JP2003268482A - Al-SiC COMPOSITE MATERIAL - Google Patents

Al-SiC COMPOSITE MATERIAL

Info

Publication number
JP2003268482A
JP2003268482A JP2002074609A JP2002074609A JP2003268482A JP 2003268482 A JP2003268482 A JP 2003268482A JP 2002074609 A JP2002074609 A JP 2002074609A JP 2002074609 A JP2002074609 A JP 2002074609A JP 2003268482 A JP2003268482 A JP 2003268482A
Authority
JP
Japan
Prior art keywords
sic
silicon carbide
composite
based composite
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002074609A
Other languages
Japanese (ja)
Inventor
Satoshi Fukui
福井  聡
Masahiko Oshima
昌彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002074609A priority Critical patent/JP2003268482A/en
Publication of JP2003268482A publication Critical patent/JP2003268482A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-SiC composite material which has a thermal expansion coefficient close to that of a ceramic substrate, has improved thermal conductivity and strength, and is prevented from warping. <P>SOLUTION: This Al-SiC composite material is prepared by dispersing silicon carbide particles in a metal component mainly comprising aluminum. When the section of the interface between the metal component mainly comprising aluminum and the silicon carbide particle is observed, a reaction layer formed from the metal component and silicon carbide is not present at the interface. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウムを主
成分とする金属(以下、アルミニウムと称す場合あり)
に炭化ケイ素粒子を分散させてなるAl−SiC系複合
体に関する。本発明のAl−SiC系複合体は、低熱膨
張、高熱伝導性を有し、放熱基板、ヒートシンク、パッ
ケージなど半導体装置に用いられる放熱部品に好適なも
のである。
TECHNICAL FIELD The present invention relates to a metal containing aluminum as a main component (hereinafter sometimes referred to as aluminum).
The present invention relates to an Al-SiC-based composite body in which silicon carbide particles are dispersed. The Al-SiC composite of the present invention has low thermal expansion and high thermal conductivity, and is suitable for a heat dissipation component such as a heat dissipation board, a heat sink, a package used in a semiconductor device.

【0002】[0002]

【従来の技術】近年、産業機器の分野では、半導体スイ
ッチングデバイスを用いて大きな電力を最適な電力に効
率よく交換制御する大電力モジュール装置の開発が進ん
でいる。例えば、電動車輌用インバータとして高電圧、
大電流動作が可能なIGBTモジュールがある。このよ
うな大電力モジュール化に伴い、半導体チップから発生
する熱も増大している。半導体チップは熱に弱く、発熱
が大きくなれば半導体回路の誤動作や破壊を招くことに
なる。そこで、半導体チップなど電子部品を搭載するた
めの回路基板の裏面にヒートシンクなどの放熱部品を設
けて、放熱部品を介して半導体チップから発生した熱を
外部に発散させ、半導体回路の動作を安定にすることが
行われている。電子部品を搭載するための回路基板とし
ては、窒化ケイ素(Si34)、窒化アルミニウム(A
lN)、酸化アルミニウム(Al23)などのセラミッ
クス基板が主に用いられている。
2. Description of the Related Art In recent years, in the field of industrial equipment, development of a high power module device for efficiently exchanging and controlling a large power to an optimum power by using a semiconductor switching device has been advanced. For example, high voltage as an inverter for electric vehicles,
There is an IGBT module capable of high current operation. The heat generated from the semiconductor chip is also increasing in accordance with such a high power module. The semiconductor chip is vulnerable to heat, and if the heat generation increases, malfunction or destruction of the semiconductor circuit will be caused. Therefore, a heat dissipation component such as a heat sink is provided on the back surface of a circuit board for mounting electronic components such as semiconductor chips, and the heat generated from the semiconductor chip is radiated to the outside through the heat dissipation component to stabilize the operation of the semiconductor circuit. Is being done. Circuit boards for mounting electronic components include silicon nitride (Si 3 N 4 ) and aluminum nitride (A
Ceramic substrates such as 1N) and aluminum oxide (Al 2 O 3 ) are mainly used.

【0003】従来の放熱部品用材料として、銅(C
u)、モリブデン(Mo)、タングステン(W)などが
ある。モリブデンやタングステンからなる放熱部品は高
価であり、また金属の比重が大きいため放熱部品の重量
が重くなり、放熱部品の軽量化が望まれる用途には好ま
しくない。
As a conventional material for heat dissipation parts, copper (C
u), molybdenum (Mo), tungsten (W), and the like. The heat dissipation component made of molybdenum or tungsten is expensive, and since the specific gravity of metal is large, the weight of the heat dissipation component becomes heavy, which is not preferable for applications in which weight reduction of the heat dissipation component is desired.

【0004】銅からなる放熱部品は、放熱部品と接合さ
れるセラミックス基板との熱膨張係数の差が大きいの
で、放熱部品とセラミックス基板との加熱接合時や、使
用中の熱サイクルにより、はんだ層の破壊、熱流路の遮
断、セラミックス基板の割れを生じやすい。つまり、放
熱部品とセラミックス基板とは、はんだ付けされてお
り、はんだの融点以上に加熱した後、室温まで冷却され
る。その際、はんだの凝固点で互いに固定され、その後
は固定されたまま放熱部品とセラミックス基板がそれぞ
れ固有の熱膨張係数に従って収縮し、互いの接合部に熱
応力および熱歪みが残留するとともに反りなどの変形を
生じる。そして、モジュール装置の使用時に熱ストレス
が繰り返し与えられ、残留熱応力および熱歪みに重畳さ
れると、はんだ層の疲労破壊による熱流路の遮断と、機
械的に脆い性質を持つセラミックス基板の割れを生じ
る。
Since the heat dissipation component made of copper has a large difference in coefficient of thermal expansion between the heat dissipation component and the ceramics substrate to be joined, the solder layer may be heated by the heat dissipation component and the ceramics substrate or due to a thermal cycle during use. Is easily broken, the heat flow path is blocked, and the ceramic substrate is cracked. That is, the heat dissipation component and the ceramic substrate are soldered, and after being heated to the melting point of the solder or higher, they are cooled to room temperature. At that time, they are fixed to each other at the solidification point of the solder, and then the heat-dissipating component and the ceramic substrate contract according to their respective thermal expansion coefficients while being fixed, and thermal stress and thermal strain remain at the joints of each other and warp etc. Cause deformation. When thermal stress is repeatedly applied during use of the module device and is superimposed on residual thermal stress and thermal strain, the thermal flow path is blocked due to fatigue failure of the solder layer, and cracks in the ceramic substrate with mechanical brittleness occur. Occurs.

