JP2007152938A - Member made from frp - Google Patents

Member made from frp Download PDF

Info

Publication number
JP2007152938A
JP2007152938A JP2006290761A JP2006290761A JP2007152938A JP 2007152938 A JP2007152938 A JP 2007152938A JP 2006290761 A JP2006290761 A JP 2006290761A JP 2006290761 A JP2006290761 A JP 2006290761A JP 2007152938 A JP2007152938 A JP 2007152938A
Authority
JP
Japan
Prior art keywords
reinforcing fibers
fiber
frp
reinforcing
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290761A
Other languages
Japanese (ja)
Inventor
Takuya Karaki
琢也 唐木
Akihiko Kitano
彰彦 北野
Kenichi Yoshioka
健一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006290761A priority Critical patent/JP2007152938A/en
Publication of JP2007152938A publication Critical patent/JP2007152938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member made from FRP (Fiber Reinforced Plastic) having the high notch strength. <P>SOLUTION: The member made from a fiber reinforced composite material (FRP) has at least one or more notches, and comprises two or more sorts of reinforcement fibers having different tensile rupture elongations, wherein the volume ratio VA1 of a reinforcement fiber A oriented in the elastic main axis direction occupying all reinforcement fiber volume oriented in an elastic main axis direction in the stress concentration domain is higher than the volume ratio VA2 of a reinforcement fiber A oriented in the elastic main axis direction occupying all reinforcement fiber volume oriented in an elastic main axis direction in the outside of the stress concentration domain, and VA2 is 0.1 or less. The reinforcement fiber A is a reinforcement fiber having the highest tensile rupture elongation in the reinforcement fibers included in the member made from FRP. The stress concentration domain is a domain within the distance d (mm) from the notch end to where defined by formula 1 in the orthogonal direction with the elastic main axis. The V0 is the volume ratio of the reinforcement fiber oriented in the elastic main axis direction occupying all the reinforcement fiber volume in the member made from FRP. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量、高剛性であり、かつ、切り欠きを有しながらも高い強度を保持し、輸送機器のフレームや建築物の支柱補強材として好適に使用することができる繊維強化プラスチック製部材(以下、FRP製部材と略することもある)に関するものである。   The present invention is a fiber-reinforced plastic member that is lightweight, highly rigid, has high strength while having a notch, and can be suitably used as a frame for transportation equipment or a strut reinforcement for buildings. (Hereinafter, it may be abbreviated as a member made of FRP).

FRP製部材は比強度、比剛性、耐熱性、耐環境性に優れるため、スポーツ分野、航空機分野を始め、幅広く普及している。特に補強繊維に炭素繊維を用いた炭素繊維強化プラスチック(以下CFRPと略することもある)は比強度、比剛性に優れ、さらに近年では、高伸度タイプと呼ばれる炭素繊維が開発され、この高伸度タイプの炭素繊維を用いたCFRPは特に比強度に優れるため、すでに航空機分野を始め多方面で活用されている。   Since FRP members are excellent in specific strength, specific rigidity, heat resistance, and environmental resistance, they are widely used in the sports and aircraft fields. In particular, carbon fiber reinforced plastic using carbon fiber as a reinforcing fiber (hereinafter sometimes abbreviated as CFRP) is excellent in specific strength and specific rigidity. In recent years, a carbon fiber called a high elongation type has been developed. CFRP using an elongation-type carbon fiber is particularly excellent in specific strength, and has already been used in various fields including the aircraft field.

しかしながらFRPはボルト孔などに代表される切り欠きを有する場合は引張強度が大きく低下することが知られている(以下、切り欠きを有するFRPの引張強度を切り欠き強度と略することもある)。例えば非特許文献1に代表されるように、スチールやアルミニウムに代表される金属類は、切り欠きを有していても強度の低下率は切り欠きの大きさにほぼ比例した低下率であるのに対し(例えば幅76mmのアルミニウム板の中心に22mmの円孔が存在しているときは、その板の引張強度の低下率は17%にしかならない)、FRPでは小規模の切り欠きが存在しているだけで大幅に強度が低下することが確認されている(例えば幅76mmのFRP板の中心に22mmの円孔が存在しているときは、その板の引張強度は半減してしまう)。このメカニズムについては非特許文献2に示されているとおり、切り欠き端部にかかる応力集中が関係している。すなわち、円孔などに代表される切り欠きを有する部材に一定の引張荷重をかけたときは、切り欠き端部に応力が集中し、この部分の応力が他の領域の応力に比べて数倍に増幅される。例えば円孔を有する金属板に引張荷重をかけたときは、円孔の端部付近には、円孔から十分離れた領域にかかる応力と比べて、約3倍の応力がかかることが確認されている。しかしながら金属材料の場合は、切り欠き端部付近の材料が塑性変形を起こすことで応力を緩和するため、切り欠き端部の応力集中が引き起こす強度低下は重大な問題として顕在化する事はなかった。   However, it is known that when FRP has a notch typified by a bolt hole or the like, the tensile strength is greatly reduced (hereinafter, the tensile strength of FRP having a notch may be abbreviated as notch strength). . For example, as represented by Non-Patent Document 1, metals such as steel and aluminum have a notch, but the rate of decrease in strength is a rate of decrease approximately proportional to the size of the notch. On the other hand (for example, when a 22 mm circular hole exists in the center of an aluminum plate having a width of 76 mm, the rate of decrease in the tensile strength of the plate is only 17%), FRP has a small notch. It has been confirmed that the strength is significantly reduced by simply holding the plate (for example, when a 22 mm circular hole is present at the center of a 76 mm wide FRP plate, the tensile strength of the plate is halved). As shown in Non-Patent Document 2, this mechanism is related to the stress concentration applied to the notch end. In other words, when a constant tensile load is applied to a member having a notch typified by a circular hole, the stress concentrates at the notch end, and the stress at this part is several times greater than the stress in other areas. Is amplified. For example, when a tensile load is applied to a metal plate having a circular hole, it is confirmed that about three times as much stress is applied near the end of the circular hole as compared to the stress applied to a region sufficiently away from the circular hole. ing. However, in the case of a metal material, the stress in the vicinity of the notch end is plastically deformed to relieve stress, so the strength reduction caused by the stress concentration at the notch end has not become a significant problem. .

しかしながらFRPの場合は、補強繊維の塑性変形能力は金属材料と比較して小さい場合が多く、特に炭素繊維は、塑性変形をせずに脆性破壊を起こすため、切り欠き端部付近の応力集中により切り欠き端部付近の繊維が破断し、その破断が部材全体の破壊を引き起こすため、切り欠き強度が大幅に低下してしまうのである。この傾向は特に切り欠きにボルトなど他の部材をはめあわせたFilled Holeと呼ばれる形状において特に顕在化し、この理由については諸説あるが、例えばボルトをはめあわせた場合、ボルトと切り欠き面との接触面積が大きく、この領域全てで応力が集中する。前述したように塑性変形する金属材料であれば、この領域でも応力が緩和されるため大きな強度低下は引き起こされないが、FRPではこの応力が集中する領域全てで脆性破壊してしまうため、より強度の低下が激しくなると考えられている。   However, in the case of FRP, the plastic deformation capacity of the reinforcing fiber is often smaller than that of the metal material. In particular, the carbon fiber causes brittle fracture without plastic deformation, and therefore, due to stress concentration near the notch end. The fiber near the notch end breaks, and the breakage causes the entire member to be broken, so that the notch strength is greatly reduced. This tendency is particularly apparent in a shape called Filled Hole in which other members such as bolts are fitted into the notch, and there are various theories about this reason. For example, when the bolt is fitted, the contact between the bolt and the notched surface The area is large, and the stress is concentrated in this whole area. As described above, if the metal material is plastically deformed, the stress is relaxed even in this region, so that a large strength reduction is not caused. However, in FRP, since the entire region where the stress is concentrated is brittle, the strength is further increased. It is thought that the decline of will become severe.

このような問題を解決するため特許文献1では穴周りを肉厚化し、強度の低下幅を断面積の増加によって補う方法が公開されている。しかしながらこの方法では、切り欠きによる強度の低下は補えるものの、部材が肉厚化し、結果重量増となって、軽量高強度というFRP本来の特長を損なってしまうという問題を抱えていた。また部分的に肉厚化する方法では、他部品との取り合いの関係からも設計上の制約が大きく、現実的に不可能であるケースが多々あるのである。   In order to solve such a problem, Patent Document 1 discloses a method in which the periphery of a hole is thickened and the decrease in strength is compensated by increasing the cross-sectional area. However, although this method can compensate for the decrease in strength due to the notch, the member becomes thicker, resulting in an increase in weight, resulting in a problem that the original characteristics of the FRP such as light weight and high strength are impaired. In addition, in the method of partially thickening, there are many cases that are practically impossible because there are large design restrictions due to the relationship with other parts.

