JP5336225B2 - Multi-axis stitch base material and preform using it - Google Patents

Multi-axis stitch base material and preform using it Download PDF

Info

Publication number
JP5336225B2
JP5336225B2 JP2009038704A JP2009038704A JP5336225B2 JP 5336225 B2 JP5336225 B2 JP 5336225B2 JP 2009038704 A JP2009038704 A JP 2009038704A JP 2009038704 A JP2009038704 A JP 2009038704A JP 5336225 B2 JP5336225 B2 JP 5336225B2
Authority
JP
Japan
Prior art keywords
stitch
base material
yarn
fiber
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009038704A
Other languages
Japanese (ja)
Other versions
JP2010196176A (en
Inventor
祐平 小永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2009038704A priority Critical patent/JP5336225B2/en
Publication of JP2010196176A publication Critical patent/JP2010196176A/en
Application granted granted Critical
Publication of JP5336225B2 publication Critical patent/JP5336225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiaxially stitched base hardly causing shift of a fiber angle in an intermediate process such as production, cutting, resin impregnation and preform formation of a fiber reinforcing base, and providing excellent composite (FRP) properties, and to provide a prepreg or the like using the base. <P>SOLUTION: The multiaxially stitched base obtained by laminating two or more layers having reinforcing fiber bundles arranged parallelly in a sheet shape, and integrating these layers by stitch yarns is regulated as follows. The laminate angle of each layer is not 0&deg;, and each layer is restrained by chain stitch using the stitch yarn having &le;10% elongation at 50 gf load. A specific length of one stitch yarn forming the stitch is used per 1 m of the multiaxially stitched base in the multiaxially stitched base. The fiber-reinforced plastic comprising the base and a matrix resin is useful as a shock-absorber. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、強化繊維束を平行にシート状に配列した多軸ステッチ基材、及び、その多軸ステッチ基材を用いたプリフォーム、並びに、得られた繊維強化プラスチックを用いた衝撃吸収体に関するものである。 The present invention relates to a multiaxial stitch base material in which reinforcing fiber bundles are arranged in parallel in a sheet shape, a preform using the multiaxial stitch base material, and an impact absorber using the obtained fiber reinforced plastic. Is.

近年、炭素繊維、ガラス繊維、アラミド繊維等の強化繊維材料は、各種のマトリックス樹脂と複合化され、得られる繊維強化複合材料(FRP)は、その高い比強度・比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフシャフト、釣り竿などの一般産業・スポーツ用途などに広く利用されている。 In recent years, reinforced fiber materials such as carbon fiber, glass fiber, and aramid fiber have been compounded with various matrix resins, and the resulting fiber reinforced composite material (FRP) utilizes its high specific strength and specific modulus, It is widely used for structural materials such as aircraft and automobiles, general industries such as tennis rackets, golf shafts, fishing rods, and sports applications.

FRPの代表的な製造方法として、強化繊維基材に予めマトリックス樹脂を含浸させたプリプレグを用い、このプリプレグを積層毎に強化繊維の配列方向がずれるように積層し、マトリックス樹脂を硬化させるオートクレーブ成形法がある。この他にも、FRPの成形コストを低減させるために、樹脂未含浸の強化繊維基材を積層し、その積層体にマトリックス樹脂を注入し、硬化させる樹脂注入成形法、あるいはマトリックス樹脂のフィルムを積層・含浸させるフィルムインフュージョン成形法(RFI法)等も行われるようになっている。いずれの方法においても、使用される繊維強化材料(強化繊維基材)としては、通常、織編物や多軸織物等が用いられている。 As a typical FRP manufacturing method, a prepreg in which a matrix resin is impregnated into a reinforcing fiber base in advance is used, and this prepreg is laminated so that the alignment direction of the reinforcing fibers is shifted for each lamination, and the matrix resin is cured. There is a law. In addition, in order to reduce the molding cost of FRP, a resin injection molding method in which a non-resin-impregnated reinforcing fiber base material is laminated, a matrix resin is injected into the laminate, and cured, or a matrix resin film is used. A film infusion molding method (RFI method) for laminating and impregnating is also performed. In any of the methods, a woven or knitted fabric or a multiaxial woven fabric is usually used as the fiber reinforced material (reinforced fiber base material) to be used.

近年、積層作業の簡略化を目的とし、高目付繊維シートが用いられるようになった。即ち、強化繊維束を平行にシート状に配列した層を2層以上積層し、それらの層をステッチ糸等により一体化した多軸ステッチ基材である(例えば、特許文献1〜3参照)。かかる多軸ステッチ基材は、従来の織物基材に比べ、強化繊維糸条同士を織り込む手間がないため基材生産性が高く、また、織物基材に見られる強化繊維束のクリンプが無いため、力学的特性や表面品位の向上が期待できる。更に、+45/−45度等任意の方向に積層する事も可能であり、カットと積層作業が大幅に短縮され安価なFRPが得られるという利点もある。特に、近年注目されている炭素繊維強化プラスチックによる衝撃吸収体には、カット時の歩留まりが良く積層時間も短い、+45/−45度方向のステッチ基材多く利用されている。 In recent years, high-weight fiber sheets have been used for the purpose of simplifying the laminating operation. That is, it is a multiaxial stitch base material in which two or more layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape are laminated, and these layers are integrated with stitch yarns or the like (see, for example, Patent Documents 1 to 3). Such a multi-axis stitch base material has high base material productivity because there is no need to weave reinforcing fiber yarns compared to a conventional woven base material, and there is no crimp of reinforcing fiber bundles found in the woven base material. Improvements in mechanical properties and surface quality can be expected. Further, it can be laminated in any direction such as + 45 / −45 degrees, and there is an advantage that the cutting and laminating work is greatly shortened and an inexpensive FRP can be obtained. In particular, a shock absorber made of carbon fiber reinforced plastic, which has been attracting attention in recent years, is widely used as a stitch base material in the + 45 / −45 degree direction, which has a good yield at the time of cutting and a short lamination time.

