JP2007154090A - Grouting material and method for applying the same - Google Patents

Grouting material and method for applying the same Download PDF

Info

Publication number
JP2007154090A
JP2007154090A JP2005353319A JP2005353319A JP2007154090A JP 2007154090 A JP2007154090 A JP 2007154090A JP 2005353319 A JP2005353319 A JP 2005353319A JP 2005353319 A JP2005353319 A JP 2005353319A JP 2007154090 A JP2007154090 A JP 2007154090A
Authority
JP
Japan
Prior art keywords
water
injection material
ground
ground injection
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005353319A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Yoshinori Oba
美紀 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2005353319A priority Critical patent/JP2007154090A/en
Publication of JP2007154090A publication Critical patent/JP2007154090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grouting material showing a low viscosity liquid state in uncured state, easily injected, becoming viscoelastic on curing and excellent in water-shut off property, also excellent in durability and exhibiting the water leakage-preventing and quake-absorbing effects of a foundation. <P>SOLUTION: This grouting material containing a urethane polymer and water as active ingredients is provided by having <20 wt.%, preferably 2-15 wt.% content of the urethane polymer, and further capable of containing 0.1-12% colloidal silica by the weight ratio in terms of SiO<SB>2</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は未硬化状態では低粘性の液状を呈し、硬化すると粘弾性で止水性に優れ、かつ耐久性にも優れた地盤注入材およびその施工方法に係り、詳細には地盤中の列車荷重等により繰り返し振動を受けるトンネル等の老朽土中構造物の水漏れ防止や間断なく波浪の振動や吸い出し作用を受け続ける護岸矢板等継目を遮水するのみならず、構造物基礎部やその周辺部に注入することにより地震時の免震効果をも発揮し得、繰り返し振動に対して破損することなく、止水効果を維持し、かつ、流動性に優れているところから、土中構造物の背面の空隙を充填して粘弾性のある止水効果を得るに優れた地盤注入材およびその施工方法に関する。   The present invention relates to a ground injection material that exhibits a low-viscosity liquid in an uncured state, and is viscoelastic and water-stopping when cured, and its construction method, and more specifically, a train load in the ground, etc. In addition to preventing water leaks in old soil structures such as tunnels that are repeatedly vibrated by vibrations and shielding seams such as revetment sheet piles that continue to receive wave vibration and sucking action without interruption, By injecting it, it can also exhibit seismic isolation effect at the time of earthquake, maintain the water stop effect without being damaged by repeated vibration, and has excellent fluidity. It is related with the ground injection material excellent in filling the space | gap of this, and obtaining the water stop effect with a viscoelasticity, and its construction method.

一般に、コンクリート構造物の地上ないしは地下施設に発生する漏水の止水、あるいはセグメント接合部の止水に粘弾性で水膨脹性を有する止水材が使用されている。   In general, a water-stopping material having viscoelasticity and water-expandability is used to stop water leakage occurring on the ground or underground facilities of a concrete structure, or to stop water at a segment joint.

この種の止水材として従来、ポリエーテルポリオールと、脂肪族ポリイソシアネートあるいは有機ポリイソシアネートとから得られる末端イソシアネート基含有ウレタンプレポリマーが使用されている。   As this type of water-stopping material, a terminal isocyanate group-containing urethane prepolymer obtained from polyether polyol and aliphatic polyisocyanate or organic polyisocyanate has been conventionally used.

この種のウレタンプレポリマーは止水に際して、水漏れ空隙内で水と反応させることにより使用され、あるいは、ウレタンプレポリマーと水とを混合し、この混合物を水漏れ個所に注入することにより使用される。   This type of urethane prepolymer is used by allowing it to react with water in the water leakage gap when water stops, or by mixing the urethane prepolymer and water and injecting this mixture into the water leakage location. The

しかし、上述前者のウレタンプレポリマーの使用態様では、水漏れ空隙内で水と接触した部分にのみポリウレタン発泡体が形成されるため、その止水効果は一時的で、かつ、長期の耐久性に難点があり、また、後者の使用態様では、反応性のコントロールが難しく、実用的でない。特に、上述のウレタンプレポリマーの配合量が多い場合、水と接触した時点で反応を起こして直ちに高粘性となり、また、ゲル化時間が十分に得られないため作業性に乏しい。   However, in the above-described use mode of the urethane prepolymer, since the polyurethane foam is formed only in the portion in contact with water in the water leakage gap, the water-stopping effect is temporary and long-term durability is achieved. In the latter mode of use, reactivity is difficult to control and is not practical. In particular, when the amount of the above-mentioned urethane prepolymer is large, the reaction occurs immediately when it comes into contact with water and immediately becomes highly viscous, and the gelation time cannot be sufficiently obtained, so that workability is poor.

また、交通荷重により永年にわたって間断なく繰り返し振動を受けるトンネル裏込部やトンネルコンクリートの継目部やコンクリート漏水部、あるいは護岸の矢板の継手部はこれらのポリウレタン発泡体では破損しやすく漏水を生ずることになる。   In addition, tunnel backfills, tunnel concrete joints, concrete leaks, and joints of revetment sheet piles that are subject to repeated vibrations for many years due to traffic loads are easily damaged by these polyurethane foams, causing water leakage. Become.

水膨張ゴムをジョイント部に挟み込んでおき、地下水と接触するにしたがって膨張してジョイント部を水密性にシールする方法も開発されている。しかし、ゴム状体のシールは部分的で水密性を与えるので、漏水部あるいは将来水漏れする可能性のあるところ全体をシールすることは困難である。
特開昭61−196070号公報 特開平6−248810号公報 特許第2784310号公報 特許第3225244号公報
A method has also been developed in which a water-expandable rubber is sandwiched between joints and expands as it comes into contact with groundwater to seal the joints in a watertight manner. However, since the seal of the rubber-like body is partial and gives water tightness, it is difficult to seal the water leakage part or the whole where there is a possibility of water leakage in the future.
JP 61-196070 A JP-A-6-248810 Japanese Patent No. 2784310 Japanese Patent No. 3225244