このように、切り欠きを有しながら、厚肉化などの重量増を引き起こさずに、かつFRP本来が持つ高い強度と剛性を維持するFRP製部材が望まれて久しいのである。
特開平6−193281号公報 ベイカー(Baker,A.A.),メタルフォーラム(Metals Forum),1983年,6巻,2号,p.81 ゲイ・ダニエル(Gay,Daniel.),ハオ・ソン(Hoa,Suong.),ツァイ・ステファン(Tsai,Stephen.),「コンポジットマテリアル(Composite Materials)」、 シーアールシー・プレス(CRC PRESS),2003年,p.116
Thus, it has long been desired to have a member made of FRP that has a notch but does not cause an increase in weight such as thickening and maintains the high strength and rigidity inherent in FRP.
JP-A-6-193281 Baker, A.A., Metals Forum, 1983, Vol. 6, No. 2, p. 81 Gay Daniel, Hoa, Suong, Tsai, Stephen, “Composite Materials”, CRC PRESS, 2003 , P. 116

本発明の目的は、かかる従来技術の持つ課題を解決し、高い切り欠き強度を有するFRP製部材を提供することにある。   An object of the present invention is to solve the problems of the prior art and to provide an FRP member having high notch strength.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、少なくとも一つ以上の切り欠きを有する繊維強化複合材料(FRP)製部材であって、引張破断伸度が異なる2種以上の補強繊維を含み、応力集中領域において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA1が、応力集中領域外において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA2よりも高く、かつ、VA2が0.1以下であるFRP製部材である。   The present invention employs the following means in order to solve such problems. That is, a fiber reinforced composite material (FRP) member having at least one notch, including two or more types of reinforcing fibers having different tensile elongation at break, and oriented in the elastic principal axis direction in the stress concentration region. The elastic main axis direction in which the volume ratio VA1 of the reinforcing fibers A oriented in the elastic main axis direction in the total reinforcing fiber volume is occupied in the total reinforcing fiber volume oriented in the elastic main axis direction outside the stress concentration region It is a member made of FRP which is higher than the volume ratio VA2 of the reinforcing fibers A oriented to VA2 and VA2 is 0.1 or less.

補強繊維A:FRP製部材に含まれる補強繊維の中で最も引張破断伸度の高い補強繊維
応力集中領域:切り欠き端部より弾性主軸と直行する方向に(式1)で定義される距離d(mm)以内の領域
Reinforcing fiber A: Reinforcing fiber having the highest tensile breaking elongation among reinforcing fibers contained in the FRP member Stress concentration region: Distance d defined by (Equation 1) in a direction perpendicular to the elastic main axis from the notch end Area within (mm)

Figure 2007152938
Figure 2007152938

V0:FRP製部材中の全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維の体積割合 V0: Volume ratio of reinforcing fibers oriented in the elastic principal axis direction in the total reinforcing fiber volume in the FRP member

本発明によれば、以下に説明するとおり、切り欠きの存在にもかかわらず高い強度を有するFRP製部材を提供することができる。   According to the present invention, as described below, it is possible to provide an FRP member having high strength despite the presence of a notch.

以下、本発明の実施の形態を図1を用いて詳細に説明する。本発明のFRP製部材は2種類以上の補強繊維と、マトリクス樹脂とからなり、かつ、少なくとも一つ以上の切り欠き3を有している。そして、本発明のFRP製部材は、切り欠きの端部より、弾性主軸4と直行する方向に下記(式1)で定義される距離d(mm)内の領域1(以下応力集中領域と呼称することもある)とそれ以外の領域2(以下応力集中領域外の領域と呼称することもある)に分けられる。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. The FRP member of the present invention is composed of two or more types of reinforcing fibers and a matrix resin, and has at least one notch 3. The FRP member of the present invention is a region 1 (hereinafter referred to as a stress concentration region) within a distance d (mm) defined by the following (Equation 1) in a direction perpendicular to the elastic main shaft 4 from the end of the notch. And other regions 2 (hereinafter also referred to as regions outside the stress concentration region).

Figure 2007152938
Figure 2007152938

補強繊維の中で最も引張破断伸度の高い補強繊維(以下この補強繊維を補強繊維Aと呼称することもある)は応力集中領域に主として配され、補強繊維A以外の繊維(ここでは、説明のため補強繊維を2種類と限定し、補強繊維A以外の補強繊維を補強繊維Bと呼称することもある)は主として応力集中領域外の領域に配される。応力集中領域において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA1は、応力集中領域外において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA2よりも高く、かつ、VA2は0.1以下である必要がある。   Among the reinforcing fibers, the reinforcing fiber having the highest tensile elongation at break (hereinafter, this reinforcing fiber may be referred to as the reinforcing fiber A) is mainly arranged in the stress concentration region, and fibers other than the reinforcing fiber A (here, explanation) Therefore, the reinforcing fibers are limited to two types, and reinforcing fibers other than the reinforcing fibers A may be referred to as reinforcing fibers B) are mainly arranged in a region outside the stress concentration region. In the stress concentration region, the volume ratio VA1 of the reinforcing fibers A oriented in the elastic principal axis direction in the total reinforcing fiber volume oriented in the elastic principal axis direction is oriented in the elastic principal axis direction outside the stress concentration region. It is higher than the volume ratio VA2 of the reinforcing fibers A oriented in the elastic principal axis direction in the total reinforcing fiber volume, and VA2 needs to be 0.1 or less.

補強繊維Aは主として切り欠きの端部から距離d(mm)の領域に配せられ、特に応力が集中し、高い応力がかかる部分の応力集中を緩和させるために他の補強繊維Bより高伸度である必要がある。この条件さえ満たせば補強繊維Aの材料は特に限定されるものではないが、高伸度タイプの炭素繊維やガラス繊維などの無機繊維、そして、ポリアミド繊維、ポリエステル繊維、ポリビニルアルコール繊維、ポリアクリロニトリル繊維、ポリウレタン繊維などの有機繊維を用いることができる。特にガラス繊維や高伸度タイプの炭素繊維は高い引張破断伸度を有しながら、適当な弾性率を有しており好ましい。引張破断伸度3%以上6%以下のガラス繊維は特にこのバランスに優れてさらに好ましい。引張破断伸度が3%未満であると応力集中を緩和させるのに十分ではなく、6%を超えるガラス繊維は存在しない。ここで補強繊維Aの引張破断伸度とはJIS R 7601(1986)で測定される値をいう。   The reinforcing fiber A is mainly disposed in a region at a distance d (mm) from the end of the notch. Particularly, the stress is concentrated, and in order to alleviate the stress concentration in a portion where high stress is applied, the reinforcing fiber A is stretched higher than other reinforcing fibers B. Must be degrees. The material of the reinforcing fiber A is not particularly limited as long as this condition is satisfied, but inorganic fibers such as high elongation type carbon fiber and glass fiber, and polyamide fiber, polyester fiber, polyvinyl alcohol fiber, and polyacrylonitrile fiber. Organic fibers such as polyurethane fibers can be used. In particular, glass fibers and high elongation type carbon fibers are preferable because they have an appropriate elastic modulus while having high tensile elongation at break. Glass fibers having a tensile elongation at break of 3% or more and 6% or less are particularly preferable because of excellent balance. If the tensile elongation at break is less than 3%, it is not sufficient to relieve stress concentration, and there is no glass fiber exceeding 6%. Here, the tensile elongation at break of the reinforcing fiber A refers to a value measured according to JIS R 7601 (1986).