特開2002−317371号公報JP 2002-317371 A 特開2006−291369号公報JP 2006-291369 A 特開2007−162151号公報JP 2007-162151 A

しかしながら、+45/−45度のように0度層を持たない多軸ステッチ基材は、0度方向の引張りに対して変形しやすく、基材の製造、カット、樹脂含浸、プリフォーム化等の中間工程において、繊維の角度ズレが発生しやすいという問題点も併せ持っていた。0度層を持たない多軸ステッチ基材の繊維角度ズレ対策としては、0度方向又は90度方向に炭素繊維やポリアラミド繊維などの補助糸を入れる等の方策が開示されているが(特許文献1)、単環縫いで0度方向の補助糸を固定することは困難であり、また、90度方向に補助糸を入れることによる効果は小さく、繊維ズレを抑制する効果については必ずしも十分ではない。 However, the multiaxial stitch base material having no 0 degree layer such as + 45 / −45 degrees is easily deformed by pulling in the 0 degree direction, and the production of the base material, cutting, resin impregnation, preforming, etc. In the intermediate process, there was also a problem that the angle deviation of the fiber was likely to occur. As a measure against fiber angle deviation of a multiaxial stitch base material having no 0 degree layer, a measure such as inserting an auxiliary yarn such as carbon fiber or polyaramid fiber in the 0 degree direction or 90 degree direction has been disclosed (Patent Document) 1) It is difficult to fix the auxiliary thread in the 0 degree direction by single ring stitching, and the effect of inserting the auxiliary thread in the 90 degree direction is small, and the effect of suppressing fiber misalignment is not always sufficient. .

本発明は、かかる従来技術の背景に鑑み、強化繊維基材の製造、カット、樹脂含浸、プリフォーム化等の中間工程において、繊維角度ズレが少ない、コンポジット(FRP)物性に優れた0度層を持たない多軸ステッチ基材とそれを用いたプリプレグ等を提供することにある。 In view of the background of such prior art, the present invention is a 0-degree layer excellent in composite (FRP) physical properties with little fiber angle deviation in intermediate steps such as production, cutting, resin impregnation, and preforming of a reinforcing fiber base. Another object of the present invention is to provide a multi-axis stitch base material having no prepreg and a prepreg using the same.

上記課題は、特許請求の範囲の請求項1〜5に記載された、下記の本発明によって達成される。 The above-mentioned subject is achieved by the following present invention described in claims 1 to 5 of the claims.

本発明の請求項1に記載された発明は、積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されていることを特徴とする多軸ステッチ基材である。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
The invention described in claim 1 of the present invention is a multi-axis stitch base material obtained by stitching the front surface and the back surface of a laminate, and has two layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape. It is a multi-axis stitch base material in which layers are laminated and those layers are integrated by stitch yarns. Each layer has a lamination angle not 0 degree, and each layer has an elongation of 10% or less under a load of 50 gf. The stitch thread is constrained by a chain stitch (single-ring stitch), and one stitch thread forming the stitch has a length satisfying the following formula per 1 m of multi-axis stitch base material. It is a multi-axis stitch base material characterized by being used.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.

本発明において積層角度とは、強化繊維束の繊維軸方向が、積層基材の長さ方向に対して平行の場合を積層角度が0度、直角の場合を+90度又は−90度として定義される。 In the present invention, the lamination angle is defined as 0 degree when the fiber axis direction of the reinforcing fiber bundle is parallel to the length direction of the laminated substrate, and +90 degrees or -90 degrees when the lamination angle is a right angle. The

本発明の請求項2に記載された発明は、強化繊維が、炭素繊維又はアラミド繊維であることを特徴とする請求項1記載の多軸ステッチ基材である。 The invention described in claim 2 of the present invention is the multiaxial stitch base material according to claim 1, wherein the reinforcing fibers are carbon fibers or aramid fibers.

本発明の請求項3に記載された発明は、基材の目付が、100〜1,000g/mであることを特徴とする請求項1又は2項記載の多軸ステッチ基材である。 The invention described in claim 3 of the present invention, the basis weight of the substrate is a multi-axis stitch base material according to claim 1 or 2 wherein wherein it is 100~1,000g / m 2.

本発明の請求項4に記載された発明は、積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されている多軸ステッチ基材を用いたプリフォームである。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
The invention described in claim 4 of the present invention is a multi-axis stitch base material obtained by stitching the front surface and the back surface of a laminate, and includes two layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape. It is a multi-axis stitch base material in which layers are laminated and those layers are integrated by stitch yarns. Each layer has a lamination angle not 0 degree, and each layer has an elongation of 10% or less under a load of 50 gf. The stitch thread is constrained by a chain stitch (single-ring stitch), and one stitch thread forming the stitch has a length satisfying the following formula per 1 m of multi-axis stitch base material. It is a preform using the multi-axis stitch base material used.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.

そして、本発明の請求項5に記載された発明は、積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されている多軸ステッチ基材と、マトリックス樹脂とからなる繊維強化プラスチックを用いた衝撃吸収体である。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
The invention described in claim 5 of the present invention is a multiaxial stitch base material obtained by stitching the front and back surfaces of a laminate, wherein the reinforcing fiber bundles are arranged in parallel in a sheet shape. Is a multiaxial stitch base material in which two or more layers are laminated and these layers are integrated by stitch yarns, and the lamination angle of each layer is not 0 degree, and each layer has an elongation of 10 by a load of 50 gf. %, The stitch thread that is constrained by chain stitch (single-ring stitch) using a stitch thread that is less than or equal to 1%, and the length of one stitch thread that forms the stitch satisfies the following formula per 1 meter of multi-axis stitch base material This is an impact absorber using a fiber reinforced plastic made of a multi-axis stitch base material and a matrix resin.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.

本発明の多軸ステッチ基材は、基材の製造、カット、樹脂含浸、プリフォーム化等の中間工程において、繊維角度ズレが少なく、取り扱いが容易であるために、効率良く複合材料、即ちFRP成形品を製造するために用いることができる。そして、得られたFRPは、表面に凹凸が無く、表面平滑な成形面を有している。また、均一性や機械的特性にも優れたものが得られる。本発明の多軸ステッチ基材は変形に対して柔軟性があるために、特に、マトリックス樹脂とからなる繊維強化プラスチックは衝撃吸収体として有用である。 The multi-axis stitch base material of the present invention is a composite material, that is, an FRP efficiently because there is little fiber angle deviation and easy handling in intermediate processes such as base material manufacture, cutting, resin impregnation, and preforming. It can be used to produce molded articles. And the obtained FRP has the unevenness | corrugation in the surface and has a smooth surface. Moreover, the thing excellent also in the uniformity and the mechanical characteristic is obtained. Since the multiaxial stitch base material of the present invention is flexible with respect to deformation, a fiber reinforced plastic comprising a matrix resin is particularly useful as an impact absorber.

本発明の多軸ステッチ基材の一例を示す(配列+45/−45度方向、ステッチピッチが3回/cm、ステッチの間隔が5mm、多軸ステッチ基材1mあたりのステッチ糸長さが320cmの多軸ステッチ基材)。An example of the multiaxial stitch base material of the present invention is shown (array + 45 / −45 degrees direction, stitch pitch is 3 times / cm, stitch interval is 5 mm, and stitch yarn length per 1 m of multiaxial stitch base material is 320 cm. Multi-axis stitch base material).

