JP2007161790A - Prepreg and fiber-reinforced composite material - Google Patents

Prepreg and fiber-reinforced composite material Download PDF

Info

Publication number
JP2007161790A
JP2007161790A JP2005357249A JP2005357249A JP2007161790A JP 2007161790 A JP2007161790 A JP 2007161790A JP 2005357249 A JP2005357249 A JP 2005357249A JP 2005357249 A JP2005357249 A JP 2005357249A JP 2007161790 A JP2007161790 A JP 2007161790A
Authority
JP
Japan
Prior art keywords
prepreg
light stabilizer
fiber
reinforced composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005357249A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
壮史 伊藤
Shunsaku Noda
俊作 野田
Nobuyuki Tomioka
伸之 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005357249A priority Critical patent/JP2007161790A/en
Publication of JP2007161790A publication Critical patent/JP2007161790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg and a fiber-reinforced composite material having excellent properties, for example, a prepreg and a fiber-reinforced composite material which can provide a golf club shaft having excellent mechanical properties and, in addition, excellent weatherability with the same processability as in the past. <P>SOLUTION: The prepreg has carbon fibers impregnated with an epoxy resin composition comprising an epoxy resin [A], a curing agent [B], and a light stabilizer [C], and the light stabilizer [C] is localized on at least one side of the prepgreg. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スポーツ用途、航空宇宙用途、一般産業用途において、高度の機械強度特性と、耐候性を発揮する繊維強化複合材料を得るためのプリプレグに関する。また、かかるプリプレグから得られた繊維強化複合材料に関する。   The present invention relates to a prepreg for obtaining a fiber-reinforced composite material exhibiting high mechanical strength characteristics and weather resistance in sports applications, aerospace applications, and general industrial applications. Moreover, it is related with the fiber reinforced composite material obtained from this prepreg.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料を製造するに当たっては、各種の方式が適用されるが、強化繊維にマトリックス樹脂が含浸されたシート状中間基材であるプリプレグを用いる方法が繁用される。この方法ではプリプレグを複数枚積層し、加熱してマトリックス樹脂を硬化させることによって繊維強化複合材料である成形体とする。   Various methods are applied to manufacture fiber-reinforced composite materials consisting of reinforcing fibers and matrix resins, but the method of using a prepreg, which is a sheet-like intermediate base material in which reinforcing fibers are impregnated with a matrix resin, is frequently used. Is done. In this method, a plurality of prepregs are laminated and heated to cure the matrix resin, thereby forming a molded body that is a fiber-reinforced composite material.

かかる繊維強化複合材料は、軽量であり、かつ力学特性に優れるために、スポーツ用途をはじめ、航空宇宙用途、一般産業用途に広く用いられている。特にスポーツ用途では、ゴルフシャフト、釣り竿、テニスやバトミントン等のラケット、ホッケー等のスティック等が主要な用途として挙げられる。   Such fiber-reinforced composite materials are widely used for sports applications, aerospace applications, and general industrial applications because they are lightweight and have excellent mechanical properties. Particularly in sports applications, golf shafts, fishing rods, rackets such as tennis and badminton, sticks such as hockey, and the like are listed as main applications.

スポーツ用途では、力学特性を高める観点から、強化繊維として炭素繊維、マトリックス樹脂としてエポキシ樹脂とからなるプリプレグを中間基材とする繊維強化複合材料が主として用いられる。   In sports applications, from the viewpoint of enhancing mechanical properties, a fiber-reinforced composite material mainly using a prepreg composed of carbon fiber as a reinforcing fiber and epoxy resin as a matrix resin is mainly used.

しかし、機械物性に優れた繊維強化複合材料を得るためには、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリイミド樹脂、シアネート樹脂、ビスマレイミド樹脂などの芳香族骨格を有するため耐候性の良くないマトリックス樹脂を使わざるを得ないので、自然光に長時間さらされる用途では遮光性のある塗装を外表面に施さざるを得ず、塗装の重量が増えてしまい、繊維強化複合材料の大きなメリットである軽量という特性を充分生かすことができなかった。中でも、ゴルフシャフト、釣り竿等は、軽量化が強く要求される用途であるが、屋外で使用するため、遮光性塗装が不可欠であり、耐候性のある繊維強化複合材料が強く求められている。   However, in order to obtain a fiber-reinforced composite material with excellent mechanical properties, it has an aromatic skeleton such as epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, polyimide resin, cyanate resin, and bismaleimide resin. The use of a matrix resin with poor properties requires the use of a light-shielding coating on the outer surface in applications where it is exposed to natural light for a long time, increasing the weight of the coating and increasing the weight of the fiber-reinforced composite material. It was not possible to take full advantage of the light weight, which is a great merit. Among them, golf shafts, fishing rods, and the like are applications that require strong weight reduction. However, since they are used outdoors, light-shielding coating is indispensable, and weather-resistant fiber-reinforced composite materials are strongly demanded.