補強繊維Bは特に限定されるものではないが、切り欠き端部以外の部分、すなわち部材の大半の部分に配せられているので、部材の強度のみならず剛性を保持する視点からも高い弾性率を持つ物が好ましい。この観点から言うと炭素繊維は軽量ながら高い弾性率を有しており特に好ましい。弾性率300GPa以上1200GPa以下の炭素繊維は特に高い剛性を付与することができさらに好ましい。弾性率が300GPa未満であると、FRP製部材に十分な剛性を付与することができないことがあり、また、1200GPaを超える炭素繊維は存在しない。ここで補強繊維Bの弾性率とはJIS R 7601(1986)で測定される値をいう。   Although the reinforcing fiber B is not particularly limited, it is arranged in a portion other than the notched end portion, that is, most of the member, so that it has high elasticity not only from the strength of the member but also from the viewpoint of maintaining rigidity. Those with a rate are preferred. From this point of view, the carbon fiber is particularly preferable because it is lightweight and has a high elastic modulus. Carbon fibers having an elastic modulus of 300 GPa or more and 1200 GPa or less are more preferable because they can impart particularly high rigidity. When the elastic modulus is less than 300 GPa, it may not be possible to impart sufficient rigidity to the FRP member, and there is no carbon fiber exceeding 1200 GPa. Here, the elastic modulus of the reinforcing fiber B refers to a value measured according to JIS R 7601 (1986).

補強繊維Aと補強繊維Bは同方向に引き揃えられている必要があるが、製造上の制約などから引き揃え方向が必ずしも完全に一致している必要はない。ただし、両者の方向の差は2度以内であることが好ましい。そして、補強繊維Aと補強繊維Bの引き揃え方向は、弾性主軸と平行である必要がある。弾性主軸とはFRP製部材が最も高い剛性を持つ方向のことを指し、FRP製部材においては最も補強繊維が配向されている方向に等しいことが多い。また、多用される擬似等方構成では、弾性主軸は実質的に2方向以上存在するが、この場合は、主たる荷重がかかる方向を弾性主軸と定義する。   The reinforcing fiber A and the reinforcing fiber B need to be aligned in the same direction, but the alignment direction is not necessarily completely coincident due to manufacturing restrictions. However, the difference between the two directions is preferably within 2 degrees. And the alignment direction of the reinforcing fiber A and the reinforcing fiber B needs to be parallel to the elastic main axis. The elastic main shaft refers to the direction in which the FRP member has the highest rigidity, and in the FRP member, it is often equal to the direction in which the reinforcing fibers are oriented most. In the quasi-isotropic configuration that is frequently used, there are substantially two or more elastic main axes. In this case, the direction in which the main load is applied is defined as the elastic main axis.

本発明における切り欠きとは、厚さ方向に全ての補強繊維が不連続となっている部分を意味し、例えば、ボルト孔や勘合用の受け孔などである。切り欠きの形状は円形、楕円形、矩形、菱形など部材が要求する設計によって決定されるものであり特に限定されるものではないが、実質的に円形であると、ボルトなどで他の部材と結合したときに局部的に異常に高い応力がかかることが無いため好ましい。ここで実質的に円形とは、切り欠きの端部と端部を任意に選び、両者の距離が最も大きい組み合わせを長軸、最も小さい組み合わせを短軸としたときに長軸/短軸比が1.3以下であることをいう。この長軸/短軸比が1.3を超えると、他の部材と結合したときに局部的に高い応力がかかってしまい、部材の切り欠き強度が著しく低下してしまうことがある。また、部材の厚さ方向の断面形状は、他の部材とのはめあいにより決定されるものであり、特に限定はされないが、ストレート孔と呼ばれるように一様断面であると、一般に使用されているボルトが不具合なく使用できて好ましい。また、図2のように部材の厚さ方向にテーパーがついている、いわゆる皿孔形状を有していると、皿ねじと呼ばれる形状のボルトを隙間無くはめあわせることができ特に好ましい。ここで、皿孔の深さ7は、部材の厚さ8に対して2/3以下であると、実質的に荷重を支えるストレート孔の部分が相対的に大きくなり特に好ましい。切り欠きの作製方法は、公知の手段を用いることができ特に限定されるものではないが、例えばダイヤモンドドリルで下孔を空け、リーマーで仕上げる方法などは、切り欠きの表面品位を劣化させることなく好ましい。また、ダイヤモンドドリルとリーマーが一体となったドリルを用いて作製する方法も、簡便でかつ切り欠きの表面品位を劣化させることなく好ましい。本発明のFRP製部材は二つ以上の切り欠きを有することもあり、切り欠き同士の間隔もFRP製部材の設計要件によって決定されるものであるため特に限定されることはないが、切り欠きの幅をφとすると、切り欠き同士の間隔は3φ以上であると、例えば片方の切り欠きの端部に生じた欠陥が他方の切り欠き周辺の強度に影響を与えることなく好ましい。ここで切り欠きの幅φとは、切り欠きの端部と端部を任意に選び両者の距離が最も大きい組み合わせを幅φと規定する。   The notch in the present invention means a portion in which all the reinforcing fibers are discontinuous in the thickness direction, such as a bolt hole and a receiving hole for fitting. The shape of the notch is determined by the design required by the member, such as a circle, an ellipse, a rectangle, and a diamond, and is not particularly limited. Since it does not apply an abnormally high stress locally when bonded, it is preferable. Here, the term “substantially circular” means that the notch end and the end are arbitrarily selected, and the long axis / short axis ratio is the long axis with the longest combination and the shortest with the shortest combination. It means 1.3 or less. When the major axis / minor axis ratio exceeds 1.3, a high stress is locally applied when coupled to another member, and the notch strength of the member may be significantly reduced. In addition, the cross-sectional shape in the thickness direction of the member is determined by fitting with other members, and is not particularly limited, but is generally used as a uniform cross-section called a straight hole. Bolts are preferred because they can be used without problems. Further, it is particularly preferable to have a so-called countersunk hole shape having a taper in the thickness direction of the member as shown in FIG. 2 so that bolts having a shape called a countersunk screw can be fitted without a gap. Here, it is particularly preferable that the depth 7 of the countersunk hole is 2/3 or less of the thickness 8 of the member because the portion of the straight hole that substantially supports the load becomes relatively large. The manufacturing method of the notch is not particularly limited since known means can be used. For example, a method of drilling a pilot hole with a diamond drill and finishing with a reamer does not deteriorate the surface quality of the notch. preferable. A method of manufacturing using a drill in which a diamond drill and a reamer are integrated is also preferable because it is simple and does not deteriorate the surface quality of the notch. The FRP member of the present invention may have two or more notches, and the interval between the notches is determined by the design requirements of the FRP member, but is not particularly limited. If the width of the notch is φ, the interval between the notches is preferably 3φ or more, for example, a defect generated at the end of one notch does not affect the strength around the other notch. Here, the notch width φ is defined as a width φ in which the notch end and end are arbitrarily selected and the distance between them is the largest.

上述したように、弾性主軸とはFRP製部材が最も高い剛性を持つ方向のことを指し、FRP製部材においては最も補強繊維が配向されている方向に等しいことが多い。そして、弾性主軸方向に引張荷重がかけられたときは、切り欠きの端部には応力集中により他の部分より高い応力がかかる。発明者らはこの応力集中がかかる領域を簡便に予測できる式を検討の結果生み出すことに成功した。すなわち応力集中がかかる領域は切り欠き端部より弾性主軸と直交する方向に距離d(mm)以内の領域である。   As described above, the elastic main shaft refers to the direction in which the FRP member has the highest rigidity, and in the FRP member, it is often equal to the direction in which the reinforcing fibers are oriented most. When a tensile load is applied in the direction of the elastic principal axis, a higher stress is applied to the end portion of the notch due to stress concentration than other portions. The inventors have succeeded in producing an equation that can easily predict the region where the stress concentration is applied. That is, the region where the stress is concentrated is a region within a distance d (mm) in the direction perpendicular to the elastic main axis from the notch end.

ここで距離d(mm)とは下記(式1)で定義される値であり、V0とは、FRP製部材中の全補強繊維のなかで、弾性主軸方向に配向されている補強繊維の体積割合を意味し、具体的には、弾性主軸方向に配向されている補強繊維の体積/FRP製部材中の全補強繊維体積で表される。   Here, the distance d (mm) is a value defined by the following (Equation 1), and V0 is the volume of the reinforcing fiber oriented in the elastic principal axis direction among all the reinforcing fibers in the FRP member. It means a ratio, and is specifically represented by the volume of reinforcing fibers oriented in the elastic main axis direction / the total volume of reinforcing fibers in the FRP member.

