JP2007162144A - 炭素繊維束の製造方法 - Google Patents

炭素繊維束の製造方法 Download PDF

Info

Publication number
JP2007162144A
JP2007162144A JP2005355971A JP2005355971A JP2007162144A JP 2007162144 A JP2007162144 A JP 2007162144A JP 2005355971 A JP2005355971 A JP 2005355971A JP 2005355971 A JP2005355971 A JP 2005355971A JP 2007162144 A JP2007162144 A JP 2007162144A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
carbonization treatment
tension
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005355971A
Other languages
English (en)
Inventor
Isao Nakayama
功 中山
Masashi Ise
昌史 伊勢
Makoto Endo
真 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005355971A priority Critical patent/JP2007162144A/ja
Publication of JP2007162144A publication Critical patent/JP2007162144A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

【課題】
高い引張弾性率を有する炭素繊維を高品位で安定して供給するための炭素繊維束の製造方法を提供する。
【解決手段】
隣接して走行する複数本のポリアクリロニトリル系繊維束を、空気中200〜300℃で耐炎化し、引き続き不活性雰囲気中300〜800℃で一次炭化処理して得た繊維束を、さらに不活性雰囲気中、最高処理温度1,200〜2,000℃で二次炭化処理する炭素繊維束の製造方法であって、二次炭化処理に供する繊維束は、幅あたりトータル繊度が4,000dtex/mm以下であり、二次炭化処理するに際し、繊維束に500mg/dtex以上の張力を付与する、炭素繊維束の製造方法。
【選択図】なし

Description

本発明は、炭素繊維束の製造方法に関するものであり、特に高性能で、良好な品位を有する炭素繊維束を得ることのできる炭素繊維束の製造方法である。
炭素繊維は、その優れた力学特性および電気特性からさまざまな用途に利用されている。近年では、従来のゴルフクラブや釣竿などのスポーツ用途や航空機用途に加え、自動車部材、CNGタンク、建造物の耐震補強および船舶部材などいわゆる一般産業用途への展開が進んでいる。それに伴い、求められる力学特性のレベルも高まっている。例えば、航空機用途では、軽量化のため構造部材の多くが炭素繊維強化プラスチックに置き換えられつつあるが、使用部位が大型化するにつれ、構造部材として剛性が必要となり、より高い引張弾性率を有する炭素繊維が求められている。
ポリアクリロニトリル系炭素繊維を得る方法としては、ポリアクリロニトリル系繊維を空気中200〜300℃で耐炎化し、引き続き不活性雰囲気中300〜800℃で一次炭化処理して得た一次炭化処理繊維を、さらに不活性雰囲気中、最高処理温度1,200〜2,000℃で二次炭化処理する方法が一般的である。
炭素繊維の引張弾性率を向上させるために、二次炭化処理の最高処理温度を高める方法があるが、それにより確かに引張弾性率は向上するものの引張強度が1,500℃を境に低下してしまい、弾性率と強度のバランスの取れた炭素繊維を得ることは難しい。
そこで、耐炎化、一次炭化での焼成条件を制御し、続く二次炭化処理において高張力下で高延伸することにより、引張強度を低下させることなく引張弾性率を向上させる方法が提案されている(特許文献1、2、3、4参照)。しかし、これらの方法では二次炭化処理での張力が高いことにより、繊維同士のパッキング状態が低張力での処理と比べ、密な状態になるために繊維自体から発生する分解ガスを束から脱離することが困難となり、束内での単繊維間での二次炭化処理の程度にムラが発生しやすくなる。そして、その二次炭化処理の程度のムラが束内での単繊維間の張力のムラを引き起こし、毛羽や糸切れが発生し易くなる。すなわち、これらの方法だけでは物性の向上は可能であるが、得られる炭素繊維の品位が十分なレベルに達しているとは言えなかった。また毛羽のローラーへの巻き付きや糸切れによって生産性低下を引き起こすこともある。
高品位な炭素繊維を生産性良く製造する方法としては、一次炭化処理、二次炭化処理において、処理繊維束の扁平率を規制し、かつ隣接して走行する繊維束間に隙間を作らずに炉内に多くの処理繊維を供給する方法が提案されている(特許文献5参照)。特許文献5で提案される技術は、二次炭化処理での張力を45〜190mg/dtexという低い張力で、220〜240GPaといった低い引張弾性率の炭素繊維を得ることを目的としており、そのような低張力な炭化処理を行う場合には有効であるが、航空機用途などで必要とされている330GPa以上という高い引張弾性率を有する炭素繊維を製造する場合には、より高張力での炭化処理が必要となる。特許文献5では、繊維束間に隙間を作らずに二次炭化処理を行っており、単にかかる技術を適用したとしただけでは、毛羽や糸切れが発生し易くなり、品位の高い炭素繊維を得ることができないという問題があった。
特許1709121号公報 特許1709122号公報 特許1713506号公報 特許2667663号公報 特開2003−55843号公報
本発明の目的は、かかる現状に鑑み、引張弾性率、引張強度が共に優れた高性能な炭素繊維を製造するにあたり、毛羽や糸切れの発生を抑制し高品位な炭素繊維を得るための炭素繊維の製造方法を提供することにある。
本発明の前記した目的を達成するために、本発明の炭素繊維束の製造方法は次の構成を有する。すなわち、隣接して走行する複数本のポリアクリロニトリル系繊維束を、空気中200〜300℃で耐炎化し、引き続き不活性雰囲気中300〜800℃で一次炭化処理して得た繊維束を、さらに不活性雰囲気中、最高処理温度1,200〜2,000℃で二次炭化処理する炭素繊維束の製造方法であって、二次炭化処理に供する繊維束は、幅あたりトータル繊度が4,000dtex/mm以下であり、二次炭化処理するに際し、繊維束に500mg/dtex以上の張力を付与する、炭素繊維束の製造方法である。
本発明の炭素繊維の製造方法の好ましい態様によれば、前記二次炭化処理するに際し、隣接して走行する繊維束間の間隔を2mm以上とする他、二次炭化処理に供する繊維束は、窒素雰囲気中1,000℃で2分間熱処理したときの重量減量率が25%以下であることや、その結晶配向度が78%以上であることが好ましい。
本発明によれば、二次炭化処理での高張力処理を安定して実現することができ、それにより高性能かつ高品位な炭素繊維を製造することができる。
本発明者らは、炭素繊維の引張弾性率を向上させるために、引張強度と品位が低下することなく、如何に高延伸処理するか、二次炭化処理における挙動に着目し鋭意検討を重ねた結果、高張力下での二次炭化処理においては、繊維自体から発生する分解ガスが高張力による密なパッキング状態により繊維束からの脱離が困難となるために束内での単繊維間での二次炭化処理の程度にムラが発生しやすくなり、そして、その二次炭化処理の程度のムラが束内での単繊維間の張力のムラを引き起こし、毛羽や糸切れが発生し易くなっていることを見出し、本発明に到達した。
以下、本発明を、より詳細に説明する。
本発明では、隣接して走行する複数本のポリアクリロニトリル系繊維束を、繊維束が隣接した状態を保ちつつ、空気中200〜300℃で耐炎化し、引き続き一次炭化処理して得た繊維束を、さらに二次炭化処理する。一次炭化処理および二次炭化処理は不活性雰囲気中で行うが、用いるガスとしては、窒素、アルゴン、キセノンなどが好ましく例示でき、経済的な観点からは窒素が好ましく用いられる。二次炭化処理での最高温度は1,200〜2,000℃で行うが、好ましくは1,300〜1,700℃である。一般に炭化処理の最高温度が高いほど、得られる炭素繊維の引張弾性率が高くなるものの、引張強度は1500℃付近で極大となる。また、炭化最高温度が高くなるにつれ圧縮強度の低下が見られる。逆に最高温度が1200℃未満の場合、炭素繊維の水分率が増加するため、成形品であるコンポジットの吸水率特性が低下する問題がある。
本発明において、二次炭化処理に供する一次炭化処理後の繊維束は、幅あたりトータル繊度を4,000dtex/mm以下、好ましくは3,800dtex/mm以下、より好ましくは3,500dtex/mm以下とする。二次炭化処理に供する繊維束の幅あたりのトータル繊度が大きすぎると、束厚みが厚くなりすぎるために、二次炭化処理による分解ガスの束からの脱離が困難となり、束内での単繊維間での二次炭化処理の程度にムラが発生し、その二次炭化処理の程度のムラが束内での単繊維間の張力のムラを引き起こし、毛羽や糸切れが発生することがある。二次炭化処理に供する繊維束の幅あたりのトータル繊度の値は小さければ小さいほど束厚みが薄くなり分解ガスが脱離しやすいが、束厚みが薄くなりすぎると単繊維がローラーなどに擦過されるために巻き付きが発生し、工程通過性が低下することがあるため下限は500dtex/mm程度とするのが良い。
二次炭化処理するに際し、繊維束に付与する張力は500mg/dtex以上、好ましくは700mg/dtex以上、より好ましくは900mg/dtex以上とする。かかる張力が低すぎると、二次炭化処理に至る耐炎化処理、一次炭化処理において高張力処理を行ったとしても、二次炭化処理において繊維の配向が緩和され、本発明の目的である高性能な炭素繊維が得られない。また、かかる張力は高ければ高いほど得られる炭素繊維の引張弾性率が高まり好ましいが、処理繊維束に付与できる張力には限界があり、ポリアクリロニトリル系重合体の極限粘度や製糸条件、耐炎化条件、一次炭化処理条件によりその限界張力は異なる。そのため、二次炭化処理において繊維束に付与する張力はかかる限界張力の90%以下とすることが安定に処理するのに好ましい。
二次炭化処理するに際しては、隣接して走行する繊維束間の間隔を2mm以上、好ましくは4mm以上にするのが良い。かかる間隔が2mm未満の場合には、束の幅方向からの分解ガスの脱離が困難となり毛羽、糸切れの発生が多くなり、高品位な炭素繊維を得ることができない場合があるし、繊維束間の距離が近すぎるために隣の走行繊維束との接触により毛羽、糸切れが発生することがある。また、繊維束間の間隔は広すぎると処理装置の機幅あたりの生産性が低下するため、その上限は10mm程度とするのが好ましい。

本発明においては、二次炭化処理に供する繊維束は、窒素雰囲気中、1,000℃で2分間熱処理したときの重量減量率が25%以下、好ましくは20%以下であるのが良い。かかる重量減量率が大きすぎると、炭化処理で発生する分解ガスが多くなる、すなわち束から脱離すべき分解ガスが多くなるために、その脱離が困難となり、処理ムラ、毛羽、糸切れ発生が起こりやすくなる。またかかる重量減量率が10%未満の場合には、一次炭化処理の程度が深すぎるために二次炭化処理での高張力処理ができなくなることがある。
また本発明においては、二次炭化処理に供する繊維束は、その結晶配向度が78%以上、好ましくは80%以上であるのが良い。かかる配向度が小さすぎると、二次炭化処理を本発明の範囲である高張力下で行ったとしても、本発明の目的としている高い引張弾性率を有する炭素繊維を得ることは難しい。またかかる配向度を高めるには耐炎化処理、一次炭化処理において、より高い張力で処理すれば可能であるが、張力を高くし過ぎると糸切れが発生するため、配向度の上限としては87%程度が好ましい。
本発明の炭素繊維の製造方法について順を追ってさらに詳細に説明する。
本発明では、ポリアクリロニトリル系繊維束は、ポリアクリロニトリル系重合体を紡糸して得られる。ポリアクリロニトリル系重合体は、アクリロニトリルを好ましくは98mol%以上、より好ましくは99mol%以上と、共重合成分を好ましくは2mol%未満、より好ましくは1mol%未満とを重合されてなるものである。アクリロニトリルの重合量が少なすぎると、窒素雰囲気中、1,000℃で2分間熱処理したときの重量減量率が25%を上回ることがあり、二次炭化処理での分解ガスの発生量が多くなることがあるし、共重合成分が多くなることにより、分子の可塑性が向上するために繊維として配向緩和が起こりやすくなり、最終的に得られる炭素繊維の引張弾性率が低下することがある。
共重合成分としては、耐炎化反応を速やかに進める目的から耐炎化促進作用を有する成分を0.1mol%以上共重合することが好ましい。一方で、耐炎化促進作用を有する成分の共重合量が多くなるほど、耐炎化反応での発熱速度が大きくなり暴走反応の危険が生じることがあるため、かかる成分の共重合量は1mol%を超えない範囲とすることが好ましい。耐炎化促進作用を有する成分としては、カルボキシル基またはアミド基を一つ以上有するものが例示でき、具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサンコン酸、アクリルアミド、メタクリルアミドなどが挙げられる。耐炎化促進効果はアミド基よりもカルボキシル基の方が高いことから、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサンコン酸がより好ましい。
重合方法としては、溶液重合法、懸濁重合法、乳化重合法等が適用できるが、重合原料を均一に溶解できる有機溶媒を用いた溶液重合法が好適に用いられ、具体的な有機溶媒としては、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどが挙げられ、中でも溶解性の観点からジメチルスルホキシドが最も好ましい。
ポリアクリロニトリル系重合体の極限粘度は1.3〜5が好ましく、1.5〜4がより好ましい。極限粘度が1.3未満の低分子量になると、製糸での可紡性が低下することがある。一方、極限粘度、すなわち分子量は高いほど分子同士のつながりが強く、炭化工程で高張力での延伸ができるため引張弾性率の高い炭素繊維を得ることができるが、極限粘度が5を超える場合には、重合体のゲル化が顕著となり安定した紡糸が困難となることがある。
ポリアクリロニトリル系重合体を湿式または乾湿式紡糸法により紡糸することで炭素繊維用前駆体繊維を得る。紡糸に際し、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの該重合体が可溶な溶媒に溶解し紡糸原液とする。特に溶液重合法を用いる場合には、重合に用いる溶媒を紡糸原液に用いる溶媒を同じものにしておくと、得られた重合体を分離し溶媒に再溶解する工程が不要となり好ましい。紡糸原液中の該重合体の濃度は、原液安定性の観点から、10〜40重量%であることが好ましい。かかる紡糸原液を紡糸する前に目開き1μm以下のフィルターに通し、ポリマー原料および各工程において混入した不純物を除去することが高強度な炭素繊維を得るためには好ましい。
紡糸原液を、湿式または乾湿式紡糸法により口金から紡出し、凝固浴に導入して繊維を凝固せしめる。得られる炭素繊維前駆体繊維の緻密性を高め、また得られる炭素繊維の力学物性を高める目的からは、乾湿式紡糸法を用いることが、より好ましい。
本発明において、前記凝固浴には、紡糸原液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、前記重合体を溶解せず、かつ紡糸原液に用いる溶媒と相溶性があるものが使用でき、具体的には、水を使用するのが好ましい。
凝固浴中に導入して糸条を凝固せしめた後、必要に応じて水洗工程、浴中延伸工程、油剤付与工程、乾燥熱処理工程、スチーム延伸工程を経て、ポリアクリロニトリル系繊維束が得られる。ただし、凝固後の糸条は、水洗工程を省略して直接浴中延伸を行っても良いし、溶媒を水洗工程により除去した後に浴中延伸を行っても良い。かかる浴中延伸は、通常、30〜98℃に温調された単一又は複数の延伸浴中で1〜5倍の延伸倍率で行うことが好ましい。浴中延伸工程の後、単繊維同士の接着を防止する目的から、糸条にシリコーン等からなる油剤を付与することが好ましい。かかるシリコーンとしては、変性されたシリコーンを用いることが好ましく、耐熱性の高いアミノ変性シリコーンを用いることがより好ましい。乾燥熱処理工程での乾燥熱処理は短時間で効率よく乾燥できれば接触方式、非接触方式のどちらでも良く、単繊維同士が接着しない、かつ乾燥効率の観点から120〜190℃で行うことが好ましい。スチーム延伸工程においては、単繊維同士が接着しない、かつ延伸性の観点から120〜190℃で行うことが好ましく、延伸倍率は生産性および得られる炭素繊維の力学物性の観点から3倍以上であるのがよい。
本発明において、ポリアクリロニトリル系繊維束は、それを構成する単繊維の繊度が、0.3〜1.3dtex、好ましくは0.5〜1.0dtexであるのが良い。単繊維繊度が小さすぎると、可紡性の低下、ローラー、ガイドとの接触による糸切れ発生などにより、製糸工程および焼成工程の工程通過性が低下することがあるし、単繊維繊度が大きすぎると、耐炎化後の各単繊維における内外構造差が大きくなり、つづく一次炭化処理でのプロセス性低下や、得られる炭素繊維の引張強度、引張弾性率が低下することがある。
ポリアクリロニトリル系繊維束は、フィラメント数が10,000〜100,000であるのが好ましい。フィラメント数がかかる範囲から外れる場合、生産性が低下したり、耐炎化、一次炭化処理または二次炭化処理において均一に処理できないことがある。
本発明では、ポリアクリロニトリル系繊維束を複数本隣接して走行させて、その隣接した状態を保ったまま、耐炎化処理、一次炭化処理、二次炭化処理する。耐炎化処理する際の繊維束に付与する張力、いわゆる耐炎化張力は高いほど繊維としての配向度が高まり、続く一次炭化、二次炭化処理により得られる炭素繊維の配向度も高まるため、炭素繊維の引張弾性率を向上させるのに好ましいが、限界張力を超えてしまうと糸切れを発生し、品位および工程通過性を低下してしまう。そこで耐炎化張力は、後述の方法で測定する耐炎化限界張力A(mg/dtex)に対して0.6×A〜0.9×A、好ましくは0.63×A〜0.85×Aの範囲とするのが良い。耐炎化張力が低すぎる場合には、目的とする高い引張弾性率を有する炭素繊維が得られないことがあり、逆に高すぎる場合には、延伸限界に近い張力で工程を通過させるため、毛羽、糸切れの発生が多くなることがある。
耐炎化の時間は、処理温度に応じて適宜選択することができるが、得られる耐炎化繊維の比重が1.3〜1.5、好ましくは1.32〜1.47の範囲となるよう設定することが、続く一次炭化処理での工程通過性、および得られる炭素繊維の力学物性を向上する目的から好ましい。
耐炎化処理して得られる耐炎化繊維束を前記した条件で一次炭化処理する。一次炭化処理する際の張力は高いほど繊維としての配向度が高まり、続く二次炭化処理により得られる炭素繊維の配向度も高まるため、炭素繊維の引張弾性率を向上させるのに好ましいが、延伸限界張力を超えてしまうと糸切れを発生し、品位および工程通過性を低下してしまう。そこで一次炭化処理で繊維束に付与する張力は、後述の方法で測定する一次炭化延伸限界張力B(mg/dtex)に対して0.65×B〜0.9×B、好ましくは0.67×B〜0.85×Bの範囲で行うのが良い。かかる張力が低すぎる場合には、一次炭化処理後の繊維束において、その結晶配高度を前記した好ましい範囲とすることが難しく、目的とする高い引張弾性率を有する炭素繊維束が得られないことがあり、逆にかかる張力が高すぎる場合には、延伸限界に近い張力で工程を通過するため、毛羽、糸切れの発生が多くなることがある。
一次炭化の処理時間は、処理温度に応じて適宜選択することができるが、得られる一次炭化処理後の繊維束の比重を1.5〜1.7、好ましくは1.52〜1.7、より好ましくは1.55〜1.7とすることが重要である。一次炭化処理繊維の比重が小さすぎる場合、一次炭化処理が十分ではないために、本発明の好ましい態様である、窒素雰囲気中1,000℃で1分間熱処理したときの重量減量率が20%以下である繊維束を得ることが難しく、続く二次炭化処理での発生する分解ガスが多くなる、すなわち束から脱離すべき分解ガスが多くなるために、その脱離が困難となり、処理ムラ、毛羽、糸切れ発生が起こりやすくなる。
本発明では、このようにして得られた一次炭化処理後の繊維束を前記した条件で二次炭化処理を行い炭素繊維を製造する。
本発明においては高品位な炭素繊維を得るために二次炭化処理する際に、そこに供する繊維束の幅あたりのトータル繊度を前記した範囲となるように制御する必要がある。かかる制御の手段としては、繊維を傷つけることなく、束の厚みを薄く、束の幅を拡げる方法であれば特に限定されるものではない。例えば、所望する張力をかけた状態で走行する繊維束の走行方向に沿って多段に設けた複数本のローラーに順次接触させる方法が挙げられる。かかる方法では複数本のローラーとの接触角を適宜変えることにより所望する幅あたりのトータル繊度に制御できる。また、特開2004−225183号公報には、所望する張力をかけた状態で走行する繊維束の走行方向に沿って多段に設けた複数本のローラーに順次接触させる際に、ローラーの軸方向に振動させる横振動ローラーを用い、さらに走行方向の上下方向に振動する縦振動ローラーを用いる手段が提案されており、かかる手段は本発明においても好適に用いることができる。また、特許2555689号公報には、所望する張力をかけた状態で走行する繊維束の走行方向と交差する面内において繊維束側に凸である局面を有する曲面体に接触させながら、かかる曲面体を振動させる手段が提案されており、かかる手段も本発明において好適に用いることができる。
二次炭化処理の処理時間は、処理温度に応じて適宜選択することができるが、得られる炭素繊維束の比重が好ましくは1.76〜1.87、より好ましくは1.79〜1.86となるように設定する。かかる比重が小さすぎる場合には、二次炭化処理が不十分なために、得られる炭素繊維束において目的とする引張弾性率が発現しないことがあり、逆に大きすぎる場合には、脆性が顕著となるために擦過に弱くなり、品位および工程通過性が低下することがある。
得られた炭素繊維束はその表面改質のため、電解処理することができる。電解処理に用いる電解液には、硫酸、硝酸、塩酸等の酸性溶液や、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド、炭酸アンモニウム、重炭酸アンモニウムといったアルカリ又はそれらの塩を水溶液として使用することができる。ここで、電解処理に要する電気量は、適用する炭素繊維の炭化度に応じて適宜選択することができる。かかる電解処理により、得られる複合材料において炭素繊維とマトリックスとの接着性が適正化でき、接着が強すぎることによる複合材料のブリトルな破壊や、繊維方向の引張強度が低下する問題や、繊維方向における引張強度は高いものの、樹脂との接着性に劣り、非繊維方向における強度特性が発現しないといった問題が解消され、得られる複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。