一般に、一方向に引き揃えた強化繊維の束をシート状にして角度を変えて積層したものを、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体の厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチして得られた基材を多軸ステッチ基材という(多軸織物という場合もある)。本発明の多軸ステッチ基材は、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であって、しかもいずれの層も積層角度が0度ではないものである(積層された強化繊維束の繊維軸方向が、全て、基材の長さ方向に対して平行でないもの)。そして、それぞれの層が、50gfの荷重による伸びが10%以下であるステッチ糸を用いて、チェーンステッチ(単環縫い)によって拘束されていることを特徴とするものである。なお、チェーンステッチ(単環縫い)とは、衣類の裾の仕上げ等に多く見られる、縫い目が鎖状に繋がっている縫製仕様を意味する。 Generally, a bundle of reinforcing fibers aligned in one direction is laminated into a sheet shape and changed in angle, and stitched with nylon yarn, polyester yarn, glass fiber yarn, etc., and penetrated in the thickness direction of this laminate. A substrate obtained by reciprocating and stitching between the front and back surfaces of the laminate along the surface direction is referred to as a multiaxial stitched substrate (sometimes referred to as a multiaxial woven fabric). The multiaxial stitch base material of the present invention is a multiaxial stitch base material in which two or more layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape are laminated, and these layers are integrated by stitch yarns, In addition, none of the layers has a lamination angle of 0 degrees (the fiber axis directions of the laminated reinforcing fiber bundles are not all parallel to the length direction of the base material). And each layer is restrained by the chain stitch (single-ring stitch) using the stitch yarn whose elongation under a load of 50 gf is 10% or less. The chain stitch (single-ring stitch) means a sewing specification in which seams are connected in a chain shape, which is often seen in finishing the hem of clothing.

本発明においては、前記のような多軸ステッチ基材を作成するに際し、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されている必要がある。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシートの目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
In the present invention, when the multi-axis stitch base material as described above is created, one stitch yarn forming the stitch is used in a length satisfying the following formula per 1 m of the multi-axis stitch base material. Need to be.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of the stitch yarn used per 1 m of the multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is the basis weight of the sheet made of the reinforcing fiber bundle ( g / m 2 ), P is the stitch pitch (times / cm), and ρ is the density (g / cm 3 ) of the reinforcing fiber.

上記式中、k値が0.039を上回る場合、ステッチ糸による拘束が弱く、容易に角度ズレが発生してしまう。また、0.013を下回る場合、ステッチの目はずれが発生し、ステッチ自体が困難となる。また、ステッチは可能であっても、基材に残留応力が残り、繊維の角度ズレが発生してしまう等の欠点がある。また、伸びの大きい糸、即ち、50gfの荷重による伸びが10%を超えるものを使用した場合には、やはりステッチ糸による拘束が弱く、容易に角度ズレが発生してしまう。隣り合うステッチ糸の間隔は特に限定されるものではないが、1〜10mmが好ましく、3〜6mmが特に好ましい。ステッチ糸の種類・材質は、特に制限されるものではなく、例えば、ナイロン糸、ポリエステル糸、ガラス繊維糸、ポリベンゾオキサゾール繊維糸、アラミド繊維糸等が挙げられる。また、これらの材質を組み合わせた芯鞘構造の糸を用いることで、多機能性を持たせることもできる。例えば、中心がポリエステル、外層が低融点ナイロン等の芯鞘構造を持つ糸を用いると、繊維角度ズレを起こさず、かつプリフォーム作製の際に仮止めが可能な基材を得ることができる。 In the above formula, when the k value exceeds 0.039, the constraint by the stitch yarn is weak, and the angle deviation easily occurs. On the other hand, if it is less than 0.013, stitch stitches are lost and the stitches themselves become difficult. Further, even if stitching is possible, there are disadvantages such as residual stress remaining on the base material and fiber angular deviation. In addition, when a yarn having a large elongation, that is, a yarn having an elongation exceeding 10% under a load of 50 gf, is used, the constraint by the stitch yarn is also weak, and an angle deviation easily occurs. The interval between adjacent stitch yarns is not particularly limited, but is preferably 1 to 10 mm, particularly preferably 3 to 6 mm. The type and material of the stitch yarn are not particularly limited, and examples thereof include nylon yarn, polyester yarn, glass fiber yarn, polybenzoxazole fiber yarn, and aramid fiber yarn. In addition, by using a core-sheath structure thread combining these materials, it is possible to provide multi-functionality. For example, when a yarn having a core-sheath structure such as polyester at the center and low melting point nylon at the outer layer is used, a base material that does not cause fiber angle deviation and can be temporarily fixed at the time of preform production can be obtained.

多軸ステッチ基材の目付は、100〜1000g/mが好ましく、200〜800g/mがより好ましい。多軸ステッチ基材の1層(1枚)当たりの厚みは、0.1〜2mmが好ましい。 好ましい多軸ステッチ基材の例としては、〔45/−45〕、〔−45/45〕、〔45/−45/−45/45〕、〔45/90/−45〕、〔45/−45/90〕等を挙げることができる。本発明の多軸ステッチ基材は、いずれの層も積層角度が0度ではないので、変形に対して柔軟性があり、かかる多軸ステッチ基材とマトリックス樹脂とからなる繊維強化プラスチックは衝撃吸収体として優れている。 Basis weight of the multi-axis stitch base is preferably 100~1000g / m 2, 200~800g / m 2 is more preferable. The thickness per layer (one sheet) of the multiaxial stitch base material is preferably 0.1 to 2 mm. Examples of preferable multiaxial stitch base materials include [45 / -45], [-45/45], [45 / -45 / -45 / 45], [45/90 / -45], [45 /- 45/90] and the like. The multiaxial stitch base material of the present invention is flexible against deformation since the lamination angle of each layer is not 0 degree, and the fiber reinforced plastic comprising such a multiaxial stitch base material and a matrix resin absorbs shock. It is excellent as a body.

本発明において用いられる強化繊維としては、無機繊維、有機繊維、金属繊維又はそれらの混合からなる繊維がある。具体的には、無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維を挙げることが出来る。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、ポリアミド繊維、ポリエステル繊維が挙げられる。好ましいのは、炭素繊維とアラミド繊維である。 The reinforcing fibers used in the present invention include inorganic fibers, organic fibers, metal fibers, or fibers made of a mixture thereof. Specifically, examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, polyamide fibers, and polyester fibers. Preference is given to carbon fibers and aramid fibers.

本発明において、多軸ステッチは、そのままあるいは複数積層して賦形型で賦形してプリフォームとすることができる。あるいは、全体又は部分的にマトリックス樹脂を含浸させてプリプレグとすることもできる。プリフォームの賦形法やプリプレグの製造法は特に限定されるものではない。 In the present invention, the multi-axis stitch can be formed as it is, or a plurality of layers can be laminated and shaped by a shaping mold. Alternatively, a prepreg can be formed by impregnating the matrix resin entirely or partially. The preform shaping method and the prepreg manufacturing method are not particularly limited.