Figure 2007152938
Figure 2007152938

たとえば一方向積層板の場合V0は1となり、擬似等方材と呼ばれる[45/90/−45/0]s(sは厚さ方向に鏡面対称に積層することを示す)構成では0.25である。この応力集中領域内に引張破断伸度の高い補強繊維Aを主として配することにより、応力集中による強度の低下をふせぎ、応力集中のかからない他の領域には弾性率の高い補強繊維Bを配することにより、優れた切り欠き強度を保持したまま高い剛性を有するFRP製部材を提供することが可能となる。具体的には、応力集中領域において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA1は、応力集中領域外において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA2よりも大きく、かつ、VA2は0.1以下である必要がある。VA2が0.1を超えると、一般的に引張破断伸度が高い補強繊維(この場合は補強繊維A)は、塑性域が大きく塑性変形による応力緩和には優れるものの、最終破断強度は決して高くないため、FRP製部材の強度は結果的に低下してしまう。また、引張破断伸度が高い補強繊維は一般的に弾性率が低めであるため、弾性率の高い補強繊維Bが十分量配されないことになり、FRP製部材に十分な剛性を付与することが難しくなる。また、VA1がVA2より低い場合は、応力集中領域に十分な補強繊維Aが配されていないことになり、FRP製部材の切り欠き強度が著しく低下してしまう。VA1は0.1以上であると、補強繊維Aが応力集中領域の応力を十分緩和でき好ましい。0.7以上であると、応力集中領域のほぼ全域をカバーできることになりさらに好ましい。なおVA1は1.0を超えることはない。VA2は0.1以下であればFRP製部材に十分な剛性を付与できることができ、より好ましくは0である。なぜなら応力集中領域外の領域にかかる応力は、応力集中領域にかかる応力に比べて著しく低く、切欠き強度向上という観点からは補強繊維Aを配する利点がないからである。なお、引張破断伸度が高く、かつ、引張弾性率も高い補強繊維を用いるのが効果的ではあるが、繊維の引張破断伸度と引張弾性率は一般的にトレードオフの関係にある。なおVA1とVA2は以下に示す方法によって測定することができる。すなわち、応力集中領域と応力集中領域外の領域をそれぞれダイヤモンドカッターなどで切り取り、弾性主軸に直行する断面を研磨した後、光学顕微鏡で観察する。その観察結果を、例えばAdobe社製Photoshop(登録商標)などの画像処理ソフトで取り込み、繊維断面の大きさや形状から補強繊維の選別行う。選別後に、補強繊維Aと推定される補強繊維と、全ての補強繊維の断面積の総和をそれぞれ画像処理ソフトの面積測定機能などで測定した後、それぞれの領域において、弾性主軸方向に配向されている補強繊維Aの体積/弾性主軸方向に配向されている全補強繊維体積を算出することによって、VA1、VA2が算出できる。   For example, in the case of a unidirectional laminated board, V0 is 1, and in a configuration called [quasi-isotropic material] [45/90 / −45 / 0] s (s indicates that the layers are laminated symmetrically in the thickness direction), it is 0.25. It is. By mainly disposing the reinforcing fiber A having a high tensile breaking elongation in the stress concentration region, the strength reduction due to the stress concentration is prevented, and the reinforcing fiber B having a high elastic modulus is disposed in other regions where the stress concentration is not applied. Thus, it becomes possible to provide an FRP member having high rigidity while maintaining excellent notch strength. Specifically, in the stress concentration region, the volume ratio VA1 of the reinforcing fibers A oriented in the elastic principal axis direction in the total reinforcing fiber volume oriented in the elastic principal axis direction is the elastic principal axis outside the stress concentration region. The volume ratio VA2 of the reinforcing fibers A oriented in the elastic principal axis direction in the total reinforcing fiber volume oriented in the direction is larger than VA2, and VA2 needs to be 0.1 or less. When VA2 exceeds 0.1, a reinforcing fiber (in this case, reinforcing fiber A) generally having a high tensile elongation at break has a large plastic region and is excellent in stress relaxation due to plastic deformation, but the final breaking strength is never high. Therefore, the strength of the FRP member is reduced as a result. Further, since the reinforcing fiber having a high tensile breaking elongation generally has a low elastic modulus, a sufficient amount of the reinforcing fiber B having a high elastic modulus is not distributed, and sufficient rigidity can be imparted to the FRP member. It becomes difficult. Moreover, when VA1 is lower than VA2, sufficient reinforcing fibers A are not arranged in the stress concentration region, and the notch strength of the FRP member is significantly reduced. It is preferable that VA1 is 0.1 or more because the reinforcing fiber A can sufficiently relax the stress in the stress concentration region. When it is 0.7 or more, almost the entire stress concentration region can be covered, which is further preferable. Note that VA1 does not exceed 1.0. If VA2 is 0.1 or less, sufficient rigidity can be imparted to the FRP member, and more preferably 0. This is because the stress applied to the region outside the stress concentration region is significantly lower than the stress applied to the stress concentration region, and there is no advantage of providing the reinforcing fiber A from the viewpoint of improving the notch strength. Although it is effective to use a reinforcing fiber having a high tensile breaking elongation and a high tensile elastic modulus, the tensile breaking elongation of the fiber and the tensile elastic modulus are generally in a trade-off relationship. VA1 and VA2 can be measured by the following method. That is, the stress concentration region and the region outside the stress concentration region are each cut out by a diamond cutter or the like, and a cross section perpendicular to the elastic main axis is polished and then observed with an optical microscope. The observation result is captured by image processing software such as Photoshop (registered trademark) manufactured by Adobe, and the reinforcing fibers are selected based on the size and shape of the fiber cross section. After the selection, the total of the cross-sectional areas of the reinforcing fibers estimated to be the reinforcing fibers A and all the reinforcing fibers are measured by the area measurement function of the image processing software, respectively, and then oriented in the elastic main axis direction in each region. VA1 and VA2 can be calculated by calculating the volume of reinforcing fibers A being present / the total volume of reinforcing fibers oriented in the elastic principal axis direction.

ここまでは説明のため、2種類の補強繊維に限定して説明してきたが、補強繊維Aと補強繊維Bの他に、本発明の効果を損なわない範囲で、第3の繊維を含んでいても良い。全ての繊維を含めた繊維体積含有率(Vf)は、部材の力学特性と製造の安定性とのバランスをはかる上で、好ましくは40〜80%の範囲内がよく、さらに好ましくは50〜70%の範囲内にあるのが良い。ここでVfは、含まれる種々の補強繊維の比重が実質的に同一と見なせる場合は(例えば炭素繊維の場合は1.75から1.85の範囲におさまる)、その中で任意の補強繊維の比重を用い、残りの方法はJIS K 7075(1991)に従って測定することができる。また、例えばガラス繊維(比重約2.5)と炭素繊維(比重約1.8)のように比重が大きく異なる補強繊維が使われている場合は、それぞれの補強繊維が主に配されている領域を任意に選定し、(本発明においては、例えばこの場合は、ガラス繊維は応力集中領域に、炭素繊維は応力集中領域外に主に配されているため、測定個所の選定は容易である)JIS K 7075(1991)に従ってそれぞれの箇所のVfを測定し、それらのうちどれか一つが上述した範囲内に入っていればよい。   Up to this point, the description has been limited to two types of reinforcing fibers. However, in addition to the reinforcing fiber A and the reinforcing fiber B, the third fiber is included in a range that does not impair the effects of the present invention. Also good. The fiber volume content (Vf) including all the fibers is preferably in the range of 40 to 80%, more preferably 50 to 70, in order to balance the mechanical properties of the member and the stability of production. It should be in the range of%. Here, when the specific gravity of the various reinforcing fibers included can be regarded as substantially the same (for example, in the case of carbon fiber, it falls within the range of 1.75 to 1.85), Vf of any reinforcing fiber Using the specific gravity, the remaining method can be measured according to JIS K 7075 (1991). In addition, when reinforcing fibers having greatly different specific gravity such as glass fiber (specific gravity of about 2.5) and carbon fiber (specific gravity of about 1.8) are used, the respective reinforcing fibers are mainly arranged. (In the present invention, for example, in this case, the glass fiber is mainly disposed in the stress concentration region, and the carbon fiber is mainly disposed outside the stress concentration region. Therefore, the measurement location can be easily selected. ) Vf of each part is measured according to JIS K 7075 (1991), and any one of them may be within the above-mentioned range.

マトリックス樹脂は特に限定されないが、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化樹脂が成形性に優れていて好ましく、ナイロンやポリプロピレン、ポリエチレン、アクリル樹脂等の熱可塑樹脂も力学特性に優れていて好ましい。特にエポキシ樹脂は成形性と力学特性のバランスに優れていて特に好ましい。またマトリクス樹脂中には、様々な性能や機能を付加するために、本発明の効果を損なわない範囲で粒子や繊維状等の物質が含まれていてもよい。   The matrix resin is not particularly limited, but a thermosetting resin such as an epoxy resin, a polyester resin, a vinyl ester resin, and a phenol resin is preferable because of its excellent moldability, and a thermoplastic resin such as nylon, polypropylene, polyethylene, and an acrylic resin is also a mechanical property. It is excellent and preferable. In particular, an epoxy resin is particularly preferable because of its excellent balance between moldability and mechanical properties. In addition, in order to add various performances and functions, the matrix resin may contain particles, fibrous substances, and the like as long as the effects of the present invention are not impaired.