マトリックス樹脂に耐候性をもたせるために、マトリックス樹脂中に光安定剤を添加することが一般的に行われている。しかし光安定剤は高価であり、コストアップに繋がる。また機械物性が低下するなどの問題があった。   In order to provide weather resistance to the matrix resin, it is generally performed to add a light stabilizer to the matrix resin. However, light stabilizers are expensive, leading to increased costs. There were also problems such as a decrease in mechanical properties.

そこで、これらの問題を解決する手段として例えば強化繊維とマトリックス樹脂からなる繊維強化複合材料の外表面に、一定の厚さをもった耐候性繊維強化樹脂層を配置することが提案されている(例えば特許文献1参照)。   Therefore, as a means for solving these problems, for example, it has been proposed to arrange a weather resistant fiber reinforced resin layer having a certain thickness on the outer surface of a fiber reinforced composite material composed of reinforced fibers and a matrix resin ( For example, see Patent Document 1).

しかし、この方法は耐光性繊維強化樹脂層を別途配置する必要があるため、プロセス性が悪化してしまう等の問題があった。このように機械特性、耐候性、プロセス性をすべて満足することは難しいことであり、種々の試みがなされてはいるものの、満足し得る解決策は未だ見出されていないのが現状である。
特開2002−103500号公報(第1頁)
However, this method has a problem that processability is deteriorated because a light-resistant fiber-reinforced resin layer needs to be separately disposed. Thus, it is difficult to satisfy all of the mechanical properties, weather resistance, and processability. Although various attempts have been made, no satisfactory solution has yet been found.
JP 2002-103500 A (first page)

本発明の目的は、前述した従来の問題を解決し、優れた特性をもつプリプレグおよび繊維強化複合材料、例えば、機械特性に優れながら、耐候性に優れたゴルフクラブ用シャフトを、従来同様のプロセス性で提供できるプリプレグおよび繊維強化複合材料を提供することにある。   An object of the present invention is to solve the above-mentioned conventional problems, and to produce a prepreg and a fiber reinforced composite material having excellent characteristics, for example, a golf club shaft having excellent mechanical properties and excellent weather resistance, as in the conventional process. It is to provide a prepreg and a fiber-reinforced composite material that can be provided by the nature.

本発明のプリプレグは上記目的を達成するために次の構成を有する。すなわち、エポキシ樹脂[A]、硬化剤[B]および光安定剤[C]を含むエポキシ樹脂組成物が炭素繊維に含浸されており、光安定剤[C]がプリプレグの少なくとも片面に局在化していることを特徴とするプリプレグである。   In order to achieve the above object, the prepreg of the present invention has the following configuration. That is, the epoxy resin composition containing the epoxy resin [A], the curing agent [B], and the light stabilizer [C] is impregnated in the carbon fiber, and the light stabilizer [C] is localized on at least one side of the prepreg. It is a prepreg characterized by having.

本発明によれば、以下に説明するとおり、成形したときに力学特性および耐候性に優れた繊維強化複合材料およびプリプレグを得ることができる。   According to the present invention, as described below, a fiber-reinforced composite material and a prepreg excellent in mechanical properties and weather resistance when molded can be obtained.

本発明には構成要素[A]としてエポキシ樹脂を含むことが必要である。構成要素[A]のエポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物、即ち、2官能以上のエポキシ樹脂が好ましい。具体的には、ポリオールから得られるグリシジルエーテル、分子内に活性水素を複数個有するアミンより得られるグリシジルアミン、ポリカルボン酸より得られるグリシジルエステル、分子内に複数の2重結合を有する化合物を酸化して得られるポリエポキシド等が挙げられる。   In the present invention, it is necessary to include an epoxy resin as the component [A]. As the epoxy resin of component [A], a compound having two or more epoxy groups in the molecule, that is, a bifunctional or higher functional epoxy resin is preferable. Specifically, glycidyl ether obtained from polyol, glycidyl amine obtained from amine having a plurality of active hydrogens in the molecule, glycidyl ester obtained from polycarboxylic acid, compound having a plurality of double bonds in the molecule are oxidized. And polyepoxide obtained.