【0005】銅などの従来材に替わる放熱部品用材料と
して、アルミニウム中に炭化ケイ素を分散させた低熱膨
張・高熱伝導特性を有するAl−SiC系複合体が注目
されている(特公平7−26174号、特開昭64−8
3634号公報等参照)。Al−SiC系複合体は、粉
末冶金法、高圧鋳造法、真空鋳造法、溶融金属含浸法な
どにより製造される。Al−SiC系複合体の熱膨張係
数をセラミックス基板の熱膨張係数に近づけようとする
と、熱膨張係数の低い炭化ケイ素の含有比率を上げるこ
とが必要である。しかしながら、粉末冶金法、高圧鋳造
法、真空鋳造法では、その製造法の特質上、炭化ケイ素
の含有量を40体積%以上にすることが容易ではない。
また、ネットシェイプ成形することが難しく、大型の加
圧装置を必要とするため製造コストが高くなる。
As a material for heat dissipation parts, which replaces conventional materials such as copper, an Al-SiC type composite having low thermal expansion and high thermal conductivity in which silicon carbide is dispersed in aluminum has been attracting attention (Japanese Patent Publication No. 7-216174). No. JP-A-64-8
(See Japanese Patent No. 3634). The Al-SiC composite is manufactured by a powder metallurgy method, a high pressure casting method, a vacuum casting method, a molten metal impregnation method or the like. In order to bring the thermal expansion coefficient of the Al-SiC composite close to that of the ceramic substrate, it is necessary to increase the content ratio of silicon carbide having a low thermal expansion coefficient. However, in the powder metallurgy method, the high-pressure casting method, and the vacuum casting method, it is not easy to set the content of silicon carbide to 40% by volume or more due to the characteristics of the manufacturing method.
Further, it is difficult to perform the net shape molding, and a large pressure device is required, which increases the manufacturing cost.

【0006】一方、溶融金属含浸法は、主に炭化ケイ素
粉末あるいは炭化ケイ素繊維で形成された多孔体(プリ
フォーム)を用い、これを型内の空間に配置し、アルミ
ニウムのインゴットを接触させて、窒素雰囲気中で加圧
もしくは非加圧で加熱溶融したアルミニウムを型内の空
間に流し込むことによって、炭化ケイ素質多孔体に含浸
させた後、冷却して作製するものである。この製造方法
によれば、炭化ケイ素の含有量を20〜90体積%の範
囲で選択できる。また、炭化ケイ素質多孔体形状の自由
度が高く、複雑な形状の製品をネットシェイプ成形でき
る利点を有する。
On the other hand, in the molten metal impregnation method, a porous body (preform) formed mainly of silicon carbide powder or silicon carbide fibers is used, and the porous body (preform) is placed in a space in a mold, and an aluminum ingot is brought into contact therewith. The silicon carbide-based porous body is impregnated by pouring aluminum heated and melted under pressure or non-pressure in a nitrogen atmosphere into the space in the mold, and then cooled to manufacture. According to this manufacturing method, the content of silicon carbide can be selected within the range of 20 to 90% by volume. In addition, there is an advantage that the shape of the silicon carbide based porous material has a high degree of freedom and that a product having a complicated shape can be net-shape molded.

【0007】他の先行技術として、特開平11−139
889号公報には、炭化ケイ素多孔体にマグネシウムを
含有するアルミニウム系金属を含浸してなる複合体であ
って、該複合体中のアルミニウム系金属と炭化ケイ素粒
子との境界に存在する中間相の結晶化領域の面積割合が
20%以上であるAl−SiC系複合体が記載されてい
る。この技術によれば、マグネシウム含有のアルミニウ
ム系金属を用いて、マグネシウム成分をアルミニウム系
金属と炭化ケイ素粒子との境界に存在する中間相中に積
極的に存在させることで中間相の結晶化を高めて複合体
の高熱伝導率化を図れるものである。
As another prior art, Japanese Patent Laid-Open No. 11-139.
No. 889 discloses a composite body obtained by impregnating a silicon carbide porous body with an aluminum-based metal containing magnesium, in which an intermediate phase existing at the boundary between the aluminum-based metal and the silicon carbide particles in the composite body. An Al-SiC-based composite in which the area ratio of the crystallized region is 20% or more is described. According to this technique, by using an aluminum-based metal containing magnesium, the magnesium component is positively present in the intermediate phase existing at the boundary between the aluminum-based metal and the silicon carbide particles to enhance crystallization of the intermediate phase. Therefore, it is possible to increase the thermal conductivity of the composite.

【0008】また、特開平11−116362号公報に
は、炭化ケイ素質多孔体にアルミニウムを主成分とする
金属を含浸してなる複合体であって、窒素含有量が0.
5〜10重量%、酸素含有量が1重量%以下、該複合体
の熱伝導率が170W/(m・K)以上、室温の熱膨張
係数が9×10-6/K以下であるAl−SiC系複合体
が記載されている。これによれば、複合体中の窒素およ
び酸素の含有量を低く抑えることにより、複合体の高熱
伝導率化を図れるものである。
Further, Japanese Patent Laid-Open No. 11-116362 discloses a composite body in which a silicon carbide based porous material is impregnated with a metal containing aluminum as a main component and a nitrogen content of 0.
5% to 10% by weight, an oxygen content of 1% by weight or less, the thermal conductivity of the composite is 170 W / (m · K) or more, and the room temperature thermal expansion coefficient is 9 × 10 -6 / K or less Al- SiC-based composites are described. According to this, by suppressing the contents of nitrogen and oxygen in the composite to a low level, it is possible to increase the thermal conductivity of the composite.

【0009】[0009]

【発明が解決しようとする課題】Al−SiC系複合体
においては、アルミニウムと炭化ケイ素粒子との接合界
面の結合状態が、複合体の熱伝導率および強度に影響を
与える。なかでも特に、アルミニウムと炭化ケイ素粒子
とが接合されるとき、両者が化学反応を起こし、アルミ
ニウム中にケイ素が拡散し、炭素はアルミニウムと反応
して、アルミニウムと炭化ケイ素粒子との接合界面また
はその近傍にAl43が発生しやすいという課題があ
る。
In the Al-SiC composite, the bonding state of the joint interface between aluminum and silicon carbide particles affects the thermal conductivity and strength of the composite. Particularly, when aluminum and silicon carbide particles are bonded, a chemical reaction occurs between them, silicon diffuses into aluminum, carbon reacts with aluminum, and a bonding interface between aluminum and silicon carbide particles or its There is a problem that Al 4 C 3 is likely to be generated in the vicinity.

【0010】アルミニウムと炭化ケイ素の反応生成物で
あるAl43は、Al−SiC系複合体の熱伝導率や強
さを著しく低下させる。また、Al43は水分と反応し
やすい性質を有するため、複合体の耐食性および耐候性
を劣化させる要因となる。
Al 4 C 3, which is a reaction product of aluminum and silicon carbide, remarkably lowers the thermal conductivity and strength of the Al-SiC composite. In addition, Al 4 C 3 has a property of easily reacting with water, and thus becomes a factor that deteriorates the corrosion resistance and weather resistance of the composite.