本発明のFRP製部材は、プリプレグを用いて成形することができる。かかる本発明のプリプレグは、得られるFRP製部材のVA1、VA2が前記特定範囲になるように単位面積あたりの繊維量を調整して、補強繊維Aと補強繊維Bとを同方向に引き揃えてシート状にし、これに硬化前のマトリックス樹脂を含浸する方法で得ることができる。具体的には、マトリックス樹脂をメチルエチルケトン、メタノールなどの溶媒に溶解して低粘土化し、含浸させるウェット法と、加熱により低粘度化し含浸させるホットメルト法などの方法により製造するのが簡便で好ましい。また別の本発明のプリプレグの例としては、補強繊維Aを含むプリプレグの表面に補強繊維Bを貼付する、或いは補強繊維Aを含むプリプレグの表面に補強繊維Bを含むプリプレグを貼付するなどの方法でも得ることができる。この補強繊維Aを含むプリプレグとしては公知のものを用いることもできる。   The FRP member of the present invention can be molded using a prepreg. In the prepreg of the present invention, the amount of fibers per unit area is adjusted so that the VA1 and VA2 of the obtained FRP member are in the specific range, and the reinforcing fibers A and the reinforcing fibers B are aligned in the same direction. It can be obtained by forming a sheet and impregnating it with a matrix resin before curing. Specifically, it is convenient and preferable to produce the matrix resin by a method such as a wet method in which a matrix resin is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the clay and impregnated, and a hot melt method in which the viscosity is lowered by heating and impregnated. As another example of the prepreg of the present invention, a method of sticking the reinforcing fiber B on the surface of the prepreg containing the reinforcing fiber A, or sticking a prepreg containing the reinforcing fiber B to the surface of the prepreg containing the reinforcing fiber A, etc. But you can get it. As the prepreg containing the reinforcing fiber A, a known prepreg can be used.

本発明のプリプレグとしては、補強繊維A’が配せられた幅が7mm以上13mm以下であることが好ましい。補強繊維A’とは、プリプレグに含まれる補強繊維の中で最も引張破断伸度が高い補強繊維をさす。この範囲内であると、FRP製部材の成形・加工時に、切り欠きが補強繊維Aが配せられた幅の中心に位置するように設計することで、補強繊維Aが切り欠き端部から距離d(mm)以内の領域に配せられることが多いからである。より好ましくは、補強繊維Aが配せられた幅が9mm以上12mm以下であると、さらに補強繊維Aが最適に配せられることが多くより好ましい。   In the prepreg of the present invention, the width in which the reinforcing fibers A ′ are arranged is preferably 7 mm or more and 13 mm or less. The reinforcing fiber A 'refers to a reinforcing fiber having the highest tensile breaking elongation among the reinforcing fibers contained in the prepreg. Within this range, when the FRP member is molded and processed, the notch is designed to be positioned at the center of the width where the reinforcing fiber A is arranged, so that the reinforcing fiber A is a distance from the notch end. This is because it is often arranged in an area within d (mm). More preferably, when the width of the reinforcing fibers A is 9 mm or more and 12 mm or less, it is more preferable that the reinforcing fibers A are further optimally arranged.

また、補強繊維Aが引き揃え方向の直角方向に実質的に等間隔で配されていると、切り欠きが複数個あるFRP製部材を成形する際にも便利であることがあり好ましい。そして、このプリプレグには、別のプリプレグを貼り付けるなどして用いることもでき、貼り付けるプリプレグの繊維には強度や弾性率の異なる種類の物を用いてもよい。   Further, it is preferable that the reinforcing fibers A are arranged at substantially equal intervals in the direction perpendicular to the aligning direction because it is convenient when molding an FRP member having a plurality of notches. Further, this prepreg can be used by attaching another prepreg or the like, and the fibers of the prepreg to be attached may be of different types having different strengths and elastic moduli.

また本発明のプリプレグにおいては、良好な品質を得るためには補強繊維の単位面積あたりの重量を5〜500g/mの範囲とするのが良い。5g/m未満であると補強繊維を均一に拡幅する事が困難になることがある。500g/mを超えるとプリプレグの厚みが増大しすぎ、軽量化の効果や使用上の利便性が損なわれることがある。そして、マトリクス樹脂の単位面積あたりの重量は1〜300g/mの範囲とするのがよい。1g/m未満であるとマトリックス樹脂量が足りず、補強繊維にマトリックス樹脂を十分に含浸させることが難しくなることがある。また、300g/m以上であるとマトリックス樹脂量が多すぎて、プリプレグを製造する過程で過剰なマトリックス樹脂がはみ出すなど生産性が損なわれるおそれがある。そして、プリプレグ状態での補強繊維の含有量(Vf)は、最終的にこのプリプレグを成形して得られるFRP製部材の力学特性と製造の安定性とのバランスをはかる上で、好ましくは40〜80%の範囲内がよく、さらに好ましくは50〜70%の範囲内にあるのが良い。特に補強繊維Aに関しては、応力集中領域では単位面積あたりの重量はやはり5〜500g/mの範囲とすると上述と同じ理由で好ましく、体積含有量もやはり40〜80%、さらに好ましくは50〜70%の範囲内にあるのが良い。本発明のFRP製部材は、同方向に引き揃えられた補強繊維Aと補強繊維Bに樹脂を含浸させたプリプレグを用いて成形することにより、従来の複合材料部材とほとんど変わらないプロセスで製造することができ、例えば、プリプレグを積層後、積層物に圧力を付与しながら樹脂を加熱し硬化させて成形する方法として、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などがあり、用途によって適時成形方法を選択することができる。従って製造コストは従来とほとんど変わらない。そして、本発明のFRP製部材は、切り欠きを有する種々のFRP製部材に適用でき、例えば航空機や自動車のパネルやフレームなどの輸送機器用途や、建築柱の補強材などの一般産業用途に適用できる。 In the prepreg of the present invention, the weight per unit area of the reinforcing fiber is preferably in the range of 5 to 500 g / m 2 in order to obtain good quality. If it is less than 5 g / m 2 , it may be difficult to uniformly widen the reinforcing fibers. If it exceeds 500 g / m 2 , the thickness of the prepreg increases excessively, and the effect of weight reduction and convenience in use may be impaired. And the weight per unit area of a matrix resin is good to set it as the range of 1-300 g / m < 2 >. If it is less than 1 g / m 2 , the amount of the matrix resin is insufficient, and it may be difficult to sufficiently impregnate the reinforcing fibers with the matrix resin. On the other hand, if it is 300 g / m 2 or more, the amount of the matrix resin is too large, and the productivity may be impaired, for example, excessive matrix resin may protrude in the process of producing the prepreg. And the content (Vf) of the reinforcing fiber in the prepreg state is preferably 40 to in order to balance the mechanical properties of the FRP member finally obtained by molding this prepreg and the production stability. It is preferable to be in the range of 80%, more preferably in the range of 50 to 70%. Especially for reinforcing fibers A, preferably a weight per unit area also in the range of 5 to 500 g / m 2 for the same reason as described above in the stress concentration area, volume content also still 40% to 80%, more preferably 50 to It should be in the range of 70%. The FRP member of the present invention is manufactured by a process that is almost the same as a conventional composite material member by molding using a prepreg in which a reinforcing fiber A and a reinforcing fiber B that are aligned in the same direction are impregnated with a resin. For example, after a prepreg is laminated, the resin is heated and cured while applying pressure to the laminate, and as a method of molding, press molding method, autoclave molding method, bagging molding method, wrapping tape method, internal pressure molding method The timely molding method can be selected depending on the application. Therefore, the manufacturing cost is almost the same as the conventional one. The FRP member of the present invention can be applied to various FRP members having cutouts, for example, transportation equipment uses such as aircraft and automobile panels and frames, and general industrial uses such as building column reinforcements. it can.

以下実施例により本発明を詳細に説明する。
(実施例1)
(1)プリプレグの作製
PAN系炭素繊維束(補強繊維”トレカ(登録商標)”T700S(東レ(株)社製、伸度2.1%、引張弾性率230GPa))を引き揃え、単位面積あたりの炭素繊維重量が
125g/mとなるようにシート状に広げた。この状態のPAN系炭素繊維束で繊維直行方向を幅方向と規定し、この幅方向で中心から両側に5.5mmの領域に配せられた補強繊維T700Sを取り除き、代わりに、ガラス繊維(日東紡(株)社製グラスファイバーロービング(RS 110 QL−520、引張破断伸度4.8%、引張弾性率70GPa)、表1ではGFと表示)を単位面積あたり174g/m配した。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
(1) Preparation of prepreg PAN-based carbon fiber bundles (reinforcing fibers "Treka (registered trademark)" T700S (manufactured by Toray Industries, Inc., elongation 2.1%, tensile elastic modulus 230 GPa)) are aligned per unit area Of carbon fiber weight
The sheet was spread to 125 g / m 2 . With the PAN-based carbon fiber bundle in this state, the direction perpendicular to the fiber is defined as the width direction, and the reinforcing fiber T700S disposed in the region of 5.5 mm on both sides from the center in this width direction is removed. Glass fiber roving (RS 110 QL-520, tensile elongation at break 4.8%, tensile elastic modulus 70 GPa), indicated as GF in Table 1), manufactured by Bobo Co., Ltd., was distributed at 174 g / m 2 per unit area.

この補強繊維束に下記の組成のBステージのエポキシ樹脂を単位面積あたりの重量が42g/mとなるように含浸させ、このプリプレグをプリプレグAとした(補強繊維A=ガラス繊維、補強繊維B=T700S)。 This reinforcing fiber bundle was impregnated with a B-stage epoxy resin having the following composition so that the weight per unit area was 42 g / m 2, and this prepreg was designated as prepreg A (reinforcing fiber A = glass fiber, reinforcing fiber B). = T700S).

一方で、炭素繊維のみを引き揃え、単位面積あたりの炭素繊維重量が125g/mとなるようにシート状に広げ、プリプレグAを作製するのに使用したのと同じBステージのエポキシ樹脂を単位面積あたりの重量が42g/mとなるように含浸させたプリプレグを作製し、これをプリプレグBとした。 On the other hand, only the carbon fibers are aligned, and the carbon fiber weight per unit area is expanded into a sheet shape so that the weight is 125 g / m 2. A prepreg impregnated so as to have a weight per area of 42 g / m 2 was prepared, and this was designated as prepreg B.

エポキシ樹脂の組成物
・“エピコート(登録商標)”828(ジャパンエポキシレジン(株)製、ビスフェノールA型液状エポキシ樹脂) 50重量部
・“スミ−エポキシ(登録商標)”ELM434(住友化学工業(株)製、テトラグリシジルジアミノジフェニルメタン、液状) 50重量部
・“スミキュア(登録商標)”S(住友化学工業(株)、4,4’−ジアミノジフェニルスルフォン) 30重量部
(2)FRP製部材(平板)の作製
上記のプリプレグを、擬似等方構成[45/90/−45/0]s(記号sは、鏡面対称を示す。)の構成で積層(ただし0方向にはプリプレグA、他の方向にはプリプレグB)し、オートクレーブ中で温度177℃、圧力0.6MPaで2時間加熱硬化し、FRP製平板を得た。得られたFRP製平板は、同目付のプリプレグ8層のうち、2層が0度方向に配せられているので、V0は0.25となった。そして、(式1)で定義される距離dの計算値は2.60となった。また、得られたFRP製平板のVfを、応力集中領域と応力集中領域外で共にJIS K 7075(1991)に従って測定したところ、共に66%であった。
(3)FRP製平板の物性測定
得られたFRP製平板からASTM D5766−95に従って試験片を切り出し、中心にはボール盤を使用して直径6.35mmの円孔(切欠き)を空けて有孔試験片を作製した。結果、弾性主軸方向に平行な補強繊維の中でガラス繊維が配向されているのは孔端部から(11−6.35)/2≒2.33mm以内の領域となった。この有孔試験片を、ASTM D5766−95に従って、引張破断荷重(切り欠き強度)を測定した。結果を表1に示す。
(4)体積割合の求め方
引張試験に使用しなかった有効試験片から、図1に示すように、円孔中心を中心として
弾性主軸方向に幅2mm、長さを円孔端部から距離dまでとする矩形領域5を切り出した。また、円孔端部から距離d以上離れた任意の場所から1cm角の矩形領域6を切り出した。そして、切り出した矩形物のうち、弾性主軸に直行する断面5aと断面6aをそれぞれ研磨したのち光学顕微鏡で観察した。観察結果をAdobe社製Photoshop(登録商標)で取り込み、繊維断面の色や大きさや形状から、弾性主軸方向に配されているガラス繊維(=補強繊維A)と炭素繊維(=補強繊維B)の選別を行った。選別後に、弾性主軸方向に配されているガラス繊維の断面積の総和と炭素繊維の断面積の総和をそれぞれ面積測定機能で測定したところ、断面5aではガラス繊維の断面積の総和は0.64mm、炭素繊維の断面積の総和は0.07mmであった。また、断面6aではガラス繊維は存在せず炭素繊維のみであった。これらの結果から、ガラス繊維(補強繊維A)の体積割合を算出したところ、矩形領域5に含まれているガラス繊維の体積割合(VA1)は0.90であった。同様にして算出したところ、矩形領域6に含まれているガラス繊維の体積割合(VA2)は0であった。
(実施例2〜4、比較例1〜4)
補強繊維A、補強繊維Bの種類および補強繊維Aを配した領域、そして積層構成を表1に示す通り変更した以外は、実施例1に従い、FRP製部材を作製し、得られたFRP製部材の物性を測定した。なお、炭素繊維”トレカ(登録商標)”M40Jとは東レ(株)社製、伸度1.2%、引張弾性率377GPaの炭素繊維である。そして、表中の積層構成で擬似等方とは[45/90/−45/0]s、60UDとは[45/90/−45/(0)/45/(0)/−45/(0)/−45/90/45]、UDとは[0]の積層構成をそれぞれ示す。
(実施例5)
有孔試験片の寸法をASTM D5961(2005)のFig.5に記載のSingle−Shear Test Specimen Drawingに従って変更し、孔形状を皿孔にし、皿孔(Fig.5ではCountersinkと記載されている)の径を12.1mm、皿孔の深さを2.45mm、積層構成を[45/90/−45/0]3s、部材厚さhを3.6mmにした以外は、実施例1と同様にして有孔試験片を作製した。この試験片をやはりASTM D5961(2005)に従って面圧強さを測定した。
(比較例5)
有孔試験片寸法をASTM D5961(2005)のFig.5に記載のSingle−Shear Test Specimen Drawingに従って変更し、孔形状を皿孔にし、皿孔(Fig.5ではCountersinkと記載されている)の径を12.1mm、皿孔の深さを2.45mm、積層構成を[45/90/−45/0]3s、部材厚さhを3.6mmにした以外は、比較例1と同様にして有孔試験片を作製した。この試験片をやはりASTM D5961(2005)に従って面圧強さを測定した。
Composition of epoxy resin “Epicoat (registered trademark)” 828 (manufactured by Japan Epoxy Resin Co., Ltd., bisphenol A type liquid epoxy resin) 50 parts by weight • “Sumi-Epoxy (registered trademark)” ELM434 (Sumitomo Chemical Co., Ltd.) ), Tetraglycidyldiaminodiphenylmethane, liquid) 50 parts by weight-"SumiCure (registered trademark)" S (Sumitomo Chemical Co., Ltd., 4,4'-diaminodiphenylsulfone) 30 parts by weight (2) FRP member (flat plate) The above prepreg is laminated in a quasi-isotropic configuration [45/90 / −45 / 0] s (the symbol s indicates mirror symmetry) (provided that the prepreg A is in the 0 direction and the other direction). Prepreg B), and heat-cured in an autoclave at a temperature of 177 ° C. and a pressure of 0.6 MPa for 2 hours to obtain a flat plate made of FRP. The obtained FRP flat plate had 8 layers of prepregs with the same weight, and 2 layers were arranged in the 0 degree direction, so V0 was 0.25. And the calculated value of the distance d defined by (Formula 1) was 2.60. Further, Vf of the obtained FRP flat plate was measured according to JIS K 7075 (1991) both in the stress concentration region and outside the stress concentration region, and both were 66%.
(3) Measurement of physical properties of FRP flat plate A test piece was cut out from the obtained FRP flat plate according to ASTM D5766-95, and a 6.35 mm diameter circular hole (notch) was drilled at the center using a drilling machine. A test piece was prepared. As a result, among the reinforcing fibers parallel to the elastic principal axis direction, the glass fiber was oriented in a region within (11−6.35) /2≈2.33 mm from the hole end. The perforated test piece was measured for tensile breaking load (notch strength) according to ASTM D5766-95. The results are shown in Table 1.
(4) Determining the volume ratio From an effective test piece not used in the tensile test, as shown in FIG. 1, the width d is 2 mm in the elastic main axis direction around the center of the circular hole, and the distance is d from the end of the circular hole. A rectangular area 5 was cut out. Further, a rectangular area 6 of 1 cm square was cut out from an arbitrary place away from the end of the circular hole by a distance d or more. And among the cut-out rectangular objects, the cross section 5a and the cross section 6a perpendicular to the elastic main axis were each polished and then observed with an optical microscope. The observation result is taken in by Photoshop (registered trademark) manufactured by Adobe, and from the color, size and shape of the fiber cross section, the glass fiber (= reinforcing fiber A) and the carbon fiber (= reinforcing fiber B) arranged in the elastic main axis direction. Sorting was performed. After selection, when the total cross-sectional area of the glass fibers and the total cross-sectional area of the carbon fibers arranged in the elastic principal axis direction were measured by the area measurement function, the total cross-sectional area of the glass fibers was 0.64 mm in the cross-section 5a. 2 and the total cross-sectional area of the carbon fiber was 0.07 mm 2 . Moreover, in the cross section 6a, there was no glass fiber and it was only carbon fiber. From these results, when the volume ratio of the glass fiber (reinforcing fiber A) was calculated, the volume ratio (VA1) of the glass fiber contained in the rectangular region 5 was 0.90. When calculated in the same manner, the volume ratio (VA2) of the glass fibers contained in the rectangular region 6 was 0.
(Examples 2-4, Comparative Examples 1-4)
The FRP member was prepared according to Example 1 except that the reinforcing fiber A, the type of the reinforcing fiber B, the region where the reinforcing fiber A was arranged, and the laminated configuration were changed as shown in Table 1. The physical properties of were measured. The carbon fiber “Torayca (registered trademark)” M40J is a carbon fiber manufactured by Toray Industries, Inc., having an elongation of 1.2% and a tensile elastic modulus of 377 GPa. Then, [45/90 / -45 / 0] s, the 60UD [45/90 / -45 / (0) 4/45 / (0) is the pseudo-isotropic in a stacked configuration in Table 4 / -45 / (0) 4 / −45 / 90/45] and UD each indicate a stacked configuration of [0] 8 .
(Example 5)
The size of the perforated test piece was measured according to ASTM D5961 (2005), FIG. The hole shape is changed to a countersink, the diameter of the countersunk hole (described as Countersink in FIG. 5) is 12.1 mm, and the depth of the countersink is 2. A perforated test piece was prepared in the same manner as in Example 1 except that the thickness was 45 mm, the laminated configuration was [45/90 / −45 / 0] 3 s, and the member thickness h was 3.6 mm. The surface pressure strength of this test piece was also measured according to ASTM D5961 (2005).
(Comparative Example 5)
Perforated specimen dimensions were measured according to ASTM D5961 (2005), FIG. The hole shape is changed to a countersink, the diameter of the countersunk hole (described as Countersink in FIG. 5) is 12.1 mm, and the depth of the countersink is 2. A perforated test piece was produced in the same manner as in Comparative Example 1 except that the thickness was 45 mm, the laminated configuration was [45/90 / −45 / 0] 3 s, and the member thickness h was 3.6 mm. The surface pressure strength of this test piece was also measured according to ASTM D5961 (2005).

結果を、表1に纏めて示す。なお、比較例1、比較例3、比較例4では一種類の補強繊維しか使用していないので、その補強繊維を補強繊維Aとし、補強繊維Bの欄は空欄とした。   The results are summarized in Table 1. In Comparative Example 1, Comparative Example 3, and Comparative Example 4, only one type of reinforcing fiber was used, so that the reinforcing fiber was the reinforcing fiber A and the reinforcing fiber B column was blank.

Figure 2007152938
Figure 2007152938

実施例1〜4のように、補強繊維Aの引張破断伸度が補強繊維Bの引張破断伸度よりも高く、かつ、補強繊維Aが本発明で生み出した応力集中領域以内に配せられている場合は高い切り欠き強度を維持したままであった。   As in Examples 1 to 4, the tensile break elongation of the reinforcing fiber A is higher than the tensile break elongation of the reinforcing fiber B, and the reinforcing fiber A is disposed within the stress concentration region generated in the present invention. When it was, the high notch strength was maintained.

例えば実施例1と比較例1を比較すると、ガラス繊維に比べて引張破断伸度の低いT700Sを一様に配した比較例1の切り欠き強度は、孔周りに引張破断伸度の高いガラス繊維を配した実施例1に比べて大幅な切り欠き強度の低下が見られる。   For example, when Example 1 and Comparative Example 1 are compared, the notch strength of Comparative Example 1 in which T700S, which has a lower tensile breaking elongation than glass fiber, is uniformly arranged, has a high tensile breaking elongation around the hole. As compared with Example 1 in which the thickness is arranged, the notch strength is greatly reduced.

一方で同じようにガラス繊維を孔周りに配しても、本発明で生み出した応力集中領域以上にガラス繊維を配した(すなわちVA2が0.1以上)比較例2では、やはり大幅な切り欠き強度の低下が見られる。   On the other hand, even if the glass fiber is arranged around the hole in the same manner, in the comparative example 2 in which the glass fiber is arranged more than the stress concentration region produced in the present invention (that is, VA2 is 0.1 or more), the notch is still greatly cut out. A decrease in strength is observed.

また、実施例3と比較例4とを比較すると、炭素繊維のみを使用しても、一様にM40Jを使用した比較例4では、孔周りにM40Jと比較して引張破断伸度の高いT700Sを使用した実施例3と比べて、やはり切り欠き強度の低下がみられる。このことから補強繊維の種類によらず、補強繊維Aと補強繊維Bとの引張破断伸度の優劣が、切り欠きを有するFRP部材の引張強度に大きく影響していることが分かる。また、比較例3のように引張破断伸度の高いガラス繊維のみを使用した場合では、実施例4のようにガラス繊維と弾性率の高い炭素繊維とを組み合わせた場合に比べてやはり引張強度が低いことがわかる。さらに実施例5と比較例5とを比較すると、本発明の構成を使用することで面圧強さが飛躍的に向上することが分かる。   Moreover, when Example 3 and Comparative Example 4 are compared, even if only carbon fiber is used, in Comparative Example 4 in which M40J is uniformly used, T700S, which has a higher tensile fracture elongation than M40J, around the hole. Compared with Example 3 using No. 3, the notch strength is still reduced. From this, it can be seen that regardless of the type of reinforcing fiber, the superiority or inferiority of the tensile breaking elongation between the reinforcing fiber A and the reinforcing fiber B greatly affects the tensile strength of the FRP member having a notch. Further, when only glass fibers having a high tensile breaking elongation are used as in Comparative Example 3, the tensile strength is still higher than when combining glass fibers and carbon fibers having a high elastic modulus as in Example 4. It turns out that it is low. Furthermore, when Example 5 and Comparative Example 5 are compared, it can be seen that the surface pressure strength is dramatically improved by using the configuration of the present invention.

本発明は、軽量、高強度であり、かつ、優れた切り欠き強度を有し、航空機や自動車などの輸送機器や建築物の支柱補強材などの一般産業用途として好適に使用することができる。   INDUSTRIAL APPLICABILITY The present invention is lightweight, high-strength, has excellent notch strength, and can be suitably used for general industrial applications such as transportation equipment such as aircraft and automobiles, and strut reinforcements for buildings.

本発明を説明するための概略図である。It is the schematic for demonstrating this invention. 皿孔形状の切り欠きを説明するための部材の断面図である。It is sectional drawing of the member for demonstrating a notch of a countersink shape.