本発明において用いられるマトリックス樹脂は特に制限されるものではなく、熱可塑性樹脂又は熱硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。これらの樹脂は、2種以上併用して用いることもできる。 The matrix resin used in the present invention is not particularly limited, and a thermoplastic resin or a thermosetting resin can be used. Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like. These resins can be used in combination of two or more.

熱硬化性のマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。プリプレグに占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。 Examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate esters. Examples include resin prepolymerized resins, bismaleimide resins, acetylene-terminated polyimide resins and polyisoimide resins, and nadic acid-terminated polyimide resins. These can also be used as one type or a mixture of two or more types. The content of the resin composition in the prepreg is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight.

本発明の多軸ステッチ基材は変形に対して柔軟性があるために、多軸ステッチ基材とマトリックス樹脂とからなる繊維強化プラスチック(FRP)は、特に、衝撃吸収体として有用である。繊維強化プラスチックの製造方法は特に限定されるものではなく、例えば、多軸ステッチ基材のプリフォームからRTM成形法で作製してもよく、あるいはプリプレグを用いるオートクレーブ成形法で作製することもできる。FRP中のマトリックス樹脂の含有率は、通常、10〜90重量%、好ましくは30〜70重量%が適当である。 Since the multiaxial stitch base material of the present invention is flexible with respect to deformation, a fiber reinforced plastic (FRP) comprising a multiaxial stitch base material and a matrix resin is particularly useful as an impact absorber. The production method of the fiber reinforced plastic is not particularly limited. For example, the fiber reinforced plastic may be produced from a preform of a multiaxial stitch base material by an RTM molding method, or may be produced by an autoclave molding method using a prepreg. The content of the matrix resin in FRP is usually 10 to 90% by weight, preferably 30 to 70% by weight.

以下、実施例によって本発明をより具体的に説明する。実施例においては、多軸ステッチ基材の製造時に、繊維角度測定用として色の異なるトレーサーヤーンを挿入した。繊維角度の測定方法は、以下の通りである。 Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, tracer yarns of different colors were inserted for measuring the fiber angle during the production of the multi-axis stitch substrate. The method for measuring the fiber angle is as follows.

[繊維角度の測定方法]
透明シートに設定角度(±45度等)の直線を描いた冶具を作製し、それを作製された多軸ステッチ基材上に置き、トレーサーヤーンの幅方向の中心点を原点とし、治具を重ね合わせる。この時、冶具の0度方向と、基材の0度方向が平行となる様にする。トレーサーヤーンが冶具の線と重なっていれば、繊維角度のズレは無い。角度ズレがある場合、トレーサーヤーンと冶具の線が重ならない。その場合には、原点を中心に、左右で、トレーサーヤーンが冶具の線より最も離れた2点を取り、座標を読む。そして、この2点を通る直線の傾きを計算することにより、トレーサーヤーンと設定角度とのズレを測定する。
[Measurement method of fiber angle]
Create a jig that draws a straight line with a set angle (± 45 degrees, etc.) on a transparent sheet, place it on the multi-axis stitch base, and use the center point in the width direction of the tracer yarn as the origin, Overlapping. At this time, the 0 degree direction of the jig and the 0 degree direction of the base material are made parallel to each other. If the tracer yarn overlaps the jig line, there is no fiber angle deviation. When there is an angle shift, the tracer yarn and jig line do not overlap. In that case, the tracer yarn takes two points farthest from the jig line on the left and right with the origin as the center, and the coordinates are read. Then, the deviation between the tracer yarn and the set angle is measured by calculating the slope of the straight line passing through these two points.

[実施例1]
強化繊維として、東邦テナックス社製の“テナックス”(登録商標)HTA−12K(強化繊維密度 1.76g/cm)を用い、+45/−45度方向に1層が200g/mとなるように所定の本数を配し、これをポリエステル糸を用いてチェーンステッチにて縫合した。使用したポリエステル糸の引張り剛性は、50gf荷重時、5%であった。図1に示したように、ステッチピッチが3回/cm、間隔が5mmとなるように調整し、基材1mあたりのステッチ糸長さが320cmとなる様に設定し、多軸ステッチ基材を製作した(このとき、請求項1の式中の定数kは0.03であった)。かかる基材の繊維角度のズレを測定したところ、所定の+45度、−45度に対し、平均約0.4度のズレであった。
[Example 1]
“Tenax” (registered trademark) HTA-12K (reinforced fiber density: 1.76 g / cm 3 ) manufactured by Toho Tenax Co., Ltd. is used as the reinforcing fiber, and one layer becomes 200 g / m 2 in the + 45 / −45 degree direction. A predetermined number was arranged on the front and stitched with a chain stitch using a polyester thread. The tensile rigidity of the polyester yarn used was 5% at a load of 50 gf. As shown in FIG. 1, the stitch pitch is adjusted to 3 times / cm and the interval is set to 5 mm, and the stitch yarn length per 1 m of the base material is set to 320 cm. (At this time, the constant k in the formula of claim 1 was 0.03). When the deviation of the fiber angle of the substrate was measured, the deviation was an average of about 0.4 degrees with respect to the predetermined +45 degrees and -45 degrees.

[実施例2]
強化繊維として、東邦テナックス社製の“テナックス”(登録商標)STS−24K(強化繊維密度 1.77g/cm)を用い、+45/−45/90度方向に1層が100g/mとなるように所定の本数を配し、これをポリエステル糸にて縫合(チェーンステッチ)した。使用したポリエステル糸の引張り剛性は、50gf荷重時、5%であった。ステッチピッチが4回/cm、間隔が5mmとなるように調整し、基材1mあたりのステッチ糸長さが310cmとなる様に設定し、多軸ステッチ基材を製作した。(このとき、請求項1の式中の定数kは0.015であった)。かかる基材の繊維角度を測定したところ、所定の+45度、−45度に対し、平均約0.3度のズレであった。
[Example 2]
As a reinforcing fiber, “Tenax” (registered trademark) STS-24K (reinforced fiber density 1.77 g / cm 3 ) manufactured by Toho Tenax Co., Ltd. was used, and one layer was 100 g / m 2 in the + 45 / −45 / 90 degree direction. A predetermined number was arranged so as to be, and this was stitched (chain stitch) with a polyester thread. The tensile rigidity of the polyester yarn used was 5% at a load of 50 gf. Adjustment was made so that the stitch pitch was 4 times / cm and the interval was 5 mm, and the stitch yarn length per 1 m of the base material was set to 310 cm, thereby producing a multi-axis stitch base material. (At this time, the constant k in the formula of claim 1 was 0.015). When the fiber angle of this base material was measured, it was a deviation of about 0.3 degree on average with respect to predetermined +45 degrees and -45 degrees.