このようにして、本発明により、引張弾性率が330GPa以上、結晶配向度が83〜90%である炭素繊維束を好適に得ることができる。引張弾性率が低すぎる炭素繊維束は、高い引張弾性率を求められている航空宇宙用途などへの用途展開には不向きである。
次に、実施例を用いて本発明をより具体的に説明する。なお、本発明で用いる各種特性の測定方法を以下にまとめて記載する。なお、各実施例および比較例で用いた実験条件、得られた測定結果を表1、2にまとめて示す。
<繊維束の幅あたりのトータル繊度>
まず、繊維束の幅をイメージセンサーを用いて測定する。イメージセンサーを二次炭化処理装置入り側直前、走行中の繊維束の上下に設置する。測定は張力が安定してからイメージセンサーの読みとりを開始する。読みとりは2秒間隔で1分間行い、読みとり時の平均値を用いた。なお、本実施例では、イメージセンサーとして、(株)キーエンス社製(センサーヘッドVG−035、コントローラーVG−300)を使用した。
そして、繊維束の単位長さあたりの重量(g/10000m=dtex)である繊維束のトータル繊度を、上記方法により求めた繊維束の幅で除して幅あたりのトータル繊度を求める。
<各処理張力>
耐炎化張力、一次炭化処理張力および二次炭化処理張力は、各処理装置の出側にて測定を行う。測定した処理繊維束1本当たりの張力(mg)を処理後の繊維束のトータル繊度(dtex)で除して処理張力(mg/dtex)とする。
<繊維の重量減量率>
測定に供する繊維を、液体窒素中で凍結粉砕した後、目開き0.5mmの篩いに通し粉体を得る。この粉体を5mg精秤し、白金製パン容器に入れる。これを示差熱・熱重量同時測定装置(以下、TG−DTA装置)を用い、次の条件で測定する。まず、TG−DTA装置の測定部を窒素雰囲気に置換して、50℃/分の昇温速度で100℃まで昇温し、5分間100℃で保持し、引き続き500℃/分の昇温速度で1,000℃まで昇温し、2分間1,000℃で保持する。そして、100℃で5分間保持した後の重量から、1,000℃で2分間保持した後の減量率を読みとり、それを重量減量率とする。なお、本実施例では、TG−DTA装置として、ブルカー社製TG−DTA2000SAを用いた。
<繊維比重>
JIS R7601(1986)記載の方法に従う。耐炎化繊維の場合、エタノールを用い、一次炭化処理後の繊維や炭素繊維の場合、オルトージクロロベンゼンを試薬として用いる。繊維を1.0〜1.5g採取し、120℃で2時間絶乾した。絶乾質量W1(g)を測定した後、比重既知(比重ρ)の前記試薬に含浸し、試薬中の繊維質量W2(g)を測定し、次式、繊維比重=(W1×ρ)/(W1−W2)により繊維比重を求める。なお、本実施例では、エタノールとオルトージクロロベンゼンには和光純薬(株)製特級を用いた。
<結晶配向度>
次のように作製される測定試料を用い、X線回折法にて下記条件にて得られる002回折線から次のような導出法により求める。なお、本実施例では、X線回折装置として(株)理学電機社製、4036A型(管球)を使用して、透過法により測定した。
A.測定試料の作製
被測定炭素繊維から、長さ4cmの試験片を切り出し、金型とコロジオン・アルコール溶液を用いて固め、角柱形状とし測定試料とする。
B.X線回折の測定条件
X線源:CuKα(Niフィルター使用)
出力 :40kV、20mA
C.002回折線から結晶配向度の導出
2θ=26°付近に観察される(002)面のピークを円周方向にスキャンして得られる強度分布の半値幅から次式を用いて算出する。
結晶配向度=(180−H)/180×100(%)
ここで、Hは見かけの半値幅(deg)である
<引張弾性率および引張強度>
JIS R7601(1986)「樹脂含浸ストランド試験法」に従って求める。測定する炭素繊維の樹脂含浸ストランドは、3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキシル−カルボキシレート(100重量部)/3フッ化ホウ素モノエチルアミン(3重量部)/アセトン(4重量部)を、炭素繊維または黒鉛化繊維に含浸させ、130℃、30分で硬化させて作製する。また、ストランドの測定本数は6本とし、各測定結果の平均値を、引張弾性率、引張強度とする。なお、本実施例では、3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキシル−カルボキシレートとして、ユニオンカーバイド(株)製”ベークライト(登録商標)”ERL4221を用いた。
<ポリアクリロニトリル系重合体の極限粘度>
120℃で2時間熱処理し乾燥したポリアクリロニトリル系重合体150mgを25℃に保持して50mlのチオシアン酸ナトリウム0.1mol/リットル添加ジメチルフォルムアミドに溶解させる。得られた溶液を、25℃の温水槽中で温調し、予め25℃に温調してあるオストワルド粘度計を用いて標線間の落下時間を1/100秒の精度で測定し、その時間をt(秒)とする。同様に、ポリアクリロニトリル系重合体を溶解していないチオシアン酸ナトリウム0.1mol/リットル添加ジメチルフォルムアミドについても測定し、その落下時間をt0(秒)とする。次式を用いて極限粘度[η]を算出する。
[η]={(1+1.32×ηsp)^(1/2)―1}/0.198
但し、
ηsp=(t/t0)−1
<限界張力の測定>
耐炎化限界張力、一次炭化処理限界張力および二次炭化処理限界張力ともに、各処理装置にて所望する処理温度で、繊維束を処理装置から引き取る速度を一定にし、処理装置へ供する速度を変更していったときに発現する張力を測定し、最大の張力をその繊維束の限界張力とする。
<毛羽数測定>
二次炭化処理における毛羽発生数を二次炭化処理装置出側にて測定する。走行中の炭素繊維束の上下に突出した5mm以上の単繊維切れを毛羽として数える。測定は100mにわたり行い、数えた毛羽数を100mで除し、毛羽数(個/m)とする。
[実施例1]
アクリロニトリル99.5モル%とイタコン酸0.5モル%とを共重合してなる共重合体をジメチルスルホキシドを溶媒とする溶液重合法により重合し、濃度22重量%、極限粘度2の紡糸原液を得た。重合後、アンモニアガスをpH8.5になるまで吹き込みイタコン酸を中和して、またアンモニウム基をポリマー成分に導入することにより紡糸原液の親水性を向上させた。得られた紡糸原液を40℃として、単孔の直径0.15mm、孔数4,000の紡糸口金を用いて一旦空気中に吐出し、約4mmの距離の空間を通過させた後、3℃にコントロールした35重量%ジメチルスルホキシド水溶液からなる凝固浴に導入する乾湿式紡糸により凝固させた。この凝固糸条を、常法により水洗した後、温水中で3.25倍に延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与して浴中延伸糸を得た。この浴中延伸糸を、170℃に加熱したローラーを用いて乾燥熱処理を行い、次に150℃の加圧スチーム中にて4倍に延伸し、全延伸倍率13倍、単繊維繊度0.7dtex、フィラメント数4,000のアクリロニトリル系繊維束を得た。
得られたアクリロニトリル系繊維束を6本合糸し、フィラメント数24,000とした上で、230〜260℃の空気中において230mg/dtexの張力下で耐炎化処理し、比重1.37の耐炎化繊維束を得た。ここで耐炎化限界張力は320mg/dtexであった。
得られた耐炎化繊維束を、続いて最高温度700℃の窒素雰囲気中、300〜700℃での昇温速度を100℃/分とし、220mg/dtexの張力下で6分間一次炭化処理し、比重1.6の繊維束を得た。ここで一次炭化処理限界張力は300mg/dtexであった。また得られた一次炭化処理後の繊維束は、それを窒素雰囲気中1,000℃で2分間熱処理したときの重量減量率が18%であり、結晶配向度が80.5%であった。
このようにして得られた一次炭化処理後の繊維束を二次炭化処理に供するにあたり、多段ローラーを用いて幅あたりのトータル繊度を3,000dtex/mmに制御し、隣接して走行する繊維束間の間隔を3mmとして二次炭化処理を行った。二次炭化処理は最高温度1500℃の窒素雰囲気中、800〜1500℃で1,200mg/dtexの張力下で行い、比重1.81の炭素繊維束を得た。この際、二次炭化処理での毛羽数は6個/mであった。
得られた炭素繊維を、硫酸水溶液中、陽極電荷処理により40クーロン/gの電荷を与える表面処理を行い、水洗した後、サイジング剤を付与し、乾燥することによって、表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例2、3]
二次炭化処理に供する一次炭化処理後の繊維束の幅あたりのトータル繊度をそれぞれ表1に示すように変更した以外は実施例1と同様にして、表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例4、5]
二次炭化処理での張力および二次炭化処理に供する一次炭化処理繊維束の幅あたりのトータル繊度をそれぞれ表1に示すように変更した以外は実施例1と同様にして、表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例6、7]
一次炭化処理の処理時間をそれぞれ4分間、2分間に変更した以外は実施例1と同様にして、表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例8、9]
耐炎化処理での張力および一次炭化処理の張力をそれぞれ表1のように変更した以外は実施例1と同様にして表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例10、11]
ポリアクリロニトリル系繊維束の単繊維繊度および耐炎化に供する際のフィラメント数をそれぞれ表1に示すように変更し、二次炭化処理に供する一次炭化処理後の繊維束の幅あたりのトータル繊度を表1に示すように変更した以外は実施例1と同様にして表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[実施例12]
一次炭化処理後の繊維束を二次炭化処理に供する際、隣接して走行する繊維束間の間隔を1mmに変更した以外は実施例1と同様にして表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[比較例1]
二次炭化処理に供する一次炭化処理後の繊維束の幅あたりのトータル繊度を表1に示すように変更した以外は実施例1と同様にして表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。二次炭化処理での毛羽数が多く、プロセス性も低下した。
[比較例2、3]
ポリアクリロニトリル系繊維束の単繊維繊度、フィラメント数をそれぞれ表1に示すように変更し、二次炭化処理に供する一次炭化処理後の繊維束の幅あたりのトータル繊度を表1に示すように変更した以外は実施例1と同様にして表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2にまとめて示す。
[比較例4]
二次炭化処理での張力を表1に示すように変更した以外は実施例1と同様にして、表面処理された炭素繊維束を得た。このようにして得られた表面処理された炭素繊維束について、引張弾性率および引張強度を測定した。各繊維束の特性を表2に示す。
Figure 2007162144
Figure 2007162144
本発明により得られる炭素繊維束は、その高い引張弾性率および良好な品位のために航空宇宙用途や産業資材用途といった大型部材として好適に用いることができる。また、釣り竿、ゴルフシャフトなどのスポーツ部材としても好適に用いることができる。

Claims (5)

  1. 隣接して走行する複数本のポリアクリロニトリル系繊維束を、空気中200〜300℃で耐炎化し、引き続き不活性雰囲気中300〜800℃で一次炭化処理して得た繊維束を、さらに不活性雰囲気中、最高処理温度1,200〜2,000℃で二次炭化処理する炭素繊維束の製造方法であって、二次炭化処理に供する繊維束は、幅あたりトータル繊度が4,000dtex/mm以下であり、二次炭化処理するに際し、繊維束に500mg/dtex以上の張力を付与する、炭素繊維束の製造方法。
  2. 二次炭化処理するに際し、隣接して走行する繊維束間の間隔を2mm以上とする、請求項1記載の炭素繊維束の製造方法。
  3. 二次炭化処理に供する繊維束は、窒素雰囲気中1,000℃で2分間熱処理したときの重量減量率が25%以下である、請求項1または2に記載の炭素繊維の製造方法。
  4. 二次炭化処理に供する繊維束は、その結晶配向度が78%以上である、請求項1〜3のいずれかに記載の炭素繊維束の製造方法。
  5. 請求項1〜4のいずれかに記載の方法で製造され、引張弾性率が330GPa以上、かつ結晶配向度が83〜90%である炭素繊維束。
JP2005355971A 2005-12-09 2005-12-09 炭素繊維束の製造方法 Pending JP2007162144A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355971A JP2007162144A (ja) 2005-12-09 2005-12-09 炭素繊維束の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355971A JP2007162144A (ja) 2005-12-09 2005-12-09 炭素繊維束の製造方法

Publications (1)

Publication Number Publication Date
JP2007162144A true JP2007162144A (ja) 2007-06-28

Family

ID=38245381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355971A Pending JP2007162144A (ja) 2005-12-09 2005-12-09 炭素繊維束の製造方法

Country Status (1)

Country Link
JP (1) JP2007162144A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174073A (ja) * 2008-01-23 2009-08-06 Toray Ind Inc 炭素繊維前駆体繊維の製造方法
US8067253B2 (en) 2005-12-21 2011-11-29 Avery Dennison Corporation Electrical device and method of manufacturing electrical devices using film embossing techniques to embed integrated circuits into film
JP2014009538A (ja) * 2012-07-02 2014-01-20 Sumitomo Rubber Ind Ltd 人工芝
JP2014141762A (ja) * 2013-01-25 2014-08-07 Toray Ind Inc 炭素繊維束およびその製造方法
JP2014141761A (ja) * 2013-01-25 2014-08-07 Toray Ind Inc 炭素繊維束およびその製造方法
JP2018111638A (ja) * 2017-01-13 2018-07-19 三菱ケミカル株式会社 炭素材料とその製造方法
US20210310158A1 (en) * 2018-11-26 2021-10-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle
US20210348305A1 (en) * 2018-09-28 2021-11-11 Toray Industries , Inc. Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067253B2 (en) 2005-12-21 2011-11-29 Avery Dennison Corporation Electrical device and method of manufacturing electrical devices using film embossing techniques to embed integrated circuits into film
JP2009174073A (ja) * 2008-01-23 2009-08-06 Toray Ind Inc 炭素繊維前駆体繊維の製造方法
JP2014009538A (ja) * 2012-07-02 2014-01-20 Sumitomo Rubber Ind Ltd 人工芝
JP2014141762A (ja) * 2013-01-25 2014-08-07 Toray Ind Inc 炭素繊維束およびその製造方法
JP2014141761A (ja) * 2013-01-25 2014-08-07 Toray Ind Inc 炭素繊維束およびその製造方法
JP2018111638A (ja) * 2017-01-13 2018-07-19 三菱ケミカル株式会社 炭素材料とその製造方法
US20210348305A1 (en) * 2018-09-28 2021-11-11 Toray Industries , Inc. Method of manufacturing stabilized fiber bundle, and method of manufacturing carbon fiber bundle
US20210310158A1 (en) * 2018-11-26 2021-10-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Similar Documents

Publication Publication Date Title
JP4957251B2 (ja) 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法、および、炭素繊維の製造方法
JP5100758B2 (ja) 炭素繊維ストランド及びその製造方法
EP2208813B1 (en) Carbon fiber strand and process for producing the same
JP6020201B2 (ja) 炭素繊維束およびその製造方法
JP6119168B2 (ja) 耐炎化繊維束の製造方法、及び、炭素繊維束の製造方法
JP2007162144A (ja) 炭素繊維束の製造方法
JP4924469B2 (ja) 炭素繊維前駆体繊維および炭素繊維の製造方法
JP5434187B2 (ja) ポリアクリロニトリル系連続炭素繊維束およびその製造方法
JP2006257580A (ja) 炭素繊維前駆体繊維用ポリアクリロニトリル系重合体および炭素繊維前駆体繊維、炭素繊維の製造方法
JP2007182657A (ja) 炭素繊維前駆体繊維用重合体組成物
JP2010100970A (ja) 炭素繊維の製造方法
JP5151809B2 (ja) 炭素繊維前駆体繊維の製造方法
JP2011042893A (ja) ポリアクリロニトリル系繊維の製造方法、および炭素繊維の製造方法
JP2014159665A (ja) 炭素繊維束の製造方法ならびに炭素繊維束
JP2011017100A (ja) 炭素繊維の製造方法
JP7341648B2 (ja) 前駆体繊維束の製造方法及び炭素繊維束の製造方法並びに炭素繊維束
JP2008308777A (ja) 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法
JP2007321267A (ja) ポリアクリロニトリル系繊維および炭素繊維の製造方法
JP2007092185A (ja) 炭素繊維前駆体繊維用ポリアクリロニトリル系重合体
JP2007182645A (ja) アクリル系繊維の製造方法
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
JP2011213774A (ja) 炭素繊維製造用ポリアクリロニトリルおよびポリアクリロニトリル系前駆体繊維および炭素繊維の製造方法。
JP2012219382A (ja) ポリアクリロニトリル系炭素繊維の前駆体繊維束の製造方法及びそれによって得られるポリアクロロニトリル系炭素繊維の前駆体繊維束
JP2007113154A (ja) 炭素繊維前駆体繊維用ポリアクリロニトリル系重合体ならびに炭素繊維前駆体繊維および炭素繊維の製造方法
JP2023146344A (ja) 炭素繊維束及び炭素繊維束の製造方法