符号の説明Explanation of symbols

1 応力集中領域
2 応力集中領域外の領域
3 切り欠き
4 弾性主軸
5 VA1を測定するための矩形領域
5a 矩形領域5の中で弾性主軸に直交する観察面
6 VA2を測定するための矩形領域
6a 矩形領域6の中で弾性主軸に直交する観察面
7 皿孔の深さ
8 部材の厚さ
DESCRIPTION OF SYMBOLS 1 Stress concentration area | region 2 Area | region outside stress concentration area | region 3 Notch 4 Elastic main axis | shaft 5 Rectangular area | region 5a for measuring VA1 Observation surface orthogonal to an elastic main axis | shaft in the rectangular area | region 6 6 Rectangular area | region 6A for measuring VA2 Observation surface perpendicular to the elastic main axis in the rectangular region 6 7 Countersink depth 8 Member thickness

Claims (10)

少なくとも一つ以上の切り欠きを有する繊維強化複合材料(FRP)製部材であって、引張破断伸度が異なる2種以上の補強繊維を含み、応力集中領域において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA1が、応力集中領域外において、弾性主軸方向に配向されている全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維Aの体積割合VA2よりも高く、かつ、VA2が0.1以下であるFRP製部材。
補強繊維A:FRP製部材に含まれる補強繊維の中で最も引張破断伸度の高い補強繊維
応力集中領域:切り欠き端部より弾性主軸と直行する方向に(式1)で定義される距離d(mm)以内の領域
Figure 2007152938
V0:FRP製部材中の全補強繊維体積に占める、弾性主軸方向に配向されている補強繊維の体積割合
A fiber reinforced composite material (FRP) member having at least one notch, including two or more types of reinforcing fibers having different tensile elongation at break, and oriented in the elastic principal axis direction in a stress concentration region The volume fraction VA1 of the reinforcing fibers A oriented in the elastic principal axis direction in the total reinforcing fiber volume is oriented in the elastic principal axis direction in the total reinforcing fiber volume oriented in the elastic principal axis outside the stress concentration region. A member made of FRP which is higher than the volume ratio VA2 of the reinforcing fibers A and VA2 is 0.1 or less.
Reinforcing fiber A: Reinforcing fiber having the highest tensile breaking elongation among reinforcing fibers contained in the FRP member Stress concentration region: Distance d defined by (Equation 1) in a direction perpendicular to the elastic main axis from the notch end Area within (mm)
Figure 2007152938
V0: Volume ratio of reinforcing fibers oriented in the elastic principal axis direction in the total reinforcing fiber volume in the FRP member
補強繊維Aの引張破断伸度が3%以上6%以下である請求項1に記載のFRP製部材。 The FRP member according to claim 1, wherein the tensile breaking elongation of the reinforcing fiber A is 3% or more and 6% or less. 補強繊維A以外の補強繊維の引張弾性率が300GPa以上1200GPa以下である請求項1または2に記載のFRP製部材。 The FRP member according to claim 1 or 2, wherein the tensile elastic modulus of reinforcing fibers other than the reinforcing fiber A is 300 GPa or more and 1200 GPa or less. 補強繊維Aと補強繊維A以外の補強繊維が同方向に引き揃えられている請求項1〜3のいずれかに記載のFRP製部材。 The FRP member according to any one of claims 1 to 3, wherein reinforcing fibers other than the reinforcing fibers A and the reinforcing fibers A are aligned in the same direction. 補強繊維Aと補強繊維A以外の補強繊維の引き揃え方向が、弾性主軸と平行である請求項1〜4のいずれかに記載のFRP製部材。 The FRP member according to any one of claims 1 to 4, wherein an alignment direction of the reinforcing fibers other than the reinforcing fibers A and the reinforcing fibers A is parallel to the elastic main axis. 切り欠きが実質的に円形である請求項1〜5のいずれかに記載のFRP製部材。 The FRP member according to any one of claims 1 to 5, wherein the notch is substantially circular. 切り欠きが実質的に皿孔形状を有する請求項1〜6のいずれかに記載のFRP製部材。 The FRP member according to any one of claims 1 to 6, wherein the notch has a substantially countersink shape. 切り欠きの幅をφとし、切り欠き同士の間隔が3φ以上である請求項1〜7のいずれかに記載のFRP製部材。 The FRP member according to any one of claims 1 to 7, wherein a width of the notch is φ, and an interval between the notches is 3φ or more. 補強繊維を樹脂で含浸したプリプレグであって、引張破断伸度が異なる2種以上の補強繊維を含み、補強繊維A’が配せられた幅が7mm以上13mm以下であるプリプレグ。
補強繊維A’:プリプレグに含まれる補強繊維中で最も引張破断伸度の高い補強繊維
A prepreg in which reinforcing fibers are impregnated with a resin, the prepreg including two or more types of reinforcing fibers having different tensile elongation at break, and a width in which the reinforcing fibers A ′ are arranged is 7 mm or more and 13 mm or less.
Reinforcing fiber A ′: Reinforcing fiber having the highest tensile breaking elongation among the reinforcing fibers contained in the prepreg
補強繊維A’が繊維軸に直角方向に実質的に等間隔で配されている請求項8に記載のプリプレグ。 The prepreg according to claim 8, wherein the reinforcing fibers A ′ are arranged at substantially equal intervals in a direction perpendicular to the fiber axis.
JP2006290761A 2005-11-11 2006-10-26 Member made from frp Pending JP2007152938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290761A JP2007152938A (en) 2005-11-11 2006-10-26 Member made from frp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005327005 2005-11-11
JP2006290761A JP2007152938A (en) 2005-11-11 2006-10-26 Member made from frp

Publications (1)

Publication Number Publication Date
JP2007152938A true JP2007152938A (en) 2007-06-21

Family

ID=38237871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290761A Pending JP2007152938A (en) 2005-11-11 2006-10-26 Member made from frp

Country Status (1)

Country Link
JP (1) JP2007152938A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001087A (en) * 2012-06-15 2014-01-09 Toyobo Co Ltd Short fiber for reinforcement of cement-based structure composed of polyethylene fiber, and cement-based structure
JP2014036857A (en) * 2012-08-13 2014-02-27 Dyson Technology Ltd Cleaner head
JPWO2013089227A1 (en) * 2011-12-16 2015-04-27 東レ株式会社 Fiber reinforced resin structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013089227A1 (en) * 2011-12-16 2015-04-27 東レ株式会社 Fiber reinforced resin structure
JP2014001087A (en) * 2012-06-15 2014-01-09 Toyobo Co Ltd Short fiber for reinforcement of cement-based structure composed of polyethylene fiber, and cement-based structure
JP2014036857A (en) * 2012-08-13 2014-02-27 Dyson Technology Ltd Cleaner head
KR101609287B1 (en) 2012-08-13 2016-04-05 다이슨 테크놀러지 리미티드 Cleaner head

Similar Documents

Publication Publication Date Title
Sanjay et al. The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization
ES2391401T3 (en) Thread impregnated with an epoxy resin and its use for the production of a preform
US9289965B2 (en) Opaque fiber reinforcement of composites
US9783244B2 (en) Hollow structure body and vehicular component
Tanwer Mechanical properties testing of uni-directional and bi-directional glass fibre reinforced epoxy based composites
CN103338925A (en) Metal sheet-fiber reinforced composite laminate
Selmy et al. Monotonic properties of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites
Bandaru et al. Influence of hybridization on in-plane shear properties of 2D & 3D thermoplastic composites reinforced with Kevlar/basalt fabrics
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
US20180066797A1 (en) Fiber reinforced polymer matrix composite structure and high pressure container, and method of manufacturing the same
JP2013166853A (en) Fiber-reinforced composite material
WO2015076073A1 (en) Prepreg, fibre-reinforced composite material, and particle-containing resin composition
JP5336225B2 (en) Multi-axis stitch base material and preform using it
JP2007152938A (en) Member made from frp
Cho et al. Hybrid fiber-reinforced composite with carbon, glass, basalt, and para-aramid fibers for light use applications
JPH10329247A (en) Composite material tubular member
Madhavi et al. Flexural strength and inter laminar shear strength of carbon fabric and silk satin fabric reinforced hybrid composites
JPH09226039A (en) Fiber-reinforced plastic member
Misri et al. Tensile properties of Kenaf yarn fibre reinforced unsaturated polyester composites at different fibre orientations
JPH09277389A (en) Tapered hollow shaft
JP7117993B2 (en) FRP pultruded body and manufacturing method thereof
JP7143473B2 (en) Prepreg, its manufacturing method, and fiber-reinforced composite material
KR100760168B1 (en) Transport member
JP2009167350A (en) Prepreg and fiber-reinforced composite material
Balikoglu et al. Effect of quasi-static and intermediate strain rates on the tensile properties of hybrid polymer composites