これらの中でも本発明においては、分子内に2個のエポキシ基を有する2官能エポキシ樹脂を使用することがさらに好ましい。2官能エポキシ樹脂は、架橋密度を低くし架橋点間の距離を大きくすることにより、樹脂硬化物の圧縮歪みが高められる。さらにはエポキシ樹脂組成物に含まれる全エポキシ樹脂100重量%中、室温で液体の2官能エポキシ樹脂が40〜70重量%含まれることが好ましい。室温で液体の2官能エポキシ樹脂はエポキシ樹脂組成物の粘度を下げ、加工性を向上させることができる。室温で液体の2官能エポキシ樹脂の市販品としては、”エピコート”(登録商標)825、”エピコート”827、”エピコート”828、”エピコート”806(以上、ジャパンエポキシレジン(株)社製)、”エポトート”(登録商標)YD128、”エポトート”YDF170(以上、東都化成(株)社製)、”エピクロン”(登録商標)840、”エピクロン”850、”エピクロン”830(以上、大日本インキ化学工業(株)社製)等が挙げられる。室温で液体の2官能エポキシ樹脂が40重量%より少ないと、エポキシ樹脂組成物の粘度が高くなり過ぎる場合がある。また70重量%より多いと架橋密度が高くなり、樹脂硬化物の圧縮歪みが低下し、例えばゴルフシャフト等といった繊維強化複合材料製管状体の強度が低下する場合がある。   Among these, in the present invention, it is more preferable to use a bifunctional epoxy resin having two epoxy groups in the molecule. In the bifunctional epoxy resin, the compression strain of the cured resin is increased by lowering the crosslinking density and increasing the distance between the crosslinking points. Furthermore, it is preferable that 40 to 70% by weight of a bifunctional epoxy resin which is liquid at room temperature is contained in 100% by weight of the total epoxy resin contained in the epoxy resin composition. A bifunctional epoxy resin that is liquid at room temperature can lower the viscosity of the epoxy resin composition and improve processability. Commercially available bifunctional epoxy resins that are liquid at room temperature include “Epicoat” (registered trademark) 825, “Epicoat” 827, “Epicoat” 828, “Epicoat” 806 (above, manufactured by Japan Epoxy Resins Co., Ltd.), "Epototo" (registered trademark) YD128, "Epototo" YDF170 (above, manufactured by Tohto Kasei Co., Ltd.), "Epicron" (registered trademark) 840, "Epicron" 850, "Epicron" 830 (above, Dainippon Ink and Chemicals, Inc.) Kogyo Co., Ltd.). If the amount of the bifunctional epoxy resin that is liquid at room temperature is less than 40% by weight, the viscosity of the epoxy resin composition may become too high. On the other hand, if it exceeds 70% by weight, the crosslink density increases, the compressive strain of the cured resin decreases, and the strength of the fiber-reinforced composite material tubular body such as a golf shaft may decrease.

また本発明には構成要素[B]として硬化剤を含むことが必要である。硬化剤として、4,4’−ジアミノジフェニルメタンのような活性水素を有するアミン、ジメチルアニリンのような活性水素を有しない第三アミン、ジシアンジアミド、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、ポリカルボン酸ヒドラジド、ノボラック樹脂等のポリフェノール化合物、ルイス酸錯体、芳香族スルホニウム塩等を使用することができる。ジシアンジアミドの市販品としては、例えばDICY7(ジャパンエポキシレジン(株)社製)などを挙げることができる。   In the present invention, it is necessary to include a curing agent as the component [B]. Curing agents include amines having active hydrogen such as 4,4′-diaminodiphenylmethane, tertiary amines having no active hydrogen such as dimethylaniline, dicyandiamide, and carboxylic acid anhydrides such as methylhexahydrophthalic anhydride. Polycarboxylic acid hydrazides, polyphenol compounds such as novolac resins, Lewis acid complexes, aromatic sulfonium salts, and the like can be used. Examples of commercially available dicyandiamide include DICY7 (manufactured by Japan Epoxy Resin Co., Ltd.).

これらの硬化剤には、硬化活性を高めるために適当な硬化助剤を組合わせ使用することができる。好ましい例としては、ジシアンジアミドに、3−フェニル−1,1−ジメチル尿素、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素のような尿素誘導体を硬化助剤として組合わせる例、カルボン酸無水物やノボラック樹脂に第三アミンを硬化助剤として組合わせる例等が挙げられる。(3,4−ジクロロフェニル)−1,1−ジメチル尿素の市販品としては、DCMU99(保土ヶ谷化学工業(株)社製)等を挙げることができる。   These curing agents can be used in combination with an appropriate curing aid in order to increase the curing activity. Preferred examples include a combination of dicyandiamide and a urea derivative such as 3-phenyl-1,1-dimethylurea and 3- (3,4-dichlorophenyl) -1,1-dimethylurea as a curing aid. Examples include combining an acid anhydride or a novolac resin with a tertiary amine as a curing aid. Examples of commercially available (3,4-dichlorophenyl) -1,1-dimethylurea include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.).

また、本発明には構成要素[C]として光安定剤を含むことが必要である。光安定剤としては、太陽光線及び蛍光灯などの光エネルギーを吸収して、無害な熱エネルギーに変換する紫外線吸収剤と、光酸化劣化で生成するラジカルを捕捉するヒンダードアミン系光安定剤がある。紫外線吸収剤としてはベンゾトリアゾール系誘導体、ベンゾフェノン系誘導体等を使用することができる。ベンゾトリアゾール系誘導体の市販品としては例えば”アデカスタブ”(登録商標)LA−32(旭電化工業(株)社製)、ベンゾフェノン系誘導体の市販品としては例えば”アデカスタブ”LA−51(旭電化工業(株)社製)などを挙げることができる。ヒンダードアミン系光安定剤としては例えば”アデカスタブ”LA−52(旭電化工業(株)社製)などを挙げることができる。また最近では、光酸化劣化で生成するラジカルを捕捉する性質をもつナノ材料を光安定剤として使用することができる。   In the present invention, it is necessary to contain a light stabilizer as the component [C]. As light stabilizers, there are ultraviolet absorbers that absorb light energy such as sunlight and fluorescent lamps and convert them into harmless heat energy, and hindered amine light stabilizers that trap radicals generated by photooxidation degradation. As the ultraviolet absorber, benzotriazole derivatives, benzophenone derivatives and the like can be used. Examples of commercially available benzotriazole derivatives include “ADK STAB” (registered trademark) LA-32 (manufactured by Asahi Denka Kogyo Co., Ltd.). Examples of commercially available products of benzophenone derivatives include “ADEKA STAB” LA-51 (Asahi Denka Kogyo). For example). Examples of the hindered amine light stabilizer include “ADK STAB” LA-52 (manufactured by Asahi Denka Kogyo Co., Ltd.). Recently, nanomaterials having the property of capturing radicals generated by photooxidation degradation can be used as light stabilizers.

ナノ材料としては例えばフラーレン類やカーボンナノチューブ(以下、CNT)、気相法炭素繊維(以下、VGCF)類を使用することができる。ナノ材料は耐光性だけでなく、マトリックス樹脂の機械物性も向上させることができるため好ましい。フラーレンの市販品としては例えば”ナノムミックス”(登録商標)(フロンティアカーボン(株)社製)などを挙げることができる。CNTの市販品としては例えばCN−20(カーボン・ナノテク・リサーチ・インスティチュート社製)などを挙げることができる。VGCFの市販品としては例えばVGCF−H(昭和電工(株)社製)などを挙げることができる。   As the nanomaterial, for example, fullerenes, carbon nanotubes (hereinafter referred to as CNT), and vapor grown carbon fibers (hereinafter referred to as VGCF) can be used. Nanomaterials are preferable because they can improve not only light resistance but also mechanical properties of the matrix resin. As a commercial product of fullerene, for example, “Nanomumix” (registered trademark) (manufactured by Frontier Carbon Co., Ltd.) and the like can be mentioned. Examples of commercially available CNTs include CN-20 (manufactured by Carbon Nanotech Research Institute). Examples of commercially available VGCF include VGCF-H (manufactured by Showa Denko KK).

また、本発明では光安定剤[C]がプリプレグの片面に局在化していることが必要である。局在化している面を繊維強化複合材料の最外層に配することにより、紫外線が繊維強化複合材料内部に入り込み、エポキシ樹脂の劣化を抑制することができる。局在化の程度としては光安定剤[C]をプリプレグ表層から0〜0.05mmの範囲に局在化させることが好ましい。0.05mmよりも内部に局在化させると、耐光性が低下したり、光安定剤[C]の粒子が炭素繊維束内に入り込み、炭素繊維のアライメントを乱し、物性が低下する可能性がある。光安定剤[C]がプリプレグ表層から0〜0.03mmの範囲に局在化させることがより好ましい。また、光安定剤[C]はエポキシ樹脂組成物に融解せずに粒子状態で存在し、その数平均粒径が0.3〜10μmであることが好ましい。数平均粒径がこの範囲にあることで、エポキシ樹脂を炭素繊維に含浸させたときに、光安定剤[C]を炭素繊維束のフィルター効果でプリプレグ表層に局在化させることができる。   In the present invention, the light stabilizer [C] needs to be localized on one side of the prepreg. By arranging the localized surface in the outermost layer of the fiber reinforced composite material, ultraviolet rays can enter the fiber reinforced composite material, and deterioration of the epoxy resin can be suppressed. As the degree of localization, the light stabilizer [C] is preferably localized in the range of 0 to 0.05 mm from the prepreg surface layer. When localized in the interior of more than 0.05 mm, the light resistance may decrease, or the particles of the light stabilizer [C] may enter the carbon fiber bundle, disturb the alignment of the carbon fiber, and the physical properties may decrease. There is. More preferably, the light stabilizer [C] is localized in the range of 0 to 0.03 mm from the prepreg surface layer. Moreover, it is preferable that the light stabilizer [C] exists in a particle | grain state, without melt | dissolving in an epoxy resin composition, and the number average particle diameter is 0.3-10 micrometers. When the number average particle diameter is within this range, when the carbon fiber is impregnated with the epoxy resin, the light stabilizer [C] can be localized on the prepreg surface layer by the filter effect of the carbon fiber bundle.

数平均粒径が0.3μmより小さいと、光安定剤[C]が炭素繊維束内部に入り込み、プリプレグ表層に効率良く局在化させることができない可能性がある。また数平均粒径が10μmより大きいと粒子が大きすぎ、プリプレグ表層に一様に分散せず、耐光性が低下する可能性がある。光安定剤[C]の平均粒径が0.5〜5μmであることがより好ましい。   When the number average particle size is smaller than 0.3 μm, the light stabilizer [C] may enter the carbon fiber bundle and may not be localized efficiently on the prepreg surface layer. On the other hand, if the number average particle size is larger than 10 μm, the particles are too large and are not uniformly dispersed in the prepreg surface layer, which may reduce the light resistance. The average particle diameter of the light stabilizer [C] is more preferably 0.5 to 5 μm.

また、プリプレグ中の炭素繊維含有率が70〜85重量%であることが好ましい。炭素繊維含有率が70重量%未満であると、フィルター効果が小さくなり、効率良く光安定剤[C]を表層に局在化させることができなくなる。また85重量%よりも大きくなると、マトリックス樹脂量が少なすぎ、未含浸部分が発生し物性が低下したり、取り扱い性が悪化する可能性がある。また構成要素[C]がナノ材料であることが好ましい。ナノ材料は少量の添加でエポキシ樹脂の物性を向上させることが知られている。そのため粒径の大きなナノ材料はプリプレグ表層に局在化、耐光性を付与し、粒径の小さなナノ材料はプリプレグ内部に入り込み、物性を向上させる効果がある。また構成要素[C]は構成要素[A]100重量部に対し、0.02〜10重量部配合することが好ましい。0.02重量部より少ないと、耐光性が低下する可能性がある。一方、10重量部より多いと、タックが低下するなどの取り扱い性が低下する可能性がある。   Moreover, it is preferable that the carbon fiber content rate in a prepreg is 70 to 85 weight%. When the carbon fiber content is less than 70% by weight, the filter effect is reduced, and the light stabilizer [C] cannot be localized on the surface layer efficiently. On the other hand, if it exceeds 85% by weight, the amount of the matrix resin is too small, and an unimpregnated portion may be generated, resulting in a decrease in physical properties or a deterioration in handleability. Moreover, it is preferable that component [C] is a nanomaterial. Nanomaterials are known to improve the physical properties of epoxy resins when added in small amounts. Therefore, the nanomaterial having a large particle size is localized in the prepreg surface layer and imparts light resistance, and the nanomaterial having a small particle size penetrates into the prepreg and has an effect of improving physical properties. Moreover, it is preferable to mix | blend 0.02-10 weight part of component [C] with respect to 100 weight part of component [A]. If it is less than 0.02 parts by weight, the light resistance may be lowered. On the other hand, when the amount is more than 10 parts by weight, handleability such as a decrease in tack may be deteriorated.

本発明のプリプレグを得る方法としては前記エポキシ樹脂組成物を加熱することにより低粘度化して強化繊維に含浸させるホットメルト法等を挙げることができる。ホットメルト法では、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させるか、又はエポキシ樹脂組成物を離型紙等の上にコーティングしたフィルムを作製した後、強化繊維の両側又は片側から該フィルムを重ね、加熱加圧することにより樹脂を含浸させることによりプリプレグが得られる。このホットメルト法は、プリプレグ中に溶媒が残留することがないため好ましい。また、炭素繊維にエポキシ樹脂を含浸させる際に、炭素繊維に50〜400g/糸条の張力をかけることが好ましい。張力が50g/糸条よりも小さいと、炭素繊維のアライメントが乱れたり、光安定剤[C]を局在化できなくなる可能性がある。400g/糸条よりも大きいと、毛羽が発生したり、さらには炭素繊維束が切れたりする可能性がある。炭素繊維に100〜300g/糸条の張力をかけることがより好ましい。   Examples of the method for obtaining the prepreg of the present invention include a hot melt method in which the epoxy resin composition is heated to lower the viscosity and impregnated into the reinforcing fibers. In the hot melt method, a reinforcing fiber is impregnated directly with an epoxy resin composition whose viscosity has been reduced by heating, or a film in which an epoxy resin composition is coated on release paper or the like is prepared, and then both sides or one side of the reinforcing fiber. The prepreg is obtained by stacking the film and impregnating the resin by heating and pressing. This hot melt method is preferable because no solvent remains in the prepreg. Moreover, when impregnating the carbon fiber with the epoxy resin, it is preferable to apply a tension of 50 to 400 g / yarn to the carbon fiber. If the tension is less than 50 g / yarn, the alignment of the carbon fibers may be disturbed, and the light stabilizer [C] may not be localized. When it is larger than 400 g / yarn, fluff may be generated, and further, the carbon fiber bundle may be cut. It is more preferable to apply a tension of 100 to 300 g / yarn to the carbon fiber.