【0011】Al−SiC系複合体を炭化ケイ素質多孔
体に溶融アルミニウムを含浸して製造する場合、アルミ
ニウムと炭化ケイ素が反応しないように、すなわちでき
るかぎりAl43を生成させないようにするには、アル
ミニウムを炭化ケイ素質多孔体に低い温度で含浸させる
手段が考えられる。しかしながら、温度が低すぎるとア
ルミニウムの含浸量が不足したり、アルミニウムと炭化
ケイ素粒子間の接合が不十分となりやすく、複合体の熱
伝導率や強さを十分得られない。
When an Al-SiC composite is produced by impregnating a silicon carbide-based porous body with molten aluminum, the aluminum and silicon carbide should not react with each other, that is, Al 4 C 3 should not be produced as much as possible. Is conceivable as a means for impregnating aluminum into the silicon carbide based porous material at a low temperature. However, if the temperature is too low, the impregnated amount of aluminum becomes insufficient, or the bonding between aluminum and silicon carbide particles tends to be insufficient, and the thermal conductivity and strength of the composite cannot be sufficiently obtained.

【0012】そこで、溶融アルミニウムをアルミニウム
の初晶温度近くの高い温度で、しかも長時間にわたって
含浸させていた。このため、アルミニウムと炭化ケイ素
粒子との接合界面またはその近傍に、アルミニウムと炭
化ケイ素との反応生成物Al 43からなる反応層が比較
的多く存在するAl−SiC系複合体が提供されてい
た。
Therefore, molten aluminum is replaced with aluminum
At a high temperature close to the primary crystal temperature of
It was impregnated. Therefore, aluminum and silicon carbide
Aluminum and charcoal should be used at or near the bonding interface with the particles.
Reaction product Al with silicon oxide FourC3Comparing reaction layers consisting of
Al-SiC based composites, which exist in large numbers, are provided.
It was

【0013】また、Al−SiC系複合体をヒートシン
クなどの放熱部品として用いる場合、セラミックス基板
などと接合されて使われるため、複合体の反りが重要な
影響を与える。すなわち複合体の反りが大き過ぎると、
放熱部品とセラミックス基板との加熱接合時や、使用中
の熱サイクルにより、はんだ層の破壊、熱流路の遮断、
セラミックス基板の割れを生じやすいという問題があ
る。
Further, when the Al--SiC composite is used as a heat dissipation component such as a heat sink, since it is used by being bonded to a ceramic substrate or the like, the warpage of the composite has an important effect. That is, if the warp of the composite is too large,
Destruction of the solder layer, blocking of the heat flow path, during heat bonding between the heat dissipation component and the ceramic substrate, or due to the heat cycle during use,
There is a problem that cracking of the ceramic substrate is likely to occur.

【0014】先行技術の特開平11−139889号公
報は、アルミニウムと炭化ケイ素粒子との接合境界に特
異な中間相を存在させるものであり、アルミニウムと炭
化ケイ素の反応生成物であるAl43について開示され
ていない。また、特開平11−116362号公報も同
様にAl43について開示されていない。
Japanese Unexamined Patent Publication (Kokai) No. 11-139889, which is a prior art, allows a peculiar intermediate phase to exist at the bonding boundary between aluminum and silicon carbide particles, and is Al 4 C 3 which is a reaction product of aluminum and silicon carbide. Is not disclosed. Similarly, Japanese Patent Laid-Open No. 11-116362 does not disclose Al 4 C 3 .

【0015】本発明は、上記の事情に鑑みなされたもの
であって、熱膨張係数がセラミックス基板のそれに近
く、熱伝導率および強度を向上させるとともに、複合体
の反りを防止できるAl−SiC系複合体を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has a coefficient of thermal expansion close to that of a ceramic substrate, improves thermal conductivity and strength, and can prevent warpage of a composite body. The purpose is to provide a complex.

【0016】[0016]

【課題を解決するための手段】本発明は、アルミニウム
を主成分とする金属中に炭化ケイ素粒子を分散させてな
るAl−SiC系複合体であって、アルミニウムを主成
分とする金属と炭化ケイ素粒子との接合界面を断面観察
したとき、その接合界面にアルミニウムを主成分とする
金属と炭化ケイ素粒子との反応層が存在しないことを特
徴とする。本発明において、前記反応層が存在しないこ
とが最も好ましい形態であるが、わずかに存在する場合
でも反応層の最大幅を1μm未満に抑えることが望まし
い。
DISCLOSURE OF THE INVENTION The present invention is an Al-SiC-based composite in which silicon carbide particles are dispersed in a metal containing aluminum as a main component, wherein the metal containing aluminum as a main component and silicon carbide. When a cross-section of the bonding interface with the particles is observed, there is no reaction layer between the metal containing aluminum as a main component and the silicon carbide particles at the bonding interface. In the present invention, it is most preferable that the reaction layer is not present, but it is desirable to control the maximum width of the reaction layer to be less than 1 μm even when the reaction layer is slightly present.

【0017】また、Al−SiC系複合体の表面にアル
ミニウムを主成分とする金属からなる被覆層が形成され
ており、相対する最も面積の広い主面において、表裏の
被覆層の合計厚さが、表裏の被覆層を含むAl−SiC
系複合体の厚さに対して15%以下であることを特徴と
する。
In addition, a coating layer made of a metal containing aluminum as a main component is formed on the surface of the Al-SiC composite, and the total thickness of the coating layers on the front and back sides is the same on the opposite main surface having the largest area. , Al-SiC including front and back coating layers
It is characterized by being 15% or less with respect to the thickness of the system composite.

【0018】さらに、Al−SiC系複合体の表面にア
ルミニウムを主成分とする金属からなる被覆層が形成さ
れており、相対する最も面積の広い主面において、表裏
の被覆層を除いたAl−SiC系複合体の表面より複合
体厚の1/3以下を占める部分の炭化ケイ素粒子の含有
量と、裏面より複合体厚の1/3以下を占める部分の炭
化ケイ素粒子の含有量との差が3体積%以下であること
を特徴とする。
Further, a coating layer made of a metal containing aluminum as a main component is formed on the surface of the Al-SiC type composite, and on the main surface having the largest area facing the Al-SiC composite, Al-excluding the front and back coating layers is formed. Difference between the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the surface of the SiC-based composite and the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the back surface Is 3% by volume or less.

【0019】また、Al−SiC系複合体中の酸素の含
有量が重量比で500ppm以下、窒素の含有量が10
0ppm以下であることを特徴とする。
The oxygen content in the Al--SiC composite is less than 500 ppm by weight and the nitrogen content is 10 ppm.
It is characterized by being 0 ppm or less.

【0020】また、本発明のAl−SiC系複合体は、
アルミニウムを主成分とする金属中に炭化ケイ素粒子を
30体積%以上分散させてなり、主に炭化ケイ素からな
る多孔体にアルミニウムを主成分とする金属を加圧含浸
して形成することが好ましい。また、本発明のAl−S
iC系複合体は、室温の熱膨張係数が4×10-6〜20
×10-6/K、熱伝導率が150〜280W/(m・
K)であることを特徴とする。
The Al-SiC composite of the present invention is
It is preferable that 30 vol% or more of silicon carbide particles are dispersed in a metal containing aluminum as a main component, and a porous body mainly composed of silicon carbide is pressure-impregnated with a metal containing aluminum as a main component. In addition, the Al-S of the present invention
The iC-based composite has a thermal expansion coefficient of 4 × 10 −6 to 20 at room temperature.
× 10 −6 / K, thermal conductivity 150 to 280 W / (m ·
K).

【0021】[0021]

【発明の実施の形態】アルミニウムと炭化ケイ素粒子と
の接合界面において、アルミニウムと炭化ケイ素粒子と
の反応生成物Al43からなる反応層が皆無であれば、
複合体の熱伝導率や強さが著しく向上し、耐食性および
耐候性も十分優れたものとなる。
BEST MODE FOR CARRYING OUT THE INVENTION If there is no reaction layer consisting of Al 4 C 3 which is a reaction product of aluminum and silicon carbide particles, at the bonding interface between aluminum and silicon carbide particles,
The thermal conductivity and strength of the composite are remarkably improved, and the corrosion resistance and weather resistance are sufficiently excellent.

【0022】Al−SiC系複合体の外表面にアルミニ
ウムを主成分とする金属からなる被覆層(アルミニウム
被覆層)を形成させた場合、相対する最も面積の広い主
面において、表面側のアルミニウム被覆層の厚さと、裏
面側のアルミニウム被覆層の厚さとを合計した厚さが、
表面側と裏面側のアルミニウム被覆層を含むAl−Si
C系複合体全体の厚さに対して、厚すぎれば複合体が反
りやすいが、15%以下であれば反りを抑えることがで
きる。
When a coating layer (aluminum coating layer) made of a metal containing aluminum as a main component is formed on the outer surface of the Al-SiC type composite, the aluminum coating on the surface side is formed on the main surface having the largest area to face it. The total thickness of the layer thickness and the aluminum coating layer on the back side is
Al-Si containing front and back aluminum coating layers
If the thickness of the C-based composite is too large, the composite tends to warp, but if it is 15% or less, the warp can be suppressed.

【0023】Al−SiC系複合体中の炭化ケイ素粒子
が不均一に分散すれば、アルミニウム含浸後の収縮ムラ
により、複合体の反りが発生しやすい。また、アルミニ
ウム含浸不足の要因ともなる。このため、炭化ケイ素粒
子をできるかぎり均一に分散させなければならず、Al
−SiC系複合体の相対する最も面積の広い主面におい
て、表面側と裏面側のアルミニウム被覆層を除いたAl
−SiC系複合体の表面より複合体厚の1/3以下を占
める部分の炭化ケイ素粒子の含有量と、裏面より複合体
厚の1/3以下を占める部分の炭化ケイ素粒子の含有量
との差が3体積%以下にすることが望ましい。
If the silicon carbide particles in the Al-SiC-based composite are non-uniformly dispersed, the composite tends to warp due to uneven contraction after impregnation with aluminum. It also causes a shortage of aluminum impregnation. For this reason, the silicon carbide particles must be dispersed as evenly as possible.
-Al, excluding the aluminum coating layers on the front surface side and the back surface side, on the opposite main surface of the SiC-based composite having the largest area.
Between the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the surface of the SiC-based composite, and the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the back surface It is desirable that the difference be 3% by volume or less.

【0024】また、含浸させるアルミニウム中の酸素や
窒素量が多すぎると、溶融アルミニウムの流動性が悪化
する。そのため高温、長時間の含浸が必要となりAl4
3が発生しやすくなる。また、アルミニウムの酸化物
や窒化物が欠陥、特性低下の要因となり好ましくない。
したがって、Al−SiC系複合体中の酸素量を500
ppm以下、窒素量を100ppm以下に抑えることが
望ましい。
If the amount of oxygen or nitrogen contained in the aluminum to be impregnated is too large, the fluidity of the molten aluminum deteriorates. Therefore, high temperature and long time impregnation are required, and Al 4
C 3 is likely to occur. Further, aluminum oxides and nitrides are not preferable because they cause defects and deteriorate characteristics.
Therefore, the amount of oxygen in the Al-SiC composite is set to 500.
It is desirable to keep the amount of nitrogen below 100 ppm and the amount of nitrogen below 100 ppm.

【0025】本発明のAl−SiC系複合体は、セラミ
ックス基板の熱膨張係数に近づけるため炭化ケイ素の含
有量は30体積%以上が好ましく、より好ましくは40
〜80体積%である。炭化ケイ素量が30体積%未満で
は熱膨張係数が大きくなり、80体積%を超えると強
度、破壊靭性が低下する。
In the Al-SiC composite of the present invention, the content of silicon carbide is preferably 30% by volume or more, more preferably 40% in order to bring it close to the coefficient of thermal expansion of the ceramic substrate.
˜80% by volume. When the amount of silicon carbide is less than 30% by volume, the coefficient of thermal expansion becomes large, and when it exceeds 80% by volume, the strength and fracture toughness decrease.

【0026】本発明の製造方法としては、炭化ケイ素か
らなる多孔体にアルミニウムを主成分とする金属を、低
い温度で、短時間で含浸、凝固させる加圧含浸法が好ま
しい。炭化ケイ素質多孔体は、炭化ケイ素粉末に結合
剤、保形剤などを所定量添加し、所望の形状に成形され
る。成形方法は、アルミニウムが含浸を完了するまで形
態を保っておりかつ含浸を阻害しないのであれば、沈降
成形法、射出成形法、CIP法など公知の方法でよい。
炭化ケイ素質多孔体を焼結せずに成形することが望まし
い。炭化ケイ素質多孔体を焼結して成形すると、炭化ケ
イ素粉末同士が接触する比率が高まり変形能が低下する
ため靭性が劣化しやすい。また、炭化ケイ素質多孔体を
焼結するには焼結助剤が必要であり、焼結した炭化ケイ
素質多孔体にアルミニウムを含浸させる場合、焼結助剤
の存在が含浸を阻害しやすい。炭化ケイ素粉末は1種類
のみを用いてもよいが、平均粒径の異なる炭化ケイ素粉
末を混合して用いれば、炭化ケイ素粉末を高密度に充填
できるので好ましい。
As the production method of the present invention, a pressure impregnation method in which a porous body made of silicon carbide is impregnated and solidified with a metal containing aluminum as a main component at a low temperature in a short time is preferable. The silicon carbide based porous material is formed into a desired shape by adding a predetermined amount of a binder, a shape-retaining agent and the like to silicon carbide powder. The molding method may be a known method such as a precipitation molding method, an injection molding method, or a CIP method, as long as the shape of aluminum is maintained until the impregnation is completed and the impregnation is not hindered.
It is desirable to form the silicon carbide based porous material without sintering. When a silicon carbide-based porous body is sintered and molded, the ratio of silicon carbide powders in contact with each other increases and the deformability decreases, so the toughness is likely to deteriorate. Further, a sintering aid is required to sinter the silicon carbide-based porous body, and when impregnating the sintered silicon carbide-based porous body with aluminum, the presence of the sintering aid tends to hinder the impregnation. Although only one kind of silicon carbide powder may be used, it is preferable to mix and use silicon carbide powder having different average particle diameters because the silicon carbide powder can be packed at a high density.

【0027】アルミニウムとしては、純Al、Al−S
i系合金、Al−Si−Mg系合金、Al−Cu系合金
が挙げられる。好ましくは、アルミニウム合金のSi重
量%を共晶組成の12重量%以下にするのがよい。過共
晶になると、脆い粗大なケイ素結晶が晶出することによ
り、Al−SiC系複合体の靭性を低下させる。Al−
Si系合金、Al−Si−Mg系合金では、合金の融点
が低下し、含浸温度を下げることができる。また、高温
において溶融アルミニウムの粘性が低下し、含浸時間を
短縮できるので、含浸にかかる製造コスト的に有利とな
る。
As aluminum, pure Al and Al-S are used.
Examples include i-based alloys, Al-Si-Mg-based alloys, and Al-Cu-based alloys. Preferably, the Si alloy weight percent of the aluminum alloy is 12 weight percent or less of the eutectic composition. When hypereutectic, brittle and coarse silicon crystals are crystallized to reduce the toughness of the Al-SiC composite. Al-
With Si-based alloys and Al-Si-Mg-based alloys, the melting point of the alloy is lowered, and the impregnation temperature can be lowered. Further, the viscosity of the molten aluminum is reduced at high temperatures, and the impregnation time can be shortened, which is advantageous in terms of manufacturing cost for impregnation.

【0028】Al−SiC系複合体の表面に炭化ケイ素
粉末が露出しないように、複合体の表面全体にわたっ
て、含浸したアルミニウムを主成分とする金属からなる
被覆層を設けることにより、電解あるいは無電解めっき
を施しやすくなる。また、アルミニウムが軟らかいので
面加工が容易になる。さらに、アルミニウム被覆層によ
り表面の切り欠き効果が低減され強度と靭性が向上す
る。
By providing a coating layer made of a metal whose main component is impregnated aluminum on the entire surface of the composite so that the silicon carbide powder is not exposed on the surface of the Al-SiC composite, electrolysis or electroless electrolysis is performed. Makes plating easier. Further, since aluminum is soft, surface processing becomes easy. Further, the aluminum coating layer reduces the surface notch effect and improves the strength and toughness.

【0029】炭化ケイ素質多孔体中にアルミニウムを含
浸させる際に、炭化ケイ素質多孔体とこれを装入した型
の内壁との隙間に含浸アルミニウムの一部が通ることに
より、アルミニウム被覆層が形成される。被覆層を形成
するアルミニウムは、炭化ケイ素質多孔体に含浸された
アルミニウムと連通し、実質的に組成が同じである。炭
化ケイ素質多孔体と型の内壁との隙間の大きさを調整す
ることにより被覆層の厚みを変えることができる。被覆
層の平均厚みは、面加工後の仕上寸法精度により異なっ
てくるが、10μm未満ではめっきが不均一になりやす
く、300μmもあれば効果が十分なので、10〜30
0μmが好ましい。
When the silicon carbide based porous material is impregnated with aluminum, a part of the impregnated aluminum passes through the gap between the silicon carbide based porous material and the inner wall of the mold in which the aluminum carbide based material is charged, whereby an aluminum coating layer is formed. To be done. The aluminum forming the coating layer communicates with the aluminum impregnated in the silicon carbide based porous material and has substantially the same composition. The thickness of the coating layer can be changed by adjusting the size of the gap between the silicon carbide based porous material and the inner wall of the mold. The average thickness of the coating layer varies depending on the finished dimensional accuracy after surface processing, but if it is less than 10 μm, the plating tends to be uneven, and if it is 300 μm, the effect is sufficient.
0 μm is preferable.

【0030】Al−SiC系複合体は、セラミックス基
板とのはんだ付けを強固にするために、複合体の表面に
Ni、Ni−P、Ni−BなどNi系めっきを施すこと
が望ましい。Ni系めっきは、電解法あるいは無電解法
のいずれでも処理してよいが、無電解法のほうが厚みを
均一にしやすい。また、Ni系めっき層が複合体の表面
に二層以上積層してもよい。
In order to strengthen the soldering of the Al-SiC-based composite with the ceramic substrate, it is desirable to apply Ni-based plating such as Ni, Ni-P or Ni-B on the surface of the composite. The Ni-based plating may be processed by either an electrolytic method or an electroless method, but the electroless method is easier to make the thickness uniform. Two or more Ni-based plating layers may be laminated on the surface of the composite.

【0031】Al−SiC系複合体は、室温の熱膨張係
数が4×10-6〜20×10-6/Kであり、10×10
-6/K以下がより好ましい。20×10-6/Kを超える
と、セラミックス基板との熱膨張係数の差が大きくなり
過ぎて、加熱接合時や使用中の熱サイクルにより、セラ
ミックス基板に割れが生じやすくなる。
The Al-SiC type composite has a thermal expansion coefficient of 4 × 10 -6 to 20 × 10 -6 / K at room temperature and 10 × 10 6.
-6 / K or less is more preferable. When it exceeds 20 × 10 −6 / K, the difference in the coefficient of thermal expansion from the ceramics substrate becomes too large, and cracks are likely to occur in the ceramics substrate due to thermal bonding during heat bonding or during use.

【0032】Al−SiC系複合体の熱伝導率は、15
0〜280W/(m・K)であることが望ましい。15
0W/(m・K)未満では、特に大電力モジュール装置
において放熱能力が不足しがちになる。
The thermal conductivity of the Al--SiC composite is 15
It is preferably 0 to 280 W / (m · K). 15
If it is less than 0 W / (m · K), the heat radiation capacity tends to be insufficient especially in a high power module device.

【0033】本発明のAl−SiC系複合体は、放熱基
板、ヒートシンク、パッケージなどの放熱部品に好適で
ある。また、放熱部品は電子部品搭載用セラミックス基
板に接合して用いられ、セラミックス基板としては、熱
伝導率および曲げ強度に優れたSi34、熱伝導率に優
れたAlN、耐熱性に優れたAl23のいずれかからな
るのが好ましい。特に、Si34やAlNは絶縁性、放
熱特性にも優れているので好ましい。
The Al--SiC composite of the present invention is suitable for heat dissipation components such as heat dissipation boards, heat sinks, and packages. Further, the heat dissipation component is used by being bonded to a ceramic substrate for mounting electronic components, and as the ceramic substrate, Si 3 N 4 excellent in thermal conductivity and bending strength, AlN excellent in thermal conductivity, and excellent in heat resistance are used. It is preferably composed of any of Al 2 O 3 . In particular, Si 3 N 4 and AlN are preferable because they have excellent insulating properties and heat dissipation properties.

【0034】[0034]

【実施例】平均粒径60μm、純度98%以上の緑色炭
化ケイ素粉末に結合剤、保形剤の溶媒を加え、これを攪
拌機で混合して炭化ケイ素のスラリーを得た。スラリー
を所望の形状の金型に注入して成形後、冷却して脱型し
た。これを乾燥して板状の炭化ケイ素質多孔体を作製し
た。
EXAMPLE A binder and a solvent for a shape-retaining agent were added to green silicon carbide powder having an average particle size of 60 μm and a purity of 98% or more, and this was mixed with a stirrer to obtain a silicon carbide slurry. The slurry was poured into a mold having a desired shape, molded, and then cooled to remove the mold. This was dried to produce a plate-like silicon carbide based porous material.

【0035】ついで、炭化ケイ素質多孔体と型の内壁と
の間に所定の隙間を確保した状態で、炭化ケイ素質多孔
体を型に装入した。そして、炭化ケイ素質多孔体を装入
した型内に加熱溶融したアルミニウム合金(AC4C
H)を圧入することにより、短時間に含浸を完了させ
た。含浸完了、冷却後、型を解体し、炭化ケイ素の含有
量が63体積%である本発明実施例の板状のAl−Si
C系複合体を得た。
Then, the silicon carbide based porous material was loaded into the mold while a predetermined gap was secured between the silicon carbide based porous material and the inner wall of the mold. Then, the aluminum alloy (AC4C
The impregnation was completed in a short time by pressing in H). After completion of impregnation and cooling, the mold was disassembled, and the plate-like Al-Si of the present invention example having a silicon carbide content of 63% by volume.
A C-based complex was obtained.

【0036】得られた複合体は、炭化ケイ素質多孔体中
にアルミニウムを含浸させる際に、炭化ケイ素質多孔体
とこの多孔体を装入した型の内壁との隙間に含浸アルミ
ニウムの一部が通ることにより、複合体の表面全体にわ
たって、アルミニウム被覆層が形成された。被覆層の厚
みは平均で50μmであり、複合体の表面には炭化ケイ
素粒子の露出が見られなかった。
When the silicon carbide based porous material is impregnated with aluminum, a part of the impregnated aluminum is contained in the gap between the silicon carbide based porous material and the inner wall of the mold in which the porous material is loaded. By passing, an aluminum coating layer was formed over the entire surface of the composite. The coating layer had an average thickness of 50 μm, and no silicon carbide particles were exposed on the surface of the composite.

【0037】また、比較例として、炭化ケイ素質多孔体
を作製せず、前記実施例とほぼ同じ炭化ケイ素含有量に
なるように、実施例と同じ緑色炭化ケイ素質粉末とアル
ミニウム合金(AC4CH)粉末を混合した後、プレス
し、アルミニウム合金粉末の融点以上に加熱して焼結す
ることにより、比較例のAl−SiC系複合体を得た。
この複合体はアルミニウム被覆層が乏しく、表面の一部
に炭化ケイ素粒子の露出が見られた。
As a comparative example, the same green silicon carbide powder and aluminum alloy (AC4CH) powder as those of the examples were prepared so that the silicon carbide porous body was not prepared and the silicon carbide content was almost the same as that of the above examples. Was mixed, pressed, and heated to a temperature equal to or higher than the melting point of the aluminum alloy powder and sintered to obtain an Al-SiC-based composite body of a comparative example.
This composite had a poor aluminum coating layer, and silicon carbide particles were exposed on a part of the surface.

【0038】図1に比較例のAl−SiC系複合体を断
面観察したときの模式図を示す。図1において、右図は
左図の円領域内を拡大したものである。比較例ではアル
ミニウムと炭化ケイ素粒子との接合界面に、アルミニウ
ムと炭化ケイ素の反応生成物であるAl43からなる反
応層が多数発生していた。
FIG. 1 shows a schematic view of an Al—SiC type composite body of a comparative example when the section is observed. In FIG. 1, the right figure is an enlargement of the circle area in the left figure. In the comparative example, a large number of reaction layers made of Al 4 C 3 which is a reaction product of aluminum and silicon carbide were generated at the joint interface between aluminum and silicon carbide particles.

【0039】図2に本発明の実施例のAl−SiC系複
合体を断面観察したときの模式図を示す。図2におい
て、右図は左図の四角領域内を拡大したものである。本
発明の実施例では6百万倍までのTEM観察しても、ア
ルミニウムと炭化ケイ素粒子との接合界面もしくはその
近傍に、アルミニウムと炭化ケイ素の反応生成物である
Al43からなる反応層の存在は確認できなかった。ま
た、アルミニウムと炭化ケイ素の接合不良による隙間も
見られなかった。
FIG. 2 shows a schematic view of an Al—SiC composite according to an embodiment of the present invention when the cross section is observed. In FIG. 2, the right figure is an enlargement of the rectangular area in the left figure. In the examples of the present invention, even when observed up to 6 million times with a TEM, a reaction layer made of Al 4 C 3 which is a reaction product of aluminum and silicon carbide is formed at or near the bonding interface between aluminum and silicon carbide particles. Could not be confirmed. In addition, no gap was observed due to a defective joint between aluminum and silicon carbide.

【0040】これらのAl−SiC系複合体から各種試
験片を切り出し、測定を行った。結果を表1に示す。複
合体の熱膨張係数は、複合体から幅3mm×厚さ6mm
×長さ15mmの試験片を切り出した後、常温から10
0℃の温度範囲でTMA(サーモメカニカルアナライザ
ー、セイコー(株)製)を用いて測定した。
Various test pieces were cut out from these Al--SiC composites and measured. The results are shown in Table 1. The coefficient of thermal expansion of the composite is 3 mm wide x 6 mm thick from the composite.
× After cutting a test piece with a length of 15 mm, the temperature is 10 at room temperature.
It was measured using TMA (Thermo-mechanical analyzer, Seiko Co., Ltd.) in the temperature range of 0 ° C.

【0041】熱伝導率は、複合体から直径10mm×高
さ3mmの試験片を切り出した後、熱定数測定装置(LF
/TCM−FA8510B、理学電機社製)を用いて、JIS16
06に準拠してレーザーフラッシュ法により測定した。
The thermal conductivity was measured by cutting out a test piece having a diameter of 10 mm and a height of 3 mm from the composite, and measuring the thermal constant (LF
/ TCM-FA8510B, manufactured by Rigaku Denki Co., Ltd., JIS16
The measurement was carried out by the laser flash method according to 06.

【0042】曲げ強さは、複合体から幅4mm×厚さ3
mm×長さ40mmの試験片を切り出した後、JIS1
601−1981に準拠して、曲げ試験機により4点曲
げ強さを測定した。試験片をスパン距離30mmに配置
された2支点上に置き、支点間の中央から左右に等しい
距離に2点に分けて荷重を加えて試験した。
The bending strength is 4 mm width × thickness 3 from the composite.
After cutting out a test piece of mm × length 40 mm, JIS1
According to 601-1981, 4-point bending strength was measured by a bending tester. The test piece was placed on two fulcrums arranged at a span distance of 30 mm, and a load was applied to the fulcrums at two equal distances from the center between the fulcrums to the left and right.

【0043】[0043]

【表1】 [Table 1]

【0044】表1において、「反応層の幅」はアルミニ
ウムと炭化ケイ素粒子との接合界面に存在する反応層の
最大幅、すなわち反応層を挟むアルミニウムと炭化ケイ
素粒子間の距離を示し、本発明の実施例では反応層が皆
無であるため測定不能であった。本発明の実施例は、ア
ルミニウムと炭化ケイ素の反応層が存在しないので、比
較例に比べ高い熱伝導率と曲げ強さが得られた。
In Table 1, "width of reaction layer" indicates the maximum width of the reaction layer existing at the joint interface between aluminum and silicon carbide particles, that is, the distance between the aluminum and silicon carbide particles sandwiching the reaction layer. In the example of 1, the measurement was impossible because there was no reaction layer. In the example of the present invention, since the reaction layer of aluminum and silicon carbide did not exist, higher thermal conductivity and bending strength were obtained as compared with the comparative example.

【0045】また、本発明実施例のAl−SiC系複合
体の相対する最も面積の広い主面において、表面側のア
ルミニウム被覆層の厚さtと、裏面側のアルミニウム被
覆層の厚さbとの合計厚さt+bは約0.1mmであっ
た。この被覆層の合計厚さt+bは、表面側と裏面側の
アルミニウム被覆層の合計厚さt+bを含むAl−Si
C系複合体全体の厚さ約2.9mmに対して約3.4%
を占め、複合体の反りは発生しなかった。
Further, on the opposing main surfaces of the Al-SiC composites having the largest area, the thickness t of the aluminum coating layer on the front surface side and the thickness b of the aluminum coating layer on the back surface side are set. The total thickness t + b of was about 0.1 mm. The total thickness t + b of the coating layer includes Al-Si including the total thickness t + b of the aluminum coating layers on the front surface side and the back surface side.
About 3.4% for the total thickness of the C-based composite of about 2.9 mm
, The warp of the composite did not occur.

【0046】また、本発明実施例のAl−SiC系複合
体の相対する最も面積の広い主面において、表面側と裏
面側のアルミニウム被覆層を加工により除去した。そし
て、複合体の表面と裏面の炭化ケイ素粒子の含有量を画
像処理装置を用いて調べた。画像処理装置により5箇所
の視野を測定し、得られた面積%を体積%として評価し
た。なお、アルミニウム中のSi%も炭化ケイ素量とし
て検出している。表2に測定結果を示す。炭化ケイ素量
の表面側と裏面側の差は0.5体積%であり、炭化ケイ
素粒子が均一に分散されていた。
Further, the aluminum coating layers on the front surface side and the back surface side were removed by processing on the opposite main surfaces having the largest area of the Al-SiC composites of the examples of the present invention. Then, the content of silicon carbide particles on the front surface and the back surface of the composite was examined using an image processing device. The visual field at 5 locations was measured by an image processing device, and the obtained area% was evaluated as volume%. In addition, Si% in aluminum is also detected as the amount of silicon carbide. Table 2 shows the measurement results. The difference in the amount of silicon carbide between the front surface side and the back surface side was 0.5% by volume, and the silicon carbide particles were uniformly dispersed.

【0047】[0047]

【表2】 [Table 2]

【0048】表3に、本発明実施例のAl−SiC系複
合体中の酸素、窒素などの微量元素の含有量(重量%)
を測定した結果を示す。なお、酸素、窒素量の単位はp
pmである。Al−SiC系複合体中の酸素および窒素
量は好ましい濃度以下に抑えられていた。
Table 3 shows the contents (% by weight) of trace elements such as oxygen and nitrogen in the Al-SiC composites of the examples of the present invention.
The results of measurement are shown below. The unit of oxygen and nitrogen is p
pm. The amounts of oxygen and nitrogen in the Al-SiC-based composite were suppressed to below the preferable concentration.

【0049】[0049]

【表3】 [Table 3]

【0050】また、本発明のAl−SiC系複合体を研
削加工して、190mm×140mm×3mmのIGB
T用の放熱基板とし、表面に無電解Ni系めっきを施
し、厚み7μmの均一なめっき層を形成した。この放熱
基板表面に半田ペーストをスクリーン印刷し、半田ペー
スト上にSi34からなるセラミックス基板を載置し、
300℃のリフロー炉で5分間加熱処理してセラミック
ス基板を接合させた。
Further, the Al-SiC composite of the present invention was ground to a 190 mm × 140 mm × 3 mm IGB.
As a heat dissipation substrate for T, electroless Ni-based plating was applied to the surface to form a uniform plating layer having a thickness of 7 μm. A solder paste is screen-printed on the surface of the heat dissipation substrate, and a ceramic substrate made of Si 3 N 4 is placed on the solder paste.
The ceramic substrates were joined by heat treatment for 5 minutes in a reflow oven at 300 ° C.

【0051】このセラミックス基板を接合した放熱基板
を、厚さ20mmのアルミニウム製の支持板に8本のボ
ルトによって締め付け固定して、−40℃〜+125℃
を1サイクルとして1000サイクルの冷熱サイクル試
験を行った。ヒートサイクル試験後、放熱基板の変形、
はんだ層の破壊、熱流路の遮断、セラミックス基板の割
れは見られなかった。
The heat dissipation board to which this ceramics substrate was joined was fastened and fixed to a support plate made of aluminum having a thickness of 20 mm by 8 bolts, and -40 ° C to + 125 ° C.
Was set as one cycle, and a 1000-cycle thermal cycle test was performed. After heat cycle test, deformation of heat dissipation board,
The solder layer was not broken, the heat flow path was blocked, and the ceramic substrate was not cracked.

【0052】[0052]

【発明の効果】本発明のAl−SiC系複合体によれ
ば、低熱膨張性を有するとともに、高い熱伝導率と強度
を兼ね備えており、セラミックス基板と接合しても割れ
を防止できる信頼性の高い放熱部品が得られる。
According to the Al-SiC composite of the present invention, it has a low thermal expansion property, a high thermal conductivity and high strength. High heat dissipation parts can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較例のAl−SiC系複合体を断面観察した
ときの模式図を示す。
FIG. 1 is a schematic view when observing a cross section of an Al—SiC-based composite body of a comparative example.

【図2】本発明の実施例のAl−SiC系複合体を断面
観察したときの模式図を示す。
FIG. 2 is a schematic diagram when observing a cross section of an Al—SiC composite according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミニウム、 2 炭化ケイ素粒子、 3 反応
1 aluminum, 2 silicon carbide particles, 3 reaction layer

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを主成分とする金属中に炭
化ケイ素粒子を分散させてなるAl−SiC系複合体で
あって、アルミニウムを主成分とする金属と炭化ケイ素
粒子との接合界面を断面観察したとき、その接合界面に
アルミニウムを主成分とする金属と炭化ケイ素粒子との
反応層が存在しないことを特徴とするAl−SiC系複
合体。
1. An Al-SiC composite obtained by dispersing silicon carbide particles in a metal containing aluminum as a main component, and observing a cross section of a bonding interface between the metal containing aluminum as a main component and the silicon carbide particles. An Al-SiC-based composite, characterized in that, at that time, a reaction layer of a metal containing aluminum as a main component and silicon carbide particles does not exist at the bonding interface.
【請求項2】 アルミニウムを主成分とする金属中に炭
化ケイ素粒子を分散させてなるAl−SiC系複合体で
あって、アルミニウムを主成分とする金属と炭化ケイ素
粒子との接合界面を断面観察したとき、その接合界面に
アルミニウムを主成分とする金属と炭化ケイ素粒子との
反応層の幅が1μm未満であることを特徴とするAl−
SiC系複合体。
2. An Al-SiC-based composite obtained by dispersing silicon carbide particles in a metal containing aluminum as a main component, and observing a cross section of a bonding interface between the metal containing aluminum as a main component and the silicon carbide particles. At that time, the width of the reaction layer of the metal containing aluminum as a main component and the silicon carbide particles at the bonding interface is less than 1 μm.
SiC-based composite.
【請求項3】 Al−SiC系複合体の外表面にアルミ
ニウムを主成分とする金属からなる被覆層が形成されて
おり、相対する最も面積の広い主面において、表裏の被
覆層の合計厚さが、表裏の被覆層を含むAl−SiC系
複合体の厚さに対して15%以下であることを特徴とす
る請求項1または2に記載のAl−SiC系複合体。
3. A coating layer made of a metal containing aluminum as a main component is formed on the outer surface of the Al—SiC-based composite, and the total thickness of the coating layers on the front and back sides on the opposing main surface having the largest area. Is 15% or less with respect to the thickness of the Al-SiC-based composite including the front and back coating layers, the Al-SiC-based composite according to claim 1 or 2.
【請求項4】 Al−SiC系複合体の外表面にアルミ
ニウムを主成分とする金属からなる被覆層が形成されて
おり、相対する最も面積の広い主面において、表裏の被
覆層を除いたAl−SiC系複合体の表面より複合体厚
の1/3以下を占める部分の炭化ケイ素粒子の含有量
と、裏面より複合体厚の1/3以下を占める部分の炭化
ケイ素粒子の含有量との差が3体積%以下であることを
特徴とする請求項1〜3のいずれかに記載のAl−Si
C系複合体。
4. A coating layer made of a metal containing aluminum as a main component is formed on the outer surface of the Al—SiC-based composite, and on the opposite main surface having the largest area, Al excluding the front and back coating layers is formed. Between the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the surface of the SiC-based composite, and the content of silicon carbide particles in the portion occupying 1/3 or less of the composite thickness from the back surface Difference is 3 volume% or less, Al-Si in any one of Claims 1-3 characterized by the above-mentioned.
C-based complex.
【請求項5】 Al−SiC系複合体中の酸素の含有量
が重量比で500ppm以下であることを特徴とする請
求項1〜4のいずれかに記載のAl−SiC系複合体。
5. The Al-SiC based composite according to any one of claims 1 to 4, wherein the oxygen content in the Al-SiC based composite is 500 ppm or less in weight ratio.
【請求項6】 Al−SiC系複合体中の窒素の含有量
が重量比で100ppm以下であることを特徴とする請
求項1〜5のいずれかに記載のAl−SiC系複合体。
6. The Al-SiC based composite according to claim 1, wherein the content of nitrogen in the Al-SiC based composite is 100 ppm or less in weight ratio.
【請求項7】 Al−SiC系複合体が、アルミニウム
を主成分とする金属中に炭化ケイ素粒子を30体積%以
上分散させてなることを特徴とする請求項1〜6のいず
れかに記載のAl−SiC系複合体。
7. The Al-SiC based composite according to claim 1, wherein silicon carbide particles are dispersed in a metal containing aluminum as a main component in an amount of 30% by volume or more. Al-SiC based composite.
【請求項8】 Al−SiC系複合体が、主に炭化ケイ
素からなる多孔体にアルミニウムを主成分とする金属を
加圧含浸して形成されたことを特徴とする請求項1〜7
のいずれかに記載のAl−SiC系複合体。
8. The Al-SiC composite is formed by pressure-impregnating a porous body mainly made of silicon carbide with a metal containing aluminum as a main component.
The Al-SiC composite according to any one of 1.
【請求項9】 Al−SiC系複合体は、室温の熱膨張
係数が4×10-6〜20×10-6/K、熱伝導率が15
0〜280W/(m・K)であることを特徴とする請求
項1〜8のいずれかに記載のAl−SiC系複合体。
9. The Al-SiC composite has a coefficient of thermal expansion of 4 × 10 −6 to 20 × 10 −6 / K at room temperature and a thermal conductivity of 15 at room temperature.
It is 0-280W / (m * K), The Al-SiC type composite body in any one of Claims 1-8 characterized by the above-mentioned.
【請求項10】 請求項1〜9のいずれかに記載のAl
−SiC系複合体からなることを特徴とする放熱部品。
10. Al according to any one of claims 1 to 9.
-A heat dissipation component comprising a SiC-based composite.
【請求項11】 前記放熱部品が放熱基板、ヒートシン
ク、パッケージのいずれかであることを特徴とする請求
項10に記載の放熱部品。
11. The heat dissipation component according to claim 10, wherein the heat dissipation component is any one of a heat dissipation substrate, a heat sink, and a package.
【請求項12】 電子部品搭載用セラミックス基板に接
合してなることを特徴とする請求項11に記載の放熱部
品。
12. The heat dissipation component according to claim 11, wherein the heat dissipation component is bonded to a ceramics substrate for mounting electronic components.
JP2002074609A 2002-03-18 2002-03-18 Al-SiC COMPOSITE MATERIAL Pending JP2003268482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074609A JP2003268482A (en) 2002-03-18 2002-03-18 Al-SiC COMPOSITE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074609A JP2003268482A (en) 2002-03-18 2002-03-18 Al-SiC COMPOSITE MATERIAL

Publications (1)

Publication Number Publication Date
JP2003268482A true JP2003268482A (en) 2003-09-25

Family

ID=29203961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074609A Pending JP2003268482A (en) 2002-03-18 2002-03-18 Al-SiC COMPOSITE MATERIAL

Country Status (1)

Country Link
JP (1) JP2003268482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172177A (en) * 2011-02-18 2012-09-10 Denki Kagaku Kogyo Kk Aluminum alloy-ceramic composite, manufacturing method of the composite and stress buffer material comprising the composite
JP2016180185A (en) * 2016-05-09 2016-10-13 デンカ株式会社 Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172177A (en) * 2011-02-18 2012-09-10 Denki Kagaku Kogyo Kk Aluminum alloy-ceramic composite, manufacturing method of the composite and stress buffer material comprising the composite
JP2016180185A (en) * 2016-05-09 2016-10-13 デンカ株式会社 Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite

Similar Documents

Publication Publication Date Title
JP6502950B2 (en) Heat dissipation member, and method of manufacturing heat dissipation member
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JP3468358B2 (en) Silicon carbide composite, method for producing the same, and heat radiation component using the same
JP5275625B2 (en) Heat sink made of boron-containing diamond and copper composite
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JPWO2006030676A1 (en) Aluminum-silicon carbide composite
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPWO2016088687A1 (en) Heat dissipation substrate and method for manufacturing the heat dissipation substrate
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP2003268482A (en) Al-SiC COMPOSITE MATERIAL
JP3737072B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP5048266B2 (en) Heat dissipation board and manufacturing method thereof
JP2003268478A (en) Al-SiC COMPOSITE
JP2001217364A (en) Al-SiC COMPOSITE
TWI780113B (en) METHOD OF MANUFACTURING CERAMIC/Al-SiC COMPOSITE MATERIAL BONDED BODY AND METHOD OF MANUFACTURING POWER MODULE SUBSTRATE WITH HEAT SINK
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP3948797B2 (en) Method for producing silicon carbide composite