電界放射型ランプ用陰極の製造方法における各工程でのワイヤの断面図である。FIG. 3 is a cross-sectional view of a wire at each step in the method of manufacturing a cathode for a field emission lamp according to the second embodiment. 図4は本発明の製造に係る電界放射型ランプ用陰極が備える針状炭素膜の特性の説明に供する図である。FIG. 4 is a diagram for explaining the characteristics of the acicular carbon film provided in the field emission lamp cathode according to the production of the present invention.

符号の説明Explanation of symbols

10 プラズマ発生装置
12 真空チャンバ
14 筒状体
16 ワイヤ
18 高周波電源
20 交流電源
22 直流電源
24 金属膜
26 金属微粒子
28 針状炭素膜
DESCRIPTION OF SYMBOLS 10 Plasma generator 12 Vacuum chamber 14 Tubular body 16 Wire 18 High frequency power source 20 AC power source 22 DC power source 24 Metal film 26 Metal fine particle 28 Acicular carbon film

Claims (13)

真空チャンバと、真空チャンバ内に配置される金属製の筒状体とを備え、上記筒状体にプラズマ発生用ガスを導入しかつプラズマ発生用電圧を印加して筒状体の内部空間にプラズマを発生させるプラズマ発生装置を用いて、
筒状体に炭素からなるワイヤを配置する第1ステップと、
筒状体内にスパッタ用プラズマを発生させて筒状体をスパッタリングしてワイヤ表面に金属膜を成膜する第2ステップと、
ワイヤに通電加熱して金属膜を多数の金属微粒子にする第3ステップと、
筒状体内にエッチング用プラズマを発生させ、金属微粒子をマスクにして、ワイヤ表面をエッチングして針状炭素膜を生成する第4ステップと、
を含む、ことを特徴とする電界放射型ランプ用陰極の製造方法。
A vacuum chamber and a metal cylindrical body disposed in the vacuum chamber, and a plasma generating gas is introduced into the cylindrical body and a plasma generating voltage is applied to the inner space of the cylindrical body. Using a plasma generator that generates
A first step of placing a wire made of carbon on the tubular body;
A second step of generating a plasma for sputtering in the cylindrical body to sputter the cylindrical body to form a metal film on the wire surface;
A third step of energizing and heating the wire to convert the metal film into a large number of fine metal particles;
A fourth step of generating etching plasma in the cylindrical body, etching the wire surface using the metal fine particles as a mask, and generating a needle-like carbon film;
A method for producing a cathode for a field emission lamp, comprising:
上記第2ステップにおいて、アルゴンプラズマを用いたスパッタリングである、ことを特徴とする請求項1に記載の電界放射型ランプ用陰極の製造方法。   The method of manufacturing a cathode for a field emission lamp according to claim 1, wherein the second step is sputtering using argon plasma. 上記第3ステップにおいて、酸素プラズマを用いたエッチングである、ことを特徴とする請求項1または2に記載の電界放射型ランプ用陰極の製造方法。   3. The method of manufacturing a cathode for a field emission lamp according to claim 1, wherein the third step is an etching using oxygen plasma. 上記第1ないし第3ステップにおいて、筒状体として鉄材からなる筒状体を用いる、ことを特徴とする請求項3に記載の電界放射型ランプ用陰極の製造方法。   4. The method of manufacturing a cathode for a field emission lamp according to claim 3, wherein a cylindrical body made of an iron material is used as the cylindrical body in the first to third steps. 上記第4ステップにおいて、筒状体としてアルミ材からなる筒状体を用いる、ことを特徴とする請求項3に記載の電界放射型ランプ用陰極の製造方法。   4. The method for manufacturing a cathode for a field emission lamp according to claim 3, wherein in the fourth step, a cylindrical body made of an aluminum material is used as the cylindrical body. 上記第4ステップの後、金属微粒子を酸により除去する第5ステップを含む、ことを特徴とする請求項1ないし5のいずれかに記載の電界放射型ランプ用陰極の製造方法。   6. The method for producing a cathode for a field emission lamp according to claim 1, further comprising a fifth step of removing the metal fine particles with an acid after the fourth step. 真空チャンバと、真空チャンバ内に配置される金属製の筒状体とを備え、上記筒状体にプラズマ発生用ガスを導入しかつプラズマ発生用電圧を印加して筒状体の内部空間にプラズマを発生させるプラズマ発生装置を用いて、
筒状体に金属からなるワイヤを配置する第1ステップと、
筒状体内に炭素膜成膜用のプラズマを発生させてワイヤ表面に炭素膜を成膜する第2ステップと、
筒状体内にスパッタ用のプラズマを発生させて筒状体をスパッタして炭素膜表面に金属膜を成膜する第3ステップと、
ワイヤに通電加熱して金属膜を多数の金属微粒子にする第4ステップと、
筒状体内にエッチング用プラズマを発生させ、金属微粒子をマスクにして、ワイヤ表面をエッチングして針状炭素膜を生成する第5ステップと、
を含むことを特徴とする電界放射型ランプ用陰極の製造方法。
A vacuum chamber and a metal cylindrical body disposed in the vacuum chamber, and a plasma generating gas is introduced into the cylindrical body and a plasma generating voltage is applied to the inner space of the cylindrical body. Using a plasma generator that generates
A first step of disposing a metal wire on the cylindrical body;
A second step of generating a carbon film on the wire surface by generating a plasma for forming a carbon film in the cylindrical body;
A third step of generating a plasma for sputtering in the cylindrical body to sputter the cylindrical body to form a metal film on the surface of the carbon film;
A fourth step of energizing and heating the wire to convert the metal film into a large number of fine metal particles;
A fifth step of generating etching plasma in the cylindrical body, etching the wire surface using the metal fine particles as a mask, and generating a needle-like carbon film;
A method for producing a cathode for a field emission lamp, comprising:
上記第3ステップにおいて、アルゴンプラズマを用いたスパッタリングである、ことを特徴とする請求項7に記載の電界放射型ランプ用陰極の製造方法。   8. The method of manufacturing a cathode for a field emission lamp according to claim 7, wherein the third step is sputtering using argon plasma. 上記第5ステップにおいて、酸素プラズマを用いたエッチングである、ことを特徴とする請求項7または8に記載の電界放射型ランプ用陰極の製造方法。   9. The method of manufacturing a cathode for a field emission lamp according to claim 7, wherein the fifth step is etching using oxygen plasma. 上記第1ないし第4ステップにおいて、筒状体として鉄材からなる筒状体を用いる、ことを特徴とする請求項9に記載の電界放射型ランプ用陰極の製造方法。   The method for manufacturing a cathode for a field emission lamp according to claim 9, wherein a cylindrical body made of an iron material is used as the cylindrical body in the first to fourth steps. 上記第5ステップにおいて、筒状体としてアルミ材からなる筒状体を用いる、ことを特徴とする請求項9に記載の電界放射型ランプ用陰極の製造方法。   The method for manufacturing a cathode for a field emission lamp according to claim 9, wherein in the fifth step, a cylindrical body made of an aluminum material is used as the cylindrical body. 第5ステップの後、金属微粒子を酸により除去する第6ステップを含む、ことを特徴とする請求項7ないし11のいずれかに記載の電界放射型ランプ用陰極の製造方法。   12. The method of manufacturing a cathode for a field emission lamp according to claim 7, further comprising a sixth step of removing the metal fine particles with an acid after the fifth step. プラズマ発生用電圧が、高周波電圧である、ことを特徴とする請求項1ないし12のいずれかに記載の電界放射型ランプ用陰極の製造方法。   The method for producing a cathode for a field emission lamp according to any one of claims 1 to 12, wherein the plasma generating voltage is a high-frequency voltage.
JP2005361789A 2005-12-15 2005-12-15 Method for producing cathode for field emission lamp Expired - Fee Related JP4827515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361789A JP4827515B2 (en) 2005-12-15 2005-12-15 Method for producing cathode for field emission lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361789A JP4827515B2 (en) 2005-12-15 2005-12-15 Method for producing cathode for field emission lamp