本発明における繊維強化複合材料は、前記プリプレグを硬化せしめて得ることができる。プリプレグを成形・硬化する方法としては特に限定されず、従来公知の方法も用いることができる。具体的には、特にゴルフシャフト、釣り竿、ラケット等のスポーツ用部材の製造に適した方法として、プリプレグを積層し、積層物に圧力を付与しながら樹脂を加熱し、硬化させて成形する方法等により製造できる。また、耐候性の面から、本発明のプリプレグをゴルフシャフトもしくは釣竿の最外層に配することが好ましい。   The fiber-reinforced composite material in the present invention can be obtained by curing the prepreg. The method for molding and curing the prepreg is not particularly limited, and a conventionally known method can also be used. Specifically, as a method suitable for manufacturing sports members such as golf shafts, fishing rods, rackets, etc., a method of laminating a prepreg and heating and curing the resin while applying pressure to the laminate, etc. Can be manufactured. From the viewpoint of weather resistance, it is preferable to dispose the prepreg of the present invention on the outermost layer of the golf shaft or fishing rod.

熱及び圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等があり、特にスポーツ用品に関しては、ラッピングテープ法、内圧成形法が好ましく適用される。ラッピングテープ法は、マンドレル等の芯金にプリプレグを巻いて、管状体を成形する方法である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグの固定及び圧力付与のために、プリプレグの外側に熱可塑性樹脂フィルムからなるラッピングテープを巻き付け、オーブン中で樹脂を加熱し、硬化させた後、芯金を抜き去って管状体とする方法である。   Examples of methods for applying heat and pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, etc. Especially for sports goods, the wrapping tape method and the internal pressure molding method are preferably applied. The The wrapping tape method is a method of forming a tubular body by winding a prepreg around a mandrel or other core metal. Specifically, a prepreg is wound around a mandrel, a wrapping tape made of a thermoplastic resin film is wound around the outside of the prepreg for fixing and applying pressure, and the resin is heated and cured in an oven. This is a method of removing gold and forming a tubular body.

以下、本発明を実施例により詳細に説明する。実施例中、プリプレグの作製、繊維強化複合材料の作製、繊維強化複合材の物性測定、光安定剤[C]の体積%、数平均粒径の測定は次の方法で行った。なお、物性測定はすべて温度23℃、相対湿度50%の環境で行った。   Hereinafter, the present invention will be described in detail with reference to examples. In the examples, preparation of prepreg, preparation of fiber reinforced composite material, measurement of physical properties of fiber reinforced composite material, volume% of light stabilizer [C], and measurement of number average particle diameter were performed by the following methods. All physical properties were measured in an environment at a temperature of 23 ° C. and a relative humidity of 50%.

(1)プリプレグの作製
表1に示す樹脂組成物原料をニーダーで混練し、ポリビニルホルマールが均一に溶解した樹脂組成物を得た。得られたエポキシ樹脂組成物をリバースロールコーターを用いて離型紙上に塗布し、樹脂フィルムを作製した。さらに、表1に示す樹脂組成物原料から、光安定剤[C]を除いた原料をニーダーで混練し、同様に樹脂フィルムを作製した。次に、シート状に一方向に整列させた炭素繊維に、片面から光安定剤[C]を含んだ樹脂フィルムを、もう片面から光安定剤[C]を除いた樹脂フィルムを重ね、炭素繊維に表1に示す張力をかけながら、加熱加圧して樹脂を含浸せしめ、一方向プリプレグを作製した。
(1) Preparation of prepreg The resin composition raw materials shown in Table 1 were kneaded with a kneader to obtain a resin composition in which polyvinyl formal was uniformly dissolved. The obtained epoxy resin composition was apply | coated on the release paper using the reverse roll coater, and the resin film was produced. Furthermore, from the resin composition raw materials shown in Table 1, raw materials excluding the light stabilizer [C] were kneaded with a kneader to similarly produce a resin film. Next, a carbon film aligned in one direction in a sheet shape is overlaid with a resin film containing the light stabilizer [C] from one side and a resin film from which the light stabilizer [C] is removed from the other side, and carbon fiber While applying the tension shown in Table 1, the resin was impregnated by heating and pressing to prepare a unidirectional prepreg.

(2)繊維強化複合材料の作製
上記(1)項に示す方法で作製した一方向プリプレグを、炭素繊維の方向が同一になるよう10枚積層し、オートクレーブを用いて温度130℃、圧力290Paで2時間、加熱加圧して硬化させ、繊維強化複合材料を作製した。
(2) Production of fiber reinforced composite material Ten unidirectional prepregs produced by the method shown in the above (1) are laminated so that the directions of the carbon fibers are the same, and the temperature is 130 ° C. and the pressure is 290 Pa using an autoclave. It was cured by heating and pressing for 2 hours to produce a fiber reinforced composite material.

(3)繊維強化複合材料中に存在する光安定剤[C]の局在状態観察
上記(2)項に示す方法で作製した繊維強化複合材料の縦断面を、日立株式会社製system S−4100走査型電子顕微鏡(SEM)を用いて、以下の測定条件にて観察し、プリプレグ1層の中の光安定剤[C]の局在状態を確認した。
(3) Localized state observation of light stabilizer [C] present in fiber reinforced composite material A longitudinal section of the fiber reinforced composite material produced by the method described in the above item (2) is system S-4100 manufactured by Hitachi, Ltd. Using a scanning electron microscope (SEM), observation was made under the following measurement conditions, and the localized state of the light stabilizer [C] in the prepreg 1 layer was confirmed.

加速電圧:3kV
蒸着:Pt−Pd 約4μm
繊維強化複合材料の縦断面を写真撮影した画像を、濃淡の違いを利用することにより、光安定剤[C]とそれ以外の部分に分けることにより、光安定剤[C]の体積%を求めた。また、光安定剤[C]の体積%は光安定剤[C]が局在化しているプリプレグ表層とそれ以外の部分それぞれについて算出し、比較した。
Acceleration voltage: 3 kV
Deposition: Pt-Pd approx. 4μm
The volume percent of the light stabilizer [C] is obtained by dividing the image obtained by taking a photograph of the longitudinal section of the fiber reinforced composite material into the light stabilizer [C] and the other parts by using the difference in shading. It was. Further, the volume% of the light stabilizer [C] was calculated and compared for each of the prepreg surface layer where the light stabilizer [C] was localized and the other portions.

(4)樹脂硬化物中に存在する光安定剤[C]の数平均粒径測定
上記(1)にて得られたエポキシ樹脂組成物を80℃に加熱して真空ポンプにて脱泡後、モールドに注入し、130℃で90分間加熱処理することにより、樹脂硬化物の板を作製した。得られたエポキシ樹脂硬化物の断面を上記(4)と同じ方法で観察した。プリプレグ表層に存在する光安定剤[C]100個の粒径を測定し、数平均粒径を求めた。
(4) Measurement of the number average particle diameter of the light stabilizer [C] present in the cured resin product After heating the epoxy resin composition obtained in (1) above to 80 ° C. and defoaming with a vacuum pump, A cured resin plate was prepared by pouring into a mold and heat treatment at 130 ° C. for 90 minutes. The cross section of the obtained cured epoxy resin was observed by the same method as (4) above. The particle size of 100 light stabilizers [C] present in the prepreg surface layer was measured, and the number average particle size was determined.

(5)面内剪断強度の測定
JIS K7079(1991)に従い、面内剪断強度を測定した。試験数はn=5とし平均値を面内剪断強度とした。尚、試験機としては引張試験機インストロン1185を用いた。試験片は上記方法により、プリプレグを炭素繊維の方向が±45°になるように積層した繊維強化複合材料を用い、サイズは下記の通りとした。
(5) Measurement of in-plane shear strength In-plane shear strength was measured according to JIS K7079 (1991). The number of tests was n = 5, and the average value was the in-plane shear strength. As a tester, a tensile tester Instron 1185 was used. The test piece was a fiber reinforced composite material obtained by laminating a prepreg so that the direction of carbon fiber was ± 45 ° by the above method, and the size was as follows.

厚み:2.0±1.0mm
幅:25.0±1.0mm
長さ:237.0±10.0mm
(6)耐候性試験
上記(5)項に示す方法で作製した繊維強化複合材料をISO4892−4(2004)に従い1000時間促進耐候試験を行った。
Thickness: 2.0 ± 1.0mm
Width: 25.0 ± 1.0mm
Length: 237.0 ± 10.0mm
(6) Weather resistance test The fiber reinforced composite material produced by the method described in the above section (5) was subjected to a 1000-hour accelerated weather resistance test according to ISO4892-4 (2004).

(実施例1〜6)
表1に示す樹脂組成物を調合し、前記(1)の方法に従い、プリプレグを作製し、前記(2)の方法に従い、繊維強化複合材料を作製した。また、前記(3)の方法に従い光安定剤[C]の体積%を測定した。また、前記(4)の方法に従い、光安定剤[C]の数平均粒径を測定した。さらに、前記(5)の方法に従い、面内剪断強度を、前記(6)の方法に従った耐候性試験の前後で測定した。エポキシ樹脂の組成、及びプリプレグ、繊維強化複合材料の測定結果を表1に示す。本実施例のプリプレグから得られる繊維強化複合材料は、いずれも優れた耐候性を示した。
(Examples 1-6)
The resin composition shown in Table 1 was prepared, a prepreg was produced according to the method (1), and a fiber-reinforced composite material was produced according to the method (2). Further, volume% of the light stabilizer [C] was measured according to the method of (3). Further, the number average particle diameter of the light stabilizer [C] was measured according to the method (4). Further, according to the method (5), the in-plane shear strength was measured before and after the weather resistance test according to the method (6). Table 1 shows the composition of the epoxy resin and the measurement results of the prepreg and the fiber reinforced composite material. The fiber reinforced composite materials obtained from the prepregs of this example all exhibited excellent weather resistance.

(比較例1)
表1に示す樹脂組成を調合した以外は実施例1と同様にプリプレグおよび繊維強化複合材料を得た。実施例1と同様に各特性値を測定したところ表1に示す結果となった。本比較例のプリプレグから得られる繊維強化複合材料は、光安定剤[C]が表層に局在化しておらず、耐候性は実施例と比較して低下した。
(Comparative Example 1)
A prepreg and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the resin composition shown in Table 1 was prepared. Each characteristic value was measured in the same manner as in Example 1, and the results shown in Table 1 were obtained. In the fiber reinforced composite material obtained from the prepreg of this comparative example, the light stabilizer [C] was not localized on the surface layer, and the weather resistance was lower than that of the example.

Figure 2007161790
Figure 2007161790

Claims (8)

エポキシ樹脂[A]、硬化剤[B]および光安定剤[C]を含むエポキシ樹脂組成物が炭素繊維に含浸されており、光安定剤[C]がプリプレグの少なくとも片面に局在化していることを特徴とするプリプレグ。   An epoxy resin composition containing an epoxy resin [A], a curing agent [B], and a light stabilizer [C] is impregnated in carbon fiber, and the light stabilizer [C] is localized on at least one surface of the prepreg. A prepreg characterized by that. プリプレグの表面から0〜0.05mmの範囲に存在する光安定剤[C]の体積%が、プリプレグ表面から0.05mmを越える内部に存在する光安定剤[C]の体積%よりも多いことを特徴とする請求項1記載のプリプレグ。   The volume% of the light stabilizer [C] existing in the range of 0 to 0.05 mm from the surface of the prepreg is larger than the volume% of the light stabilizer [C] existing inside 0.05 mm from the prepreg surface. The prepreg according to claim 1. 光安定剤[C]の数平均粒径が0.3〜10μmであることを特徴とする請求項1または2記載のプリプレグ。   The prepreg according to claim 1 or 2, wherein the light stabilizer [C] has a number average particle size of 0.3 to 10 µm. 炭素繊維含有率が70〜85重量%であることを特徴とする請求項1〜3のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 3, wherein the carbon fiber content is 70 to 85% by weight. 光安定剤[C]がナノ材料であることを特徴とする請求項1〜4のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 4, wherein the light stabilizer [C] is a nanomaterial. エポキシ樹脂[A]100重量部に対し、光安定剤[C]が0.02〜10重量部配合されていることを特徴とする請求項1〜5のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 5, wherein 0.02 to 10 parts by weight of the light stabilizer [C] is blended with respect to 100 parts by weight of the epoxy resin [A]. 請求項1〜6のいずれかに記載のプリプレグが最外層に配置された繊維強化複合材料。 A fiber-reinforced composite material in which the prepreg according to claim 1 is disposed in an outermost layer. 光安定剤[C]が局在化している面が繊維強化複合材料の外側を向くように配置された請求項7記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 7, wherein the surface on which the light stabilizer [C] is localized is arranged so as to face the outside of the fiber-reinforced composite material.
JP2005357249A 2005-12-12 2005-12-12 Prepreg and fiber-reinforced composite material Pending JP2007161790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357249A JP2007161790A (en) 2005-12-12 2005-12-12 Prepreg and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357249A JP2007161790A (en) 2005-12-12 2005-12-12 Prepreg and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2007161790A true JP2007161790A (en) 2007-06-28

Family

ID=38245067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357249A Pending JP2007161790A (en) 2005-12-12 2005-12-12 Prepreg and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2007161790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118574A (en) * 2013-02-05 2015-12-02 胡妍 Manufacturing method for cable with excellent heatproof and mechanical properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118574A (en) * 2013-02-05 2015-12-02 胡妍 Manufacturing method for cable with excellent heatproof and mechanical properties
CN105118576A (en) * 2013-02-05 2015-12-02 胡妍 Manufacturing method of composite-material-based cable
CN105336429A (en) * 2013-02-05 2016-02-17 胡妍 Method for manufacturing composite-material cable
CN105374466A (en) * 2013-02-05 2016-03-02 胡妍 Cable making method

Similar Documents

Publication Publication Date Title
JP5061813B2 (en) Prepreg and golf club shaft
JP5655976B1 (en) Prepreg, fiber reinforced composite material and thermoplastic resin particles
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP5003827B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg and carbon fiber reinforced composite material
JP5117779B2 (en) Composite material
JP2007126637A (en) Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
JP5354095B2 (en) Prepreg, fiber reinforced composite material, and method for producing prepreg
JP2011162619A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR20140127867A (en) Fiber-reinforced composite material
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
JP2013166917A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP4257181B2 (en) Fullerene-containing prepreg
US20200079917A1 (en) Method for producing fiber-reinforced composite material
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2007161790A (en) Prepreg and fiber-reinforced composite material
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2003277532A (en) Prepreg and tubular product made of fiber reinforced composite material
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2003253094A (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2004269861A (en) Prepreg, fiber reinforced composite material and tubular product made from the fiber reinforced composite material
JP2004300222A (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material