JP2007152238A - Method for manufacturing hollow fiber membrane module - Google Patents

Method for manufacturing hollow fiber membrane module Download PDF

Info

Publication number
JP2007152238A
JP2007152238A JP2005351479A JP2005351479A JP2007152238A JP 2007152238 A JP2007152238 A JP 2007152238A JP 2005351479 A JP2005351479 A JP 2005351479A JP 2005351479 A JP2005351479 A JP 2005351479A JP 2007152238 A JP2007152238 A JP 2007152238A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
fine powder
particle size
knitted fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005351479A
Other languages
Japanese (ja)
Inventor
Hiroshi Tasaka
広 田阪
Teiji Nakahara
禎二 中原
Masanori Ito
正則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2005351479A priority Critical patent/JP2007152238A/en
Publication of JP2007152238A publication Critical patent/JP2007152238A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hollow fiber membrane module which generates no porosity in a potting part of a hollow fiber membrane even if the integration ratio of the hollow fiber membrane being raised. <P>SOLUTION: The potting part of the hollow fiber membrane is coated or filled with a fine powdery paste made of a thermoplastic resin particulate and a solvent with an apparent viscosity of 10-100 mPa s and the solvent is removed by heating the potting part at a temperature not lower than the melting point of the thermoplastic resin particulate and not higher than the melting point of the hollow fiber membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体または気体のろ過や分離処理等に用いられる中空糸膜モジュールの製造方法に関する。   The present invention relates to a method for producing a hollow fiber membrane module used for liquid or gas filtration or separation treatment.

膜モジュールは、近年、工業分野、医療分野、食品分野等における液体や気体のろ過あるいは分離等に多用されている。   Membrane modules are frequently used in recent years for filtration or separation of liquids and gases in the industrial field, medical field, food field and the like.

このような分野に用いられる膜モジュールとしては、従来、平膜を用いた膜モジュールが一般的であった。最近では、膜モジュール容積あたりの膜面積が平膜より大きくなる中空糸膜を用いた膜モジュール、すなわち、モジュールケース内に中空糸膜を配置し、このモジュールケースと中空糸膜相互とを、ポッティング用樹脂によって液密或いは気密に接着固定するポッティング部を形成して構成した中空糸膜モジュールが利用されている。   Conventionally, a membrane module using a flat membrane has been common as a membrane module used in such a field. Recently, a membrane module using a hollow fiber membrane whose membrane area per membrane module volume is larger than that of a flat membrane, that is, a hollow fiber membrane is arranged in a module case, and this module case and the hollow fiber membrane are potted. 2. Description of the Related Art A hollow fiber membrane module configured by forming a potting portion that is bonded and fixed in a liquid-tight or air-tight manner with a resin for use is used.

中空糸膜モジュールを用いるろ過あるいは分離は、一次側から二次側への圧力がかかる条件下で実施されるものであるために、モジュールケースと中空糸膜相互との間に高い封止性及び接着性が要求されており、ポッティング用樹脂として、従来、エポキシ樹脂やウレタン樹脂等の熱硬化性樹脂が用いられている。   Since filtration or separation using a hollow fiber membrane module is performed under conditions where pressure from the primary side to the secondary side is applied, high sealing performance between the module case and the hollow fiber membrane and Adhesiveness is required, and a thermosetting resin such as an epoxy resin or a urethane resin has been conventionally used as a potting resin.

しかし、ポッティング用樹脂に熱硬化性樹脂を用いた中空糸膜モジュールをパーベーパレーションや溶剤ろ過、溶剤処理等に利用すると、溶剤や薬液によってはポッティング用樹脂が膨潤、溶出してクラック等が発生し、これに伴って接着性の低下、リークの発生、処理物の純度低下等の問題が生じる場合がある。   However, when a hollow fiber membrane module using a thermosetting resin as a potting resin is used for pervaporation, solvent filtration, solvent treatment, etc., the potting resin swells and elutes depending on the solvent or chemical solution, and cracks are generated. Along with this, problems such as a decrease in adhesiveness, the occurrence of leaks, and a decrease in the purity of the processed product may occur.

熱硬化性樹脂による欠点を改善する目的で、ポリエチレン樹脂等の熱可塑性樹脂を微粉末とし、微粉末を中空糸膜間に介在させ、微粉末を加熱溶融し中空糸膜間を封止する(ポティング)方法が種々開示されている。   For the purpose of improving the defects caused by thermosetting resin, a thermoplastic resin such as polyethylene resin is made into fine powder, the fine powder is interposed between the hollow fiber membranes, and the fine powder is heated and melted to seal between the hollow fiber membranes ( Various methods of potting are disclosed.

例えば、特許文献1には、複数本の中空糸膜の端部を熱可塑性樹脂粉末で覆った後、束ねてチューブ状ケーシング内に挿入して中空糸膜束とケーシングの間隙及び中空糸膜同士の間隙を満たし、加熱して樹脂粉末を熱溶融させた後、冷却固化して中空糸膜モジュールを製造する方法が開示されている。又、複数本の中空糸膜の端部を溶融された樹脂で覆った後、束ねてチューブ状ケーシング内に挿入して中空糸膜束とケーシングの間隙及び中空糸膜同士の間隙を熱溶融樹脂で満たした後、冷却して中空糸膜モジュールを製造する方法が開示されている。   For example, in Patent Document 1, after covering the ends of a plurality of hollow fiber membranes with a thermoplastic resin powder, they are bundled and inserted into a tubular casing, and the gap between the hollow fiber membrane bundle and the casing and the hollow fiber membranes are A method is disclosed in which a hollow fiber membrane module is manufactured by filling a gap and heating the resin powder to melt the resin powder, followed by cooling and solidification. Also, after covering the ends of a plurality of hollow fiber membranes with a melted resin, they are bundled and inserted into a tubular casing so that the gap between the hollow fiber membrane bundle and the casing and the gap between the hollow fiber membranes is a hot melt resin. And a method for producing a hollow fiber membrane module by cooling after filling.

特許文献2には、オレフィン系微粉末樹脂からなる封止剤(ポッティング剤)と、これを流動させるための液体とを混合して高濃度懸濁液となし、オレフィン系樹脂からなる中空糸膜束をこの高濃度懸濁液に浸漬させ、封止剤の融点以上、中空糸膜の融点以下で加熱し、液体を蒸発させ、且つ封止剤微粉末樹脂を溶融流動状態にさせた後、冷却する中空糸膜モジュールの製造方法が開示されている。   Patent Document 2 discloses a hollow fiber membrane made of an olefin resin by mixing a sealing agent (potting agent) made of an olefin-based fine powder resin and a liquid for flowing the mixture into a high-concentration suspension. After immersing the bundle in this high-concentration suspension, heating above the melting point of the sealant and below the melting point of the hollow fiber membrane, evaporating the liquid, and making the sealant fine powder resin into a melt-flow state, A method for producing a cooled hollow fiber membrane module is disclosed.

また、特許文献3には、熱可塑性樹脂微粉末と液体とからなるビンガム流動を示す混合物であって、流動し始める降伏応力が0.1〜10000Paである混合物を使用して中空糸膜間に熱可塑性樹脂微粉末を介在させる方法が開示されている。   Patent Document 3 discloses a mixture of a thermoplastic resin fine powder and a liquid that exhibits a Bingham flow, and a mixture having a yield stress of 0.1 to 10,000 Pa that starts flowing between the hollow fiber membranes. A method of interposing a thermoplastic resin fine powder is disclosed.

上述の特許文献の内、特許文献1及び2では、高濃度懸濁液を中空糸膜束間へ良好に含浸させるためには、中空糸膜束を構成する中空糸膜の本数を少量とするか、あるいはモジュールケース内での中空糸膜の集積率を著しく低くする必要がある。すなわち、中空糸膜束の本数が多いか、あるいは中空糸膜を高集積状態として中空糸膜モジュールを製造した場合は、ポッティング加工部分におけるポッティング樹脂の未含浸に起因する「す」によってリークが発生し易く、製造歩留まりが低くなり易いという問題があった。   Among the above-mentioned patent documents, in Patent Documents 1 and 2, in order to satisfactorily impregnate the high-concentration suspension between the hollow fiber membrane bundles, the number of hollow fiber membranes constituting the hollow fiber membrane bundle is made small. Alternatively, it is necessary to significantly reduce the integration rate of the hollow fiber membrane in the module case. That is, when a hollow fiber membrane module is manufactured with a large number of hollow fiber membrane bundles or with a highly integrated hollow fiber membrane, a leak occurs due to “soil” caused by non-impregnation of potting resin in the potting process part. There is a problem that the manufacturing yield tends to be low.

特許文献3では、中空糸膜間に熱可塑性樹脂微粉末を含浸させるための外力の調整が容易でなかったり、膜を傷つけたり、熱可塑性樹脂微粉末の含浸不具合による「す」の発生等によりリークが発生し易かったり、製造歩留まりが低くなるという問題があった。   In Patent Document 3, it is not easy to adjust the external force for impregnating the thermoplastic resin fine powder between the hollow fiber membranes, the membrane is damaged, or the occurrence of “su” due to the impregnation failure of the thermoplastic resin fine powder. There were problems that leaks were likely to occur and the manufacturing yield was low.

また、熱可塑性樹脂微粉末の造粒粉砕方法としては、ボールミル、カッターミル、ジェットミル、凍結粉砕等の物理的粉砕法や、溶媒に熱可塑性樹脂を溶かし、結晶化させた後、水を加えて微粉末化する化学的粉砕法などが知られている。これらの方法で造粒された微粉末の粒度分布は異なり、同じ造粒粉砕方法でも生産ロットが異なると粒度分布も異なる。即ち、平均粒径が同等であっても、小粒径の割合が多い微粉末は、小粒径の割合の少ない微粉末に比べ単位体積当りの表面積が増加する。この小粒径の割合が多い微粉末を使用し、溶媒と混合すると、溶媒との混合比が同一であっても、小粒径の割合が少ない微粉末に比べて見かけ粘度が高くなる。即ち、平均粒径が同じであっても微粉末と溶媒との混合比を同一にするだけでは、微粉末ペーストの見掛け粘度を一定にできないという問題があった。
特開平8−266872号公報 特開平8−318139号公報 特開2003−164736号公報
In addition, the granulation and pulverization method of the thermoplastic resin fine powder may be a physical pulverization method such as ball mill, cutter mill, jet mill, freeze pulverization, or the like. A chemical pulverization method for finely pulverizing is known. The particle size distribution of the fine powders granulated by these methods is different, and the particle size distribution is also different for different production lots even in the same granulation and pulverization method. That is, even if the average particle size is the same, the fine powder with a large proportion of small particle size has a larger surface area per unit volume than the fine powder with a small proportion of small particle size. When a fine powder having a large proportion of small particle diameters is used and mixed with a solvent, the apparent viscosity becomes higher than that of a fine powder having a small proportion of small particle diameters even if the mixing ratio with the solvent is the same. That is, even if the average particle diameter is the same, there is a problem that the apparent viscosity of the fine powder paste cannot be made constant only by making the mixing ratio of the fine powder and the solvent the same.
JP-A-8-266872 JP-A-8-318139 Japanese Patent Laid-Open No. 2003-164736

本発明の目的は、中空糸膜の集積率を高くしても中空糸膜のポッティング部に「す」を発生させることなく中空糸膜モジュールの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a hollow fiber membrane module without generating "soot" in the potting portion of the hollow fiber membrane even when the integration rate of the hollow fiber membrane is increased.

即ち本発明は、熱可塑性樹脂微粉末と溶媒からなる見掛け粘度が10〜100mPa・sである微粉末ペーストを中空糸膜のポッティング部に塗布または充填し、次いでポッティング部を熱可塑性樹脂微粉末の融点以上の温度であって且つ中空糸膜の融点よりも低い温度で加熱し溶媒を除去する中空糸膜モジュールの製造方法にある。   That is, in the present invention, a fine powder paste having an apparent viscosity of 10 to 100 mPa · s composed of a thermoplastic resin fine powder and a solvent is applied or filled into the potting portion of the hollow fiber membrane, and then the potting portion is made of the thermoplastic resin fine powder. There is a method for producing a hollow fiber membrane module in which the solvent is removed by heating at a temperature higher than the melting point and lower than the melting point of the hollow fiber membrane.

本発明により、中空糸膜の集積率を高くしても中空糸膜のポッティング部に「す」を発生させることなく中空糸膜モジュールを製造することができる。   According to the present invention, it is possible to manufacture a hollow fiber membrane module without generating “soot” in the potting portion of the hollow fiber membrane even if the integration rate of the hollow fiber membrane is increased.

(A)熱可塑性樹脂微粉末
本発明における熱可塑性樹脂微粉末としては、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂やフッ化エチレンプロピレン(FEP)、エチレン四フッ化エチレン共重合体(ETFE)、ペルフルオロアルコキシフッ素樹脂(PFA)等のフッ素系樹脂が挙げられる。
(A) Thermoplastic resin fine powder Examples of the thermoplastic resin fine powder in the present invention include olefin resins such as polyethylene and polypropylene, fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene copolymer (ETFE), and perfluoro. Fluorine resin such as alkoxy fluororesin (PFA) can be used.

(B)溶媒
熱可塑性樹脂微粉末と混合する溶媒としては、例えばエチルアルコール、メチルアルコール、イソプロピルアルコール等が挙げられる。
(B) Solvent Examples of the solvent to be mixed with the thermoplastic resin fine powder include ethyl alcohol, methyl alcohol, and isopropyl alcohol.

(C)微粉末ペースト
熱可塑性樹脂微粉末と溶媒からなる微粉末ペーストは、溶媒中に樹脂微粉末が分散している状態であり、微粉末ペースト中の熱可塑性樹脂微粉末の割合は30〜95質量%であることが好ましい。
(C) Fine powder paste The fine powder paste comprising the thermoplastic resin fine powder and the solvent is a state in which the resin fine powder is dispersed in the solvent, and the ratio of the thermoplastic resin fine powder in the fine powder paste is 30 to 30%. It is preferably 95% by mass.

微粉末ペーストの温度25℃における見掛け粘度は、微粉末の粒子数、粒径、溶媒の種類などによって異なってくる。微粉末ペーストの見掛け粘度が10mPa・sより高いと流動性が低くなり、微粉末ペースト中の微粉末が中空糸膜間を流動することが少なく、中空糸膜間に必要量の微粉末を含浸させ易い。また100mPa・sより低い場合には、中空糸膜間全体に微粉末ペーストが平均的に行きわたり、中空糸膜間への微粉末の含浸不足が起こりにくくなる。より好ましい見掛け粘度範囲は20mPa・s〜50mPa・sである。   The apparent viscosity of the fine powder paste at a temperature of 25 ° C. varies depending on the number of fine powder particles, the particle diameter, the type of solvent, and the like. When the apparent viscosity of the fine powder paste is higher than 10 mPa · s, the fluidity becomes low, and the fine powder in the fine powder paste hardly flows between the hollow fiber membranes, and the hollow fiber membranes are impregnated with the required amount of fine powder. Easy to do. On the other hand, when the pressure is lower than 100 mPa · s, the fine powder paste is distributed on the average between the hollow fiber membranes, and the impregnation of the fine powder between the hollow fiber membranes hardly occurs. A more preferable apparent viscosity range is 20 mPa · s to 50 mPa · s.

(D)中空糸膜
本発明の中空糸膜としては、製膜の安定性、耐薬品性、一般的な分離性能や処理性能等の点から、熱可塑性樹脂製のものを使用するのが好ましい。中空糸膜モジュールを得るための加工時に要求される中空糸膜の柔軟性、強度、素材の耐薬品性、低コスト性等の点から、特にポリオレフィン系樹脂による中空糸膜が好ましく、中でもポリエチレン、ポリプロピレン、ポリ(4−メチル−1−ペンテン)等の中空糸膜が好適である。又、中空糸膜の形態は、1本のモノフィラメントであっても、複数本の中空糸膜をカセ状に束ねたものであっても、編織物であってもよい。なお、中空糸膜は、通常のろ過に用いるような多孔質膜であっても、あるいはガス分離等に用いる非多孔質膜であってもよい。例えば、多孔質膜としては、エチレン−酢酸ビニル共重合体を疎水性の膜表面に被覆させ親水化した多孔質中空糸膜が挙げられる。又、膜の構造は、均一な内部構造を有する膜であっても、或いは多孔質層と非多孔質層との両方を具備する複合膜であってもよい。
(D) Hollow fiber membrane The hollow fiber membrane of the present invention is preferably made of a thermoplastic resin from the viewpoints of film formation stability, chemical resistance, general separation performance and processing performance. . From the viewpoints of flexibility, strength, chemical resistance of the material, low cost, etc. required for processing to obtain a hollow fiber membrane module, a hollow fiber membrane made of polyolefin resin is particularly preferable. Hollow fiber membranes such as polypropylene and poly (4-methyl-1-pentene) are preferred. The form of the hollow fiber membrane may be a single monofilament, a bundle of a plurality of hollow fiber membranes in the shape of a cake, or a knitted fabric. The hollow fiber membrane may be a porous membrane used for normal filtration or a non-porous membrane used for gas separation or the like. For example, examples of the porous membrane include a porous hollow fiber membrane in which an ethylene-vinyl acetate copolymer is coated on a hydrophobic membrane surface to make it hydrophilic. The film structure may be a film having a uniform internal structure or a composite film having both a porous layer and a non-porous layer.

(E)ポッティング部
ポッティング部とは、中空糸膜をモジュールケース又は集水管(又は集気管)に接着、固定し、被ろ過物質を一次側と二次側に液密又は気密に封止する部分のことをいう。ポッティング部は、中空糸膜の片端でも或いは両端でもよい。
(E) Potting part The potting part is a part that adheres and fixes a hollow fiber membrane to a module case or a water collecting pipe (or a gas collecting pipe) and seals the material to be filtered liquid-tight or air-tight on the primary side and the secondary side. I mean. The potting part may be one end or both ends of the hollow fiber membrane.

(F)塗布又は充填
中空糸膜のポッティング部に微粉末ペーストを塗布又は充填するとは、中空糸膜の片端又は両端にポッティング剤である微粉末ペーストを塗りつけたり、モジュールケースにポッティング剤をつめて塞ぐことをいう。
(F) Coating or filling Applying or filling a fine powder paste to the potting part of the hollow fiber membrane means applying a fine powder paste as a potting agent to one or both ends of the hollow fiber membrane, or filling the module case with a potting agent. It means closing.

(G)加熱し溶媒を除去
ポッティング部を加熱する温度は、熱可塑性樹脂微粉末の融点以上の温度であって且つ該中空糸膜の融点よりも低い温度である。この加熱によって、微粉末ペースト中の溶媒を蒸発させ、熱可塑性樹脂微粉末を溶融させ、中空糸膜間及び中空糸膜とケースを接着、固定させた中空糸膜モジュールを製造することができる。
(G) Removal of solvent by heating The temperature at which the potting part is heated is a temperature equal to or higher than the melting point of the thermoplastic resin fine powder and lower than the melting point of the hollow fiber membrane. By this heating, the solvent in the fine powder paste is evaporated, the thermoplastic resin fine powder is melted, and a hollow fiber membrane module in which the hollow fiber membranes and the hollow fiber membrane and the case are bonded and fixed can be manufactured.

(H)最大粒径、体積平均粒径
本発明で使用する熱可塑性樹脂微粉末の最大粒径は、ポッティングされる中空糸膜の外径(直径)をZとした場合、数式(1)より得られる数値Yの0.5倍から1.5倍の範囲であり、且つ、熱可塑性樹脂微粉末の体積平均粒径は最大粒径の1/3から2/3の範囲であることが好ましい。
(H) Maximum particle diameter, volume average particle diameter The maximum particle diameter of the thermoplastic resin fine powder used in the present invention is expressed by Equation (1) when the outer diameter (diameter) of the hollow fiber membrane to be potted is Z. The obtained numerical value Y is preferably in the range of 0.5 to 1.5 times, and the volume average particle size of the thermoplastic resin fine powder is preferably in the range of 1/3 to 2/3 of the maximum particle size. .

Y=(2√3―3)Z/3 ・・・・・・・・・(1)
熱可塑性樹脂微粉末の最大粒径とは、微粉末の粒度分布データから得られる最も大きい微粉末の粒径であり、体積平均粒径とは、レーザー回折式粒度分布測定装置により測定される粒度分布データから得られる体積平均粒径のことである。
Y = (2√3-3) Z / 3 (1)
The maximum particle size of the thermoplastic resin fine powder is the particle size of the largest fine powder obtained from the particle size distribution data of the fine powder, and the volume average particle size is the particle size measured by a laser diffraction particle size distribution measuring device. It is the volume average particle size obtained from the distribution data.

数式(1)は、外径Zの中空糸膜同士が最も近づいたときにできる最小空間内に入る微粒子の最大粒径を求める数式である。微粉末の最大粒径が数式(1)で得られる数値Yの0.5倍以上である場合は、微粉末ペースト見掛け粘度を所望の見掛け粘度に調整するための溶媒の混合比が低くなり、溶媒の使用量を少なくすることができる。また、微粉末の最大粒径が数式(1)で得られる数値Yの1.5倍以下である場合は、微粉末が中空糸膜間に入り込んだ時に中空糸膜間の距離が短くなり、中空糸膜の充填率を高くすることができる。例えば、中空糸膜の外径が380μmの中空糸膜モジュールを用いる場合、好ましい熱可塑性樹脂微粒子の最大粒径範囲は、数式(1)より29.4μm〜88.2μmとなる。微粉末の最大粒径はより好ましくは、数式(1)で得られる数値の0.8倍から1.2倍である。   Equation (1) is an equation for obtaining the maximum particle size of the fine particles entering the minimum space that can be formed when the hollow fiber membranes having the outer diameter Z are closest to each other. When the maximum particle size of the fine powder is 0.5 times or more the numerical value Y obtained by the mathematical formula (1), the mixing ratio of the solvent for adjusting the apparent viscosity of the fine powder paste to a desired apparent viscosity becomes low, The amount of solvent used can be reduced. Further, when the maximum particle size of the fine powder is 1.5 times or less of the numerical value Y obtained by Equation (1), the distance between the hollow fiber membranes becomes shorter when the fine powder enters between the hollow fiber membranes, The filling rate of the hollow fiber membrane can be increased. For example, when a hollow fiber membrane module having a hollow fiber membrane outer diameter of 380 μm is used, the preferred maximum particle size range of the thermoplastic resin fine particles is 29.4 μm to 88.2 μm from Equation (1). The maximum particle size of the fine powder is more preferably 0.8 to 1.2 times the numerical value obtained by the mathematical formula (1).

更に、熱可塑性樹脂微粉末の体積平均粒径は最大粒径の1/3〜2/3の範囲になるように造粒することが好ましい。その範囲は2/5〜3/5であることがより好ましい。図3は熱可塑性樹脂微粉末をレーザー回折式粒度分布測定装置により測定した粒度分布のデータの一例である。この熱可塑性樹脂微粉末の体積平均粒径は20.29μmであって、最大粒径60μmの1/3から2/3の範囲にある。   Further, it is preferable to granulate so that the volume average particle size of the thermoplastic resin fine powder is in the range of 1/3 to 2/3 of the maximum particle size. The range is more preferably 2/5 to 3/5. FIG. 3 shows an example of particle size distribution data obtained by measuring a thermoplastic resin fine powder with a laser diffraction particle size distribution measuring apparatus. The volume average particle size of the thermoplastic resin fine powder is 20.29 μm, which is in the range of 1/3 to 2/3 of the maximum particle size of 60 μm.

(I)中空糸膜編織物、積層
本発明に使用する中空糸膜は、複数の中空糸膜フィラメントからなる中空糸膜編織物であって、中空糸膜編織物ポッティング部の厚さ方向における中空糸膜積層本数が10以下であることが好ましい。
(I) Hollow fiber membrane knitted fabric, lamination The hollow fiber membrane used in the present invention is a hollow fiber membrane knitted fabric composed of a plurality of hollow fiber membrane filaments, and is hollow in the thickness direction of the hollow fiber membrane knitted fabric potting part. It is preferable that the number of laminated yarn membranes is 10 or less.

中空糸膜編織物は複数の中空糸膜フィラメントを合糸した編物であっても織物であっても良い。複数本の中空糸膜が所定の長さで複数回折り返され、その折り返し点よりやや内側の中空糸膜を相互に糸条(かがり糸)で拘束したシート状の中空糸編織物からなるものであることが好ましい。   The hollow fiber membrane knitted fabric may be a knitted fabric obtained by combining a plurality of hollow fiber membrane filaments or a woven fabric. A plurality of hollow fiber membranes are folded back at a predetermined length, and are formed of a sheet-like hollow fiber knitted fabric in which the hollow fiber membranes slightly inside the folding point are constrained by yarns (warp yarns). Preferably there is.

(J)中空糸膜の積層本数が10以下である
中空糸膜を編織物の形状で使用する場合、通常、その複数本が積層されるが、積層本数は10以下であることが好ましい。積層本数が10以下であれば、微粉末ペーストは中空糸膜編織物の下層部まで浸透し、ポッティング部における「す」の発生を抑制することができる。
(J) When a hollow fiber membrane having a number of laminated hollow fiber membranes of 10 or less is used in the form of a knitted fabric, a plurality of the laminates are usually laminated, but the number of laminated layers is preferably 10 or less. If the number of laminated layers is 10 or less, the fine powder paste penetrates to the lower layer portion of the hollow fiber membrane knitted fabric, and the occurrence of “su” in the potting portion can be suppressed.

また、中空糸膜編織物を用いる場合は、微粉末ペーストを塗布した状態で熱可塑性樹脂微粉末の融点以上の熱を加え熱可塑性樹脂微粉末を溶融固化し、端面が略平形の中空糸膜モジュールとすることも出来る。あるいは中空糸膜編織物を積層、折り曲げ、巻き取りし、端面が略矩形或いは略円形の中空糸膜モジュールとすることも可能である。微粉末ペーストを塗布後、中空糸膜編織物を積層、折り曲げ、巻き取り等して中空糸膜編織物に外力を加える場合には、微粉末ペーストが流れない程度まで溶媒が蒸発した後に行うことが好ましい。この状態を確認するために、中空糸膜束に微粉末ペースト塗布後、後述の治具に乗せたままの状態で中空糸膜編織物を秤の上に乗せて溶媒の蒸発量を重量で確認することが好ましい。また、微粉末ペースト塗布部分の温度、風量、溶媒蒸気圧等を一定にすると、溶媒の蒸発速度は一定になるので、時間での管理も可能となり、製造時間を安定させることが出来る。   In addition, when a hollow fiber membrane knitted fabric is used, a heat that exceeds the melting point of the thermoplastic resin fine powder is applied with the fine powder paste applied to melt and solidify the thermoplastic resin fine powder, and the hollow fiber membrane has a substantially flat end surface. It can also be a module. Alternatively, a hollow fiber membrane knitted fabric can be laminated, bent, and wound to form a hollow fiber membrane module having a substantially rectangular or substantially circular end surface. After applying the fine powder paste, when applying external force to the hollow fiber membrane knitted fabric by laminating, bending, winding, etc., the hollow fiber membrane knitted fabric should be performed after the solvent has evaporated to the extent that the fine powder paste does not flow. Is preferred. In order to confirm this state, after applying the fine powder paste to the hollow fiber membrane bundle, place the hollow fiber membrane knitted fabric on the scale while it is placed on the jig described below, and check the evaporation amount of the solvent by weight. It is preferable to do. Further, if the temperature, air volume, solvent vapor pressure, etc. of the fine powder paste application part are made constant, the evaporation rate of the solvent becomes constant, so that management in terms of time is possible and the production time can be stabilized.

(K)中空糸膜間距離を微粉末の最大粒径以上に変動させながら塗布又は充填する
更に、本発明は、中空糸膜のポッティング部に微粉末ペーストを塗布又は充填する際に、隣接する中空糸膜間距離を熱可塑性樹脂微粉末の最大粒径以上に変動させながら塗布又は充填することが好ましい。
(K) Apply or fill while varying the distance between the hollow fiber membranes beyond the maximum particle size of the fine powder Furthermore, the present invention is adjacent when applying or filling the fine powder paste to the potting part of the hollow fiber membrane. It is preferable to apply or fill the hollow fiber membrane while changing the distance between the hollow fiber membranes to be larger than the maximum particle diameter of the thermoplastic resin fine powder.

中空糸膜間距離を変動させる方法としては、エアを中空糸膜束に噴きつけ中空糸膜をさばく方法、バイブレーター等で中空糸膜を振動させる方法、ニップローラーで中空糸膜を挟み込みローラーのニップ力により中空糸膜を自然にずれ動かす方法等が挙げられる。エアを中空糸膜束に噴きつけ中空糸膜をさばく方法は中空糸膜に過剰な力が加わることなく、中空糸膜が傷つく可能性が低いので好ましい。   As a method of changing the distance between the hollow fiber membranes, air is blown into the bundle of hollow fiber membranes, the hollow fiber membrane is vibrated, the hollow fiber membrane is vibrated with a vibrator or the like, the hollow fiber membrane is sandwiched with a nip roller, and the nip of the roller Examples thereof include a method of moving the hollow fiber membrane by force and moving it naturally. A method in which air is blown onto a bundle of hollow fiber membranes to separate the hollow fiber membranes is preferable because an excessive force is not applied to the hollow fiber membranes and the possibility of damaging the hollow fiber membranes is low.

以下、本発明の中空糸膜モジュールの製造方法の一例を、図を用いて説明する。 Hereinafter, an example of the manufacturing method of the hollow fiber membrane module of this invention is demonstrated using figures.

図4は微粉末ペーストを塗布するために中空糸膜編織物を治具上にセットした状態を示す斜視図であり、図5は平面図、図6は側面図である。中空糸膜編織物1は編織物台2に乗っており、他の部分は浮き上がった状態で保持され、編織物台に乗った部分に微粉末ペーストが塗布される。中空糸膜編織物は編織物台に乗った部分しか接触していないため、微粉末ペーストはその接触部分以外の箇所には流れ込まない。微粉末ペーストを塗布したい幅と同じ値に編織物台の幅を設定しておくと、必要以上に微粉末ペーストの塗布部分が広がることがない。また、図4に示すように編織物台を中空糸膜編織物の両側に設置することにより、中空糸膜編織物の両側に微粉末ペーストを塗布することも可能となり、中空糸膜の両端をポッティングした中空糸膜モジュールを製造することもできる。   4 is a perspective view showing a state in which a hollow fiber membrane knitted fabric is set on a jig in order to apply a fine powder paste, FIG. 5 is a plan view, and FIG. 6 is a side view. The hollow fiber membrane knitted fabric 1 is on the knitted fabric table 2, the other part is held in a lifted state, and the fine powder paste is applied to the part on the knitted fabric table. Since the hollow fiber membrane knitted fabric is in contact only with the portion on the knitted fabric base, the fine powder paste does not flow into any portion other than the contact portion. If the width of the knitted fabric base is set to the same value as the width to which the fine powder paste is to be applied, the application portion of the fine powder paste will not spread more than necessary. Also, as shown in FIG. 4, by installing the knitted fabric base on both sides of the hollow fiber membrane knitted fabric, it becomes possible to apply a fine powder paste on both sides of the hollow fiber membrane knitted fabric. Potted hollow fiber membrane modules can also be manufactured.

中空糸膜編織物を使用する場合に、中空糸膜編織物がたわんで編織物台との間に隙間が出来ると、微粉末ペーストが塗布している中空糸膜間を通り抜けて中空糸膜と編織物台との間に充填され、必要量の微粉末ペーストが中空糸膜間に充填されないことがある。本発明においては、中空糸膜編織物のたわみを抑制するために、編織物支え3を設置することができる。この編織物支えは、中空糸膜のたわみ具合により複数本使用することができる。   When the hollow fiber membrane knitted fabric is used, if the hollow fiber membrane knitted fabric is bent and a gap is formed between the knitted fabric base, the hollow fiber membrane passes through the hollow fiber membrane coated with the fine powder paste and It may be filled between the knitted fabric tables, and a necessary amount of fine powder paste may not be filled between the hollow fiber membranes. In the present invention, the knitted fabric support 3 can be installed in order to suppress the deflection of the hollow fiber membrane knitted fabric. A plurality of braided fabric supports can be used depending on the degree of deflection of the hollow fiber membrane.

また、本発明においては、中空糸膜編織物の蛇行を抑制等するために衝立4を使用することができる。この衝立は、微粉末ペースト塗布後に、中空糸膜編織物の積層、折り曲げ、巻き取り等の作業を行う際のガイドとして用いることも出来る。   In the present invention, the partition 4 can be used to suppress meandering of the hollow fiber membrane knitted fabric. This partition can also be used as a guide when performing operations such as laminating, bending and winding the hollow fiber membrane knitted fabric after applying the fine powder paste.

図7は編織物台にセットした中空糸膜編織物に微粉末ペーストを塗布している状態を示す側面図であって、微粉末ペースト吐出口5は編織物台上を移動しつつ中空糸膜編織物上に微粉末ペーストを吐出する。微粉末ペースト吐出口に並行する形でエア吐出口6が設置されており、微粉末ペーストを塗布すると同時にエアを中空糸膜に噴き付けると中空糸膜がさばかれ、中空糸膜間への微粉末の充填がより確実に行われる。また、微粉末ペースト吐出口を複数箇所あるいは幅広にして、塗布幅全体に吐出するようにすると塗布幅に対して塗布量が均一になり、より好ましい。微粉末ペースト塗布後に多少の凹凸が出来るので、中空糸膜編織物の塗布された部分を平らにならすのが更に好ましい。ならすときに使用するヘラは、中空糸膜編織物との接触面が波状になっていると余分な微粉末ペーストがヘラの波に添って分散されて、微粉末ペーストが塗布部分以外にはみ出さないので好ましい。   FIG. 7 is a side view showing a state in which the fine powder paste is applied to the hollow fiber membrane knitted fabric set on the knitted fabric table, and the fine powder paste discharge port 5 moves on the knitted fabric table while moving the hollow fiber membrane. A fine powder paste is discharged onto the knitted fabric. The air discharge port 6 is installed in parallel to the fine powder paste discharge port. When the fine powder paste is applied and air is sprayed onto the hollow fiber membrane at the same time, the hollow fiber membrane is separated, and the air is blown between the hollow fiber membranes. Filling of the powder is performed more reliably. In addition, it is more preferable that the fine powder paste discharge port is formed at a plurality of locations or wide so that the fine powder paste discharge port is discharged over the entire coating width, since the coating amount becomes uniform with respect to the coating width. Since some irregularities can be formed after applying the fine powder paste, it is more preferable to flatten the applied portion of the hollow fiber membrane knitted fabric. If the contact surface with the hollow fiber membrane knitted fabric is corrugated, the extra fine powder paste will be dispersed along the spatula and the fine powder paste will protrude beyond the coated area. It is preferable because it is not.

以下本発明における見掛け粘度が10〜100mPa・sである微粉末ペーストを簡便に得る方法について説明する。この方法は、ある生産ロットの樹脂微粉末を用いて所望の見かけ粘度(10〜100mPa・s)の微粉末ペーストを得ようとする場合に、「熱可塑性樹脂微粉末と溶媒との混合比」を容易に決定できる方法である。   Hereinafter, a method for easily obtaining a fine powder paste having an apparent viscosity of 10 to 100 mPa · s in the present invention will be described. In this method, when a fine powder paste having a desired apparent viscosity (10 to 100 mPa · s) is to be obtained using resin fine powder of a certain production lot, “mixing ratio of thermoplastic resin fine powder and solvent” This can be easily determined.

まず、同じ種類の樹脂で生産ロットが異なる熱可塑性樹脂微粉末を4ロット以上用意する。また溶媒を一種類用意する。次いで、各生産ロットの樹脂微粉末についてそれぞれ、溶媒との混合比(質量比)を4点以上変化させた微粉末ペーストを調製する。各微粉末ペーストについて、ペースト混合比を横軸に、見掛け粘度を縦軸にして、両者の関係をプロットして、図1のような関係曲線を作成する。なお、見掛け粘度の測定は、ビスコテスター(低粘度用)(リオン製VT−03E)を用い、25℃にて行った。   First, prepare four or more lots of thermoplastic resin fine powder with the same type of resin and different production lots. Also, one kind of solvent is prepared. Next, for each fine resin powder in each production lot, a fine powder paste is prepared by changing the mixing ratio (mass ratio) with the solvent by 4 or more points. For each fine powder paste, the paste mixing ratio is plotted on the horizontal axis, the apparent viscosity is plotted on the vertical axis, and the relationship between the two is plotted to create a relationship curve as shown in FIG. The apparent viscosity was measured at 25 ° C. using a bisco tester (for low viscosity) (Rion's VT-03E).

次に図1から、特定の見掛け粘度、例えば40mPa・sにおける、微粉末A、B、C及びDのペースト混合比を求める。また、数式(2)を用いて微粉末A、B、C及びDのそれぞれの総表面積係数を算出する。次いで、総表面積係数を横軸、ペースト混合比を縦軸として両者の関係を図2のようにプロットする。プロットした点を結び、総表面積係数とペースト混合比との相関関係線(曲線又は直線)を描く。40mPa・s以外の見かけ粘度(10〜100mPa・sの間の任意の値)の微粉末ペーストについても同様にして、相関関係線を描くことが出来る。   Next, the paste mixing ratio of the fine powders A, B, C and D at a specific apparent viscosity, for example, 40 mPa · s, is obtained from FIG. Further, the total surface area coefficient of each of the fine powders A, B, C, and D is calculated using Equation (2). Then, the total surface area coefficient is plotted on the horizontal axis and the paste mixing ratio is plotted on the vertical axis, and the relationship between the two is plotted as shown in FIG. The plotted points are connected to draw a correlation line (curve or straight line) between the total surface area coefficient and the paste mixing ratio. Similarly, a correlation line can be drawn for a fine powder paste having an apparent viscosity other than 40 mPa · s (an arbitrary value between 10 and 100 mPa · s).

このようにして得られた相関関係線を使用することによって、相関関係線作成時には使用しなかった生産ロットが異なる、別の樹脂微粉末について、その総表面積係数を算出すれば、微粉末ペーストの見掛け粘度が所望の値を示す「熱可塑性樹脂微粉末と該溶媒との混合比」を決定することができる。

Figure 2007152238
By using the correlation line obtained in this way, if the total surface area coefficient of another resin fine powder with different production lots not used at the time of creating the correlation line is calculated, The “mixing ratio between the thermoplastic resin fine powder and the solvent”, which shows the desired value of the apparent viscosity, can be determined.
Figure 2007152238

以下、前述の総表面積係数に関する数式(2)について説明する。   Hereinafter, Formula (2) regarding the above-mentioned total surface area coefficient will be described.

まず、熱可塑性樹脂微粉末の粒径を最小粒径から最大粒径まで5〜20群に分割し、それぞれの粒径群を粒径範囲1、粒径範囲2、・・・、粒径範囲X(Xは5〜20の整数)とする。それぞれの粒径範囲の中心粒径を粒径1、粒径2、・・・・、粒径Xとして、数式(2)から得られる値を総表面積係数と定義する。   First, the particle size of the thermoplastic resin fine powder is divided into 5 to 20 groups from the minimum particle size to the maximum particle size, and each particle size group is divided into a particle size range 1, a particle size range 2,. X (X is an integer of 5 to 20). The center particle size in each particle size range is defined as particle size 1, particle size 2,..., Particle size X, and the value obtained from Equation (2) is defined as the total surface area coefficient.

すなわち、総表面積係数とは、熱可塑性樹脂微粉末それぞれの粒径群の体積%を中心粒径で除したものを合計し係数として表したものであり、レーザー回折式粒度分布測定装置により測定される粒度分布データの各粒径範囲の体積%から得られるものである。
In other words, the total surface area coefficient is a sum of the volume percentage of each particle size group of the thermoplastic resin fine powder divided by the center particle diameter, and is expressed as a coefficient, which is measured by a laser diffraction particle size distribution measuring device. It is obtained from the volume% of each particle size range in the particle size distribution data.

[参考例1]
この参考例は、熱可塑性樹脂微粉末としてポリエチレン、溶媒としてエチルアルコールを使用した場合の、総表面積係数、熱可塑性樹脂微粉末と溶媒の混合比、及び見掛け粘度の関係を求めたものである。
[Reference Example 1]
In this reference example, the relationship between the total surface area coefficient, the mixing ratio of the thermoplastic resin fine powder and the solvent, and the apparent viscosity when polyethylene is used as the thermoplastic resin fine powder and ethyl alcohol is used as the solvent is obtained.

レーザー回折式粒度分布測定装置により得られたポリエチレン微粉末A、B、C及びDの体積平均粒径はそれぞれが20.3μm、26.8μm、34.4μm及び38.5μm、また最大粒径はそれぞれが70μm、70μm、75μm及び90μmであり、粒径分布データとして表1の結果を得た。   The volume average particle diameters of polyethylene fine powders A, B, C and D obtained by a laser diffraction particle size distribution measuring device are 20.3 μm, 26.8 μm, 34.4 μm and 38.5 μm, respectively, and the maximum particle diameter is Each was 70 micrometers, 70 micrometers, 75 micrometers, and 90 micrometers, and the result of Table 1 was obtained as particle size distribution data.

表1における体積%は、その左欄に示す粒径及びそれより大きい粒径の微粉末の体積%を示している。この値を使用して、各粒径群の中心粒径、その各粒径群の微粉末の体積%、及びその体積%をその中心粒径で割った表面積係数を算出して表2に示した。また表2の最下欄には、各粒径群の表面積係数を合計した総表面積係数を示した。これらの値を使用して各微粉末ペーストについて、ペースト混合比(横軸)と見掛け粘度(縦軸)の関係をプロットして、関係曲線を作成した(図1)。   The volume% in Table 1 represents the volume% of fine powder having a particle size shown in the left column and a particle size larger than that. Using this value, the center particle size of each particle size group, the volume percentage of fine powder of each particle size group, and the surface area coefficient obtained by dividing the volume percent by the center particle size are calculated and shown in Table 2. It was. The bottom column of Table 2 shows the total surface area coefficient obtained by summing up the surface area coefficients of the respective particle size groups. Using these values, the relationship between the paste mixing ratio (horizontal axis) and the apparent viscosity (vertical axis) was plotted for each fine powder paste to create a relationship curve (FIG. 1).

次いで、見掛け粘度として10〜100mPa・sの間の値として40mPa・sを選定し、図1の4つの関係曲線が40mPa・sを示すペースト混合比の値を、これらの関係曲線から求めた。得られたペースト混合比の値は、それそれ2.6、2.2、1.7、及び1.6であった。このようにして得られたペースト混合比の値を使用して、各微粉末ペーストについて、総表面積係数を横軸、ペースト混合比を縦軸として両者の関係をプロットした(図2)。   Next, 40 mPa · s was selected as a value between 10 and 100 mPa · s as the apparent viscosity, and the paste mixing ratio value at which the four relational curves in FIG. 1 showed 40 mPa · s was determined from these relational curves. The resulting paste mixing ratio values were 2.6, 2.2, 1.7, and 1.6, respectively. Using the value of the paste mixing ratio thus obtained, the relationship between the fine powder pastes was plotted with the total surface area coefficient as the horizontal axis and the paste mixing ratio as the vertical axis (FIG. 2).

ポリエチレン微粉末A、B、C及びDとは別の生産ロットの樹脂微粉末Eについてレーザー回折式粒度分布測定装置により粒径分布を測定した。樹脂微粉末Eの最大粒径は80μmで体積平均粒径は32.1μmであり、粒径分布は表3の通りであった。各粒径群の中心粒径、その各粒径群の微粉末の体積%、表面積係数は表4の値であり、総表面積係数は3.835であった。   The particle size distribution of the resin fine powder E in a production lot different from the polyethylene fine powders A, B, C and D was measured with a laser diffraction particle size distribution measuring device. The maximum particle size of resin fine powder E was 80 μm, the volume average particle size was 32.1 μm, and the particle size distribution was as shown in Table 3. The center particle size of each particle size group, the volume percentage of fine powder in each particle size group, and the surface area coefficient were the values in Table 4, and the total surface area coefficient was 3.835.

樹脂微粉末Eを使用する微粉末ペーストの見掛け粘度が40mPa・sを示すペースト混合比の値を、図2の相関関係線から読み取ったところ、樹脂微粉末Eとエチルアルコールとのペースト混合比は1.8であった。

Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238
When the value of the paste mixing ratio at which the apparent viscosity of the fine powder paste using the resin fine powder E is 40 mPa · s is read from the correlation line in FIG. 2, the paste mixing ratio of the resin fine powder E and ethyl alcohol is 1.8.
Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238



[実施例1]
中空糸膜束としては、内径270μm、外径380μmの疎水性多孔質中空糸膜(三菱レイヨン(株)製中空糸膜 商品名EHF270FA)を16本合糸したものを、図8に示すように、かがり糸7を用い100mmの巾で200回折り返し編み込んだ100ループの中空糸膜編織物を用いた。中空糸膜編織物の100ループ分の長さ(図8の左右方向の長さ)は40cmであった。この中空糸膜編織物を図4に示す編織物台の上に載せた。編織物台の長さ(図4の左右方向の長さ)は50cm、各編織物台の幅は30mmであった。熱可塑性樹脂微粉末としてはポリエチレン微粉末Eを用いた。その体積平均粒径は32.1μm、最大粒径80μmであり、体積平均粒径は最大粒径の0.40倍であった。又、Z=380μm、Y=58.8であるので、最大粒径は数値Yの0.73倍であった。


[Example 1]
As a hollow fiber membrane bundle, a combination of 16 hydrophobic porous hollow fiber membranes (trade name EHF270FA, manufactured by Mitsubishi Rayon Co., Ltd.) having an inner diameter of 270 μm and an outer diameter of 380 μm, as shown in FIG. A hollow fiber membrane knitted fabric with 100 loops was used, which was knitted 200 times with a width of 100 mm using the yarn 7. The length of the hollow fiber membrane knitted fabric for 100 loops (the length in the left-right direction in FIG. 8) was 40 cm. This hollow fiber membrane knitted fabric was placed on a knitted fabric table shown in FIG. The length of the knitted fabric table (the length in the left-right direction in FIG. 4) was 50 cm, and the width of each knitted fabric table was 30 mm. Polyethylene fine powder E was used as the thermoplastic resin fine powder. The volume average particle size was 32.1 μm, the maximum particle size was 80 μm, and the volume average particle size was 0.40 times the maximum particle size. Since Z = 380 μm and Y = 58.8, the maximum particle size was 0.73 times the numerical value Y.

1質量部のポリエチレン微粉末Eと1.8質量部のエチルアルコールを用い、見掛け粘度40mPa・sの微粉末ペーストを調製した。微粉末ペースト塗布部以外の部分にエアを吹きつけながら、編織物台上に載置された中空糸膜束の一方の折り返し部分30mm幅に全ループ均一に微粉末ペースト27gを塗布した。その後、微粉末ペースト塗布部を微粉末の融点以上の120℃で1時間加熱して溶媒を除去し中空糸膜モジュールを得た。中空糸膜束のポッティング部分をカットし、断面を観察したところ、中空糸膜間は完全に封止されていた。図9はポッティング部分の断面を模式的に示したものである。図中、矢印で示したポッティング部の厚さ方向に重なり合う中空糸膜の本数は、最も多いところで5本であり、最も少ないところは1本で、平均的には4本であった。また、中空糸膜ポッティング部分の断面積中に占める中空糸膜断面積は48%であった。   Using 1 part by mass of polyethylene fine powder E and 1.8 parts by mass of ethyl alcohol, a fine powder paste having an apparent viscosity of 40 mPa · s was prepared. While air was blown to the portions other than the fine powder paste application portion, 27 g of the fine powder paste was uniformly applied to the entire folded portion 30 mm width of one folded portion of the hollow fiber membrane bundle placed on the knitted fabric base. Thereafter, the fine powder paste application part was heated at 120 ° C. above the melting point of the fine powder for 1 hour to remove the solvent to obtain a hollow fiber membrane module. When the potting portion of the hollow fiber membrane bundle was cut and the cross section was observed, the hollow fiber membranes were completely sealed. FIG. 9 schematically shows a cross section of the potting portion. In the figure, the number of hollow fiber membranes overlapping in the thickness direction of the potting portion indicated by the arrow was five at the largest, one at the smallest, and four on average. Moreover, the hollow fiber membrane sectional area occupied in the sectional area of the hollow fiber membrane potting portion was 48%.

[実施例2]
中空糸膜編織物台にのせた中空糸膜編織物に微粉末ペーストを塗布するまでは実施例1と同様にした。次いで、中空糸膜編物台ごと秤の上に乗せ、エチルアルコールの蒸発による重量減少量が10gになった時点で中空糸膜編織物を、図4の右から左方向に巻き取り、内径32mm、外径35mm及び高さ150mmのポリエチレン製の円筒に挿入し、円筒の外部から微粉末ペースト塗布部分を120℃で2時間加熱し、微粉末を溶融して溶媒を除去した後冷却して円筒状の中空糸膜モジュールを得た。中空糸膜モジュールのポッティング部をカットして端面を観察したところ、中空糸膜間は完全に封止されていた。また、中空糸膜ポッティング部の断面積中に占める中空糸膜断面積は45%であった。
[Example 2]
The process was the same as in Example 1 until the fine powder paste was applied to the hollow fiber membrane knitted fabric placed on the hollow fiber membrane knitted fabric base. Next, the hollow fiber membrane knitting table is placed on a balance, and when the weight loss due to evaporation of ethyl alcohol reaches 10 g, the hollow fiber membrane knitted fabric is wound from the right to the left in FIG. Inserted into a polyethylene cylinder with an outer diameter of 35 mm and a height of 150 mm, the portion coated with the fine powder paste was heated from the outside of the cylinder at 120 ° C. for 2 hours, the fine powder was melted to remove the solvent, and then cooled to be cylindrical The hollow fiber membrane module was obtained. When the potting portion of the hollow fiber membrane module was cut and the end face was observed, the space between the hollow fiber membranes was completely sealed. Moreover, the hollow fiber membrane cross-sectional area which occupies in the cross-sectional area of a hollow fiber membrane potting part was 45%.

[比較例1]
微粉末ペースト塗布後すぐに中空糸膜編織物を巻き取った以外は実施例2と同様にして、円筒状の中空糸膜モジュールを得た。編織物を巻き取る際に、微粉末ペーストが編織物から流れ出した。中空糸膜モジュールのポッティング部をカットして端面を観察したところ、中空糸膜間には空洞が発生していた。
[Comparative Example 1]
A cylindrical hollow fiber membrane module was obtained in the same manner as in Example 2 except that the hollow fiber membrane knitted fabric was wound immediately after application of the fine powder paste. When winding the knitted fabric, the fine powder paste flowed out of the knitted fabric. When the potting portion of the hollow fiber membrane module was cut and the end face was observed, cavities were generated between the hollow fiber membranes.

[比較例2]
実施例1と同様にして調製した微粉末ペーストに対して、ビスコテスターで粘度測定を行いながらエチルアルコールを追加し、微粉末ペーストの見掛け粘度を5mPa・s(温度25℃)に調整した。微粉末ペーストの見掛け粘度を5mPa・sに調製した以外は実施例1と同様にして中空糸膜モジュールを得た。中空糸膜束のポッティング部をカットし断面を観察したところ、中空糸膜間には空洞が発生していた。
[Comparative Example 2]
Ethyl alcohol was added to the fine powder paste prepared in the same manner as in Example 1 while measuring the viscosity with a bisco tester, and the apparent viscosity of the fine powder paste was adjusted to 5 mPa · s (temperature 25 ° C.). A hollow fiber membrane module was obtained in the same manner as in Example 1 except that the apparent viscosity of the fine powder paste was adjusted to 5 mPa · s. When the potting portion of the hollow fiber membrane bundle was cut and the cross section was observed, cavities were generated between the hollow fiber membranes.

[比較例3]
実施例1と同様にして調製した微粉末ペーストに対して、ビスコテスターで粘度測定を行いながら微粉末Eを追加し、微粉末ペーストの見掛け粘度を120mPa・s(温度25℃)に調節した。それ以外は実施例1と同様にして中空糸膜モジュールを得た。中空糸膜束のポッティング部をカットし断面を観察したところ、中空糸膜間には空洞が発生していた。
[Comparative Example 3]
Fine powder E was added to the fine powder paste prepared in the same manner as in Example 1 while measuring the viscosity with a bisco tester, and the apparent viscosity of the fine powder paste was adjusted to 120 mPa · s (temperature 25 ° C.). Other than that was carried out similarly to Example 1, and obtained the hollow fiber membrane module. When the potting portion of the hollow fiber membrane bundle was cut and the cross section was observed, cavities were generated between the hollow fiber membranes.

[実施例3]
最大粒径100μm、体積平均粒径は23.1μm、総表面積係数5.567のポリエチレン樹脂微粉末F(表3及び表4)を用いて、見掛け粘度40mPa・sの微粉末ペーストを作った。ペースト混合比は図2から2.35にした。微粉末Fを用いた以外は実施例1と同様にして中空糸膜モジュールを得た。中空糸膜束のポッティング部をカットし断面を観察したところ、中空糸膜間は完全に封止されていた。また、中空糸膜ポッティング部の断面積中に占める中空糸膜断面積は48%で実施例1と同等であったが、微粉末ペースト塗布後の厚みは実施例1のときより20%厚くなっていた。
[Example 3]
A fine powder paste having an apparent viscosity of 40 mPa · s was prepared using polyethylene resin fine powder F (Tables 3 and 4) having a maximum particle size of 100 μm, a volume average particle size of 23.1 μm, and a total surface area coefficient of 5.567. The paste mixing ratio was 2.35 from FIG. A hollow fiber membrane module was obtained in the same manner as in Example 1 except that the fine powder F was used. When the potting portion of the hollow fiber membrane bundle was cut and the cross section was observed, the hollow fiber membranes were completely sealed. Further, the hollow fiber membrane cross-sectional area in the cross-sectional area of the hollow fiber membrane potting portion was 48%, which was the same as in Example 1, but the thickness after applying the fine powder paste was 20% thicker than in Example 1. It was.

微粉末ペーストの混合比と見掛け粘度の関係を示す図である。It is a figure which shows the relationship between the mixing ratio of a fine powder paste, and an apparent viscosity. 見掛け粘度40mPa・s時の総表面積係数と微粉末ペーストの混合比との関係を示す図である。It is a figure which shows the relationship between the total surface area coefficient at the time of an apparent viscosity of 40 mPa * s, and the mixing ratio of a fine powder paste. レーザー回折式粒度分布測定装置による粒度分布のデータを示す図である。It is a figure which shows the data of the particle size distribution by a laser diffraction type particle size distribution measuring apparatus. 中空糸膜編織物を編織物台上にセットした状態を示す斜視図である。It is a perspective view which shows the state which set the hollow fiber membrane knitted fabric on the knitted fabric stand. 中空糸膜編織物を編織物台上にセットした状態を示す平面図である。It is a top view which shows the state which set the hollow fiber membrane knitted fabric on the knitted fabric stand. 中空糸膜編織物を編織物台上にセットした状態を示す側面図である。It is a side view which shows the state which set the hollow fiber membrane knitted fabric on the knitted fabric stand. 微粉末ペーストを塗布している状態を示す側面図である。It is a side view which shows the state which has apply | coated the fine powder paste. 中空糸膜編織物の一例を示す概略図である。It is the schematic which shows an example of a hollow fiber membrane knitted fabric. ポッティング部における中空糸膜編織物断面の一例を示す概略図である。It is the schematic which shows an example of the cross section of the hollow fiber membrane knitted fabric in a potting part.

符号の説明Explanation of symbols

1 中空糸膜編織物
2 編織物台
3 編織物支え
4 衝立
5 微粉末ペースト吐出口
6 エア吐出口
7 かがり糸





Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane knitted fabric 2 Knitted fabric stand 3 Knitted fabric support 4 Screen 5 Fine powder paste discharge port 6 Air discharge port 7 Warp yarn





Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238
Figure 2007152238

Claims (4)

熱可塑性樹脂微粉末と溶媒からなる見掛け粘度が10〜100mPa・sである微粉末ペーストを中空糸膜のポッティング部に塗布または充填し、次いでポッティング部を熱可塑性樹脂微粉末の融点以上の温度であって且つ中空糸膜の融点よりも低い温度で加熱し溶媒を除去する中空糸膜モジュールの製造方法。   A fine powder paste having an apparent viscosity of 10 to 100 mPa · s consisting of a thermoplastic resin fine powder and a solvent is applied or filled into the potting portion of the hollow fiber membrane, and then the potting portion is at a temperature equal to or higher than the melting point of the thermoplastic resin fine powder. A method for producing a hollow fiber membrane module, wherein the solvent is removed by heating at a temperature lower than the melting point of the hollow fiber membrane. 請求項1において、熱可塑性樹脂微粉末の最大粒径が下数式(1)で得られる数値Yの0.5倍から1.5倍の範囲であり、且つ、熱可塑性樹脂微粉末の体積平均粒径が最大粒径の1/3〜2/3の範囲である中空糸膜モジュールの製造方法。
Y=(2√3―3)Z/3 ・・・・・・・・・(1)
但し、Zは中空糸膜の外径である。
In Claim 1, the maximum particle size of the thermoplastic resin fine powder is in the range of 0.5 to 1.5 times the numerical value Y obtained by the following formula (1), and the volume average of the thermoplastic resin fine powder A method for producing a hollow fiber membrane module having a particle size in the range of 1/3 to 2/3 of the maximum particle size.
Y = (2√3-3) Z / 3 (1)
Where Z is the outer diameter of the hollow fiber membrane.
中空糸膜が、複数の中空糸膜フィラメントからなる中空糸膜編織物であって、中空糸膜編織物ポッティング部の厚さ方向における中空糸膜積層本数が10以下である請求項1または2に記載の中空糸膜モジュールの製造方法。   The hollow fiber membrane is a hollow fiber membrane knitted fabric composed of a plurality of hollow fiber membrane filaments, and the number of hollow fiber membrane laminates in the thickness direction of the hollow fiber membrane knitted fabric potting portion is 10 or less. The manufacturing method of the hollow fiber membrane module of description. 中空糸膜のポッティング部に微粉末ペーストを塗布又は充填する際に、中空糸膜間距離を熱可塑性樹脂微粉末の最大粒径以上に変動させながら塗布又は充填する請求項1、2または3に記載の中空糸膜モジュールの製造方法。

Claims 1, 2, or 3 wherein when the fine powder paste is applied or filled into the potting portion of the hollow fiber membrane, the distance between the hollow fiber membranes is applied or filled while changing to a value larger than the maximum particle diameter of the thermoplastic resin fine powder. The manufacturing method of the hollow fiber membrane module of description.

JP2005351479A 2005-12-06 2005-12-06 Method for manufacturing hollow fiber membrane module Pending JP2007152238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351479A JP2007152238A (en) 2005-12-06 2005-12-06 Method for manufacturing hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351479A JP2007152238A (en) 2005-12-06 2005-12-06 Method for manufacturing hollow fiber membrane module

Publications (1)

Publication Number Publication Date
JP2007152238A true JP2007152238A (en) 2007-06-21

Family

ID=38237260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351479A Pending JP2007152238A (en) 2005-12-06 2005-12-06 Method for manufacturing hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP2007152238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147187A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
WO2013151051A1 (en) * 2012-04-02 2013-10-10 三菱レイヨン株式会社 Hollow-fiber membrane module, process for producing hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
US9283727B2 (en) 2010-09-16 2016-03-15 Mitsubishi Rayon Co., Ltd. Method for producing hollow fiber membrane sheet-like object, method for producing hollow fiber membrane module, and device for producing hollow fiber membrane sheet-like object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447409A (en) * 1987-08-12 1989-02-21 Toray Industries Hollow yarn module
JPH03114515A (en) * 1989-09-29 1991-05-15 Mitsubishi Rayon Co Ltd Manufacture of hollow yarn module
JPH0463117A (en) * 1990-06-29 1992-02-28 Kitz Corp Hollow fiber membrane-type separation unit and its manufacture
JP2000117061A (en) * 1998-10-19 2000-04-25 Mitsubishi Rayon Co Ltd Production of hollow fiber membrane module base material and hollow fiber membrane module base material obtained by the same
JP2003164736A (en) * 2001-09-20 2003-06-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane module
JP2004049976A (en) * 2002-07-17 2004-02-19 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2004066167A (en) * 2002-08-08 2004-03-04 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2004113980A (en) * 2002-09-27 2004-04-15 Mitsubishi Rayon Co Ltd Production method of hollow fiber membrane module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447409A (en) * 1987-08-12 1989-02-21 Toray Industries Hollow yarn module
JPH03114515A (en) * 1989-09-29 1991-05-15 Mitsubishi Rayon Co Ltd Manufacture of hollow yarn module
JPH0463117A (en) * 1990-06-29 1992-02-28 Kitz Corp Hollow fiber membrane-type separation unit and its manufacture
JP2000117061A (en) * 1998-10-19 2000-04-25 Mitsubishi Rayon Co Ltd Production of hollow fiber membrane module base material and hollow fiber membrane module base material obtained by the same
JP2003164736A (en) * 2001-09-20 2003-06-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane module
JP2004049976A (en) * 2002-07-17 2004-02-19 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2004066167A (en) * 2002-08-08 2004-03-04 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2004113980A (en) * 2002-09-27 2004-04-15 Mitsubishi Rayon Co Ltd Production method of hollow fiber membrane module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283727B2 (en) 2010-09-16 2016-03-15 Mitsubishi Rayon Co., Ltd. Method for producing hollow fiber membrane sheet-like object, method for producing hollow fiber membrane module, and device for producing hollow fiber membrane sheet-like object
WO2013147187A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
JPWO2013147187A1 (en) * 2012-03-30 2015-12-14 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
US9694313B2 (en) 2012-03-30 2017-07-04 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane and hollow fiber membrane module
WO2013151051A1 (en) * 2012-04-02 2013-10-10 三菱レイヨン株式会社 Hollow-fiber membrane module, process for producing hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
KR20140138808A (en) * 2012-04-02 2014-12-04 미쯔비시 레이온 가부시끼가이샤 Hollow-fiber membrane module, process for producing hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
JPWO2013151051A1 (en) * 2012-04-02 2015-12-17 三菱レイヨン株式会社 Hollow fiber membrane module, method for producing hollow fiber membrane module, and hollow fiber membrane unit provided with hollow fiber membrane module
CN105597545A (en) * 2012-04-02 2016-05-25 三菱丽阳株式会社 Hollow-fiber membrane module, method for manufacturing hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
KR101693954B1 (en) 2012-04-02 2017-01-06 미쯔비시 레이온 가부시끼가이샤 Hollow-fiber membrane module, process for producing hollow-fiber membrane module, and hollow-fiber membrane unit equipped with hollow-fiber membrane module
CN105597545B (en) * 2012-04-02 2020-03-20 三菱化学株式会社 Method for producing hollow fiber membrane module and hollow fiber membrane unit having hollow fiber membrane module

Similar Documents

Publication Publication Date Title
KR100570036B1 (en) Fitering Material, Filter Pack and Air Filter Unit Using the Same and Method of Manufacturing Fitering Material
KR100517888B1 (en) Filter medium and air filter unit using the same
JP2017148805A (en) Separation membrane, separation membrane element, and method of manufacturing separation membrane
US9808767B2 (en) Separation membrane element
US9072993B2 (en) Filter medium equipped with porous film, method of manufacturing same, filter pack, and filter unit
EP3238804B1 (en) Filtering material for air filter, filter pack, air filter unit and method of manufacturing filtering material for air filter
EP2000499B1 (en) Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit
EP2752230A1 (en) Filter medium for air filter, air filter unit, and method for producing filter medium for air filter
EP1240935A2 (en) Filtering medium for air filters and process for producing the same
EP2752231A1 (en) Filter medium for air filter and air filter unit
WO2013005826A1 (en) Separation membrane, separation membrane element, and method for producing separation membrane
US20120186452A1 (en) Multiple Layer HEPA Filter and Method of Manufacture
JP2011189345A (en) Perfuluorinated thermoplastic filter cartridge
WO2017056508A1 (en) Air filter material, air filter pack, and air filter unit
TW201240720A (en) Porous multilayered filter
WO2015016253A1 (en) Separation membrane element
JP6634828B2 (en) Separation membrane element
JP2016534854A (en) Filter body for dust collection including triple layers
WO2014003171A1 (en) Separation membrane and separation membrane element
US9050564B2 (en) Filter module and system having spirally wound membrane filters, and method for the production thereof
JP2007152238A (en) Method for manufacturing hollow fiber membrane module
US11666841B2 (en) Filter media ribbons with nanofibers formed thereon
JP2015071159A (en) Separation membrane element
JP6816746B2 (en) Air filter Filter media, filter pack, and air filter unit
US10617984B2 (en) Tailored multilayered nano-fibrous filtration media and method of making

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131107