Publications (2)

Publication Number Publication Date
JP2007165178A true JP2007165178A (en) 2007-06-28
JP4827515B2 JP4827515B2 (en) 2011-11-30

Family

ID=38247854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361789A Expired - Fee Related JP4827515B2 (en) 2005-12-15 2005-12-15 Method for producing cathode for field emission lamp

Country Status (1)

Country Link
JP (1) JP4827515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198970A (en) * 2009-02-26 2010-09-09 Stanley Electric Co Ltd Method of manufacturing field emission electron source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215788A (en) * 1998-11-19 2000-08-04 Nec Corp Carbon material and its manufacture and field emission type cold cathode by using it
JP2002509339A (en) * 1997-12-15 2002-03-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ion bombarded graphite electron emitter on coated wire
JP2005307352A (en) * 2004-03-25 2005-11-04 Dialight Japan Co Ltd Apparatus for producing carbon film and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509339A (en) * 1997-12-15 2002-03-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ion bombarded graphite electron emitter on coated wire
JP2000215788A (en) * 1998-11-19 2000-08-04 Nec Corp Carbon material and its manufacture and field emission type cold cathode by using it
JP2005307352A (en) * 2004-03-25 2005-11-04 Dialight Japan Co Ltd Apparatus for producing carbon film and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198970A (en) * 2009-02-26 2010-09-09 Stanley Electric Co Ltd Method of manufacturing field emission electron source

Also Published As

Publication number Publication date
JP4827515B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
TWI404449B (en) Lighting device
JP5420835B2 (en) Plasma generator and film forming method using the same
KR20020005392A (en) Electron emitter, manufacturing method thereof and electron beam device
JP2008518759A5 (en)
US8421330B2 (en) Carbon film having shape suitable for field emission
TWI427665B (en) X-ray generation device and cathode thereof
JP2010056062A (en) Electron emitter, field emission device provided with electron emitter
JP4243693B2 (en) LIGHTING DEVICE AND BACKLIGHT DEVICE USING THE SAME
JP2005307352A (en) Apparatus for producing carbon film and production method therefor
JP4827515B2 (en) Method for producing cathode for field emission lamp
JP4565089B2 (en) Carbon film and field emission electron emission source
JP4864299B2 (en) Field electron-emitting device, method for manufacturing the same, and lighting device
JP2007055856A (en) Carbon film, electron releasing source, and electric field emission type illumination lamp
JP4919272B2 (en) Carbon nanotube forming apparatus and carbon nanotube forming method
JP4925600B2 (en) Plasma generator and film forming method using the same
JP2005255492A (en) Apparatus and method of manufacturing carbon nano-structure
TWI466595B (en) A plasma generating device and a film forming method using the same
JP2010211955A (en) Light emitting device
JP4876471B2 (en) Field electron emission source and magnetron and microwave application apparatus using the same
JP5274768B2 (en) Film forming apparatus and method for preventing abnormal discharge from occurring at cylindrical cathode used in film forming apparatus
JP5116999B2 (en) Plasma generator
JP5406748B2 (en) Field emission electron source and manufacturing method thereof
JP5063002B2 (en) Electron emitter
JP2007314908A (en) Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube
JP2007227076A (en) Field emission electron source and manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees