JP2007155065A - Vacuum heat insulating material and its manufacturing method - Google Patents

Vacuum heat insulating material and its manufacturing method Download PDF

Info

Publication number
JP2007155065A
JP2007155065A JP2005353911A JP2005353911A JP2007155065A JP 2007155065 A JP2007155065 A JP 2007155065A JP 2005353911 A JP2005353911 A JP 2005353911A JP 2005353911 A JP2005353911 A JP 2005353911A JP 2007155065 A JP2007155065 A JP 2007155065A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
groove
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005353911A
Other languages
Japanese (ja)
Inventor
Masahito Hayashi
聖人 林
Hideto Sato
英人 佐藤
Tomoyuki Kondo
智幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2005353911A priority Critical patent/JP2007155065A/en
Publication of JP2007155065A publication Critical patent/JP2007155065A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel flat-plate vacuum heat insulating material which is normally manufactured with a groove having a width, a pitch and a depth corresponding to the thickness of the vacuum heat insulating material and the shape of an object, which can be put in close contact with an angle portion of a boxed body or the cylindrical object such as a tank without causing wrinkles on the surface of the vacuum heat insulating material when bent, and which is bendable into a curved shape (round-shape) and an angular shape (L-shape) for high heat insulating performance without impairing inherent heat insulating performance, and to provide its manufacturing method. <P>SOLUTION: The flat-plate vacuum heat insulating material V is evacuated inside and sealed at its opening portion 1a by inserting a core material 2 into a gas-barrier film bag body 1. In the face to be the bending inside, at least one or two grooves 4 each having the same length as the width of the heat insulating material are each provided with a depth d, a width w and a space p corresponding to the bent shape of the heat insulating material VR. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平板状真空断熱材に溝を付けた曲面状,角形状に折曲げ加工が可能な真空断熱材とその製造方法に関する。   The present invention relates to a vacuum heat insulating material that can be bent into a curved surface or a square shape with a groove formed on a flat plate vacuum heat insulating material, and a method for manufacturing the same.

真空断熱材(VIP)は、通常はガスバリア性に優れた金属箔、あるいは金属蒸着層を含む複合プラスチックラミネートフィルムからなる袋体に、芯材として連続気泡硬質プラスチック発泡体や無機物などを収容し、内部を減圧した後、密封して製造される。   The vacuum heat insulating material (VIP) normally contains an open-celled hard plastic foam or an inorganic material as a core material in a bag made of a metal foil excellent in gas barrier properties or a composite plastic laminate film including a metal vapor-deposited layer. It is manufactured by sealing the interior after reducing the pressure.

従来の真空断熱材は、屈曲・弯曲変形が困難であるため平板で用いられることが多く、冷蔵庫、クーラーボックスのような箱体においては、必要な枚数の真空断熱材を内部の各壁面に貼付けていたが、角部に発生する隙間からの熱の漏洩を防ぐことができないでいた。   Conventional vacuum insulation materials are often used as flat plates because they are difficult to bend and bend, and in boxes such as refrigerators and cooler boxes, the required number of vacuum insulation materials are attached to each internal wall surface. However, it was not possible to prevent heat leakage from the gap generated at the corner.

また、保冷・保温タンクなどのように対象物が円筒状のものについては、平板状の真空断熱材の使用が難しかったため、EPS,ウレタンフォーム,グラスウールのような曲面状に加工・変形可能な断熱材を用いている場合も多いが、これらの断熱性能は0.02〜0.04W/m・Kであり、真空断熱材の0.0015〜0.004W/m・Kと比較し10倍以上であるため、効果的な断熱ができないでいた。   In addition, for cylindrical objects such as cold storage and heat storage tanks, it is difficult to use flat vacuum heat insulating materials, so heat insulation that can be processed and deformed into curved surfaces such as EPS, urethane foam, glass wool, etc. In many cases, the insulation performance of these materials is 0.02 to 0.04 W / m · K, which is more than 10 times that of 0.0015 to 0.004 W / m · K of vacuum insulation materials. Was not able to insulate.

対象物が円筒状の場合、サイズの小さな真空断熱材の複数枚を対象物の外周面又は内周面に沿って隙間なく貼付ける方法もあるが、隣接する真空断熱材の接合箇所における隙間からの熱の漏洩は防ぎきれず、真空断熱材本来の断熱性能を発揮することができないでいた。   When the object is cylindrical, there is also a method of pasting a plurality of small-sized vacuum heat insulating materials without gaps along the outer peripheral surface or inner peripheral surface of the target object, but from the gap at the joint location of adjacent vacuum heat insulating materials The leakage of heat could not be prevented, and the original heat insulating performance of the vacuum heat insulating material could not be exhibited.

これらの背景から、真空断熱材を円筒状、或は、L字型に加工する技術が求められていた。その手段の代表的なものとして、これまでに真空断熱材に溝を設け、円筒状、或はL字型に加工する方法が提案されている。   From these backgrounds, a technique for processing a vacuum heat insulating material into a cylindrical shape or an L-shape has been demanded. As a representative means, a method of forming a groove in a vacuum heat insulating material and processing it into a cylindrical shape or an L shape has been proposed so far.

例えば、特許文献1では、冷蔵庫の屈曲した底壁形状に沿って配置される真空断熱材で、屈曲箇所の内側屈曲線に対応するコア材に当該屈曲線方向に渡る凹溝が形成されている真空断熱材が提案されている。また、特許文献2では、家電製品や住宅,車輌等の断熱材として使用可能な真空断熱材で、芯材をガスバリア性フィルムで覆い、その内部を減圧し密封した真空断熱材において、圧縮成型により、真空断熱材の厚み方向に垂直な側面部に少なくとも一本以上の溝を形成し、この溝部を中心に折り曲げ加工ができるようにした真空断熱材が提案されている。更に、特許文献3では、電気湯沸かし器などの断熱材として使用可能な真空断熱体で、断熱しようとする容体の全周を覆うことができるように芯材の片面又は両面に端部を貫く溝を設け、容体に沿った形状に異形成形が容易な真空断熱体が提案されている。更には、特許文献4では、芯材に無機質粉体を使用し、その粉体を袋体に収納した状態で、複数の凹部を有する成形型により片面に複数の溝を形成したものを包装体に収容し内部を減圧状態に維持した断熱パネル、又は、粉体を収納した袋体を包装体に収納した状態で、複数の凹部を有する成形型により減圧状態において片面に複数の溝を形成した断熱パネルが提案されている。   For example, in Patent Document 1, a vacuum heat insulating material arranged along a bent bottom wall shape of a refrigerator has a groove extending in the bending line direction formed in the core material corresponding to the inner bending line of the bent portion. Vacuum insulation has been proposed. Moreover, in patent document 2, it is a vacuum heat insulating material which can be used as a heat insulating material for home appliances, houses, vehicles, etc., and the core material is covered with a gas barrier film, and the inside thereof is decompressed and sealed. There has been proposed a vacuum heat insulating material in which at least one or more grooves are formed in a side surface perpendicular to the thickness direction of the vacuum heat insulating material and bending can be performed around the groove. Furthermore, in patent document 3, it is a vacuum heat insulator which can be used as a heat insulating material such as an electric water heater, and a groove penetrating the end portion on one side or both sides of the core material so as to cover the entire circumference of the container to be insulated. There has been proposed a vacuum heat insulator that is provided and easily deformed in a shape along the container. Further, in Patent Document 4, a packaging body in which an inorganic powder is used as a core material and a plurality of grooves are formed on one side by a molding die having a plurality of recesses in a state where the powder is housed in a bag body. A plurality of grooves are formed on one side in a reduced pressure state by a molding die having a plurality of recesses in a state where the heat insulation panel stored in the container and the interior is maintained in a reduced pressure state, or the bag body containing the powder is stored in the packaging body. Insulation panels have been proposed.

しかしながら、上述した特許文献1〜4で提案されている真空断熱材では、溝を付ける際に、真空断熱材の厚さ、対象物の形状(円筒状・L字型)に応じた溝の幅,間隔(ピッチ)、及び、深さが決定されていないため、溝が浅いとき、或は、溝の間隔(ピッチ)が狭すぎるときは、真空断熱材内側のたわみが吸収されず、真空断熱材の表面に皺が生じ、貼り付け対象物との間に空間が出来てしまうという問題があった。また、溝が深すぎるときや溝の間隔(ピッチ)が広すぎるときには、対象物と真空断熱材の形状の整合性が取れず密着性が悪化して空間が出来てしまう場合もある。以上のような空間が問題になるのは、空間のところで空気の対流が起こり、本来得られるはずの断熱性能が得られなくなるからである。   However, in the vacuum heat insulating materials proposed in Patent Documents 1 to 4 described above, the groove width according to the thickness of the vacuum heat insulating material and the shape of the object (cylindrical / L-shaped) when the grooves are formed. When the groove is shallow because the interval (pitch) and depth are not determined, or when the interval (pitch) of the groove is too narrow, the deflection inside the vacuum heat insulating material is not absorbed and the vacuum insulation There was a problem that wrinkles occurred on the surface of the material, and a space was created between the material and the object to be pasted. In addition, when the groove is too deep or the groove interval (pitch) is too wide, the shape of the object and the vacuum heat insulating material may not be matched, and the adhesion may deteriorate and a space may be created. The reason why such a space becomes a problem is that air convection occurs in the space and the heat insulating performance that should originally be obtained cannot be obtained.

加えて、皺の影響で外包材(ガスバリア性フィルム)にクラックなどが生じ、断熱性能の維持に影響を及ぼす危険があるからである。また、特許文献1,3,4において提案されている真空断熱材のように、予め芯材(コア材)に溝加工を施す場合は、予めバインダー等を用いて成形を行う必要があり、工程が複雑になるという問題があった。更に、このようなバインダーを使用すると、それ自体から発生するガスによって、内部の真空度が悪化し断熱性能の劣化が早まる可能性があるという問題があった。
特開平10−253243号公報 特許第3478780号公報 特開2000−249290号公報 特許第3137946号公報
In addition, the outer packaging material (gas barrier film) is cracked due to the influence of wrinkles, and there is a risk of affecting the maintenance of heat insulation performance. Moreover, like the vacuum heat insulating material proposed in Patent Documents 1, 3, and 4, when the groove processing is performed on the core material (core material) in advance, it is necessary to perform molding using a binder or the like in advance. There was a problem that became complicated. Further, when such a binder is used, there is a problem in that the gas generated from the binder itself may deteriorate the degree of internal vacuum and accelerate the deterioration of the heat insulating performance.
JP-A-10-253243 Japanese Patent No. 3478780 JP 2000-249290 A Japanese Patent No. 3137946

本発明は、通常通り作製した平板の真空断熱材に、真空断熱材の厚さ、対象物の形状に応じた幅・ピッチ・深さの溝を設け、折曲げたとき真空断熱材の表面に皺が生じることがなく、箱体の角部、タンク等の円筒状の対象物との密着性を向上させることができ、本来の断熱性能を損なうことなく高い断熱性能を発揮することができる曲面状(R状),角形状(L字状)に折曲げ加工が可能な新たな真空断熱材とその製造方法を提供することを、その課題とするものである。   In the present invention, a flat vacuum heat insulating material produced as usual is provided with a groove having a width, pitch and depth according to the thickness of the vacuum heat insulating material and the shape of the object, and is bent on the surface of the vacuum heat insulating material. Curved surface that does not cause wrinkles, can improve the adhesion to cylindrical objects such as corners of tanks, tanks, etc., and can exhibit high heat insulation performance without impairing the original heat insulation performance It is an object of the present invention to provide a new vacuum heat insulating material that can be bent into a shape (R shape) and a square shape (L shape), and a manufacturing method thereof.

上記課題を解決することを目的としてなされた本発明真空断熱材の構成は、ガスバリア性フィルムの袋体内に芯材を挿入し、内部を真空にして開口部を封止した平板状真空断熱材において、折曲げの内側になる面に、当該断熱材の幅と同じ長さの1又は2以上の複数の溝を、その断熱材の折曲げ形状に対応した溝の深さと幅と間隔を備えて設けたことを特徴とするものである。   The structure of the vacuum heat insulating material of the present invention made for the purpose of solving the above problems is a flat vacuum heat insulating material in which a core material is inserted into a bag body of a gas barrier film and the inside is vacuumed to seal an opening. 1 or 2 or more grooves having the same length as the width of the heat insulating material are provided on the inner surface of the bend, with the groove depth, width and interval corresponding to the bent shape of the heat insulating material. It is characterized by providing.

本発明は、上記構成において、真空断熱材の折曲げ加工がR曲げ加工で、複数の折曲げ部に溝を設けた構成にすることができる。このR曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が300mm以上1000mm以下であるとき、溝深さ(d)が下式(1)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を15〜25mmにして設けた構成にするのが好ましい。
0.25×t−0.30≦d≦0.50×t−0.20 (1)
また、R曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が100mm以上300mm未満であるとき、溝深さ(d)が下式(2)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を5〜15mmにして設けた構成にするのが好ましい。
0.35×t−0.25≦d≦0.50×t+0.60 (2)
In the above-described configuration, the present invention can be configured such that the bending process of the vacuum heat insulating material is an R bending process and grooves are provided in a plurality of bent parts. In the case of this R-bending, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≦ t ≦ 15 (mm) and the diameter is 300 mm or more and 1000 mm or less, the groove depth (d) is reduced. It is preferable to satisfy the formula (1) and to have a configuration in which the width of each groove is 1.0 mm to 4.0 mm and the interval is 15 to 25 mm.
0.25 × t−0.30 ≦ d ≦ 0.50 × t−0.20 (1)
In the case of R-bending, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 100 mm or more and less than 300 mm, the groove depth (d) is It is preferable that the following formula (2) is satisfied, and the width of each groove is 1.0 mm to 4.0 mm and the interval is 5 to 15 mm.
0.35 × t−0.25 ≦ d ≦ 0.50 × t + 0.60 (2)

また、本発明は、真空断熱材の折曲げ加工がL字曲げ加工である場合、折曲げ部に溝を設けた構成することができる。このL字曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦5(mm)であるとき、その溝深さ(d)が、下式(3)を満足すると共に、その溝の幅を1.018〜10.0mmにして設けた構成にするのが好ましい。
0.8×t−0.3≦d≦0.9×t−0.1 (3)
更に、L字曲げ加工の場合、真空断熱材の厚さ(t)が5(mm)<t≦15(mm)であるとき、溝付けを2段で行い、それぞれの溝深さ(d1,d2)が、下式(4)、(5)を満足すると共に、その溝の幅を1段目の溝幅は18〜40mm、2段目の溝幅を5.0〜22mmにして設けた構成にするのが好ましい。
1段目
−0.3×t+5.0≦d1≦−0.2×t+5.0 (4)
2段目
1.0×t−5.0≦d2≦1.2×t−6.0 (5)
Moreover, this invention can comprise the groove | channel provided in the bending part, when the bending process of a vacuum heat insulating material is an L-shaped bending process. In this L-shaped bending process, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≦ t ≦ 5 (mm), the groove depth (d) satisfies the following expression (3). At the same time, it is preferable that the width of the groove is 1.018 to 10.0 mm.
0.8 × t−0.3 ≦ d ≦ 0.9 × t−0.1 (3)
Further, in the case of L-shaped bending, when the thickness (t) of the vacuum heat insulating material is 5 (mm) <t ≦ 15 (mm), grooving is performed in two stages, and the respective groove depths (d1, d2) satisfies the following formulas (4) and (5), and the width of the groove is set to 18 to 40 mm for the first step and 5.0 to 22 mm for the second step. It is preferable to do this.
1st stage −0.3 × t + 5.0 ≦ d1 ≦ −0.2 × t + 5.0 (4)
2nd stage
1.0 × t−5.0 ≦ d2 ≦ 1.2 × t−6.0 (5)

次に、本発明は、上記構成において、折曲げた真空断熱材の折曲げ内面に、断熱対象物との間に介在させる柔軟性のあるシート状断熱材を設けた構成にするのが好ましい。   Next, in the above configuration, the present invention preferably has a configuration in which a flexible sheet-shaped heat insulating material interposed between the bent inner surface of the bent vacuum heat insulating material and an object to be insulated is provided.

また、上記課題を解決することを目的としてなされた本発明真空断熱材の製造方法の構成は、ガスバリア性フィルムの袋体内に芯材を挿入し、内部を真空にして開口部を封止した平板状真空断熱材の折曲げ内側となる面に、溝を形成するため膨出面を有する押圧部材を押し当てることにより、当該断熱材の幅と同じ長さの複数の溝を、折曲げ加工に対応した深さ,幅,間隔で設けることを特徴とするものである。   In addition, the structure of the method for manufacturing a vacuum heat insulating material of the present invention made for the purpose of solving the above problems is a flat plate in which a core material is inserted into a bag body of a gas barrier film and the opening is sealed by evacuating the inside. A plurality of grooves with the same length as the width of the heat insulating material can be bent by pressing a pressing member with a bulging surface to form a groove on the inner surface of the vacuum insulating material. It is characterized in that it is provided at a depth, width and interval.

本発明は、上記製造方法の構成において、真空断熱材の折曲げ加工がR曲げ加工で、複数の折曲げ部に溝を設けた構成にすることができる。このR曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が300mm以上1000mm以下であるとき、溝深さ(d)が下式(1)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を15〜25mmにして設けた構成にするのが好ましい。
0.25×t−0.30≦d≦0.50×t−0.20 (1)
また、R曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が100mm以上300mm未満であるとき、溝深さ(d)が下式(2)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を5〜15mmにして設けた構成にするのが好ましい。
0.35×t−0.25≦d≦0.50×t+0.60 (2)
In the configuration of the above manufacturing method, the present invention can be configured such that the bending process of the vacuum heat insulating material is an R bending process and grooves are provided in a plurality of bent portions. In the case of this R-bending, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≦ t ≦ 15 (mm) and the diameter is 300 mm or more and 1000 mm or less, the groove depth (d) is reduced. It is preferable to satisfy the formula (1) and to have a configuration in which the width of each groove is 1.0 mm to 4.0 mm and the interval is 15 to 25 mm.
0.25 × t−0.30 ≦ d ≦ 0.50 × t−0.20 (1)
In the case of R-bending, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 100 mm or more and less than 300 mm, the groove depth (d) is It is preferable that the following formula (2) is satisfied, and the width of each groove is 1.0 mm to 4.0 mm and the interval is 5 to 15 mm.
0.35 × t−0.25 ≦ d ≦ 0.50 × t + 0.60 (2)

また、真空断熱材の折曲げ加工がL字曲げ加工であるとき、折曲げ部に溝を設けた構成することができる。このL字曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦5(mm)であるとき、その溝深さ(d)が、下式(3)を満足すると共に、その溝の幅を1.0〜10mmにして設けた構成にするのが好ましい。
0.8×t−0.3≦d≦0.9×t−0.1 (3)
更に、L字曲げ加工の場合、真空断熱材の厚さ(t)が5(mm)<t≦15(mm)であるとき、溝付けを2段で行い、それぞれの溝深さ(d1,d2)が、下式(4)、(5)を満足すると共に、その溝の幅を1段目の溝幅は18〜40mm、2段目の溝幅を5.0〜22mmにして設けた構成にするのが好ましい。
1段目
−0.3×t+5.0≦d1≦−0.2×t+5.0 (4)
2段目
1.0×t−5.0≦d2≦1.2×t−6.0 (5)
Moreover, when the bending process of a vacuum heat insulating material is an L-shaped bending process, it can comprise so that a groove | channel could be provided in the bending part. In this L-shaped bending process, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≦ t ≦ 5 (mm), the groove depth (d) satisfies the following expression (3). At the same time, it is preferable that the width of the groove is 1.0 to 10 mm.
0.8 × t−0.3 ≦ d ≦ 0.9 × t−0.1 (3)
Further, in the case of L-shaped bending, when the thickness (t) of the vacuum heat insulating material is 5 (mm) <t ≦ 15 (mm), grooving is performed in two stages, and the respective groove depths (d1, d2) satisfies the following formulas (4) and (5), and the width of the groove is set to 18 to 40 mm for the first step and 5.0 to 22 mm for the second step. It is preferable to do this.
1st stage −0.3 × t + 5.0 ≦ d1 ≦ −0.2 × t + 5.0 (4)
2nd stage
1.0 × t−5.0 ≦ d2 ≦ 1.2 × t−6.0 (5)

本発明は、上記製造方法の構成において、押圧部材として、その膨出面を平板状部材の片面に、形成する溝の幅と深さ,間隔に合せて1条乃至平行に複数条形成したもの、又は、その膨出面を回転可能なローラの外周に、形成する溝の幅と深さ,間隔に合せて当該ローラの長さ方向に1条乃至平行に複数条形成したものを使用することができる。これらの押圧部材の膨出面は、1本乃至平行な複数本の棒状又はパイプ状の部材で形成したものであってもよい。   The present invention, in the configuration of the above manufacturing method, as the pressing member, the bulging surface is formed on one side of the flat plate member, a plurality of strips in parallel or parallel to the width and depth of the groove to be formed, the interval, Alternatively, it is possible to use one in which the swollen surface is formed on the outer periphery of a rotatable roller so that one or more strips are formed in the length direction of the roller according to the width, depth, and interval of the groove to be formed. . The bulging surfaces of these pressing members may be formed by one or a plurality of parallel rod-like or pipe-like members.

本発明によれば、通常の方法で作製した平板状の真空断熱材の表面に、溝の付いた型を押付けるなどの簡便な方法で、R状,L字状などに折曲げ加工可能な真空断熱材を製造することができる。また、製造に際し、貼付ける対象物の形状を考慮して、形成する溝の深さ,幅,間隔(ピッチ)を決定するので、R状,L字状に折曲げ加工しても真空断熱材の表面に皺が発生することがなく、貼付け面との間に隙間が生じないので密着性が増し、真空断熱材本来の断熱性能を十分に発揮することができるという効果が得られる。   According to the present invention, it can be bent into an R shape, an L shape, or the like by a simple method such as pressing a grooved mold on the surface of a flat vacuum heat insulating material produced by a normal method. Vacuum insulation can be manufactured. In addition, since the depth, width, and interval (pitch) of the groove to be formed are determined in consideration of the shape of the object to be pasted during production, the vacuum heat insulating material can be bent even when bent into an R shape or an L shape. No wrinkles are generated on the surface of the film, and no gap is formed between the surface and the adhesive surface, so that the adhesion can be increased and the heat insulating performance inherent to the vacuum heat insulating material can be sufficiently exhibited.

更に、本発明において、折曲げた真空断熱材の折曲げ内面に、断熱対象物との間に柔軟性のあるシート状断熱材を介在させれば、VIP表面の微妙な凹凸が原因で発生する空気の対流を防止できるので、真空断熱材の断熱性能がより効果的に発揮される。   Furthermore, in the present invention, if a flexible sheet-like heat insulating material is interposed between the bent inner surface of the vacuum heat insulating material and the object to be insulated, it is caused by subtle unevenness on the VIP surface. Since air convection can be prevented, the heat insulation performance of the vacuum heat insulating material is more effectively exhibited.

また、本発明の真空断熱材は、角部を有する箱体や円筒状の断熱対象物など多岐に亘る製品に適用することができ、従来、複数枚の平板状真空断熱材を使用していた場合と比較し1枚の真空断熱材のサイズが大きくなるので、隣接する真空断熱材の接合箇所における隙間及びヒートリークによる熱の漏洩が減少するため、断熱性能が向上すると共に、真空断熱材の枚数を減らすことができるので、製品の薄型化・軽量化・省エネ化が実現できる。更に、本発明の真空断熱材は、貼付ける断熱対象物の形状に合せて製造することができるので、貼付けの際の位置合わせが容易であるという効果が得られる。   Further, the vacuum heat insulating material of the present invention can be applied to a wide variety of products such as a box having a corner and a cylindrical heat insulating object, and conventionally, a plurality of flat plate vacuum heat insulating materials have been used. Since the size of one vacuum heat insulating material is larger than the case, since the heat leakage due to gaps and heat leaks at adjacent joints of the vacuum heat insulating material is reduced, the heat insulating performance is improved, and the vacuum heat insulating material Since the number of sheets can be reduced, the product can be made thinner, lighter and more energy efficient. Furthermore, since the vacuum heat insulating material of this invention can be manufactured according to the shape of the heat insulation target object to stick, the effect that the position alignment in the case of sticking is easy is acquired.

次に、本発明の実施の形態例を図に拠り説明する。図1は本発明のR曲げ加工用真空断熱材を製造する直前の状態を示す断面図、図2は本発明のR曲げ加工用真空断熱材の一例の断面図、図3は図2に示した真空断熱材を円筒断熱対象物の外周に貼付けた状態を示す平面図、図4は本発明のR曲げ加工用真空断熱材を図1とは異なる押圧部材で製造している状態を示す要部拡大側面図、図5は図4に示した押圧部材の斜視図、図6は本発明のL字曲げ加工用真空断熱材における1段目の溝を形成する直前の状態を示す断面図、図7は本発明のL字曲げ加工用真空断熱材における2段目の溝を形成する直前の状態を示す断面図、図8は本発明のL字曲げ加工用真空断熱材の一例の断面図、図9は図6に示した真空断熱材を折曲げ箱体の断熱対象物の角部外側に貼付けた状態を示す側面図である。   Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a state immediately before manufacturing an R-bending vacuum heat insulating material of the present invention, FIG. 2 is a cross-sectional view of an example of an R-bending vacuum heat insulating material of the present invention, and FIG. 3 is shown in FIG. The top view which shows the state which affixed the vacuum heat insulating material on the outer periphery of the cylindrical heat insulation target object, FIG. 4 is a key figure which shows the state which has manufactured the vacuum heat insulating material for R bending of this invention with the press member different from FIG. FIG. 5 is a perspective view of the pressing member shown in FIG. 4, FIG. 6 is a cross-sectional view showing a state immediately before forming the first-stage groove in the L-shaped bending vacuum heat insulating material of the present invention, FIG. 7 is a cross-sectional view showing a state immediately before forming a second-stage groove in the L-shaped bending heat insulating material of the present invention, and FIG. 8 is a cross-sectional view of an example of the L-shaped bending heat insulating material of the present invention. FIG. 9 is a side view showing a state where the vacuum heat insulating material shown in FIG. 6 is stuck to the outside of the corner of the object to be insulated of the folded box body.

図1〜図5において、Vは、ガスバリア性フィルム1の袋体内に芯材2を挿入し、内部を真空にして開口部を封止1aして製造される通常の平板状真空断熱材である。ガスバリア性フィルム1は後に詳述するが、ガスバリア性に優れた金属箔や金属蒸着層などを含む複合プラスチックラミネートフィルムである。芯材2は、連続気泡硬質プラスチック発泡体や無機物などであるが、ここではガラス繊維を使用している。なお、gは、ガス吸着剤であるが、ガス吸着剤gを設けない場合もある。   In FIG. 1 to FIG. 5, V is a normal flat plate vacuum heat insulating material manufactured by inserting the core material 2 into the bag body of the gas barrier film 1 and sealing the opening 1 a by evacuating the inside. . As will be described in detail later, the gas barrier film 1 is a composite plastic laminate film including a metal foil or a metal vapor deposition layer having excellent gas barrier properties. The core material 2 is an open-cell hard plastic foam or an inorganic material, but here, glass fiber is used. In addition, although g is a gas adsorbent, the gas adsorbent g may not be provided.

本発明のR曲げ加工用真空断熱材VRは、平板状真空断熱材Vの片面、即ち、折曲げの内側になる面に、図1に示したように片面に複数の膨出面3aを有する押圧部材3を押し当てることにより、複数の溝4を形成し製造される(図2参照)。因みに、この押圧部材3の膨出面3aは、平板状部材の片面に、形成する溝4の幅wと深さd,間隔pに合せて平行に複数条形成されているが、膨出面3aが1条のみの場合もある。   The vacuum heat insulating material VR for R bending according to the present invention has a pressing surface having a plurality of bulging surfaces 3a on one side as shown in FIG. A plurality of grooves 4 are formed by pressing the member 3 (see FIG. 2). Incidentally, the bulging surface 3a of the pressing member 3 is formed in parallel on the one surface of the flat plate-like member in accordance with the width w, depth d, and interval p of the groove 4 to be formed. There may be only one article.

形成される溝4の深さdと幅wと間隔pは、真空断熱材VRの厚さtと貼付ける断熱対象物の大きさにより異なり、その調整は、ここでは押圧部材3の片面に設ける膨出面3aの高さ,大きさ,間隔を設定することにより行っている。具体的には、膨出面3aの高さ,大きさ,間隔を変更した別の押圧部材を用いて溝4の深さd,幅w,間隔pを調整するようにしている。   The depth d, width w, and interval p of the groove 4 to be formed vary depending on the thickness t of the vacuum heat insulating material VR and the size of the heat insulating object to be attached, and the adjustment is provided on one side of the pressing member 3 here. This is done by setting the height, size, and spacing of the bulging surface 3a. Specifically, the depth d, width w, and interval p of the groove 4 are adjusted using another pressing member in which the height, size, and interval of the bulging surface 3a are changed.

また、溝4は、図4に示した押圧部材5を用いて形成することもできる。この押圧部材5の膨出面5aは、軸6を中心に回転可能な円柱状のローラの外周に、形成する溝4の幅wと深さd,間隔pに合せてこのローラの長さ方向に平行に複数条形成されている(図5参照)。膨出面5aは1条のみの場合もある。5′は、適宜間隔を開けて押圧部材5と平行に配設した受動ローラで、この受動ローラ5′と押圧部材5の間に平板状真空断熱材Vを矢印の方向に通過移動させることにより、片面に溝4が形成される。   Moreover, the groove | channel 4 can also be formed using the press member 5 shown in FIG. The bulging surface 5a of the pressing member 5 is formed on the outer periphery of a cylindrical roller rotatable around the shaft 6 in the length direction of the roller in accordance with the width w, depth d and interval p of the groove 4 to be formed. A plurality of strips are formed in parallel (see FIG. 5). The bulging surface 5a may be only one line. 5 ′ is a passive roller disposed in parallel with the pressing member 5 at an appropriate interval. By moving the flat vacuum heat insulating material V between the passive roller 5 ′ and the pressing member 5 in the direction of the arrow. The groove 4 is formed on one side.

なお、図示しないが、膨出面3a,5aを1本乃至平行な複数本の棒状又はパイプ状の部材で形成するようにしてもよい。また、図示しないが、押圧部材を、形成する溝4の幅wと間隔pに合せて平行に並べた複数の転動ローラにより形成し、それらローラの軸を所定の押圧力で真空断熱材側に押し下げながら、全体を移動させて溝4を形成するようにしてもよい。   Although not shown, the bulging surfaces 3a and 5a may be formed of one or a plurality of parallel rod-like or pipe-like members. Although not shown, the pressing member is formed by a plurality of rolling rollers arranged in parallel according to the width w and interval p of the groove 4 to be formed, and the shafts of these rollers are formed on the side of the vacuum heat insulating material with a predetermined pressing force. The groove 4 may be formed by moving the whole while pushing down.

本発明では、R曲げ加工の場合、溝4の深さdと幅wと間隔pは、次の条件で形成している。まず、真空断熱材Vの厚さ(t)が1.5(mm)≦t≦15(mm)であって、円筒断熱対象物Mの直径Dが300mm以上1000mm以下であるときは、溝深さ(d)が下式(1)を満足し、かつ、各溝の幅wを1.0mm〜4.0mmにすると共に、溝と溝の間隔pを15〜25mmにしている。
0.25×t−0.30≦d≦0.50×t−0.20 (1)
即ち、真空断熱材Vの厚さtが1.5mmのとき溝深さdは0.075〜0.550mm、厚さtが15mmのとき溝深さdは3.45〜7.30mmとなる。従って、溝深さdは、この場合、0.075〜7.30mmの範囲になる。
In the present invention, in the case of R bending, the depth d, width w, and interval p of the groove 4 are formed under the following conditions. First, when the thickness (t) of the vacuum heat insulating material V is 1.5 (mm) ≦ t ≦ 15 (mm) and the diameter D of the cylindrical heat insulating object M is 300 mm or more and 1000 mm or less, the groove depth ( d) satisfies the following expression (1), the width w of each groove is 1.0 mm to 4.0 mm, and the gap p between the grooves is 15 to 25 mm.
0.25 × t−0.30 ≦ d ≦ 0.50 × t−0.20 (1)
That is, when the thickness t of the vacuum heat insulating material V is 1.5 mm, the groove depth d is 0.075 to 0.550 mm, and when the thickness t is 15 mm, the groove depth d is 3.45 to 7.30 mm. Accordingly, the groove depth d is in the range of 0.075 to 7.30 mm in this case.

また、R曲げ加工の場合、真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、円筒断熱対象物Mの直径Dが100mm以上300mm未満であるとき、溝深さ(d)が下式(2)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、溝と溝の間隔を5〜15mmにしている。
0.35×t−0.25≦d≦0.50×t+0.60 (2)
即ち、真空断熱材Vの厚さtが1.5mmのとき溝深さdは0.275〜1.35mm、厚さtが15mmのとき溝深さdは5.00〜8.10mmとなる。従って、溝深さdは、この場合、0.275〜8.10mmの範囲になる。
In the case of R bending, when the thickness (t) of the vacuum heat insulating material is 1.5 (mm) ≦ t ≦ 15 (mm) and the diameter D of the cylindrical heat insulating object M is 100 mm or more and less than 300 mm, The groove depth (d) satisfies the following formula (2), the width of each groove is 1.0 mm to 4.0 mm, and the distance between the grooves is 5 to 15 mm.
0.35 × t−0.25 ≦ d ≦ 0.50 × t + 0.60 (2)
That is, when the thickness t of the vacuum heat insulating material V is 1.5 mm, the groove depth d is 0.275 to 1.35 mm, and when the thickness t is 15 mm, the groove depth d is 5.00 to 8.10 mm. Accordingly, the groove depth d is in the range of 0.275 to 8.10 mm in this case.

上記の式(1),(2)は、実際に深さdの異なる多くの溝を形成して折曲げた結果から求めたものである。溝4の深さdと幅wと間隔pを上記のように設定するのは、図3に示したように真空断熱材VRを折曲げて円筒断熱対象物Tの外周に貼付けたとき、円筒断熱対象物Tと真空断熱材VRの形状の整合性を取り、密着性を高め、また、真空断熱材VRの表面に皺が発生しないようにし、円筒断熱対象物Tの貼付け面との間に生じる空間が生じないようにするためである。図3に示した例では、真空断熱材VRの折曲げ内面に柔軟性のあるシート状断熱材Sを設け、円筒断熱対象物Tの貼付け面との密着性を更に高めるようにしている。なお、図3において、4′は、真空断熱材VRの折曲げにより溝4の幅が狭まり対向する溝4の内壁が接合した接合部、Qは、真空断熱材VRの両側の開口部を封止1aした部分の接合部を示す。   The above formulas (1) and (2) are obtained from the results of actually forming and bending many grooves having different depths d. The depth d, width w, and interval p of the groove 4 are set as described above when the vacuum heat insulating material VR is folded and pasted to the outer periphery of the cylindrical heat insulating object T as shown in FIG. The conformity of the shape of the heat insulating object T and the vacuum heat insulating material VR is taken, the adhesiveness is improved, and the surface of the vacuum heat insulating material VR is prevented from being wrinkled, and between the sticking surface of the cylindrical heat insulating object T. This is to prevent the generated space from occurring. In the example shown in FIG. 3, a flexible sheet-like heat insulating material S is provided on the bent inner surface of the vacuum heat insulating material VR so as to further improve the adhesion to the affixing surface of the cylindrical heat insulating object T. In FIG. 3, 4 ′ is a joint where the width of the groove 4 is narrowed by bending of the vacuum heat insulating material VR and the inner walls of the facing groove 4 are joined, and Q is an opening on both sides of the vacuum heat insulating material VR. The joint part of the part which stopped 1a is shown.

次に、図6〜図9により、本発明のL字曲げ加工用真空断熱材とその製造方法、及び、使用形態を説明する。なお、図1〜図5に示した符号と同一の符号は、同一の部材を示している。   Next, the vacuum heat insulating material for L-shaped bending according to the present invention, a manufacturing method thereof, and a usage form will be described with reference to FIGS. In addition, the same code | symbol as the code | symbol shown in FIGS. 1-5 has shown the same member.

図6は、本発明のL字曲げ加工用真空断熱材VLにおける1段目の溝を形成する直前の状態を示している。図6において、7は、真空断熱材Vの幅と同じかそれ以上の長さの棒状押圧部材で、この押圧部材7を折曲げ部に押し当てることにより、図7に示した真空断熱材V′になり、1段目の大き目の溝8が形成される。本発明は、更に、図7に示したように、押圧部材7より径の小さな押圧部材9を溝8の中央部に押し当てることにより、2段目の溝10を形成し、L字曲げ加工用真空断熱材VLを製造する。   FIG. 6 shows a state immediately before forming the first-stage groove in the vacuum heat insulating material VL for L-shaped bending of the present invention. In FIG. 6, 7 is a rod-shaped pressing member having a length equal to or longer than the width of the vacuum heat insulating material V. By pressing the pressing member 7 against the bent portion, the vacuum heat insulating material V shown in FIG. Thus, the first-stage large groove 8 is formed. In the present invention, as shown in FIG. 7, a second-stage groove 10 is formed by pressing a pressing member 9 having a diameter smaller than that of the pressing member 7 against the central portion of the groove 8, and an L-shaped bending process is performed. The vacuum heat insulating material VL for manufacture is manufactured.

本発明は、L字曲げ加工の場合、真空断熱材Vの厚さ(t)が1.5(mm)≦t≦5(mm)であるとき、その溝深さ(d)が、下式(3)を満足すると共に、その溝の幅wを1.0〜10mmにしている。
0.8×t−0.3≦d≦0.9×t−0.1 (3)
即ち、真空断熱材Vの厚さtが1.5mmのとき溝深さdは0.90〜1.25mm、厚さtが5mmのとき溝深さdは3.70〜4.40mmとなる。従って、溝深さdは、この場合、3.70〜4.40mmの範囲になる。
In the present invention, in the case of L-shaped bending, when the thickness (t) of the vacuum heat insulating material V is 1.5 (mm) ≦ t ≦ 5 (mm), the groove depth (d) is expressed by the following formula (3 ) And the width w of the groove is 1.0 to 10 mm.
0.8 × t−0.3 ≦ d ≦ 0.9 × t−0.1 (3)
That is, when the thickness t of the vacuum heat insulating material V is 1.5 mm, the groove depth d is 0.90 to 1.25 mm, and when the thickness t is 5 mm, the groove depth d is 3.70 to 4.40 mm. Accordingly, the groove depth d is in the range of 3.70 to 4.40 mm in this case.

また、L字曲げ加工で、図6〜図8に示したように折曲げ部に溝を2段形成する場合、真空断熱材の厚さ(t)が5(mm)<t≦15(mm)であるとき、それぞれの溝8,10の深さ(d1,d2)が、下式(4)、(5)を満足すると共に、その溝の幅を1段目の溝8の幅W1は18〜40mm、2段目の溝10の幅W2を5.0〜22mmにしている。
1段目
−0.3×t+5.0≦d1≦−0.2×t+5.0 (4)
2段目
1.0×t−5.0≦d2≦1.2×t−6.0 (5)
即ち、真空断熱材Vの厚さtが5mmのとき1段目の溝深さd1は3.5mmより大きくて4.0mmより小さく、2段目の溝深さd2は0mmより大きくなり、厚さtが15mmのとき1段目の溝深さd1は0.5〜2.0mm、2段目の溝深さd2は10.0〜12.0mmとなる。従って、溝深さdは、この場合、0mmより大きく12.0mm以下の範囲になる。
In addition, when L-shaped bending is used to form two grooves in the bent portion as shown in FIGS. 6 to 8, the thickness (t) of the vacuum heat insulating material is 5 (mm) <t ≦ 15 (mm ), The depths (d1, d2) of the grooves 8 and 10 satisfy the following expressions (4) and (5), and the width W1 of the first-stage groove 8 is the width of the groove. 18 to 40 mm, the width W2 of the second groove 10 is set to 5.0 to 22 mm.
1st stage −0.3 × t + 5.0 ≦ d1 ≦ −0.2 × t + 5.0 (4)
2nd stage
1.0 × t−5.0 ≦ d2 ≦ 1.2 × t−6.0 (5)
That is, when the thickness t of the vacuum heat insulating material V is 5 mm, the first-stage groove depth d1 is larger than 3.5 mm and smaller than 4.0 mm, and the second-stage groove depth d2 is larger than 0 mm and the thickness t Is 15 mm, the first-stage groove depth d1 is 0.5 to 2.0 mm, and the second-stage groove depth d2 is 10.0 to 12.0 mm. Accordingly, in this case, the groove depth d is in the range of more than 0 mm and not more than 12.0 mm.

上記の式(3)〜(5)も、実際に深さdの異なる多くの溝を形成して折曲げた結果から求めたものである。溝8,10の深さdと幅W1,W2を上記のように設定するのは、図9に示したように真空断熱材VLを折曲げて箱状断熱対象物Hの角部HKの外側に貼付けるため、真空断熱材Vを溝8,10の部分で90度に曲げたとき、溝8,10の幅W1,W2が狭まり、溝8,10の対向する内壁が干渉し合って真空断熱材VLの折曲げ部に皺が発生しないようにすると共に、箱状断熱対象物Hの角部HKに隙間が生じないようにし角部HKにおける密着性を高めるためである。   The above formulas (3) to (5) are also obtained from the result of actually forming and bending many grooves having different depths d. The depth d and widths W1 and W2 of the grooves 8 and 10 are set as described above because the vacuum heat insulating material VL is bent as shown in FIG. When the vacuum heat insulating material V is bent at 90 degrees at the groove 8 and 10 portion for attachment, the widths W1 and W2 of the grooves 8 and 10 are narrowed, and the opposing inner walls of the grooves 8 and 10 interfere with each other to form a vacuum. This is to prevent wrinkles from being generated at the bent portion of the heat insulating material VL and to improve the adhesion at the corner portion HK by preventing a gap from occurring at the corner portion HK of the box-shaped heat insulation object H.

次に、本発明に用いる真空断熱材Vは、上述したように通常はガスバリア性に優れた複合プラスチックラミネートフィルムからなる袋体に、芯材として連続気泡硬質プラスチック発泡体や無機物などを収容し、内部を減圧した後、密封して製造されるが、このガスバリア性フィルム1には、ガスバリア性に優れた複合プラスチックラミネートフィルムを使用している。複合プラスチックラミネートフィルムは、図示しないが、表面保護層とガスバリア層、熱融着層を積層した構成である。表面保護層としては、ポリエチレンテレフタレート、ナイロン等の耐候性、耐衝撃性に優れたプラスチック製フィルムが用いられる。ガスバリア層としては、金属箔や、金属箔の代わりにプラスチックフィルム上に金属蒸着膜またはセラミック蒸着膜を積層したフィルム(蒸着膜フィルム)等を使用することが出来る。金属箔としては、アルミニウム箔やスチール箔,ステンレス箔,銅箔等を、蒸着膜にはアルミニウム、ステンレス、アルミナ、炭化珪素等を使用でき、通常プラスチックフィルム上に積層して使用する。熱融着層としては低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等のプラスチック製フィルムが用いられる。これらは真空断熱材の用途により適宜選択されるものである。   Next, the vacuum heat insulating material V used in the present invention contains an open-cell hard plastic foam or an inorganic substance as a core material in a bag made of a composite plastic laminate film that is usually excellent in gas barrier properties as described above. The gas barrier film 1 is made of a composite plastic laminate film having an excellent gas barrier property. Although not shown, the composite plastic laminate film has a structure in which a surface protective layer, a gas barrier layer, and a heat sealing layer are laminated. As the surface protective layer, a plastic film having excellent weather resistance and impact resistance such as polyethylene terephthalate and nylon is used. As the gas barrier layer, a metal foil or a film obtained by laminating a metal vapor deposition film or a ceramic vapor deposition film on a plastic film instead of the metal foil (deposition film) can be used. Aluminum foil, steel foil, stainless steel foil, copper foil, etc. can be used as the metal foil, and aluminum, stainless steel, alumina, silicon carbide, etc. can be used as the vapor deposition film, and they are usually laminated on a plastic film. A plastic film such as low-density polyethylene, high-density polyethylene, or polypropylene is used as the heat-sealing layer. These are appropriately selected depending on the use of the vacuum heat insulating material.

複合プラスチックラミネートフィルムの一例として、ポリエチレンテレフタレートフィルム/ナイロンフィルム/アルミ箔/ポリエチレンフィルムの4層構造のラミネートフィルムが挙げられるが、これ以外に、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のラミネートフィルムもあり、これらのフィルムを袋体に形成するときは、ポリエチレンフィルムが袋体の内側になるように構成される。上記のラミネートフィルムのアルミ箔をアルミ蒸着フィルムに代えたものも勿論、使用することができる。   As an example of the composite plastic laminate film, there is a laminate film having a four-layer structure of polyethylene terephthalate film / nylon film / aluminum foil / polyethylene film. In addition to this, three layers of polyethylene terephthalate film / aluminum foil / high-density polyethylene film are included. There is also a laminated film having a structure, and when these films are formed in a bag, the polyethylene film is configured to be inside the bag. Of course, a laminate film in which the aluminum foil is replaced with an aluminum vapor deposition film can also be used.

また、真空断熱材Vにおける芯材2は、特に制限はないが、ポリウレタンやポリスチレン等の連続気泡硬質発泡体やガラス繊維,セラミックファイバー,ロックウール,シリカアルミナウールなどの無機物、或は、これら連続気泡硬質発泡体と無機物の積層体を用いることができる。ここでは芯材2を袋体に収容した状態で内部を減圧し、開口部をヒートシールしているが、開口部を除く他の周縁部も同様にヒートシールされている。   The core material 2 in the vacuum heat insulating material V is not particularly limited, but is an open cell hard foam such as polyurethane or polystyrene, an inorganic material such as glass fiber, ceramic fiber, rock wool, silica alumina wool, or a continuous material thereof. A laminate of a cellular hard foam and an inorganic material can be used. Here, while the core material 2 is housed in the bag body, the inside is depressurized and the opening is heat-sealed, but the other peripheral portions other than the opening are similarly heat-sealed.

更に、ガス吸着剤gは、経時的に芯材2から発生するアウトガスまたは、ラミネートフィルム表面あるいはヒートシール部から侵入するガスを吸収するためのもので、具体的には、酸化カルシウム,活性炭,シリカゲル,モレキュラーシーブ,ゼオライト等のいずれか又はこれら2以上を組合せたものが使用される。   Further, the gas adsorbent g is for absorbing the outgas generated from the core material 2 over time or the gas entering from the laminate film surface or the heat seal portion, specifically, calcium oxide, activated carbon, silica gel. , Molecular sieve, zeolite, or a combination of two or more thereof is used.

以下、平板状真空断熱材をR曲げ加工用、L字曲げ加工用にした本発明真空断熱材について説明する。   Hereinafter, the vacuum heat insulating material of the present invention in which the flat vacuum heat insulating material is used for R bending and L bending will be described.

〔実施例1〕
図2に示したように、R曲げ加工用に平板状真空断熱材の片面に複数の溝を形成した真空断熱材を折曲げたものと、溝のない平板状真空断熱材について、それらの熱伝導率を測定し、溝付け加工有無における袋体(フィルム表面)へのダメージ(クラック等の発生)を評価した。
[Example 1]
As shown in FIG. 2, for the R-bending process, the vacuum heat insulating material in which a plurality of grooves are formed on one side of the flat plate vacuum heat insulating material and the flat plate vacuum heat insulating material without grooves are heated. Conductivity was measured, and damage (occurrence of cracks and the like) to the bag body (film surface) with and without grooving was evaluated.

平板状真空断熱材としては、300×400×4.5mmの大きさで、アルミ箔複合プラスチックラミネートフィルム/アルミ箔複合プラスチックラミネートフィルムの組合せの外装材(袋体)に、芯材としてガラス繊維を収容し、内部を減圧した後、密封して製造したものを用いた。なお、ガス吸着剤を入れたものと入れないものを用意した。
溝は幅2mm、溝の深さ2.2mmのものを、400mmの長さ方向に33本、10mm間隔で形成してR曲げ加工用真空断熱材を製造した。このものをR127の対象物に沿って折曲げ、平板の状態まで戻してから熱伝導率の経時変化を測定した。同時に、溝のない平板状真空断熱材についても経時変化を測定した。なお、測定機器は、HC-074-300(英弘精機製)を用いた。
測定結果は次の表1に示す通りであった。
The flat vacuum heat insulating material is 300 x 400 x 4.5 mm and contains glass fiber as the core material in the packaging material (bag body) of the aluminum foil composite plastic laminate film / aluminum foil composite plastic laminate film combination. Then, after reducing the pressure inside, it was sealed and manufactured. In addition, the thing with and without the gas adsorbent was prepared.
Grooves with a width of 2 mm and a groove depth of 2.2 mm were formed in a length direction of 400 mm at 33 intervals at 10 mm intervals to produce a vacuum heat insulating material for R-bending. This was bent along the object of R127 and returned to the flat plate state, and the change with time in the thermal conductivity was measured. At the same time, the time-dependent change was also measured for the flat vacuum heat insulating material without grooves. Note that HC-074-300 (manufactured by Eihiro Seiki) was used as a measuring instrument.
The measurement results were as shown in Table 1 below.

Figure 2007155065
Figure 2007155065

表1の溝の有無による加速試験の比較より、断熱性能の劣化度には大きな差異は見られず、溝付け加工におけるフィルム表面へのダメージ(クラック等の発生)は無いことが判った。   From the comparison of the acceleration test based on the presence or absence of grooves in Table 1, it was found that there was no significant difference in the degree of deterioration of the heat insulation performance, and there was no damage (occurrence of cracks or the like) to the film surface in the grooving process.

〔実施例2〕
次に、図8に示したように、L字曲げ加工用に平板状真空断熱材の1段目と2段目の溝を形成した真空断熱材を製造し、折曲げた状態を維持したままで常温に放置したときの熱伝導率の経時変化を測定し、溝付け加工におけるフィルム表面へのダメージ(クラック等発生)を評価した。
[Example 2]
Next, as shown in FIG. 8, the vacuum heat insulating material in which the first and second grooves of the flat plate vacuum heat insulating material are formed for the L-shaped bending process is manufactured, and the bent state is maintained. Then, the change over time in the thermal conductivity when allowed to stand at room temperature was measured, and the damage (occurrence of cracks, etc.) to the film surface during grooving was evaluated.

平板状真空断熱材としては、500×1500×15mmの大きさで、アルミ箔複合プラスチックラミネートフィルム/アルミ箔複合プラスチックラミネートフィルムの組合せの外装材(袋体)に、芯材としてガラス繊維を収容し、ガス吸着剤を入れて内部を減圧した後、密封して製造したものを用いた。溝は、平板状真空断熱材の長さ方向の中央部に、1段目の溝幅35mm、溝の深さ1.5mm、2段目の溝幅20mm、溝の深さ11mmにして形成した。このものを溝部を中心に直角に折曲げ、テープで固定してその状態における熱伝導率の経時変化を測定した。測定機器は、HC-074-600(英弘精機製)を用いた。測定結果は次の表2に示す通りであった。   The flat vacuum heat insulating material is 500 x 1500 x 15 mm in size and contains glass fiber as the core material in the packaging material (bag) of the aluminum foil composite plastic laminate film / aluminum foil composite plastic laminate film combination. Then, a gas adsorbent was added and the inside was decompressed and then sealed and used. The groove was formed in the central portion of the flat vacuum heat insulating material in the length direction with a first-stage groove width of 35 mm, a groove depth of 1.5 mm, a second-stage groove width of 20 mm, and a groove depth of 11 mm. This was bent at a right angle around the groove, fixed with tape, and the change with time in the thermal conductivity was measured. HC-074-600 (manufactured by Eihiro Seiki) was used as a measuring instrument. The measurement results were as shown in Table 2 below.

Figure 2007155065
Figure 2007155065

表2から、溝加工による常温放置下での断熱性能の大きな変化は見られず、溝付け加工におけるフィルム表面へのダメージ(クラック等の発生)が無いことが判った。   From Table 2, it was found that there was no significant change in the heat insulation performance at room temperature due to groove processing, and there was no damage (occurrence of cracks or the like) to the film surface during groove processing.

〔実施例3〕
次に、円筒状のタンクの外周を、本発明のR曲げ加工用真空断熱材を折曲げて図3に示すように円筒にして貼付けた場合、4枚の平板状真空断熱材を使用して四面で覆った場合、及び、8枚の平板状真空断熱材を使用して八面で覆った場合における壁面の熱移動量をそれぞれ計算して比較し、また、壁面との密着性の評価を行った。
Example 3
Next, when the outer periphery of the cylindrical tank is affixed as a cylinder as shown in FIG. 3 by bending the R-bending vacuum heat-insulating material of the present invention, four flat-plate vacuum heat-insulating materials are used. Calculate and compare the amount of heat transfer of the wall surface when covered with four surfaces and when covered with eight surfaces using 8 flat vacuum insulators, and evaluate the adhesion with the wall surface went.

断熱対象である円筒状のタンクは、直径300mm,長さ400mmの大きさのものを使用し、真空断熱材は、R曲げ加工用真空断熱材,平板状真空断熱材ともに厚さ10mmのものを使用した。また、単位時間の熱移動量は、円筒状のタンクの外気温度を40℃、内部温度を0℃に設定して、計算を行った。
結果は、次の表3に示す通りであった。
The cylindrical tank to be insulated is 300 mm in diameter and 400 mm in length, and the vacuum insulation is 10 mm thick for both the R-bending vacuum insulation and the flat vacuum insulation. used. The amount of heat transfer per unit time was calculated by setting the outside temperature of the cylindrical tank to 40 ° C. and the internal temperature to 0 ° C.
The results were as shown in Table 3 below.

Figure 2007155065
Figure 2007155065

表3から、断熱対象である円筒状のタンクを本発明によるR曲げ加工用真空断熱材を折曲げて円筒状に加工し覆った場合は、四面で覆った場合の約35%、八面で覆った場合の約59%の熱の移動を削減でき、密着性も高いことが判る。   From Table 3, when a cylindrical tank to be insulated is folded and covered with a vacuum heat insulating material for R-bending according to the present invention to form a cylinder, about 35% of the case covered with four sides, eight sides are covered. It can be seen that about 59% of the heat transfer when covered can be reduced and the adhesion is high.

〔実施例4〕
次に、300×300×200mmの大きさの直方体断熱対象の全体を、本発明のL字曲げ加工用真空断熱材を折曲げた3枚のL字状真空断熱材で覆った場合と、6枚の平板状真空断熱材の端部を角部で突合せて覆った場合の単位時間に壁面を通過する熱を計算した。L字曲げ加工用真空断熱材,平板状真空断熱材ともに厚さ15mmのものを使用した。また、直方体の断熱対象の外気温度は40℃、内部温度は0℃に設定した。
結果は、次の表4に示す通りであった。
Example 4
Next, when the entire rectangular parallelepiped heat insulation object having a size of 300 × 300 × 200 mm is covered with three L-shaped vacuum heat insulating materials obtained by bending the vacuum heat insulating material for L-shaped bending of the present invention, 6 The heat passing through the wall surface was calculated per unit time when the ends of the flat plate-shaped vacuum heat insulating material were covered with the corners. A vacuum heat insulating material for L-shaped bending and a flat plate vacuum heat insulating material having a thickness of 15 mm were used. In addition, the outside air temperature of a rectangular parallelepiped object was set to 40 ° C, and the internal temperature was set to 0 ° C.
The results were as shown in Table 4 below.

Figure 2007155065
Figure 2007155065

表4から、直方体断熱対象をL字状に折曲げた真空断熱材を3枚用いて覆った場合の方が、平板状真空断熱材を6枚使用して覆った場合と比較し、約6%の熱の移動を削減できることが判る。   From Table 4, the case where the rectangular parallelepiped insulation object was covered with three sheets of vacuum heat insulating material bent in an L shape was about 6 compared with the case of covering with six flat plate vacuum heat insulating materials. % Heat transfer can be reduced.

次に、R曲げ加工方法により製造した真空断熱材を、条件により仕様A,Bにわけ、各仕様A,Bごとに実施例と比較例の真空断熱材を製造し、それらを対象物に貼付けたときの表面のしわの有無、貼付け対象物との形状整合性をより詳細に比較検討したところ、表5のようになった。なお、仕様Aでは実施例5〜7と比較例1、仕様Bでは実施例8〜10と比較例2である。   Next, the vacuum heat insulating material manufactured by the R bending method is divided into specifications A and B depending on the conditions. The vacuum heat insulating materials of the examples and comparative examples are manufactured for each of the specifications A and B, and these are attached to the object. Table 5 shows the results of a detailed comparison of the presence or absence of wrinkles on the surface and the shape consistency with the object to be pasted. In specification A, Examples 5 to 7 and Comparative Example 1 are used, and in specification B, Examples 8 to 10 and Comparative Example 2 are used.

Figure 2007155065
Figure 2007155065

また、L字曲げ加工方法により製造した真空断熱材を、条件により仕様C,Dにわけ、各仕様C,Dごとに実施例と比較例の真空断熱材を製造し、それらを対象物に貼付けたときの表面のしわの有無、貼付け対象物との形状整合性をより詳細に比較検討したところ、表6のようになった。なお、仕様Cでは実施例11〜13と比較例3、仕様Dでは実施例14〜16と比較例4である。   Moreover, the vacuum heat insulating material manufactured by the L-shaped bending method is divided into specifications C and D according to conditions, and the vacuum heat insulating materials of the examples and comparative examples are manufactured for each of the specifications C and D, and these are attached to the object. Table 6 shows the results of a detailed comparison of the presence or absence of wrinkles on the surface and the shape consistency with the object to be pasted. The specification C includes Examples 11 to 13 and Comparative Example 3, and the specification D includes Examples 14 to 16 and Comparative Example 4.

Figure 2007155065
Figure 2007155065

表5,表6から、真空断熱材表面と貼付け対象物表面との間に生じる隙間は、各仕様において溝がある場合とない場合とで大幅に異なり、各仕様A〜Dにおいて、溝がある場合の方が、隙間が小さく形状整合性がよいことが判る。また、表面のしわは、R曲げ加工の場合は、仕様Aのときは、溝の間隔が小さければしわがなくなり、仕様Bのときは、溝の間隔が小さく、かつ、溝の深さが深いときにしわがなくなることが判る。更に、L字曲げ加工の場合は、仕様C,Dのとき、1段目の溝の深さが深いときにしわがなくなることが判る。   From Tables 5 and 6, the gap generated between the surface of the vacuum heat insulating material and the surface of the object to be applied is greatly different depending on whether or not there is a groove in each specification. In each specification A to D, there is a groove. It can be seen that the case has a smaller gap and better shape matching. In the case of R bending, the wrinkles on the surface are eliminated in the case of the specification A if the groove interval is small, and in the case of the specification B, the groove interval is small and the groove depth is deep. It turns out that wrinkles sometimes disappear. Furthermore, in the case of the L-shaped bending process, it can be seen that, when the specifications are C and D, wrinkles are eliminated when the depth of the first-stage groove is deep.

本発明は、通常の方法で作製した平板状の真空断熱材の表面に、溝の付いた型を押付けるなどの簡便な方法で、R状,L字状などに折曲げ加工可能な真空断熱材を製造し、それらを折曲げて箱体の角部や円筒状の断熱対象物などの内面又は外面に隙間なく密着させて真空断熱材と断熱対象物間の空間を最小限にして貼付けることにより、従来、角部や円筒状の断熱対象物などに複数枚の平板状真空断熱材を使用していた場合と比較し、断熱材間あるいは断熱材と円筒状の対象物との間に生じていた隙間すなわち熱の漏洩が減少するので断熱性能が向上すると共に、真空断熱材の枚数を減らすことができる。その結果、製品の薄型化・軽量化・省エネ化が実現でき、更に、本発明の真空断熱材は、貼付ける断熱対象物の形状に合せて製造することができるので、貼付けの際の位置合わせが容易であるという利点が得られる。   The present invention is a vacuum heat insulation that can be bent into an R shape, an L shape, or the like by a simple method such as pressing a grooved mold on the surface of a flat vacuum heat insulating material produced by a normal method. Manufacture the materials, fold them and stick them tightly to the inner or outer surface of the box corners or cylindrical insulation objects, etc., and paste them with minimal space between the vacuum insulation material and the insulation object Compared to the case where a plurality of flat plate vacuum heat insulating materials are conventionally used for corners or cylindrical heat insulating objects, etc., between heat insulating materials or between a heat insulating material and a cylindrical object. Since the generated gap, that is, heat leakage is reduced, the heat insulation performance is improved, and the number of vacuum heat insulating materials can be reduced. As a result, the product can be made thinner, lighter and more energy efficient, and the vacuum heat insulating material of the present invention can be manufactured according to the shape of the heat insulation object to be pasted. Can be obtained.

本発明のR曲げ加工用真空断熱材を製造する直前の状態を示す断面図。Sectional drawing which shows the state just before manufacturing the vacuum heat insulating material for R bending process of this invention. 本発明のR曲げ加工用真空断熱材の一例の断面図。Sectional drawing of an example of the vacuum heat insulating material for R bending process of this invention. 図2に示した真空断熱材を円筒断熱対象物の外周に貼付けた状態を示す平面図。The top view which shows the state which affixed the vacuum heat insulating material shown in FIG. 2 on the outer periphery of a cylindrical heat insulation target object. 本発明のR曲げ加工用真空断熱材を図1とは異なる押圧部材で製造している状態を示す要部拡大側面図。The principal part enlarged side view which shows the state which manufactures the vacuum heat insulating material for R bending process of this invention with the press member different from FIG. 図4に示した押圧部材の斜視図。The perspective view of the press member shown in FIG. 本発明のL字曲げ加工用真空断熱材における1段目の溝を形成する直前の状態を示す断面図。Sectional drawing which shows the state just before forming the groove | channel of the 1st step in the vacuum heat insulating material for L-shaped bending process of this invention. 本発明のL字曲げ加工用真空断熱材における2段目の溝を形成する直前の状態を示す断面図。Sectional drawing which shows the state just before forming the groove | channel of the 2nd step in the vacuum heat insulating material for L-shaped bending process of this invention. 本発明のL字曲げ加工用真空断熱材の一例の断面図。Sectional drawing of an example of the vacuum heat insulating material for L-shaped bending process of this invention. 図6に示した真空断熱材を折曲げ箱体の断熱対象物の角部外側に貼付けた状態を示す側面図。The side view which shows the state which affixed the vacuum heat insulating material shown in FIG. 6 on the corner | angular part outer side of the heat insulation target object of a bending box body.

符号の説明Explanation of symbols

1 ガスバリア性フィルム
2 芯材
3,5 押圧部材
3a,5a 膨出面
4 溝
6 軸
7,9 棒状押圧部材
8,10 溝
T 円筒断熱対象物
H 箱状断熱対象物
V 平板状真空断熱材
VR R曲げ加工用真空断熱材
VL L字曲げ加工用真空断熱材
g ガス吸着剤
1 Gas barrier film 2 Core materials 3, 5 Press member
3a, 5a Swelling surface 4 Groove 6 Shaft 7, 9 Bar-shaped pressing member 8, 10 Groove T Cylindrical heat insulating object H Box-shaped heat insulating object V Flat vacuum heat insulating material VRR For vacuum heat insulating material VL For L-shaped bending Vacuum insulation g Gas adsorbent

Claims (18)

ガスバリア性フィルムの袋体内に芯材を挿入し、内部を真空にして開口部を封止した平板状真空断熱材において、折曲げの内側になる面に、当該断熱材の幅と同じ長さの1又は2以上の複数の溝を、その断熱材の折曲げ形状に対応した溝の深さと幅と間隔を備えて設けたことを特徴とする真空断熱材。   In the flat vacuum heat insulating material in which the core material is inserted into the bag body of the gas barrier film and the inside is evacuated and the opening is sealed, the surface on the inner side of the bend has the same length as the width of the heat insulating material. A vacuum heat insulating material, wherein one or two or more grooves are provided with a groove depth, width and interval corresponding to the bent shape of the heat insulating material. 折曲げ加工がR曲げ加工であって、複数の折曲げ部に溝を設けた請求項1の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the bending process is an R bending process, and grooves are provided in a plurality of bent parts. R曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が300mm以上1000mm以下であるとき、溝深さ(d)が下式(1)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を15〜25mmにして設けた請求項2の真空断熱材。
0.25×t−0.30≦d≦0.50×t−0.20 (1)
When the thickness (t) of the R-bending vacuum insulation material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 300 mm or more and 1000 mm or less, the groove depth (d) is expressed by the following formula (1 ) And the width of each groove is 1.0 mm to 4.0 mm, and the interval is 15 to 25 mm.
0.25 × t−0.30 ≦ d ≦ 0.50 × t−0.20 (1)
R曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が100mm以上300mm未満であるとき、溝深さ(d)が下式(2)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を5〜15mmにして設けた請求項2の真空断熱材。
0.35×t−0.25≦d≦0.50×t+0.60 (2)
When the thickness (t) of the R-bending vacuum insulation material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 100 mm or more and less than 300 mm, the groove depth (d) is expressed by the following formula (2 ), And the width of each groove is 1.0 mm to 4.0 mm, and the interval is 5 to 15 mm.
0.35 × t−0.25 ≦ d ≦ 0.50 × t + 0.60 (2)
折曲げ加工がL字曲げ加工であるとき、折曲げ部に溝を設けた請求項1の真空断熱材。   The vacuum heat insulating material of Claim 1 which provided the groove | channel in the bending part, when a bending process is an L-shaped bending process. L字曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦5(mm)であるとき、その溝深さ(d)が、下式(3)を満足すると共に、その溝の幅を1.0〜10mmにして設けた請求項5の真空断熱材。
0.8×t−0.3≦d≦0.9×t−0.1 (3)
When the thickness (t) of the vacuum heat insulating material for L-shaped bending is 1.5 (mm) ≤ t ≤ 5 (mm), the groove depth (d) satisfies the following formula (3), and The vacuum heat insulating material according to claim 5, wherein the groove has a width of 1.0 to 10 mm.
0.8 × t−0.3 ≦ d ≦ 0.9 × t−0.1 (3)
L字曲げ加工の真空断熱材の厚さ(t)が5(mm)<t≦15(mm)であるとき、溝付けを2段で行い、それぞれの溝深さ(d1,d2)が、下式(4)、(5)を満足すると共に、その溝の幅を1段目の溝幅は18〜40mm、2段目の溝幅を5.0〜22mmにして設けた請求項5の真空断熱材。
1段目
−0.3×t+5.0≦d1≦−0.2×t+5.0 (4)
2段目
1.0×t−5.0≦d2≦1.2×t−6.0 (5)
When the thickness (t) of the vacuum insulation material for L-shaped bending is 5 (mm) <t ≤ 15 (mm), grooving is performed in two stages, and the respective groove depths (d1, d2) are 6. The vacuum insulation according to claim 5, wherein the following formulas (4) and (5) are satisfied, and the width of the groove is set to 18 to 40 mm for the first step and 5.0 to 22 mm for the second step. Wood.
1st stage −0.3 × t + 5.0 ≦ d1 ≦ −0.2 × t + 5.0 (4)
2nd stage
1.0 × t−5.0 ≦ d2 ≦ 1.2 × t−6.0 (5)
折曲げた真空断熱材の折曲げ内面に、断熱対象物との間に介在させる柔軟性のあるシート状断熱材を設けた請求項1〜7のいずれかの真空断熱材。   The vacuum heat insulating material in any one of Claims 1-7 which provided the flexible sheet-like heat insulating material interposed between the heat insulation target objects in the bending inner surface of the bent vacuum heat insulating material. ガスバリア性フィルムの袋体内に芯材を挿入し、内部を真空にして開口部を封止した平板状真空断熱材の折曲げ内側となる面に、溝を形成するため膨出面を有する押圧部材を押し当てることにより、当該断熱材の幅と同じ長さの複数の溝を、折曲げ加工に対応した深さ,幅,間隔で設けることを特徴とする真空断熱材の製造方法。   A pressing member having a bulging surface for forming a groove on the inner surface of the flat vacuum heat insulating material which is inserted into the bag body of the gas barrier film and has a vacuum inside to seal the opening. A method for producing a vacuum heat insulating material, characterized in that, by pressing, a plurality of grooves having the same length as the width of the heat insulating material are provided at a depth, width, and interval corresponding to the bending process. 折曲げ加工がR曲げ加工であって、複数の折曲げ部に溝を設けた請求項9の真空断熱材の製造方法。   The method for manufacturing a vacuum heat insulating material according to claim 9, wherein the bending process is an R bending process, and grooves are provided in a plurality of bent parts. R曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が300mm以上1000mm以下であるとき、溝深さ(d)が下式(1)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を15〜25mmにして設けた請求項10の真空断熱材の製造方法。
0.25×t−0.30≦d≦0.50×t−0.20 (1)
When the thickness (t) of the R-bending vacuum insulation material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 300 mm or more and 1000 mm or less, the groove depth (d) is expressed by the following formula (1 ) And the width of each groove is 1.0 mm to 4.0 mm, and the interval is 15 to 25 mm.
0.25 × t−0.30 ≦ d ≦ 0.50 × t−0.20 (1)
R曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦15(mm)であって、直径が100mm以上300mm未満であるとき、溝深さ(d)が下式(2)を満足し、かつ、各溝の幅を1.0mm〜4.0mmにすると共に、その間隔を5〜15mmにして設けた請求項10の真空断熱材の製造方法。
0.35×t−0.25≦d≦0.50×t+0.60 (2)
When the thickness (t) of the R-bending vacuum insulation material is 1.5 (mm) ≤ t ≤ 15 (mm) and the diameter is 100 mm or more and less than 300 mm, the groove depth (d) is expressed by the following formula (2 ) And the width of each groove is 1.0 mm to 4.0 mm, and the interval is 5 to 15 mm.
0.35 × t−0.25 ≦ d ≦ 0.50 × t + 0.60 (2)
折曲げ加工がL字曲げ加工であるとき、折曲げ部に溝を設けた請求項9の真空断熱材の製造方法。   The manufacturing method of the vacuum heat insulating material of Claim 9 which provided the groove | channel in the bending part, when a bending process is an L-shaped bending process. L字曲げ加工の真空断熱材の厚さ(t)が1.5(mm)≦t≦5(mm)であるとき、その溝深さ(d)が、下式(3)を満足すると共に、その溝の幅を1.0〜10mmにして設けた請求項13の真空断熱材の製造方法。
0.8×t−0.3≦d≦0.9×t−0.1 (3)
When the thickness (t) of the vacuum heat insulating material for L-shaped bending is 1.5 (mm) ≦ t ≦ 5 (mm), the groove depth (d) satisfies the following formula (3), and The manufacturing method of the vacuum heat insulating material of Claim 13 provided with the width | variety of the groove | channel being 1.0-10 mm.
0.8 × t−0.3 ≦ d ≦ 0.9 × t−0.1 (3)
L字曲げ加工の真空断熱材の厚さ(t)が5(mm)<t≦15(mm)であるとき、溝付けを2段で行い、それぞれの溝深さ(d1,d2)が、下式(4)、(5)を満足すると共に、その溝の幅を1段目の溝幅は18〜40mm、2段目の溝幅を5.0〜22mmにして設けた請求項13の真空断熱材の製造方法。
1段目
−0.3×t+5.0≦d1≦−0.2×t+5.0 (4)
2段目
1.0×t−5.0≦d2≦1.2×t−6.0 (5)
When the thickness (t) of the vacuum insulation material for L-shaped bending is 5 (mm) <t ≤ 15 (mm), grooving is performed in two stages, and the respective groove depths (d1, d2) are 14. The vacuum heat insulation according to claim 13, wherein the following formulas (4) and (5) are satisfied, and the width of the groove is 18 to 40 mm for the first step and the width of the second step is 5.0 to 22 mm. A method of manufacturing the material.
1st stage −0.3 × t + 5.0 ≦ d1 ≦ −0.2 × t + 5.0 (4)
2nd stage
1.0 × t−5.0 ≦ d2 ≦ 1.2 × t−6.0 (5)
押圧部材の膨出面は、平板状部材の片面に、形成する溝の幅と深さ,間隔に合せて1条乃至平行に複数条形成した請求項9〜15のいずれかの真空断熱材の製造方法。   16. The vacuum heat insulating material according to any one of claims 9 to 15, wherein the bulging surface of the pressing member is formed in one or more parallel strips on one side of the flat plate member in accordance with the width, depth, and interval of the grooves to be formed. Method. 押圧部材の膨出面は、回転可能なローラの外周に、形成する溝の幅と深さ,間隔に合せて当該ローラの長さ方向に1条乃至平行に複数条形成した請求項9〜15のいずれかの真空断熱材の製造方法。   16. The bulging surface of the pressing member is formed on the outer periphery of the rotatable roller in one or more parallel strips in the length direction of the roller according to the width, depth and interval of the groove to be formed. A manufacturing method of any vacuum heat insulating material. 押圧部材の膨出面は、1本乃至平行な複数本の棒状又はパイプ状の部材で形成した請求項9〜17のいずれかの真空断熱材の製造方法。
The method of manufacturing a vacuum heat insulating material according to any one of claims 9 to 17, wherein the bulging surface of the pressing member is formed of one or a plurality of parallel rod-shaped or pipe-shaped members.
JP2005353911A 2005-12-07 2005-12-07 Vacuum heat insulating material and its manufacturing method Pending JP2007155065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353911A JP2007155065A (en) 2005-12-07 2005-12-07 Vacuum heat insulating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353911A JP2007155065A (en) 2005-12-07 2005-12-07 Vacuum heat insulating material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007155065A true JP2007155065A (en) 2007-06-21

Family

ID=38239699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353911A Pending JP2007155065A (en) 2005-12-07 2005-12-07 Vacuum heat insulating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007155065A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276089A (en) * 2009-05-27 2010-12-09 Toshiba Home Technology Corp Heat insulating material
CN102147041A (en) * 2011-03-11 2011-08-10 苏州维艾普新材料有限公司 Special-shaped vacuum heat insulation panel and manufacturing method thereof
JP2011153715A (en) * 2008-12-26 2011-08-11 Mitsubishi Electric Corp Vacuum insulating material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device and appliance each employing the vacuum insulation material
JP2011196392A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Vacuum heat insulation material and method for producing the same
JP2012063042A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator and vacuum heat insulating material
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
JP2012197950A (en) * 2012-07-25 2012-10-18 Toshiba Home Technology Corp Heat insulating material
EP2631524A2 (en) * 2010-10-18 2013-08-28 Mitsubishi Electric Corporation Vacuum insulation material, and manufacturing method for same
KR101324928B1 (en) * 2011-04-06 2013-11-01 (주)엘지하우시스 Vacuum heat insulation pannel and manufacturing mathod of the same
JP2014134283A (en) * 2012-12-13 2014-07-24 Panasonic Corp Vacuum heat insulation material and refrigerator using the same
CN103968196A (en) * 2013-02-06 2014-08-06 三星电子株式会社 Vacuum insulation material, insulation case unit, and refrigerator
KR20140100411A (en) * 2013-02-06 2014-08-14 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
KR101489991B1 (en) * 2012-05-29 2015-02-06 (주)엘지하우시스 Vacuum heat insulation material and manufacturing thereof
JP2015078707A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Vacuum heat insulation material, heat insulation box using vacuum heat insulation material, apparatus using vacuum heat insulation material and manufacturing method for vacuum heat insulation material
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
CN104746825A (en) * 2013-12-27 2015-07-01 常州山由帝武节能新材料制造有限公司 Ultra-thin stone decorating plate suitable for heat preservation and installation method of ultra-thin stone decorating plate
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
US20150354756A1 (en) * 2013-02-14 2015-12-10 Gaztransport Et Technigaz Sealed and thermally insulating wall for a tank for storing fluid
KR101735876B1 (en) * 2013-11-25 2017-05-16 (주)엘지하우시스 Method for manufacturing core material and core material and vacuum insulation pannel
JP2018194016A (en) * 2017-05-12 2018-12-06 東芝ホームテクノ株式会社 Vacuum heat insulation material, manufacturing method of the same, and heat insulation storage including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173928A (en) * 1985-01-29 1986-08-05 松下電器産業株式会社 Vacuum heat-insulating material
JPH08290505A (en) * 1995-04-21 1996-11-05 Toppan Printing Co Ltd Foamed wall paper and its manufacture
JP2003269689A (en) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd Vacuum insulator
JP3478780B2 (en) * 2000-05-25 2003-12-15 松下冷機株式会社 Vacuum insulation material and refrigerator using vacuum insulation material
JP2004125394A (en) * 2003-12-18 2004-04-22 Matsushita Refrig Co Ltd Refrigerator
JP2005076965A (en) * 2003-08-29 2005-03-24 Sanyo Electric Co Ltd Cooling cabinet
JP2005106311A (en) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc Refrigerator and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173928A (en) * 1985-01-29 1986-08-05 松下電器産業株式会社 Vacuum heat-insulating material
JPH08290505A (en) * 1995-04-21 1996-11-05 Toppan Printing Co Ltd Foamed wall paper and its manufacture
JP3478780B2 (en) * 2000-05-25 2003-12-15 松下冷機株式会社 Vacuum insulation material and refrigerator using vacuum insulation material
JP2003269689A (en) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd Vacuum insulator
JP2005076965A (en) * 2003-08-29 2005-03-24 Sanyo Electric Co Ltd Cooling cabinet
JP2005106311A (en) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc Refrigerator and its manufacturing method
JP2004125394A (en) * 2003-12-18 2004-04-22 Matsushita Refrig Co Ltd Refrigerator

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153715A (en) * 2008-12-26 2011-08-11 Mitsubishi Electric Corp Vacuum insulating material, and heat-insulating box, refrigerator, freezing/air-conditioning apparatus, hot-water supply device and appliance each employing the vacuum insulation material
US9074716B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
US9074717B2 (en) 2008-12-26 2015-07-07 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material
JP2010276089A (en) * 2009-05-27 2010-12-09 Toshiba Home Technology Corp Heat insulating material
US9068683B2 (en) 2009-10-16 2015-06-30 Mitsubishi Electric Corporation Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
US20120201997A1 (en) 2009-10-16 2012-08-09 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US8920899B2 (en) 2009-10-16 2014-12-30 Mitsubishi Electric Corporation Vacuum heat insulating material and refrigerator
US9103482B2 (en) 2009-10-19 2015-08-11 Mitsubishi Electric Corporation Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material
JP2011196392A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Vacuum heat insulation material and method for producing the same
JP2012063042A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator and vacuum heat insulating material
EP2631524A2 (en) * 2010-10-18 2013-08-28 Mitsubishi Electric Corporation Vacuum insulation material, and manufacturing method for same
EP2631524A4 (en) * 2010-10-18 2015-01-07 Mitsubishi Electric Corp Vacuum insulation material, and manufacturing method for same
CN102147041A (en) * 2011-03-11 2011-08-10 苏州维艾普新材料有限公司 Special-shaped vacuum heat insulation panel and manufacturing method thereof
KR101324928B1 (en) * 2011-04-06 2013-11-01 (주)엘지하우시스 Vacuum heat insulation pannel and manufacturing mathod of the same
KR101489991B1 (en) * 2012-05-29 2015-02-06 (주)엘지하우시스 Vacuum heat insulation material and manufacturing thereof
JP2012197950A (en) * 2012-07-25 2012-10-18 Toshiba Home Technology Corp Heat insulating material
JP2014134283A (en) * 2012-12-13 2014-07-24 Panasonic Corp Vacuum heat insulation material and refrigerator using the same
US9464751B2 (en) 2013-02-06 2016-10-11 Samsung Electronics Co., Ltd. Vacuum insulation material, insulation case unit, and refrigerator
KR102186839B1 (en) 2013-02-06 2020-12-07 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
EP2765375A2 (en) 2013-02-06 2014-08-13 Samsung Electronics Co., Ltd Vacuum insulation material, insulation case unit, and refrigerator
CN103968196A (en) * 2013-02-06 2014-08-06 三星电子株式会社 Vacuum insulation material, insulation case unit, and refrigerator
KR20140100411A (en) * 2013-02-06 2014-08-14 삼성전자주식회사 Vacuum insulation material and the refrigerator which is applied it
JP2014152830A (en) * 2013-02-06 2014-08-25 Samsung Electronics Co Ltd Vacuum heat insulation material, heat insulation box body, and refrigerator
EP2765375A3 (en) * 2013-02-06 2017-05-31 Samsung Electronics Co., Ltd Vacuum insulation material, insulation case unit, and refrigerator
US20150354756A1 (en) * 2013-02-14 2015-12-10 Gaztransport Et Technigaz Sealed and thermally insulating wall for a tank for storing fluid
US10876687B2 (en) * 2013-02-14 2020-12-29 Gaztransport Et Technigaz Sealed and thermally insulating wall for a tank for storing fluid
JP2015038374A (en) * 2013-07-19 2015-02-26 大日本印刷株式会社 Vacuum insulation material, method of manufacturing the same, outer wrapping material for the same, and heat insulation article
WO2015008533A1 (en) * 2013-07-19 2015-01-22 大日本印刷株式会社 Vacuum heat-insulating material, method for manufacturing vacuum heat-insulating material, outer cover material for vacuum heat-insulating material, and heat-insulated article
JP2015078707A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Vacuum heat insulation material, heat insulation box using vacuum heat insulation material, apparatus using vacuum heat insulation material and manufacturing method for vacuum heat insulation material
KR101735876B1 (en) * 2013-11-25 2017-05-16 (주)엘지하우시스 Method for manufacturing core material and core material and vacuum insulation pannel
CN104746825A (en) * 2013-12-27 2015-07-01 常州山由帝武节能新材料制造有限公司 Ultra-thin stone decorating plate suitable for heat preservation and installation method of ultra-thin stone decorating plate
CN104746825B (en) * 2013-12-27 2017-05-03 江苏山由帝奥节能新材股份有限公司 Ultra-thin stone decorating plate suitable for heat preservation and installation method of ultra-thin stone decorating plate
JP2018194016A (en) * 2017-05-12 2018-12-06 東芝ホームテクノ株式会社 Vacuum heat insulation material, manufacturing method of the same, and heat insulation storage including the same

Similar Documents

Publication Publication Date Title
JP2007155065A (en) Vacuum heat insulating material and its manufacturing method
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
TW548186B (en) Evacuated panel for thermal insulation of a body having non-planar surfaces
EP1275893B1 (en) Vacuum insulating material and device using the same
JP5388603B2 (en) Vacuum heat insulating material and heat insulating box equipped with the same
JP3478780B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
TW591163B (en) Process for manufacturing a flexible thermoinsulating device and so obtained device
US20130029082A1 (en) Vacuum insulation panel
JP2013088036A (en) Thermal insulation box, refrigerator, and storage type water heater
JPH11280989A (en) Plate-like evacuated heat insulating molded body and heat insulating method for curved surface by using heat insulating material
WO2006009063A1 (en) Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP2006194559A (en) Heat insulating box body using vacuum heat insulating material
KR100718362B1 (en) Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained
JP2008106532A (en) Vacuum heat insulation material
TW494207B (en) Evacuated panel for thermal insulation of cylindrical bodies
JP5195494B2 (en) Vacuum heat insulating material and manufacturing method thereof
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP5646241B2 (en) refrigerator
JP6486079B2 (en) Method for maintaining heat insulation performance of vacuum insulation panel and method for maintaining heat insulation performance of refrigerator
CN107816601B (en) Vacuum heat insulation piece
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method
JP6778774B2 (en) Manufacturing method of vacuum insulation panel
EP3495708B1 (en) Vacuum thermal insulation material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117