[実施例3]
強化繊維として、東邦テナックス社製の“テナックス”(登録商標)STS−24K(強化繊維密度 1.77g/cm)を用い、+45/−45度方向に1層が200g/mとなるように所定の本数を配し、これをナイロン糸にて縫合した。使用したナイロン糸の引張り剛性は、50gf荷重時、8%であった。ステッチピッチ3回/cm、間隔が3mmとなるように調整し、基材1mあたりのステッチ糸長さが320cmとなる様に設定し、多軸ステッチ基材を製作した。(このとき、請求項1の式中の定数kは0.03であった)。かかる基材の繊維角度を測定したところ、所定の+45度、−45度に対し、平均約0.4度のズレであった。
[Example 3]
“Tenax” (registered trademark) STS-24K (reinforced fiber density: 1.77 g / cm 3 ) manufactured by Toho Tenax Co., Ltd. is used as the reinforcing fiber, and one layer is 200 g / m 2 in the + 45 / −45 degree direction. A predetermined number was placed on the top and stitched with nylon thread. The tensile rigidity of the nylon thread used was 8% at a load of 50 gf. A multi-axis stitch base material was manufactured by adjusting the stitch pitch to 3 times / cm and adjusting the interval to 3 mm and setting the stitch yarn length per 1 m of the base material to 320 cm. (At this time, the constant k in the formula of claim 1 was 0.03). When the fiber angle of the base material was measured, the average deviation was about 0.4 degrees with respect to the predetermined +45 degrees and -45 degrees.

[比較例1]
強化繊維として、東邦テナックス社製の“テナックス”(登録商標)STS−24K(強化繊維密度 1.77g/cm)を用い、+45/−45度方向に1層が200g/mとなるように所定の本数を配し、これをポリエステル糸にて縫合した。使用したポリエステル糸の引張り剛性は、50gf荷重時、20%であった。ステッチピッチが3回/cm、間隔が3mmとなるように調整し、基材1mあたりのステッチ糸長さが320cmとなる様に設定し、多軸ステッチ基材を製作した。(このとき、請求項1の式中の定数kは0.03であった)。かかる基材の繊維角度を測定したところ、所定の+45度、−45度に対し、平均約1.2度のズレであった。
[Comparative Example 1]
As the reinforcing fiber, Toho Tenax Co. "Tenax" (registered trademark) STS-24K (reinforcing fiber density 1. 77 g / cm 3) using a + 45 / -45 degrees to the direction in one layer is 200 g / m 2 A predetermined number was placed on the fabric and stitched with polyester yarn. The tensile rigidity of the polyester yarn used was 20% at a load of 50 gf. A multi-axis stitch base material was manufactured by adjusting the stitch pitch to 3 times / cm and the interval to 3 mm, and setting the stitch yarn length per 1 m of the base material to 320 cm. (At this time, the constant k in the formula of claim 1 was 0.03). When the fiber angle of the substrate was measured, the average deviation was about 1.2 degrees with respect to the predetermined +45 degrees and -45 degrees.

[比較例2]
強化繊維として、東邦テナックス社製の“テナックス”(登録商標)STS−24K(強化繊維密度 1.77g/cm)を用い、+45/−45度方向に1層が200g/mとなるように所定の本数を配し、これをポリエステル糸にて縫合した。使用したポリエステル糸の引張り剛性は、50gf荷重時、5%であった。ステッチピッチが3回/cm、間隔が3mmとなるように調整し、基材1mあたりのステッチ糸長さが335cmとなる様に設定し、多軸ステッチ基材を製作した。(このとき、請求項1の式中の定数kは0.05であった)。かかる基材の繊維角度を測定したところ、所定の+45度、−45度に対し、平均約1.5度のズレであった。
[Comparative Example 2]
As the reinforcing fiber, Toho Tenax Co. "Tenax" (registered trademark) STS-24K (reinforcing fiber density 1. 77 g / cm 3) using a + 45 / -45 degrees to the direction in one layer is 200 g / m 2 A predetermined number was placed on the fabric and stitched with polyester yarn. The tensile rigidity of the polyester yarn used was 5% at a load of 50 gf. Adjustment was made so that the stitch pitch was 3 times / cm and the interval was 3 mm, and the stitch yarn length per 1 m of the base material was set to be 335 cm, thereby producing a multi-axis stitch base material. (At this time, the constant k in the formula of claim 1 was 0.05). When the fiber angle of the substrate was measured, the average deviation was about 1.5 degrees with respect to the predetermined +45 degrees and -45 degrees.

[実施例4]
本発明の多軸ステッチ基材を用いたプリプレグを、以下の様にして作製した。エポキシ樹脂組成物を、ナイフコーターを用いて、単位面積あたりの所定の重量となるように離型紙上でフィルム化し、樹脂フィルムを作製した。所定の強化繊維基材の上下両面に上記樹脂フィルムを重ね、所定温度に加熱したプレスで、面圧0.1MPaで1分間加圧し、プリプレグを得た。
[Example 4]
A prepreg using the multiaxial stitch base material of the present invention was produced as follows. The epoxy resin composition was formed into a film on a release paper using a knife coater so as to have a predetermined weight per unit area, thereby producing a resin film. The above resin films were stacked on the upper and lower surfaces of a predetermined reinforcing fiber substrate, and pressed with a press heated to a predetermined temperature at a surface pressure of 0.1 MPa for 1 minute to obtain a prepreg.

使用したエポキシ樹脂組成物としては、成分(A)として、EPN−1138(フェノールノボラック樹脂
[旭化成エポキシ社製]:25℃の粘度 1,000Pa・s)を62重量部と、成分(B)として、EP−1002(ビスフェノールA型エポキシ樹脂 [ジャパンエポキシレジン社製]:固体)38重量部、成分(C)として、ジシアンジアミドを5重量部、硬化促進剤(D)として3−(3,4−ジクロロフェニル)−1,1−ジメチルユリアを3重量部用い、成分(A)と(B)の混合物を120℃で加熱溶解後、70℃まで室温で冷却し、成分(C)並びに(D)を加え混練したものを用いた。
As an epoxy resin composition used, as component (A), EPN-1138 (phenol novolak resin [manufactured by Asahi Kasei Epoxy Co., Ltd.]: viscosity at 25 ° C., 1,000 Pa · s) as 62 parts by weight, and as component (B) EP-1002 (bisphenol A type epoxy resin [manufactured by Japan Epoxy Resin Co., Ltd.]: solid) 38 parts by weight, as component (C), 5 parts by weight of dicyandiamide, and as accelerator (D) 3- (3,4- Using 3 parts by weight of dichlorophenyl) -1,1-dimethylurea, the mixture of components (A) and (B) was heated and dissolved at 120 ° C., and then cooled to 70 ° C. at room temperature. Components (C) and (D) were A kneaded mixture was used.

実施例1に記載の多軸ステッチ基材の上面及び下面に、前記で得られた重量110g/m2の樹脂フィルムを用い、樹脂脂含有率36重量%のプリプレグを作製した。得られたプリプレグの繊維角度を測定したところ、所定の+45度、−45度に対し、平均約0.5度のズレであった。 A prepreg having a resin fat content of 36% by weight was prepared using the resin film having a weight of 110 g / m 2 obtained above on the upper and lower surfaces of the multiaxial stitch base material described in Example 1. When the fiber angle of the obtained prepreg was measured, it was a deviation of about 0.5 degree on average with respect to predetermined +45 degrees and -45 degrees.

[実施例5]
実施例2に記載の多軸ステッチ基材の上面及び下面に、前記のとおりにして得られた重量90g/m2の樹脂フィルムを用い、樹脂脂含有率38重量%のプリプレグを作製した。得られたプリプレグの繊維角度を測定したところ、所定の+45度、−45度に対し、平均約0.4度のズレであった。
[Example 5]
Using the resin film having a weight of 90 g / m 2 obtained as described above on the upper and lower surfaces of the multiaxial stitch base material described in Example 2, a prepreg having a resin fat content of 38% by weight was produced. When the fiber angle of the obtained prepreg was measured, it was a deviation of about 0.4 degrees on the average with respect to predetermined +45 degrees and -45 degrees.

[実施例6]
実施例3に記載の多軸ステッチ基材の上面及び下面に、前記のとおりにして得られた重量135g/m2の樹脂フィルムを用い、樹脂脂含有率40重量%のプリプレグを作製した。得られたプリプレグの繊維角度を測定したところ、所定の+45度、−45度に対し、平均約0.5度のズレであった。
[Example 6]
A prepreg having a resin fat content of 40% by weight was prepared using the resin film having a weight of 135 g / m 2 obtained as described above on the upper surface and the lower surface of the multiaxial stitch base material described in Example 3. When the fiber angle of the obtained prepreg was measured, it was a deviation of about 0.5 degree on average with respect to predetermined +45 degrees and -45 degrees.

[比較例3]
比較例1に記載の多軸ステッチ基材の上面及び下面に、前記のとおりにして得られた重量110g/m2の樹脂フィルムを用い、樹脂脂含有率36重量%のプリプレグを作製した。得られたプリプレグの繊維角度を測定したところ、所定の+45度、−45度に対し、平均約2.3度のズレであった。
[Comparative Example 3]
Using the resin film having a weight of 110 g / m 2 obtained as described above on the upper and lower surfaces of the multiaxial stitch base material described in Comparative Example 1, a prepreg having a resin fat content of 36% by weight was produced. When the fiber angle of the obtained prepreg was measured, the average deviation was about 2.3 degrees with respect to the predetermined +45 degrees and -45 degrees.

[比較例4]
比較例2に記載の多軸ステッチ基材の上面及び下面に、前記のとおりにして得られた重量110g/m2の樹脂フィルムを用い、樹脂脂含有率36重量%のプリプレグを作製した。得られたプリプレグの繊維角度を測定したところ、所定の+45度、−45度に対し、平均約2.0度のズレであった。
[Comparative Example 4]
Using the resin film having a weight of 110 g / m 2 obtained as described above on the upper and lower surfaces of the multiaxial stitch base material described in Comparative Example 2, a prepreg having a resin fat content of 36% by weight was produced. When the fiber angle of the obtained prepreg was measured, it was a deviation of about 2.0 degrees on the average with respect to predetermined +45 degrees and -45 degrees.

[実施例7]
実施例4に記載のプリプレグを用い、4ply(45/−45/45/−45/−45/45/−45/45)を積層した後、オートクレーブにてコンポジット平板を作製した。平板表面の繊維角度を測定したところ、所定の+45度に対し、平均約0.5度のズレであった。長手方向が繊維と平行になる様に試験片を切り出し、引張り試験を行った。
[Example 7]
Using the prepreg described in Example 4, 4 ply (45 / −45 / 45 / −45 / −45 / 45 / −45 / 45) was laminated, and then a composite flat plate was produced by an autoclave. When the fiber angle on the surface of the flat plate was measured, the average deviation was about 0.5 degrees with respect to the predetermined +45 degrees. A test piece was cut out so that the longitudinal direction was parallel to the fiber, and a tensile test was performed.

[実施例8]
実施例5に記載のプリプレグを用い、6ply(45/−45/90/45/−45/90/45/−45/90/90/−45/45/90/−45/45/90/−45/45)を積層した後、オートクレーブにてコンポジット平板を作製した。平板表面の繊維角度を測定したところ、所定の+45度に対し、平均約0.4度のズレであった。
[Example 8]
Using the prepreg described in Example 5, 6ply (45 / -45 / 90/45 / -45 / 90/45 / -45 / 90/90 / -45 / 45/90 / -45 / 45/90 /- 45/45) was laminated, and a composite flat plate was produced by an autoclave. When the fiber angle on the surface of the flat plate was measured, the average deviation was about 0.4 degrees with respect to the predetermined +45 degrees.

[実施例9]
実施例6に記載のプリプレグを用い、4ply(45/−45/45/−45/−45/45/−45/45)を積層した後、オートクレーブにてコンポジット平板を作製した。平板表面の繊維角度を測定したところ、所定の+45度に対し、平均約0.5度のズレであった。長手方向が繊維と平行になる様に試験片を切り出し、引張り試験を行った。引張り強度は実施例7と差異が見られなかった。
[Example 9]
Using the prepreg described in Example 6, 4 ply (45 / −45 / 45 / −45 / −45 / 45 / −45 / 45) was laminated, and then a composite flat plate was produced by an autoclave. When the fiber angle on the surface of the flat plate was measured, the average deviation was about 0.5 degrees with respect to the predetermined +45 degrees. A test piece was cut out so that the longitudinal direction was parallel to the fiber, and a tensile test was performed. The tensile strength was not different from Example 7.

[比較例5]
比較例3に記載のプリプレグを用い、実施例7と同様にコンポジット平板を作製した。平板表面の繊維角度を測定したところ、所定の+45度に対し、平均約2.3度のズレであった。長手方向が繊維と平行になる様に試験片を切り出し、引張り試験を行った。実施例7と比較し、引張り強度が約25%低下した。
[Comparative Example 5]
A composite flat plate was produced in the same manner as in Example 7 using the prepreg described in Comparative Example 3. When the fiber angle on the surface of the flat plate was measured, the average deviation was about 2.3 degrees with respect to the predetermined +45 degrees. A test piece was cut out so that the longitudinal direction was parallel to the fiber, and a tensile test was performed. Compared to Example 7, the tensile strength decreased by about 25%.

[比較例6]
比較例4に記載のプリプレグを用い、実施例4と同様にコンポジット平板を作製した。平板表面の繊維角度を測定したところ、所定の+45度に対し、平均約2.0度のズレであった。長手方向が繊維と平行になる様に試験片を切り出し、引張り試験を行った。実施例7と比較し、引張り強度が約20%低下した。
[Comparative Example 6]
A composite flat plate was produced in the same manner as in Example 4 using the prepreg described in Comparative Example 4. When the fiber angle on the surface of the flat plate was measured, the average deviation was about 2.0 degrees with respect to the predetermined +45 degrees. A test piece was cut out so that the longitudinal direction was parallel to the fiber, and a tensile test was performed. Compared to Example 7, the tensile strength decreased by about 20%.

[実施例10]
実施例と比較例のプリプレグを用いて、衝撃吸収部材を以下の方法で作製した。成形方法として、シートワインディング法を用い、直径50mm、長さ800mm、厚さ2.6mmの円筒状の部材を製作した。作製した部材を、120℃にて2時間加熱することにより、衝撃吸収部材としてのコンポジットを得た。なお、積層方向は、実施例4〜6で得られたプリプレグを用い、プリプレグの0度方向が長さ方向となるように積層した。
[Example 10]
Using the prepregs of Examples and Comparative Examples, impact absorbing members were produced by the following method. As a forming method, a sheet winding method was used to manufacture a cylindrical member having a diameter of 50 mm, a length of 800 mm, and a thickness of 2.6 mm. The produced member was heated at 120 ° C. for 2 hours to obtain a composite as an impact absorbing member. In addition, the lamination direction used the prepreg obtained in Examples 4-6, and laminated | stacked so that the 0 degree direction of a prepreg might become a length direction.

実施例4に記載のプリプレグを用い、衝撃吸収部材を製作した。この繊維角度を測定したところ、所定の+45度に対し、平均約0.6度のズレであった。 An impact absorbing member was manufactured using the prepreg described in Example 4. When the fiber angle was measured, the average deviation was about 0.6 degrees with respect to the predetermined +45 degrees.

[実施例11]
実施例5に記載のプリプレグを用い、前記と同様にして衝撃吸収部材を製作した。この繊維角度を測定したところ、所定の+45度に対し、平均約0.5度のズレであった。
[Example 11]
Using the prepreg described in Example 5, an impact absorbing member was produced in the same manner as described above. When the fiber angle was measured, the average deviation was about 0.5 degrees with respect to the predetermined +45 degrees.

[実施例12]
実施例6に記載のプリプレグを用い、前記と同様にして衝撃吸収部材を製作した。この繊維角度を測定したところ、所定の+45度に対し、平均約0.5度のズレであった。
[Example 12]
Using the prepreg described in Example 6, an impact absorbing member was produced in the same manner as described above. When the fiber angle was measured, the average deviation was about 0.5 degrees with respect to the predetermined +45 degrees.

[比較例7]
比較例3に記載のプリプレグを用い、前記と同様にして衝撃吸収部材を製作した。この繊維角度を測定したところ、所定の+45度に対し、平均約2.5度のズレであった。
[Comparative Example 7]
Using the prepreg described in Comparative Example 3, an impact absorbing member was produced in the same manner as described above. When the fiber angle was measured, the average deviation was about 2.5 degrees with respect to the predetermined +45 degrees.

[比較例8]
比較例4に記載のプリプレグを用い、前記と同様にして衝撃吸収部材を製作した。この繊維角度を測定したところ、所定の+45度に対し、平均約2.1度のズレであった。
[Comparative Example 8]
Using the prepreg described in Comparative Example 4, an impact absorbing member was produced in the same manner as described above. When the fiber angle was measured, the average deviation was about 2.1 degrees with respect to the predetermined +45 degrees.

実施例10〜12及び比較例7、8より得られた衝撃吸収部材を用いて、万能試験機により衝撃吸収試験を行った。クロスヘッドでの荷重―変位を測定したところ、何れの試験体も吸収エネルギーに大きな差異は見られなかったが、結果のバラつきに差が見られ、比較例7、8と比較し、実施例10〜12のバラつきが少なかく、n=5の試験に対し、CV値が約半減した(CV値=標準偏差/平均値×100)。また、実施例10〜12の方が、荷重―変位線図の荷重の変動幅が小さくなった。これは、実施例10〜12の方が、材料中の繊維角度が均一になったことによる、応力集中の緩和が大きいためであると考えられる。
Using the impact absorbing members obtained from Examples 10 to 12 and Comparative Examples 7 and 8, an impact absorbing test was performed with a universal testing machine. When the load-displacement at the crosshead was measured, no significant difference was found in the absorbed energy of any of the test specimens, but there was a difference in the results. Compared with Comparative Examples 7 and 8, Example 10 Although the variation of ˜12 was small, the CV value was reduced by about half compared to the test of n = 5 (CV value = standard deviation / average value × 100). In Examples 10 to 12, the load fluctuation range in the load-displacement diagram was smaller. This is presumably because Examples 10-12 have a greater relaxation of stress concentration due to the uniform fiber angle in the material.

Claims (5)