そこで、本発明の課題は未硬化状態では低粘性の液状を呈して注入が容易であり、硬化すると粘弾性で止水性に優れ、かつ、耐久性にも優れ、さらに硬化反応のコントロールが容易であり、地盤中列車荷重等の繰り返し振動を受けるトンネル等の老朽土中構造物の水漏れ防止や間断なく波浪の振動や吸い出し作用を受け続ける護岸矢板等の継目部を遮水し得、かつ、構造物基礎部やその周辺部に注入して地震時の免震効果をも発揮し得、繰り返し振動に対して破損することなく、止水効果を維持し、かつ、流動性に優れているところから、土中構造物の背面の空隙を充填して粘弾性のある止水効果を得る、上述の公知技術に存する欠点を改良した地盤注入材およびその施工方法を提供することにある。   Therefore, the problem of the present invention is that it is in a non-cured state and presents a low-viscosity liquid that is easy to inject, and when cured, it is viscoelastic and water-stopping, excellent in durability, and easy to control the curing reaction. Yes, can prevent water leakage of old soil structures such as tunnels that are subject to repeated vibrations such as train loads in the ground, and can block seams such as revetment sheet piles that continue to receive wave vibration and sucking action without interruption, and It can be injected into the foundation of the structure and its surroundings to exhibit a seismic isolation effect at the time of earthquake, maintain a water stop effect without being damaged by repeated vibrations, and has excellent fluidity Accordingly, it is an object of the present invention to provide a ground-injecting material and a construction method thereof, which improve the drawbacks of the above-mentioned known technology, and obtain a viscoelastic water-stopping effect by filling a void on the back surface of the soil structure.

本発明では、低粘性であることによって注入という手段で空隙のある部分を全体的に充填して水密性のみならず、繰り返して振動荷重を受けても破壊されにくい粘弾性のある水溶性のゾーンを設けることができる。   In the present invention, the low-viscosity water-soluble zone has a viscoelasticity that is less likely to be destroyed not only by watertightness by filling the entire voided portion by means of injection, but also repeatedly subjected to vibration load. Can be provided.

上述の目的を達成するため、本発明の地盤注入材によれば、ウレタンポリマーと水とを有効成分として含有する地盤注入材において、ウレタンポリマーの含有量が20重量パーセント未満であり、未硬化状態では低粘性の液状を呈し、硬化すると粘弾性で止水性に優れ、かつ耐久性にも優れることを特徴とする。   In order to achieve the above object, according to the ground injection material of the present invention, in the ground injection material containing urethane polymer and water as active ingredients, the content of the urethane polymer is less than 20 weight percent, and the uncured state Is characterized by a low-viscosity liquid that is viscoelastic and water-stopping when cured and also has excellent durability.

さらに、上述の目的を達成するため、本発明の水漏れ防止施工方法によれば、上述の地盤注入材を地盤中の列車荷重等の繰り返し振動を受けるトンネル等の老朽土中構造物の水漏れ箇所および間断なく波浪の振動や吸い出し作用を受け続ける護岸矢板等の継目部に注入して水漏れの防止や遮水することを特徴とする。   Furthermore, in order to achieve the above-mentioned object, according to the water leakage prevention construction method of the present invention, the above-mentioned ground injection material leaks water from old soil structures such as tunnels that undergo repeated vibration such as train load in the ground. It is characterized by being injected into seams such as revetment sheet piles that continue to be subjected to wave vibration and sucking action without interruption, and to prevent water leakage and water shielding.

さらにまた、上述の目的を達成するため、本発明の免震施工方法によれば、上述の地盤注入材を、繰り返し荷重を受ける構造物基礎部やその周辺部に注入して地震時における構造物の免震効果を付与することを特徴とする。   Furthermore, in order to achieve the above-mentioned object, according to the seismic isolation construction method of the present invention, the above-mentioned ground injection material is injected into the structure foundation part and its peripheral part that receive repeated loads, and the structure in the event of an earthquake. It is characterized by providing seismic isolation effect.

本発明は上述のとおり、ウレタンポリマーと、水とを有効成分として含有する地盤注入材において、ウレタンポリマーの含有量が20重量%未満であり、未硬化状態では低粘性の液状を呈して注入が容易であり、硬化すると粘弾性で止水性に優れ、かつ、耐久性にも優れた地盤注入材であり、これを地盤中の列車荷重等の繰り返し振動を受けるトンネル等の老朽土中構造物の水漏れ防止や間断なく波浪の振動や吸い出し作用を受け続ける護岸矢板等の継目部を遮水して止水効果を発揮し、かつ、構造物基礎部やその周辺部に注入することにより地震時の免震効果をも発揮し、繰り返し振動に対して破損することなく止水効果を維持し、かつ、流動性に優れているところから、土中構造物の背面の空隙を充填して粘弾性のある止水効果を得る。   As described above, the present invention is a ground injection material containing urethane polymer and water as active ingredients. The content of the urethane polymer is less than 20% by weight, and in an uncured state, the injection exhibits a low viscosity liquid. It is an easy-to-cure, ground-injecting material that is viscoelastic, water-stopping, and excellent in durability, and is used for aging soil structures such as tunnels that are subject to repeated vibrations such as train loads in the ground. In the event of an earthquake, water is prevented by preventing water leakage, and seams such as revetment sheet piles that continue to be subjected to wave vibration and sucking action without interruption are used to insulate the water and also inject into the structure foundation and its surroundings. Because of its seismic isolation effect, it maintains the water-stopping effect without being damaged by repeated vibrations, and is excellent in fluidity, so it fills the void on the back of the structure in the soil and becomes viscoelastic. Get a water stop effect.

以下、本発明を具体的に詳述する。   Hereinafter, the present invention will be described in detail.

本発明注入材はウレタンポリマーと、水とを有効成分として含有する地盤注入材であって、ウレタンポリマーの含有量を20重量%未満とすることにより、未硬化状態では低粘性の液状を呈し、硬化すると粘弾性で止水性に優れ、かつ、耐久性にも優れる本発明におけるウレタンポリマーは液状で流動性のあるウレタンポリマーであることが好ましい。   The injection material of the present invention is a ground injection material containing urethane polymer and water as active ingredients, and by making the content of the urethane polymer less than 20% by weight, it exhibits a low-viscosity liquid in an uncured state, The urethane polymer in the present invention, which is viscoelastic and excellent in water-stopping properties when cured and excellent in durability, is preferably a liquid and fluid urethane polymer.

本発明に用いられる上述ウレタンプレポリマーは一般式
R[OR1nOH]
(式中、Rは多価アルコール残基を示し、(OR)はオキシエチレン基と、炭素数3〜4のアルキレン基を有するオキシアルキレン基とからなるポリオキシアルキレン鎖を示す。ただし、(OR)におけるオキシエチレン基の割合は、分子量の20〜100重量%を占める。nはオキシアルキレン基の重合度を示す数で、水酸基当量が170〜6000となるに相当する数を示し、pは2〜8の数を示す。)で示されるポリエーテルポリオールの一種または複数種をポリイソシアネートと反応させて得られる末端NCO基含有量が1〜12%のウレタンプレポリマーである。
The urethane prepolymer used in the present invention has the general formula R [OR 1n OH] P
(In the formula, R represents a polyhydric alcohol residue, and (OR 1 ) represents a polyoxyalkylene chain composed of an oxyethylene group and an oxyalkylene group having an alkylene group having 3 to 4 carbon atoms, provided that ( The ratio of the oxyethylene group in OR 1 ) occupies 20 to 100% by weight of the molecular weight, n is a number indicating the degree of polymerization of the oxyalkylene group, and is a number corresponding to a hydroxyl group equivalent of 170 to 6000, p Represents a number of 2 to 8.) is a urethane prepolymer having a terminal NCO group content of 1 to 12% obtained by reacting one or more of the polyether polyols represented by (2) with polyisocyanate.

ここで、多価アルコールとしては、ニ価アルコール、例えばエチレングリコール、プロピレングリコール等、三価アルコール、例えばグリセリン、トリメチロールプロパン等、四価アルコール、例えばエリトリット、ペンタエリトリット等、五価アルコール、例えばアラビット、キシリット等、六価アルコール、例えばソルビット、マンニット等、等が挙げられる。   Here, polyhydric alcohols include dihydric alcohols such as ethylene glycol and propylene glycol, trihydric alcohols such as glycerin and trimethylolpropane, tetrahydric alcohols such as erythritol and pentaerythritol, pentahydric alcohols such as Examples thereof include arabit, xylit and the like, and hexavalent alcohols such as sorbit and mannitol.

また、ポリエーテルポリオールは上述多価アルコールにアルキレンオキサイドを所望の分子量となるように付加して製造される。この付加はランダムでもブロックでもよい。オキシエチレン基の割合が20%以下では膨脹性が不充分となり、止水材として好ましくない。ポリイソシアネートとしては任意のものが使用されるが、ウレタンプレポリマーの末端に存在するイソシアネート基1%以上、12%以内、好ましくは2%以上、7%以内である。   The polyether polyol is produced by adding alkylene oxide to the above-mentioned polyhydric alcohol so as to have a desired molecular weight. This addition may be random or block. If the ratio of oxyethylene groups is 20% or less, the expandability becomes insufficient, which is not preferable as a water-stopping material. Any polyisocyanate may be used, but it is 1% or more and 12% or less, preferably 2% or more and 7% or less of the isocyanate group present at the end of the urethane prepolymer.

上述ウレタンポリマーは粘度が極めて高い場合、キシレン系溶剤、例えばキシレン、またはメチル基含有ジフエニルエタン等の有機溶剤等で希釈し、作業上差し支えない程度に希釈する。   When the above-mentioned urethane polymer has a very high viscosity, it is diluted with a xylene-based solvent such as xylene or an organic solvent such as methyl group-containing diphenylethane, and diluted to an extent that does not interfere with the work.

本発明の地盤注入材において、ウレタンポリマーの含有量は20重量%未満であることが必須であり、ウレタンポリマーと水とからなる場合、2〜18%、好ましくは3〜5%である。ウレタンポリマーの含有量は20%を越えるとゲル化が速くなり、未硬化状態で低粘性を保持し得なくなり、地盤への注入が困難になる。   In the ground injection material of the present invention, it is essential that the content of the urethane polymer is less than 20% by weight. When the urethane polymer and water are used, the content is 2 to 18%, preferably 3 to 5%. When the content of the urethane polymer exceeds 20%, gelation becomes fast, and it becomes impossible to maintain a low viscosity in an uncured state, making it difficult to inject into the ground.

上述の本発明地盤注入材において、その反応を遅らせ、低粘性で、かつ注入可能なゲルタイムを得るためには、さらにコロイダルシリカを配合することが好ましい。すなわち、本発明はコロイダルシリカを添加することにより、注入材の流動性が良くなり、ゲルタイムを長くすることができる。コロイダルシリカを添加する場合、ウレタンプレポリマーの配合量は注入材重量の4%以上20%未満が好ましく、SiOは0.1%以上15%以内、さらには0.5%以上12%以内が好ましい。 In the above-mentioned ground injection material of the present invention, it is preferable to further add colloidal silica in order to delay the reaction and obtain a low viscosity and injectable gel time. That is, in the present invention, by adding colloidal silica, the fluidity of the injection material is improved and the gel time can be lengthened. When colloidal silica is added, the amount of urethane prepolymer is preferably 4% or more and less than 20% of the weight of the injection material, and SiO 2 is 0.1% or more and 15% or less, and further 0.5% or more and 12% or less. preferable.

このコロイダルシリカは水ガラスを脱アルカリ処理して活性珪酸とし、この活性珪酸をSiO含有量20%以上、30%以内に濃縮し、直径5mmから20mm程度の粒子の分散体としたPH9〜10付近を呈するSiOの濃厚なシリカ液であり、これに好ましくはアルカリを添加して加熱し、分子量数が万単位あるいはそれ以上に増粒し、安定化させてもよい。 This colloidal silica is obtained by dealkalizing water glass into active silicic acid, concentrating the active silicic acid to a SiO 2 content of 20% or more and 30% or less to obtain a dispersion of particles having a diameter of about 5 mm to 20 mm. It is a concentrated SiO 2 silica solution that exhibits the vicinity, and an alkali is preferably added thereto and heated to increase the molecular weight to 10,000 units or more and stabilize.

上述コロイダルシリカの注入材における含有量はSiO重量比で0.1〜15%、好ましくは0.5〜12%である。これにより注入材は粘性およびゲルタイム等、流動性が調整される。コロイダルシリカを添加して流動性の調整された注入材の場合、ウレタンポリマーの配合量は4〜20重量%未満が好ましい。 The content of the above-mentioned colloidal silica in the injection material is 0.1 to 15%, preferably 0.5 to 12% in terms of SiO 2 weight ratio. Thereby, fluidity | liquidity, such as viscosity and a gel time, is adjusted for an injection material. In the case of an injection material whose flowability is adjusted by adding colloidal silica, the amount of the urethane polymer is preferably 4 to less than 20% by weight.

さらに、本発明注入材は上述コロイダルシリカとともに、あるいは単独で硬化剤を含有させ、強度および耐水圧を向上させることもできる。この硬化剤としては特に限定されないが、好ましくは粉体あるいは水溶液の状態で添加したときに沈澱を生じないものであり、具体的には塩化カリウム、塩化ナトリウム、塩化マグネシウム等の水溶性無機塩、水ガラス、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、重炭酸ソーダ等の難溶性あるいは水溶性アルカリ性化合物が挙げられ、その他、ヘキサメタリン酸ソーダ等の金属イオン封鎖剤も用いることができる。   Further, the injection material of the present invention can contain a curing agent together with the above colloidal silica or can improve strength and water pressure resistance. Although it does not specifically limit as this hardening | curing agent, Preferably it is what does not produce precipitation when added in the state of a powder or aqueous solution, Specifically, water-soluble inorganic salts, such as potassium chloride, sodium chloride, and magnesium chloride, Examples include water-soluble, water-soluble alkaline compounds such as water glass, magnesium hydroxide, calcium carbonate, calcium hydroxide, and sodium bicarbonate. In addition, metal ion sequestering agents such as sodium hexametaphosphate can also be used.

上述構成からなる本発明の地盤注入材は地盤中の列車荷重等の繰り返し振動を受けるトンネル等の老朽土中構造物の水漏れ個所に注入して水漏れを防止し、かつ、繰り返し荷重を受ける構造物基礎部や構造物周辺部の地盤中に注入して構造物の地震時における免震効果を付与する。この注入例として、例えば次の(a)〜(d)に示される態様が挙げられる。   The ground injecting material of the present invention having the above-described structure is injected into a water leaking part of an old soil structure such as a tunnel that receives repeated vibration such as train load in the ground to prevent water leakage and receive repeated load. It is injected into the ground of the structure foundation and the surrounding area to give the structure a seismic isolation effect. As this injection example, for example, the following modes (a) to (d) are exemplified.

(a)鋼矢板の継目
(b)トンネルの漏水部、コンクリートの継目
(c)止水壁、遮水層、止水シート
(d)建造物の免震材料
(A) Steel sheet pile joints (b) Tunnel leaks, concrete joints (c) Water blocking walls, water blocking layers, water blocking sheets (d) Seismic isolation materials for buildings

以下、本発明を実施例によって具体的に詳述するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely in detail, this invention is not limited by these Examples.

以下の材料を使用して本発明にかかる地盤注入材を調製した。   The ground injection material concerning this invention was prepared using the following materials.

使用材料
(1)ウレタンポリマー
上述一般式で示されるポリエーテルポリオールをポリイソシアネートと反応して得られる末端NCO基含有量が1〜12%の液状ウレタンプレポリマー。粘度1000cps、比重1.05。
(2)コロイダルシリカ
SiO30.0%、モル比59.9、PH9.3、粘度6cps、比重1.41。
(3)KCl
塩化カリウム 試薬一級。
Materials Used (1) Urethane Polymer A liquid urethane prepolymer having a terminal NCO group content of 1 to 12% obtained by reacting the polyether polyol represented by the above general formula with polyisocyanate. Viscosity 1000 cps, specific gravity 1.05.
(2) Colloidal silica SiO 2 30.0%, molar ratio 59.9, PH 9.3, viscosity 6 cps, specific gravity 1.41.
(3) KCl
First grade of potassium chloride reagent.

ウレタンポリマーと水との配合比率がそれぞれ異なる配合例1〜13および比較例1〜2を調製し、表1に示した。これらの配合例1〜13および比較例1〜2についてゲルタイムを測定し、結果を表1に示した。さらに、これら配合例1〜13および比較例1〜2について体積変化(%)を測定し、結果を表1に示した。体積変化は次のように行った。   Formulation Examples 1 to 13 and Comparative Examples 1 and 2 having different blending ratios of urethane polymer and water were prepared and shown in Table 1. The gel times were measured for these formulation examples 1 to 13 and comparative examples 1 and 2, and the results are shown in Table 1. Furthermore, volume change (%) was measured for these formulation examples 1 to 13 and comparative examples 1 and 2, and the results are shown in Table 1. The volume change was performed as follows.

体積変化
200mlのガラス製メスフラスコにグラウト100mlを注ぎ込み、ゲル化させた。その後、標線まで水を入れて7日後に養生水を全量取り出し、さらに標線まで水を入れる。ゲルの体積を算出により求めた。
Volume change 100 ml of grout was poured into a 200 ml glass volumetric flask to cause gelation. Then, put water up to the marked line, and after 7 days, take out the whole amount of curing water, and add water up to the marked line. The volume of the gel was calculated.

Figure 2007154090
Figure 2007154090

表1から、ウレタンポリマーの含有量が20重量%未満の配合例1〜13についてはゲルタイムが1分〜9時間であり、低粘性の未硬化状態が長く続いた。特に配合例 3、6、11についてはゲルタイムが3分以上と長く、低粘性の状態が非常に長く続いた。   From Table 1, the blend times 1 to 13 having a urethane polymer content of less than 20% by weight had a gel time of 1 minute to 9 hours, and the low-viscosity uncured state continued for a long time. In particular, with regard to Formulation Examples 3, 6, and 11, the gel time was as long as 3 minutes or longer, and the low-viscosity state lasted very long.

一方、比較例1〜2に示されるように、ウレタンポリマーを20%以上含有すると配合直後に高粘性となり、ゲル化も早いため、注入管内でゲル化してしまい、また注入できたとしても所定の注入箇所を充分に充填しきれないままグラウトが硬化してしまうことが考えられる。   On the other hand, as shown in Comparative Examples 1 and 2, when 20% or more of the urethane polymer is contained, it becomes highly viscous immediately after blending and gelation is fast, so that it gels in the injection tube, and even if it can be injected, it is predetermined. It is conceivable that the grout hardens without fully filling the injection site.

また、比較例1、2の硬化物は水中において体積が2倍以上に膨脹してしまい、このような注入材が地盤中に注入すると、注入後に地盤が***したり、注入範囲外に影響を及ぼす可能性がある。配合例1〜13においては体積変化が1.5倍以下となり、特に配合例6〜13では殆ど膨脹することもなく、適切な注入が行える。   Moreover, the hardened | cured material of the comparative examples 1 and 2 expand | swells more than twice in water, and when such injection | pouring material inject | pours in the ground, the ground will rise after injection | pouring, or it has an influence outside the injection | pouring range. There is a possibility of effect. In the blending examples 1 to 13, the volume change is 1.5 times or less, and in the blending examples 6 to 13 in particular, there is almost no expansion and appropriate injection can be performed.

表2の配合例1〜13の試料について、硬化物に1kgf/cmの水頭で連続透水試験を行い、透水係数を求め、結果を表2に示した。 About the sample of the mixing examples 1-13 of Table 2, the continuous water permeability test was done to the hardened | cured material with the water head of 1 kgf / cm < 2 >, the water permeability coefficient was calculated | required, and the result was shown in Table 2.

Figure 2007154090
Figure 2007154090

表2の透水試験結果から、配合例1〜3のいずれもが長期的に高い透水係数を維持し、止水性および耐久性にも優れていることがわかる。   From the water permeability test results in Table 2, it can be seen that all of Formulation Examples 1 to 3 maintain a high water permeability in the long term and are excellent in water-stopping and durability.

図1に示す耐水性試験装置1を用いて空洞2内にゲル化前の低粘性を呈する本発明にかかる配合例3の注入材3を注入口4から注入した。注入から24時間経過後、同様の注入口4からす水道水を注入して、水圧を0Mpaから5Mpaまで圧力計5で測定しながら徐々に加えたが、漏水はみられなかった。このことから注入材3は硬化され、粘弾性で止水性に優れ、かつ耐久性にも優れた硬化物であることがわかる。   Using the water resistance test apparatus 1 shown in FIG. 1, the injection material 3 of Formulation Example 3 according to the present invention, which exhibits low viscosity before gelation, was injected into the cavity 2 from the injection port 4. After 24 hours from the injection, tap water was injected from the same inlet 4 and gradually added while measuring the water pressure from 0 Mpa to 5 Mpa with the pressure gauge 5, but no water leakage was observed. From this, it can be seen that the injection material 3 is cured and is a cured product that is viscoelastic, excellent in water-stopping properties, and excellent in durability.

図2は複数枚の鋼矢板6、6・・6を海水7中に建立して水を塞ぎ止めた状態の斜視図である。鋼矢板6、6・・6は互いに端面8で掛止連結され、壁9を形成している。   FIG. 2 is a perspective view of a state in which a plurality of steel sheet piles 6, 6... 6 are erected in seawater 7 to block the water. The steel sheet piles 6, 6... 6 are connected to each other by end faces 8 to form a wall 9.

図3は図2の平面図、図4は図2および図3の端面8部分の断面図である。図3および図4に示されるように、互いに掛止された端面8にはすき間10が形成されるが、このすき間10に本発明にかかる注入材3を注入し、硬化した。注入材3は低粘性の液状を呈して注入が容易であり、硬化後は粘弾性で止水性を呈し、かつ耐久性にも優れている。したがって、端面8からの漏水は完全に防止され、現場耐水性を充分に保持している。この鋼矢板6の現場耐水試験は次のようにして行った。   3 is a plan view of FIG. 2, and FIG. 4 is a cross-sectional view of the end face 8 portion of FIGS. As shown in FIG. 3 and FIG. 4, a gap 10 is formed in the end faces 8 that are hooked to each other, and the injection material 3 according to the present invention is injected into the gap 10 and cured. The injection material 3 presents a low-viscosity liquid and is easy to inject, is viscoelastic and water-stopping after curing, and has excellent durability. Therefore, water leakage from the end face 8 is completely prevented, and the on-site water resistance is sufficiently maintained. The on-site water resistance test of this steel sheet pile 6 was performed as follows.

鋼矢板の現場耐水試験護岸工事の際、図5に示されるように、鋼矢板6を海水7中に設置後、地盤20側に図示しないケーシングにより削孔し、削孔21を形成した。試験はこの削孔21中の水位を測定することにより行った。水位の測定は図4に示されるすき間10に上述の本発明にかかる注入材3を注入する前、および注入後翌日について、午前8時から経時的に測定することにより行った。注入後6ケ月後についても同様に行った。水位の測定結果を図6のグラフに示す。   During the on-site water resistance test revetment construction of the steel sheet pile, as shown in FIG. 5, the steel sheet pile 6 was installed in the seawater 7 and then drilled with a casing (not shown) on the ground 20 side to form the hole 21. The test was performed by measuring the water level in the hole 21. The water level was measured by measuring over time from 8:00 am before the injection material 3 according to the present invention was injected into the gap 10 shown in FIG. 4 and the next day after the injection. The same was done 6 months after the injection. The measurement result of the water level is shown in the graph of FIG.

図6から明らかなように、注入前、水位は潮の満ちひきに大きく影響されるが、注入翌日では水位の変化が小さくなることがわかる。これは鋼矢板6、6のすき間10が本発明注入材により止水されたことを意味している。また、6ケ月後においても、水位の変化は注入翌日の結果と大差なかったことから、本発明注入材は硬化後、耐水性を充分保持していることがわかる。   As can be seen from FIG. 6, the water level before injection is greatly affected by the flow of the tide, but it can be seen that the change in water level is small the day after injection. This means that the gap 10 between the steel sheet piles 6 and 6 was stopped by the injection material of the present invention. In addition, even after 6 months, the change in the water level was not much different from the result on the next day of injection, indicating that the injection material of the present invention sufficiently retained water resistance after curing.

図7は構造物11直下の土粒子中に本発明にかかる注入材3を注入した状態の断面図であり、図8は橋脚12の基部13に本発明にかかる注入材3を注入した状態の断面図である。本発明にかかる注入材3は未硬化状態では低粘性の液状を呈するため、注入管14を通して容易に注入された。硬化後は粘弾性で止水性に優れ、かつ耐久性にも優れ、免震効果を充分に発揮した。   FIG. 7 is a cross-sectional view of the state in which the injection material 3 according to the present invention is injected into the soil particles directly under the structure 11, and FIG. 8 is a state in which the injection material 3 according to the present invention is injected into the base portion 13 of the pier 12. It is sectional drawing. Since the injection material 3 according to the present invention exhibits a low-viscosity liquid in an uncured state, it was easily injected through the injection tube 14. After curing, it was viscoelastic, excellent in water-stopping properties, excellent in durability, and fully exhibited seismic isolation effect.

本発明における注入システムを図9に示す。地盤、あるいは既存構造物に地盤変位計22を取り付け、さらにこの変位測定結果をリアルタイムで管理装置23に送信することにより、注入によって地盤が***したり、既存構造物が持ち上がることを防ぐ。また本システムでは所定流量が注入されると自動的に注入管引上機構24を介し下部から上部に注入ステップを移行し、あるいはバルブ25を介し次の注入ポイントへ移行することができる。これらは注入ポンプ26、流量計27、地盤変位計22、注入管引上機構24、バルブ25らが管理装置23によりリアルタイムで管理されていることで可能となる。   An injection system according to the present invention is shown in FIG. The ground displacement meter 22 is attached to the ground or an existing structure, and the displacement measurement result is transmitted to the management device 23 in real time to prevent the ground from being raised or the existing structure from being lifted by injection. Further, in the present system, when a predetermined flow rate is injected, the injection step can be automatically transferred from the lower part to the upper part via the injection pipe pulling mechanism 24, or the next injection point can be transferred via the valve 25. These are made possible by the management device 23 managing the injection pump 26, the flow meter 27, the ground displacement meter 22, the injection pipe pulling mechanism 24, the valve 25 and the like in real time.

また地盤変位計22を設けないとしても、図10に示す注入速度と注入圧力を管理することにより注入における地盤の変位を防止することができる。図10のグラフにおいて、注入速度と注入圧力が比例関係にある場合、地盤変位は起こらない。よってグラフに示す直線部分、つまり限界注入速度以下の注入速度で本発明の注入材を注入することが好ましい。   Further, even if the ground displacement meter 22 is not provided, the displacement of the ground during the injection can be prevented by managing the injection speed and the injection pressure shown in FIG. In the graph of FIG. 10, when the injection speed and the injection pressure are in a proportional relationship, ground displacement does not occur. Therefore, it is preferable to inject the injection material of the present invention at a linear portion shown in the graph, that is, at an injection rate equal to or lower than the limit injection rate.

図11に示される振動試験槽15を用いて振動試験を行った。高さ50cm、幅50cm、奥行き50cmの大きさの振動試験槽15を用意し、この中に海砂16を相対密度60%となるように敷き、海砂16中に免震層19を設置した。免震層19は高さ10cm、幅20cm、奥行き20cmの型枠の中央に加速度計18および変位計17を配置し、その図9、図10中に実施例1で調製された配合例6の注入材を充填し、その後1日静止し、脱型して作成した。   A vibration test was performed using a vibration test tank 15 shown in FIG. A vibration test tank 15 having a height of 50 cm, a width of 50 cm, and a depth of 50 cm is prepared, and the sea sand 16 is laid in the sea sand 16 so that the relative density is 60%, and the seismic isolation layer 19 is installed in the sea sand 16. . The seismic isolation layer 19 has an accelerometer 18 and a displacement meter 17 arranged in the center of a mold having a height of 10 cm, a width of 20 cm, and a depth of 20 cm, and the composition example 6 prepared in Example 1 in FIGS. It was made by filling with an injection material, then resting for one day, and demolding.

この試験槽15に変位計17および加速度計18を用い、水平加速度150Gal、最大変位2cmで20秒間振動を加えて振動試験を行った。免震層19中の加速度計18の示す応答加速度、変位計17の示す応答変位を測定した。また比較のために、免震度19を埋設しない砂層における同位置の応答加速度、応答変位も測定した。   A vibration test was performed using a displacement meter 17 and an accelerometer 18 in the test tank 15 and applying a vibration for 20 seconds at a horizontal acceleration of 150 Gal and a maximum displacement of 2 cm. The response acceleration indicated by the accelerometer 18 in the seismic isolation layer 19 and the response displacement indicated by the displacement meter 17 were measured. For comparison, the response acceleration and displacement at the same position in the sand layer where the seismic isolation level 19 was not embedded were also measured.

免震層19がないときの海砂16中の応答加速度のグラフを図12に示し、海砂16中に免震層19を設けたときの応答加速度のグラフを図13に示す。   A response acceleration graph in the sea sand 16 when the seismic isolation layer 19 is not provided is shown in FIG. 12, and a response acceleration graph when the seismic isolation layer 19 is provided in the sea sand 16 is shown in FIG.

免震層19がない海砂16中では、図12に示すように、水平加速度150Gal、最大変位2cmの振動を与えることにより、応答加速度が約300Galとなり、応答変位は最大3cmとなった。一方、免震層19を設けた場合、同振動により免震層19内では図9に示されるように、応答加速度が約130Gal以下、応答変位は最大1.5cmと軽減された。このことから、既設の構造物11直下や橋脚13の下、または地下構造物周辺に本発明注入材を注入して免震層を設けることにより地震等の振動の伝達を軽減し、構造物に免震機能を付与するものと考えられる。   In the sea sand 16 without the seismic isolation layer 19, as shown in FIG. 12, by applying a vibration with a horizontal acceleration of 150 Gal and a maximum displacement of 2 cm, the response acceleration was about 300 Gal and the response displacement was a maximum of 3 cm. On the other hand, when the seismic isolation layer 19 was provided, the response acceleration was reduced to about 130 Gal or less and the response displacement was reduced to a maximum of 1.5 cm in the seismic isolation layer 19 as shown in FIG. From this, the transmission of vibrations such as earthquakes can be reduced by injecting the injection material of the present invention directly under the existing structure 11 or under the pier 13 or around the underground structure to provide an isolation layer. It is thought to provide seismic isolation function.

さらに、試験測定後の免震層は破損することなく振動を与える前の形状を保持していたことから、繰り返し荷重を受ける環境でも利用できる。トンネルジョイント部、あるいは老朽部において、繰り返し列車荷重によって裏込め材が劣化または破壊されて漏水が生じるため、本発明にかかる表1の配合剤7の注入材と比較例2の注入材およびセメント系材料を漏水部に注入し、止水を行った。しかし、比較例2やセメント系材料を注入した部分では一年後再び漏水が生じた。一方、本発明にかかる配合例7の注入材を注入した部分では一年後も水漏水を生じなかった。   Furthermore, since the seismic isolation layer after the test measurement maintained the shape before giving vibration without being damaged, it can be used even in an environment that receives repeated loads. In the tunnel joint part or the aging part, the backfilling material is deteriorated or destroyed by repeated train loads to cause water leakage. Therefore, the compounding material 7 injecting material in Table 1 according to the present invention, the injecting material in the comparative example 2, and the cement system The material was poured into the water leakage part to stop water. However, in Comparative Example 2 and the portion where the cement material was injected, water leaked again after one year. On the other hand, water leakage did not occur after one year in the portion where the injection material of Formulation Example 7 according to the present invention was injected.

以上のとおり、本発明の地盤注入材はウレタンプレポリマーと水とを有効成分として含有し、必要に応じてさらにコロイダルシリカや硬化剤を含有せしめ、これによりゲル化する前は低粘性の液状を呈して注入が容易であり、ゲル化すると粘弾性で耐久性にも優れ、さらに硬化反応のコントロールが容易であり、このため、地盤中に注入して水漏れや遮水シートの破れ等を補修し得、かつ構造物直下に注入して免震効果をも発揮し得、地盤注入分野において利用可能性が高い。   As described above, the ground injection material of the present invention contains a urethane prepolymer and water as active ingredients, and further contains colloidal silica and a curing agent as necessary. It is easy to inject, and when gelled, it is viscoelastic and durable, and it is easy to control the curing reaction, so it can be injected into the ground to repair water leaks and breakage of the water shielding sheet. In addition, it can be injected directly under the structure to exert a seismic isolation effect and is highly applicable in the field of ground injection.

耐水性試験装置の模型図である。It is a model figure of a water resistance test apparatus. 鋼矢板を海水中に建立して水を塞ぎ止めた状態の斜視図である。It is a perspective view of the state where a steel sheet pile was erected in seawater and blocked water. 図2の鋼矢板の平面図である。It is a top view of the steel sheet pile of FIG. 図2および図3の鋼矢板端面部分の断面図である。It is sectional drawing of the steel sheet pile end surface part of FIG. 2 and FIG. 鋼板板の現場耐水性試験の説明図である。It is explanatory drawing of the on-site water resistance test of a steel plate. 図5における試験の水位測定結果を表したグラフである。It is the graph showing the water level measurement result of the test in FIG. 構造物直下の土粒子中に注入材を注入した状態の断面図である。It is sectional drawing of the state which inject | poured the injection material in the soil particle directly under a structure. 橋脚の基部に注入材を注入した状態の断面図である。It is sectional drawing of the state which inject | poured the injection material into the base of the pier. 本発明に用いられる注入システムの一例を表した説明図である。It is explanatory drawing showing an example of the injection | pouring system used for this invention. 注入速度と注入圧力の関係を表したグラフである。It is a graph showing the relationship between injection speed and injection pressure. 振動試験槽の断面図である。It is sectional drawing of a vibration test tank. 海砂中の応答加速度を表したグラフである。It is a graph showing the response acceleration in sea sand. 免震層中の応答加速度を表したグラフである。It is a graph showing the response acceleration in a seismic isolation layer.

符号の説明Explanation of symbols

1 耐水性試験装置
2 空洞
3 注入材
4 注入口
5 圧力計
6 鋼矢板
7 海水
8 端面
9 壁
10 すき間
11 構造物
12 橋脚
13 基部
14 注入管
15 振動試験槽
16 海砂
17 変位計
18 加速度計
19 免震層
DESCRIPTION OF SYMBOLS 1 Water resistance test apparatus 2 Cavity 3 Injection material 4 Inlet 5 Pressure gauge 6 Steel sheet pile 7 Seawater 8 End face 9 Wall 10 Clearance 11 Structure 12 Bridge pier 13 Base 14 Injection pipe 15 Vibration test tank 16 Sea sand 17 Displacement meter 18 Accelerometer 19 Seismic isolation layer

Claims (10)

ウレタンポリマーと水とを有効成分として含有する地盤注入材において、ウレタンポリマーの含有量が20重量パーセント未満であり、未硬化状態では低粘性の液状を呈し、硬化すると粘弾性で止水性に優れ、繰り返し荷重に対しても破壊しにくく、かつ耐久性にも優れた地盤注入材。    In the ground injection material containing urethane polymer and water as active ingredients, the content of urethane polymer is less than 20 weight percent, presents a low-viscosity liquid in an uncured state, and is viscoelastic and excellent in waterstop when cured. A ground-injecting material that is resistant to repeated loads and has excellent durability. 請求項1において、ウレタンポリマーの含有量が2〜15パーセントの範囲内である請求項1に記載の地盤注入材。   The ground injection material according to claim 1, wherein the content of the urethane polymer is in the range of 2 to 15 percent. 請求項1において、ウレタンポリマーがウレタンポリマーである請求項1に記載の地盤注入材。   The ground injection material according to claim 1, wherein the urethane polymer is a urethane polymer. 請求項1において、前記ウレタンプレポリマーが
一般式
R[OR1nOH]
(式中、Rは多価アルコール残基を示し、(OR)はオキシエチレン基と、炭素数3〜4のアルキレン基を有するオキシアルキレン基とからなるポリオキシアルキレン鎖を示す。ただし、(OR)におけるオキシエチレン基の割合は、分子量の20〜100重量パーセントを占める。nはオキシアルキレン基の重合度を示す数で、水酸基当量が170〜6000となるに相当する数を示し、pは2〜8の数を示す。)
で示されるポリエーテルポリオールをポリイソシアネートと反応させて得られる末端NCO基含有量が1〜12パーセントのウレタンプレポリマーである請求項1に記載の地盤注入材。
The urethane prepolymer according to claim 1, wherein the urethane prepolymer has the general formula R [OR 1n OH] P
(In the formula, R represents a polyhydric alcohol residue, and (OR 1 ) represents a polyoxyalkylene chain composed of an oxyethylene group and an oxyalkylene group having an alkylene group having 3 to 4 carbon atoms, provided that ( The ratio of the oxyethylene group in OR 1 ) occupies 20 to 100 weight percent of the molecular weight, n is a number indicating the degree of polymerization of the oxyalkylene group, the number corresponding to a hydroxyl equivalent of 170 to 6000, p Represents a number from 2 to 8.)
The ground injection material according to claim 1, which is a urethane prepolymer having a terminal NCO group content of 1 to 12 percent obtained by reacting a polyether polyol represented by formula (1) with a polyisocyanate.
請求項1において、前記ウレタンプレポリマーが
から選択される一種または複数種である請求項1に記載の地盤注入材。
The ground injection material according to claim 1, wherein the urethane prepolymer is one or a plurality of types selected from the group consisting of the urethane prepolymers.
請求項1において、さらにコロイダルシリカをSiO重量比で0.1〜12パーセント含有してなる請求項1に記載の地盤注入材。 The ground injection material according to claim 1, further comprising colloidal silica in an SiO 2 weight ratio of 0.1 to 12 percent. 請求項1において、さらに硬化剤を含有してなる請求項1に記載の地盤注入材。   The ground injection material according to claim 1, further comprising a curing agent. 請求項7において、硬化剤が水溶性無機塩、水ガラス、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、重炭酸ソーダおよび金属イオン封鎖剤の群から選択される一種または複数種である請求項7に記載の地盤注入材。   8. The curing agent according to claim 7, wherein the curing agent is one or more selected from the group consisting of a water-soluble inorganic salt, water glass, magnesium hydroxide, calcium carbonate, calcium hydroxide, sodium bicarbonate, and a sequestering agent. Ground injection material. 地盤中の水漏れ個所に請求項1の地盤注入材を注入して水漏れを防止することを特徴とする水漏れ防止施工方法。   A water leakage prevention construction method characterized in that the ground injection material according to claim 1 is injected into a water leakage portion in the ground to prevent water leakage. 繰り返し荷重を受ける構造物基礎部やその周辺部の地盤中に請求項1の地盤注入材を注入して構造物の免震効果を付与することを特徴とする構造物の免震施工方法。
A base-isolating construction method for a structure characterized by injecting the ground injection material according to claim 1 into the base of the structure subjected to repeated loads or the ground around the base to give a base isolation effect.
JP2005353319A 2005-12-07 2005-12-07 Grouting material and method for applying the same Pending JP2007154090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353319A JP2007154090A (en) 2005-12-07 2005-12-07 Grouting material and method for applying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353319A JP2007154090A (en) 2005-12-07 2005-12-07 Grouting material and method for applying the same

Publications (1)

Publication Number Publication Date
JP2007154090A true JP2007154090A (en) 2007-06-21

Family

ID=38238859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353319A Pending JP2007154090A (en) 2005-12-07 2005-12-07 Grouting material and method for applying the same

Country Status (1)

Country Link
JP (1) JP2007154090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209667A (en) * 2009-03-10 2010-09-24 Nippon Eisei Center:Kk Base isolation construction method for wooden building
CN103089274A (en) * 2013-01-15 2013-05-08 河南理工大学 Method capable of repeated grouting and reinforcing surrounding rocks of roadway
KR101764669B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Pile of Reinforcing Soft Ground and Restoring Depressed structures including Urethane for Solidifying Ground and Construction Methods Using Thereof
KR101764667B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane for Solidifying Ground and Construction Methods Using Thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209667A (en) * 2009-03-10 2010-09-24 Nippon Eisei Center:Kk Base isolation construction method for wooden building
CN103089274A (en) * 2013-01-15 2013-05-08 河南理工大学 Method capable of repeated grouting and reinforcing surrounding rocks of roadway
KR101764669B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Pile of Reinforcing Soft Ground and Restoring Depressed structures including Urethane for Solidifying Ground and Construction Methods Using Thereof
KR101764667B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane for Solidifying Ground and Construction Methods Using Thereof

Similar Documents

Publication Publication Date Title
US3623330A (en) Sealing off formation having pores in civil engineering or architectural construction work
US5241993A (en) Method for grouting cavities using a pumpable cement grout
JP2007154090A (en) Grouting material and method for applying the same
KR100682823B1 (en) The gelable acrylate grouting composition and the reinforcing method of cutoff wall with the gelable acrylate grouting composition
CN107165434B (en) A kind of high-pressure slip-casting blocking method for toilet floor
JP4662957B2 (en) Suction prevention injection method
JP4033785B2 (en) High pressure injection water stop method and water stop material for water stop material made of hydrophilic one-component polyurethane prepolymer
JP6733892B1 (en) Proportional pouring grout monitor and proportional pouring method for hardened grout using the same
JP2008223475A (en) Grouting method
JPH0726263A (en) Grout composition for stabilization of soil or the like and work of stabilization, strengthening and water stop of soil therewith
JP3997672B2 (en) Injectable liquid composition for stabilization of ground and artificial structures, etc., and stability-enhanced waterstop method using the same
KR100998727B1 (en) Outside of concrete construction injection repair method for leaks of oils such as asphalt solution and others
JP4027817B2 (en) High pressure injection water stop method and water stop material used therefor
CN112695656B (en) Box culvert construction method for road widening and box culvert
JP2015078528A (en) Gap sealing waterproof water stop construction method of concrete structure
JP2014136895A (en) Soil improvement method
Town Controlling water ingress through diaphragm wall joints
CN111663579A (en) Plugging method for acrylic coagulation slurry in blind groove
CN111734424A (en) Tunnel grouting reinforcement method for down-passing airport terminal building
JP2004251009A (en) High-pressure injection water cutoff method using water cutoff material composed of hydrophilic one-component polyurethane prepolymer, and the material
Pro Water control using polyurethane resins
KR100309316B1 (en) The method for double flood control of a culvert with box construction formular
JP2017198033A (en) Filler for gap space in artificial structure and sealing method for gap space in artificial structure
KR101070372B1 (en) Composite steel sheet pile temporary structure and this construction technique
JP4194453B2 (en) Water stop method for steel sheet pile joints

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Effective date: 20100118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02