積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されていることを特徴とする多軸ステッチ基材。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
A multi-axis stitch base material obtained by stitching the front and back surfaces of a laminate, in which two or more layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape are laminated, and these layers are integrated by stitch yarn A multi-axis stitch base material, and the lamination angle of each layer is not 0 degree, and each layer is a chain stitch (single-ring stitch) using a stitch yarn whose elongation under a load of 50 gf is 10% or less. ), And one stitch thread forming a stitch is used in a length satisfying the following formula per 1 m of the multi-axis stitch base material. Wood.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.
強化繊維が、炭素繊維又はアラミド繊維であることを特徴とする請求項1記載の多軸ステッチ基材。   The multiaxial stitch base material according to claim 1, wherein the reinforcing fibers are carbon fibers or aramid fibers. 基材の目付が、100〜1,000g/mであることを特徴とする請求項1又は2記載の多軸ステッチ基材。 Multiaxial stitch base according to claim 1 or 2, wherein the weight per unit area of substrate is a 100~1,000g / m 2. 積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されている多軸ステッチ基材を用いたプリフォーム。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
A multi-axis stitch base material obtained by stitching the front and back surfaces of a laminate, in which two or more layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape are laminated, and these layers are integrated by stitch yarn A multi-axis stitch base material, and the lamination angle of each layer is not 0 degree, and each layer is a chain stitch (single-ring stitch) using a stitch yarn whose elongation under a load of 50 gf is 10% or less. ) And one stitch yarn forming a stitch is used in a multi-axis stitch base material that is used in a length satisfying the following formula per 1 meter of multi-axis stitch base material. Renovation.
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.
積層体の表面と裏面をステッチして得られた多軸ステッチ基材であって、強化繊維束が平行にシート状に配列された層が2層以上積層され、それらの層がステッチ糸により一体化された多軸ステッチ基材であり、いずれの層も積層角度が0度ではなく、それぞれの層は、50gfの荷重による伸びが10%以下であるステッチ糸を用いてチェーンステッチ(単環縫い)によって拘束されており、且つ、ステッチを形成する1本のステッチ糸が、多軸ステッチ基材1m当たり、下記の式を満足する長さで使用されている多軸ステッチ基材と、マトリックス樹脂とからなる繊維強化プラスチックを用いた衝撃吸収体。
Ls=(k×M×P/ρ)+300
(上記式中、Lsは多軸ステッチ基材1m当たり使用するステッチ糸の長さ(cm)、kは0.013〜0.039の範囲の定数、Mは強化繊維束からなるシート(積層体)の目付(g/m)、Pはステッチピッチ(回/cm)、ρは強化繊維の密度(g/cm)である。)
A multi-axis stitch base material obtained by stitching the front and back surfaces of a laminate, in which two or more layers in which reinforcing fiber bundles are arranged in parallel in a sheet shape are laminated, and these layers are integrated by stitch yarn A multi-axis stitch base material, and the lamination angle of each layer is not 0 degree, and each layer is a chain stitch (single-ring stitch) using a stitch yarn whose elongation under a load of 50 gf is 10% or less. And a matrix resin in which one stitch yarn forming a stitch is used in a length satisfying the following formula per 1 meter of the multi-axis stitch base material: Shock absorber using fiber reinforced plastic consisting of
Ls = (k × M × P / ρ) +300
(In the above formula, Ls is the length (cm) of stitch yarn used per 1 m of multiaxial stitch base material, k is a constant in the range of 0.013 to 0.039, and M is a sheet made of a reinforcing fiber bundle (laminate). ) Is a basis weight (g / m 2 ), P is a stitch pitch (times / cm), and ρ is a density (g / cm 3 ) of reinforcing fibers.
JP2009038704A 2009-02-21 2009-02-21 Multi-axis stitch base material and preform using it Expired - Fee Related JP5336225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038704A JP5336225B2 (en) 2009-02-21 2009-02-21 Multi-axis stitch base material and preform using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038704A JP5336225B2 (en) 2009-02-21 2009-02-21 Multi-axis stitch base material and preform using it

Publications (2)

Publication Number Publication Date
JP2010196176A JP2010196176A (en) 2010-09-09
JP5336225B2 true JP5336225B2 (en) 2013-11-06

Family

ID=42821177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038704A Expired - Fee Related JP5336225B2 (en) 2009-02-21 2009-02-21 Multi-axis stitch base material and preform using it

Country Status (1)

Country Link
JP (1) JP5336225B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940167B1 (en) * 2008-12-24 2012-12-21 Messier Dowty Sa METHOD FOR BONDING A STRUCTURAL ELEMENT IN COMPOSITE MATERIAL TO A TUBE
FR2966801B1 (en) * 2010-10-29 2012-11-02 Aircelle Sa ATTACK EDGE STRUCTURE, IN PARTICULAR FOR AN AIRCRAFT ENGINE NACELLE AIR INTAKE
US9296174B2 (en) 2011-01-12 2016-03-29 Compagnie Chomarat Composite laminated structures and methods for manufacturing and using the same
JP2012255222A (en) * 2011-06-07 2012-12-27 Toyota Industries Corp Fiber bundle sheet comprising reinforcing fibers
JP5847033B2 (en) 2012-07-19 2016-01-20 株式会社Shindo Carbon fiber stitch substrate and wet prepreg using the same
JP6547149B2 (en) * 2015-03-06 2019-07-24 株式会社Shindo Heat resistant multiaxial stitch base material
JP6675231B2 (en) * 2016-03-04 2020-04-01 倉敷紡績株式会社 Preform for fiber reinforced plastic and method for producing the same
JP6912044B2 (en) * 2017-08-31 2021-07-28 株式会社Shindo Heat resistant multi-axis stitch base material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227067A (en) * 2001-01-29 2002-08-14 Toray Ind Inc Reinforcing multiaxial stitched fabric and preform
JP2006002302A (en) * 2004-06-18 2006-01-05 Marubeni Intex Co Ltd Carbon fiber laminated cloth
JP4867259B2 (en) * 2005-09-29 2012-02-01 東レ株式会社 Preform and method for manufacturing preform

Also Published As

Publication number Publication date
JP2010196176A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5336225B2 (en) Multi-axis stitch base material and preform using it
US9770844B2 (en) Fibre reinforced composites
US7151129B2 (en) Carbon nanofiber-dispersed resin fiber-reinforced composite material
EP1685947B1 (en) Method for the manufacture of FRP composites
EP2799470A1 (en) Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
JPWO2017104481A1 (en) Multi-axis insertion knitted base material manufacturing method, multi-axis insertion knitted base material, and fiber-reinforced composite material
US11926719B2 (en) Materials comprising shape memory alloy wires and methods of making these materials
JP5134568B2 (en) Bias stitch base material and preform and prepreg using the same
JP4940644B2 (en) Biaxial stitch substrate and preform
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
JP2014162858A (en) Prepreg and production method of the same, and fiber reinforced composite material
JP4962632B2 (en) Multilayer substrate, preform, and preform manufacturing method
TWI779294B (en) Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
CN113547800B (en) Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet
GB2508078A (en) Non-woven moulding reinforcement material
US20220396051A1 (en) Fabric containing unidirectional reinforcement fibre
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
US20240059046A1 (en) Reinforcing fiber base material for resin transfer molding, method of producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced plastic
DE102014119160A1 (en) molding compound
Uhlig et al. Tailored fiber placement based on epoxy preimpregnated carbon rovings (Towpreg)
JP2011195723A (en) Frp molded article excellent in light shielding and molding method thereof
JP2008308626A (en) Sheet-like fiber-reinforced composite material and production method therefor
JP2022068616A (en) Reinforced fiber base material for resin injection molding, reinforced fiber laminate for resin injection molding and fiber reinforced resin
JP2015148022A (en) Fiber fabric base material, fiber fabric laminated base material and method for producing preform
JP2022055598A (en) Fiber-reinforced resin

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees