JP2007136912A - Manufacturing method of ceramic molding, and manufacturing method of ceramic sintered article using the molding - Google Patents

Manufacturing method of ceramic molding, and manufacturing method of ceramic sintered article using the molding Download PDF

Info

Publication number
JP2007136912A
JP2007136912A JP2005335286A JP2005335286A JP2007136912A JP 2007136912 A JP2007136912 A JP 2007136912A JP 2005335286 A JP2005335286 A JP 2005335286A JP 2005335286 A JP2005335286 A JP 2005335286A JP 2007136912 A JP2007136912 A JP 2007136912A
Authority
JP
Japan
Prior art keywords
solvent
molded body
ceramic
ceramic molded
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005335286A
Other languages
Japanese (ja)
Other versions
JP4946014B2 (en
Inventor
Yasuhiro Nakano
康博 中野
Masaki Yoshino
正樹 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005335286A priority Critical patent/JP4946014B2/en
Publication of JP2007136912A publication Critical patent/JP2007136912A/en
Application granted granted Critical
Publication of JP4946014B2 publication Critical patent/JP4946014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a ceramic molding which does not cause cracking during drying, has high shape retention, is superior in dimensional accuracy and is excellent in physical properties when converted to a sintered article. <P>SOLUTION: The manufacturing method of the ceramic molding comprises a process of casting a mixture containing a ceramic powder, a dispersing agent, a hardening resin and a solvent into a molding die, a process of molding the casted mixture to be a ceramics molding containing the solvent, a process of removing the molding die and a process of drying the ceramics molding containing the solvent, wherein the hardening resin is hardened in the above processes by heat-treating between the removing process and the drying process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複雑形状のセラミックス製品を容易に製造するためのセラミック成形体の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic molded body for easily manufacturing a ceramic product having a complicated shape.

近年、複雑形状のセラミックス部品を要求されるようになり、射出成形、鋳込み成形、押出し成形等で検討がなされ、各種硬化性樹脂や水硬化性ウレタンを硬化させることで成形体を得る方法や樹脂が提案されている(例えば特許文献1、2、3、4参照)。
しかし、いずれの場合にも、乾燥又は脱脂工程により成形体から溶媒やバインダーを除去する際に、寸法精度の悪化、反り、割れ等の問題を起こすことがある。また、溶媒を含んだ状態での強度は非常に低いため、賦形後、成形完了まで成形体の形状を維持することが非常に難しいことが多い。中でも複雑な形状の成形に適している鋳込み成形の場合、脱型後から乾燥が終了するまでの間の形状保持が問題となることが多い。そこで、かかる保形性の向上をはかるためにセラミック粉末とゲル化成分及び水を含むスラリーを鋳込みゲル化させた後、成形体を凍結させ、真空凍結乾燥により乾燥するセラミックの製造方法が提案されている(例えば特許文献5参照)。しかしながら真空凍結乾燥は脱型後凍結させると凍結するまでの間に自重による変形を起こしたり、水の凍結による体積膨張の影響から割れることがある。また、凍結後脱型しようとすると、凍結による体積膨張で、成形体が型と密着して折角凍結した成形体を加熱しないと取り出せなくなる等の問題がある。
In recent years, ceramic parts with complex shapes have been required, and studies have been made on injection molding, casting molding, extrusion molding, etc., and methods and resins for obtaining molded bodies by curing various curable resins and water-curable urethanes. Has been proposed (see, for example, Patent Documents 1, 2, 3, and 4).
However, in any case, when the solvent or binder is removed from the molded body by the drying or degreasing process, problems such as deterioration of dimensional accuracy, warpage, and cracking may occur. Further, since the strength in a state containing a solvent is very low, it is often very difficult to maintain the shape of the molded body after shaping until completion of molding. In particular, in the case of casting molding suitable for molding of a complicated shape, there is often a problem of shape retention after demolding until drying is completed. Therefore, in order to improve the shape retention, a method for producing a ceramic is proposed in which a slurry containing a ceramic powder, a gelling component and water is cast and gelled, and then the molded body is frozen and dried by vacuum freeze drying. (For example, refer to Patent Document 5). However, vacuum freeze-drying may cause deformation due to its own weight during freezing after demolding or cracking due to volume expansion due to freezing of water. In addition, if the mold is to be removed after freezing, there is a problem that the molded body that has been frozen by bending due to volume expansion due to freezing cannot be taken out unless heated.

また、セラミックス粉体、硬化性樹脂、溶媒、および溶媒により凝集する化合物を含む混合物を、成形、焼結するセラミックス成形体の製造方法が提案されている。(特許文献6)しかしながら、保形性は向上したが、乾燥時に割れが発生したり、焼結後の物性が低下することがあり、複雑な形状に対応できる製造方法は見いだされていないのが現状である。
特公平7−22931号公報 特開平10−217212号公報 特開平11−171651号公報 特開2001−278673号公報 特開平11−262907号公報 特開2005−53716号公報
In addition, a method for producing a ceramic molded body is proposed in which a mixture containing ceramic powder, a curable resin, a solvent, and a compound that aggregates with the solvent is molded and sintered. (Patent Document 6) However, although shape retention has been improved, cracks may occur during drying, or physical properties after sintering may be reduced, and a manufacturing method capable of dealing with complicated shapes has not been found. Currently.
Japanese Patent Publication No. 7-22931 JP-A-10-217212 JP-A-11-171651 JP 2001-278673 A JP-A-11-262907 JP 2005-53716 A

本発明の目的は、乾燥時の割れ等がなく、形状保持性が高く寸法精度に優れ、また焼結体としたときの物性に優れたセラミックス成形体の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a ceramic molded body that is free from cracks during drying, has high shape retention and excellent dimensional accuracy, and has excellent physical properties when formed into a sintered body.

本発明は、かかる課題を解決するために以下のような手段を採用するものである。すなわち、セラミックス粉体、分散剤、硬化性樹脂、ならびに溶媒を含む混合物を成形型内に注入する工程、注入した該混合物を成形し、含溶媒セラミックス成形体とする工程、該成形型を取り除く脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該含溶媒セラミックス成形体とする工程が硬化性樹脂を硬化させる工程を有しており、脱型工程と含溶媒セラミックス成形体を乾燥させる工程の間に含溶媒セラミックス成形体を熱処理する工程を有することを特徴とするセラミックス成形体の製造方法である。   The present invention employs the following means in order to solve such problems. That is, a step of injecting a mixture containing ceramic powder, a dispersant, a curable resin, and a solvent into a mold, a step of forming the injected mixture into a solvent-containing ceramic formed body, and a removal of the mold. In the method for producing a ceramic molded body having a step of drying the solvent-containing ceramic molded body obtained by the mold step and the demolding step, the step of forming the solvent-containing ceramic molded body includes a step of curing the curable resin. A method for producing a ceramic molded body comprising a step of heat-treating the solvent-containing ceramic molded body between the demolding step and the step of drying the solvent-containing ceramic molded body.

本発明により、乾燥時の割れがなく、形状保持性が高く寸法精度に優れ、また焼結体としたときの物性が優れたセラミックス成形体の製造方法を提供することができる。特に大型の複雑形状セラミックスの成形に好適である。   According to the present invention, it is possible to provide a method for producing a ceramic molded body that is free from cracks during drying, has high shape retention and excellent dimensional accuracy, and has excellent physical properties when formed into a sintered body. It is particularly suitable for forming large-sized complex ceramics.

本発明は、セラミックス粉体、分散剤、硬化性樹脂、ならびに溶媒を含む混合物を成形型内に注入する工程、注入した該混合物を成形し、含溶媒セラミックス成形体とする工程、該成形型を取り除く脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該含溶媒セラミックス成形体とする工程が硬化性樹脂を硬化させる工程を有しており、脱型工程と含溶媒セラミックス成形体を乾燥させる工程の間に含溶媒セラミックス成形体を熱処理する工程を有することを特徴とするセラミックス成形体の製造方法である。   The present invention includes a step of injecting a mixture containing ceramic powder, a dispersant, a curable resin, and a solvent into a mold, a step of forming the injected mixture into a solvent-containing ceramic molded body, In the method for producing a ceramic molded body having a demolding step of removing and a step of drying the solvent-containing ceramic molded body obtained by the demolding step, the step of forming the solvent-containing ceramic molded body includes a step of curing the curable resin A method for producing a ceramic molded body comprising the step of heat-treating the solvent-containing ceramic molded body between the demolding step and the step of drying the solvent-containing ceramic molded body.

ここで、セラミックス粉体とは、その種類を限定されるものではないが、例えば、酸化アルミニウム、酸化ジルコニウム、窒化珪素、炭化珪素、窒化アルミニウム、SIALONなどの粉末があげられる。これらは単独で使用してもよいし、適宜混合してもよい。   Here, the kind of the ceramic powder is not limited, but examples thereof include powders such as aluminum oxide, zirconium oxide, silicon nitride, silicon carbide, aluminum nitride, and SIALON. These may be used alone or may be mixed as appropriate.

石膏型等の吸水性の成形型を用いない鋳込み方法はセラミックス粉体、分散剤、硬化性樹脂ならびに溶媒を含む混合物を作成し、成形型内に注入する工程、注入した前記混合物を成形し含溶媒セラミックス成形体とする工程、前記成形型を取り除く脱型工程、前記含溶媒セラミックス成形体を乾燥させる工程で成り立っている。しかし、複雑形状の成形体を製造するためには、混合物の成形型への流し込みが容易であること、硬化した含溶媒セラミックス成形体は保形性がよいこと、また、内部の残留応力等が少なく乾燥時に無理な応力が発生して割れや歪とならないこと、また乾燥収縮時による引張りに耐える十分な強度があること等の条件を合わせ持たなければならない。これらを満足させるためには脱型工程と乾燥工程の間に熱処理を行うことが重要である。本発明において熱処理とは含溶媒成形体を乾燥させずに熱をかけることをいう。混合物に使用したものと同成分の溶媒中に含溶媒セラミックス成形体を入れて含溶媒セラミックス成形体に熱をかける方法や高温蒸気中に含溶媒成形体を入れる方法等がある。   A casting method that does not use a water-absorbing mold such as a gypsum mold creates a mixture containing ceramic powder, a dispersant, a curable resin and a solvent, and injects the mixture into the mold, and molds and contains the injected mixture. It consists of a step of forming a solvent ceramic molded body, a demolding step of removing the mold, and a step of drying the solvent-containing ceramic molded body. However, in order to produce a compact shaped body, it is easy to pour the mixture into a mold, the cured solvent-containing ceramic shaped body has good shape retention, and there are internal residual stresses. There must be a combination of conditions such that there is little stress generated during drying and no cracking or distortion occurs, and there is sufficient strength to withstand the tension caused by drying shrinkage. In order to satisfy these, it is important to perform a heat treatment between the demolding step and the drying step. In the present invention, the heat treatment refers to applying heat without drying the solvent-containing molded body. There are a method of putting a solvent-containing ceramic molded body in a solvent of the same component as that used for the mixture and heating the solvent-containing ceramic molded body, a method of putting the solvent-containing molded body in high-temperature steam, and the like.

硬化し脱型した含溶媒成形体を水等の溶媒中に入れると、含溶媒成形体は溶媒をすって少し軟らかくなり、内部にある残留応力を解放する。この状態で溶媒の温度を上げてやると再度含溶媒成形体は硬化し、残留応力の少ない含溶媒セラミックスを作製することができる。また脱型したときよりも固くなるので、鋳込みが容易になるように粘度の低い混合物を用いた場合、脱型後軟らかく保形性に問題があるときも熱処理により固くなり、保形性を向上することが出来る。熱処理の方法は残留応力を緩和する効果から溶媒中に含溶媒成形体を入れる方法が好ましく、また常温の溶媒中に含溶媒成形体を入れた後溶媒温度を上げて熱処理する方法がより好ましい。   When the cured and demolded solvent-containing molded article is placed in a solvent such as water, the solvent-containing molded article is slightly softened by the solvent and releases the residual stress inside. If the temperature of the solvent is raised in this state, the solvent-containing molded body is cured again, and a solvent-containing ceramic with little residual stress can be produced. Also, since it becomes harder than when it is demolded, if a mixture with low viscosity is used to facilitate casting, it becomes softer after demolding and becomes harder by heat treatment to improve shape retention. I can do it. The heat treatment method is preferably a method in which a solvent-containing molded body is placed in a solvent from the effect of relieving residual stress, and a method in which the solvent temperature is increased after the solvent-containing molded body is placed in a solvent at room temperature is more preferred.

本発明において 分散剤がポリカルボン酸塩であり、分散剤の量がセラミックス粉体の表面積に対し、0.3mg/m〜1.7mg/mであることがよい。分散剤は水等の溶媒で希釈されている場合が多く、実際の含有量を用いる。鋳込みに適した混合物を作るためには粉末を溶媒中に分散する必要がある。そのためにpHを調整するものや、分散剤としてヘキサメタリン酸等の無機塩や、アニオン系、カチオン系、ノニオン系の有機の界面活性剤等を用いることができる。中でもポリカルボン酸系は分散効果が高く、また熱処理により硬化させる効果が高く望ましい。 Dispersant In the present invention is a polycarboxylic acid salt, relative to the surface area of the amount of the ceramic powder of the dispersant may be a 0.3mg / m 2 ~1.7mg / m 2 . The dispersant is often diluted with a solvent such as water, and the actual content is used. In order to make a mixture suitable for casting, it is necessary to disperse the powder in a solvent. For this purpose, a pH adjusting agent, an inorganic salt such as hexametaphosphoric acid, an anionic, cationic or nonionic organic surfactant can be used as a dispersant. Among them, the polycarboxylic acid type is preferable because of its high dispersion effect and high effect of curing by heat treatment.

また、熱処理による硬化を得るためには温度の上昇に従い吸着量が増加し凝集を起こす適量であることが望ましい。ここでいう分散剤の量とは、使用するセラミックス粉末の単位表面積当たりの量で表す。セラミックス粉末の表面積はJISR1626(1996)ファインセラミックス粉体の気体吸着BET法による比表面積の測定法により求めることができる。0.3mg/mよりも小さいと、混合物の分散が上手く行かず鋳込みが困難となることがあり、1.7mg/mよりも大きいと熱処理による効果が得られないことがある。好ましくは0.5〜1.5mg/mである。 In addition, in order to obtain curing by heat treatment, it is desirable that the amount of adsorption increases as the temperature rises and an appropriate amount causes aggregation. Here, the amount of the dispersant is expressed as an amount per unit surface area of the ceramic powder to be used. The surface area of the ceramic powder can be determined by a specific surface area measurement method by gas adsorption BET method of JIS R1626 (1996) fine ceramic powder. If it is less than 0.3 mg / m 2 , the mixture will not be well dispersed and casting may be difficult. If it is greater than 1.7 mg / m 2 , the effect of heat treatment may not be obtained. Preferably from 0.5 to 1.5 mg / m 2.

本発明において前記混合物の粘度が5Pa・s以下であるとよい。粘度は粘度計で測定することができる。セラミックス粉末を含む混合物は非ニュートン流体であり、剪断速度により粘度は変化するため、本発明ではせん断速度1.9(1/s)のときの値とする。5Pa・s以上になると流動性が悪く、複雑形状の成形型に上手く鋳込めなかったり、また混合物に大きな泡がかみこみ、欠陥となることがあり好ましくない。好ましくは3Pa・s以下、より好ましくは1Pa・s以下が望ましい。   In the present invention, the viscosity of the mixture is preferably 5 Pa · s or less. The viscosity can be measured with a viscometer. Since the mixture containing the ceramic powder is a non-Newtonian fluid and the viscosity changes depending on the shear rate, in the present invention, the value at the shear rate of 1.9 (1 / s) is used. If it is 5 Pa · s or more, the fluidity is poor, and it is not preferable because it cannot be cast well into a mold having a complicated shape, or a large bubble is entrained in the mixture, resulting in defects. It is preferably 3 Pa · s or less, more preferably 1 Pa · s or less.

本発明の溶媒が27〜36体積%であるとよい。混合物中の溶媒とは、その種類を限定されるものではないが、例えば、水、アルコール類、その他有機溶媒などを用いることができる。焼結後、成形体に残らないものであれば良い。中でも水およびアルコール類は、取り扱い性がよいという点から好ましい。アルコール類としては、例えば、メチルアルコール、エチルアルコール、プロピレングリコールプロピルエーテル、エチレングリコールモノブチルエーテルなどを使用できる。その他有機溶媒としては、例えば、γ−ブチロラクトン、ベンゼン、トルエン、キシレンを用いることができる。これら混合物中の溶媒は単独で使用しても良いし、適宜混合しても良い。環境への影響から水系であることがより望ましい。また、溶媒に含まれている物質や不純物により、樹脂の硬化を妨げたり、焼結体物性に影響を与えることがある。 例えば溶媒として水を用いる場合には、フィルターを通したものや、イオン交換水を用いる事が望ましい。溶媒が27体積%未満の場合では、流動性が低いため、鋳込み成形には適さない場合があり、36体積%を超える場合では、乾燥、焼結時の収縮率の増大による割れや歪みが発生することがある。また熱処理による効果が少なくなることがあり、好ましくない。   The solvent of the present invention is preferably 27 to 36% by volume. The type of the solvent in the mixture is not limited, and for example, water, alcohols, and other organic solvents can be used. Any material that does not remain in the molded body after sintering may be used. Among these, water and alcohols are preferable from the viewpoint of easy handling. Examples of alcohols that can be used include methyl alcohol, ethyl alcohol, propylene glycol propyl ether, and ethylene glycol monobutyl ether. As other organic solvents, for example, γ-butyrolactone, benzene, toluene, and xylene can be used. The solvents in these mixtures may be used alone or may be mixed as appropriate. It is more desirable to be water based on the environmental impact. In addition, substances and impurities contained in the solvent may hinder the curing of the resin or affect the physical properties of the sintered body. For example, when water is used as the solvent, it is desirable to use a filter or ion exchange water. If the solvent is less than 27% by volume, the fluidity is low, so it may not be suitable for casting. If it exceeds 36% by volume, cracks and distortion occur due to increased shrinkage during drying and sintering. There are things to do. Moreover, the effect by heat processing may decrease and is not preferable.

本発明において用いる硬化性樹脂とは重合反応により3次元網目構造を形成するものであればよいが混合物の流動性を高め、成形型への注入を良好にするという点から液状であることが望ましい。硬化性樹脂と溶媒の親和性についても、親和性が悪いと分離して成形体内部で偏析し、焼結時にポアなどの欠陥の原因となる恐れがあるので、溶媒との親和性のよい硬化性樹脂を選択することが望ましい。かかる硬化性樹脂としては、例えば、メラミン樹脂、フェノール樹脂、エポキシ樹脂、アクリル酸樹脂、ウレタン樹脂等を挙げることができる。中でもエポキシ樹脂は成形体の保形性を高めるために、好適に用いられる。エポキシ樹脂としては、例えばビスフェノールA型、ビスフェノールF型等のビスフェノール類のジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂、ゴム変性エポキシ樹脂などが挙げられる。環境への影響から溶媒は水系が好ましく、そのため硬化性樹脂も水溶性が好ましく、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂が好ましく、中でもグリシジルエーテル型エポキシ樹脂が室温でも円滑に硬化が起こるのでより好ましい。
エポキシ樹脂の平均分子量は20〜30000が好ましく、平均分子量50〜3000が粉体との混合が容易であり、かつ一定の機械強度が得られることから、より好ましい。さらに好ましくは50〜2500である。かかるエポキシ樹脂は単独で、または複数を組み合わせて用いることもできる。
The curable resin used in the present invention is not particularly limited as long as it forms a three-dimensional network structure by a polymerization reaction. . As for the affinity between the curable resin and the solvent, if the affinity is poor, it separates and segregates inside the molded body, which may cause pores and other defects during sintering. It is desirable to select a functional resin. Examples of such curable resins include melamine resins, phenol resins, epoxy resins, acrylic resins, urethane resins, and the like. Among these, an epoxy resin is preferably used in order to improve the shape retention of the molded body. Examples of the epoxy resin include diglycidyl ether type epoxy resins of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, aliphatic epoxy resins and the like. Examples include ether type epoxy resins, glycidyl ester type epoxy resins, methyl glycidyl ether type epoxy resins, cyclohexene oxide type epoxy resins, and rubber-modified epoxy resins. The solvent is preferably aqueous based on the influence on the environment. Therefore, the curable resin is preferably water-soluble, and glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, methyl glycidyl ether type epoxy resin, and cyclohexene oxide type epoxy resin are preferable. An ether type epoxy resin is more preferable because it cures smoothly even at room temperature.
The average molecular weight of the epoxy resin is preferably 20 to 30000, and the average molecular weight of 50 to 3000 is more preferable because it can be easily mixed with the powder and a certain mechanical strength can be obtained. More preferably, it is 50-2500. Such epoxy resins can be used alone or in combination.

本発明の製造方法において、硬化性樹脂は、5〜15体積%が好ましい。硬化性樹脂の含有量が前記混合物中、5体積%未満であると含溶媒成形体及び乾燥成形体の強度が不十分な場合があり、15体積%を超えると含溶媒成形体を乾燥工程中に割れが発生したり、乾燥成形体を焼結体とするための脱脂工程や焼結工程など、硬化樹脂を除去する工程において、割れ等の問題が発生するという場合があり好ましくない。
尚、上記硬化性樹脂としては、熱により硬化するものであっても、光により硬化するものであっても、硬化剤や硬化促進剤により硬化するものであってもよく、これらを併用することもできる。硬化剤を適宜選択することにより、室温で硬化が進行する系とすることは、大型の成形体を製造する上で、型の耐熱性などに自由度が増すため好ましい。硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等を用いることができる。アミン系硬化剤は反応が迅速であるという点で好ましく、酸無水物系硬化剤は耐熱衝撃性にすぐれた硬化物が得られるという点で好ましく用いられる。中でもアミン系硬化剤は室温において硬化可能なことから型の耐熱性などに自由度が増すため好ましい。アミン系硬化剤としては、脂肪族アミン、脂環族アミン、芳香族アミンなどが挙げられ、モノアミン、ジアミン、トリアミン、ポリアミンのいずれも用いることができる。酸無水物系硬化剤としてはメチルテトラヒドロ無水フタル酸、2塩基酸ポリ無水物などを挙げることができる。
In the manufacturing method of this invention, 5-15 volume% of curable resin is preferable. If the content of the curable resin is less than 5% by volume in the mixture, the strength of the solvent-containing molded body and the dried molded body may be insufficient. If the content exceeds 15% by volume, the solvent-containing molded body is being dried. In the process of removing the cured resin, such as a degreasing process or a sintering process for forming a dry molded body into a sintered body, problems such as cracking may occur, which is not preferable.
The curable resin may be one that is cured by heat, one that is cured by light, one that is cured by a curing agent or a curing accelerator, and these are used in combination. You can also. By appropriately selecting a curing agent, a system in which curing proceeds at room temperature is preferable because the degree of freedom in the heat resistance of the mold is increased in producing a large-sized molded body. As the curing agent, for example, an amine curing agent, an acid anhydride curing agent, a polyamide curing agent, or the like can be used. An amine-based curing agent is preferable in terms of rapid reaction, and an acid anhydride-based curing agent is preferably used in that a cured product having excellent thermal shock resistance can be obtained. Of these, amine-based curing agents are preferable because they can be cured at room temperature, and the degree of freedom in the heat resistance of the mold is increased. Examples of the amine curing agent include aliphatic amines, alicyclic amines, aromatic amines, and any of monoamines, diamines, triamines, and polyamines can be used. Examples of the acid anhydride curing agent include methyltetrahydrophthalic anhydride, dibasic acid polyanhydride, and the like.

このように硬化剤を添加する場合、その添加量は硬化性樹脂との組合せにより適宜決めることができる。すなわち硬化性樹脂の官能基当量と硬化剤の活性基当量により、好ましい配合比は異なるが、例えば、硬化性樹脂としてエポキシ樹脂を、硬化剤としてポリアミン系硬化剤を用いる場合には、エポキシ当量に対するアミン系硬化剤の活性水素当量の比が0.8〜1.5程度とすることが硬化性の点から好ましい。
作成した成形体はこれに使用した粉末や成形体の形状によってそれぞれ適した条件で、乾燥、脱脂、焼結することにより、クラックや反りなどのない良好な焼成体を得ることができる。
Thus, when adding a hardening | curing agent, the addition amount can be suitably determined with the combination with curable resin. That is, the preferred compounding ratio differs depending on the functional group equivalent of the curable resin and the active group equivalent of the curing agent. For example, when using an epoxy resin as the curable resin and a polyamine curing agent as the curing agent, The active hydrogen equivalent ratio of the amine curing agent is preferably about 0.8 to 1.5 from the viewpoint of curability.
The prepared molded body can be dried, degreased, and sintered under conditions suitable for the powder used for this and the shape of the molded body, whereby a good fired body free from cracks and warpage can be obtained.

保形性の指標として含溶媒成形体の弾性率を用いることができる。含溶媒成形体は粘弾性の特性を持つため応力により弾性率が変化するため、本発明における含溶媒成形体の弾性率は応力7MPaの場合の値とする。大型複雑形状成形体を作製するためには25MPa以上、より好ましくは30MPa以上、さらに好ましくは35MPa以上であることが望ましい。乾燥成形体の弾性率は限定されるものではないが、300〜500MPa程度が保形成、ハンドリング性、加工性が良く好ましい。
得られたセラミックス成形体を焼結体にするために脱脂、焼結を行う。脱脂条件はバインダーの種類、量、成形体の形状等、焼結温度は使用するセラミックス素材及びセラミックス成形体の形状等により適宜決定すると良い。特に大型成形体や肉厚成形体は脱脂による割れが発生しないように600℃程度まで30℃/時間以下の速度で昇温してバインダーを取り除くと良い。焼結条件は例えば酸化ジルコニウムの場合は大気雰囲気下で1350〜1500℃で2時間〜3時間保持し、700℃程度まで200℃/時間程度で降温後、室温まで100℃/時間以下で降温し、酸化アルミニウムの場合も同様であるが、1550〜1650℃で2時間〜3時間保持すると良い。
The elastic modulus of the solvent-containing molded product can be used as an index of shape retention. Since the solvent-containing molded body has viscoelastic properties and the elastic modulus changes depending on the stress, the elastic modulus of the solvent-containing molded body in the present invention is a value in the case of a stress of 7 MPa. In order to produce a large complex shaped article, it is desirable that the pressure be 25 MPa or more, more preferably 30 MPa or more, and still more preferably 35 MPa or more. The elastic modulus of the dry molded body is not limited, but about 300 to 500 MPa is preferable because of good retention, handling and workability.
Degreasing and sintering are performed to make the obtained ceramic molded body into a sintered body. The degreasing conditions may be appropriately determined depending on the type and amount of the binder, the shape of the molded body, and the sintering temperature depending on the ceramic material to be used and the shape of the ceramic molded body. In particular, a large molded body or a thick molded body may be heated to a temperature of 30 ° C./hour or less up to about 600 ° C. so as to prevent cracking due to degreasing to remove the binder. For example, in the case of zirconium oxide, the temperature is maintained at 1350-1500 ° C. for 2 hours to 3 hours in an air atmosphere, lowered to about 700 ° C. at about 200 ° C./hour, and then lowered to room temperature at 100 ° C./hour or less. The same applies to aluminum oxide, but it is preferable to hold at 1550 to 1650 ° C. for 2 to 3 hours.

以下実施例を挙げて具体的に説明する。但し、本発明は実施例に限定されるものではない。   Examples will be described in detail below. However, the present invention is not limited to the examples.

実施例の物性の測定、評価は以下のように行った。
(1)BET比表面積
BET比表面積の測定はJIS−R1626(1996)「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に則り、BET1点法で行った。
(2)混合物の粘度
作成した硬化剤添加前の混合物を粘度計によって粘度を測定した。粘度計は株式会社トキメック製E型粘度計DVU−EII型を用いた。測定条件は、ローターは標準1°34′R24を用い、温度20℃、回転数0.5rpm(剪断速度1.9(1/s))とした。
(3)成形体の弾性率
作成した含溶媒成形体および乾燥成形体サンプルを3点曲げ試験し、変位量と曲げ荷重を連続的に測定し、式(1)及び式(2)により、含溶媒成形体は曲げ応力7MPa時の弾性率を、乾燥成形体は曲げ応力15MPa時の弾性率を求めた。測定数n=10とし、平均値を含溶媒成形体および乾燥形成体の弾性率とした。装置は米倉製作所製万能型試験機CATY2000を用いた。測定条件は以下のとおりである。含溶媒成形体の測定において、熱処理したサンプルは溶媒中で冷却後、熱処理しないサンプルは成形型から脱型後すぐに測定した。
The physical properties of the examples were measured and evaluated as follows.
(1) BET specific surface area The BET specific surface area was measured by the BET single point method according to JIS-R1626 (1996) "Method for measuring specific surface area by gas adsorption BET method of fine ceramic powder".
(2) Viscosity of the mixture The viscosity of the prepared mixture before addition of the curing agent was measured with a viscometer. As the viscometer, an E-type viscometer DVU-EII type manufactured by Tokimec Co., Ltd. was used. The measurement conditions were such that the rotor was standard 1 ° 34′R24, the temperature was 20 ° C., and the rotation speed was 0.5 rpm (shear rate 1.9 (1 / s)).
(3) Elastic Modulus of Molded Body The prepared solvent-containing molded body and dry molded body sample were subjected to a three-point bending test, and the displacement and bending load were measured continuously. According to the equations (1) and (2), The solvent molded body was determined for the elastic modulus when the bending stress was 7 MPa, and the dry molded body was determined for the elastic modulus when the bending stress was 15 MPa. The number of measurements was n = 10, and the average value was taken as the elastic modulus of the solvent-containing molded product and the dried product. The apparatus used was a universal testing machine CATY2000 manufactured by Yonekura Seisakusho. The measurement conditions are as follows. In the measurement of the solvent-containing molded body, the heat-treated sample was cooled in a solvent, and the non-heat-treated sample was measured immediately after demolding from the mold.

測定雰囲気:20±5℃、相対湿度40±10%
支点間距離:20mm
上部圧子の曲率半径:5mm
下部圧子の曲率半径:5mm
クロスヘッド速度:0.5mm/秒
試験片サイズ:φ9.5×40mm
σ=9.8×8×P×L/(π×D) (1)
σ:曲げ応力(MPa)
P:曲げ荷重(kg)
L:支点間距離(mm)
D:サンプル直径(mm)
E=4×9.8×P×L/(3×π×D×Y) (2)
E:弾性率(MPa)
P:曲げ荷重(kg)
L:支点間距離(mm)
D:サンプル直径(mm)
Y:変位量(mm)。
(4)乾燥時の割れ
作製した100mm×70mm、厚さ20mmの含溶媒成形体サンプルを温度30℃、相対湿度60%で24時間加湿乾燥し、割れの有無を確認した。乾燥には恒温恒湿乾燥機を用いた。
(6)焼結体の相対密度
焼結体の焼結密度をアルキメデス法により測定した。焼結密度を理論密度で除した値を百分率で表した値を相対密度とした。ここで、それぞれの理論密度は以下のようにした。
酸化アルミニウム:3.98g/cm
酸化ジルコニウム:6.08g/cm
炭化珪素:3.21g/cm
窒化珪素:3.24g/cm
Measurement atmosphere: 20 ± 5 ° C, relative humidity 40 ± 10%
Distance between fulcrums: 20mm
Upper indenter radius of curvature: 5 mm
Lower indenter radius of curvature: 5mm
Crosshead speed: 0.5 mm / second Test piece size: φ9.5 × 40 mm
σ = 9.8 × 8 × P × L / (π × D 3 ) (1)
σ: Bending stress (MPa)
P: Bending load (kg)
L: Distance between fulcrums (mm)
D: Sample diameter (mm)
E = 4 × 9.8 × P × L 3 / (3 × π × D 4 × Y) (2)
E: Elastic modulus (MPa)
P: Bending load (kg)
L: Distance between fulcrums (mm)
D: Sample diameter (mm)
Y: Displacement amount (mm).
(4) Cracking at the time of drying The produced solvent-containing molded sample having a size of 100 mm × 70 mm and a thickness of 20 mm was humidified and dried at a temperature of 30 ° C. and a relative humidity of 60% for 24 hours to confirm the presence or absence of cracks. A constant temperature and humidity dryer was used for drying.
(6) Relative density of sintered body The sintered density of the sintered body was measured by the Archimedes method. A value obtained by dividing the sintered density by the theoretical density as a percentage was taken as the relative density. Here, each theoretical density was as follows.
Aluminum oxide: 3.98 g / cm 3
Zirconium oxide: 6.08 g / cm 3
Silicon carbide: 3.21 g / cm 3
Silicon nitride: 3.24 g / cm 3 .

実施例1
表1の実施例1に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(比表面積:BET値 4m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(ナガセケムテックス製“EX−313”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で24時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型はそれぞれシリコーンゴム製φ9.5mm×40mm、PP製100mm×70mm、厚さ20mmを用いた。
Example 1
The formulation shown in Example 1 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (specific surface area: BET value 4 m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) (“EX-313” manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, mixed with a curing agent by a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 24 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. As the molds, silicone rubber φ9.5 mm × 40 mm, PP 100 mm × 70 mm, and thickness 20 mm were used.

脱型後、イオン交換水に浸漬し、溶液を加熱し、90℃で30分保持後室温まで冷却し、含溶媒成形体サンプルを得た。φ9.5mm×40mm含溶媒成形体サンプルで含溶媒成形体の弾性率を測定した。また、φ9.5mm×40mmの含溶媒成形体を温度30℃相対湿度80%で48時間加湿乾燥後、100℃で24時間熱風乾燥し乾燥成形体サンプルを得、乾燥成形体の弾性率を測定した。100mm×70mm、厚さ20mmの含溶媒成形体サンプルは温度30℃相対湿度60%で24時間加湿乾燥し、割れの有無を確認した。また、100mm×70mm、厚さ20mmの含溶媒成形体サンプルを温度30℃相対湿度80%で5日間加湿乾燥後、100℃で24時間熱風乾燥し、乾燥成形体を得、さらに電気炉で600℃まで25℃/時間で昇温後、さらに昇温し1600℃で2時間焼結し焼結体サンプルを得た。得られた焼結体サンプルで密度を測定した。結果は表1に示すとおり、含溶媒成形体の弾性率は高く、また乾燥割れは発生しなかった。焼結体の相対密度は99%以上であった。   After demolding, it was immersed in ion-exchanged water, the solution was heated, held at 90 ° C. for 30 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. The elastic modulus of the solvent-containing molded body was measured using a φ9.5 mm × 40 mm solvent-containing molded body sample. Also, a solvent-containing molded product with a diameter of 9.5 mm × 40 mm was humidified and dried at 30 ° C. and 80% relative humidity for 48 hours and then dried with hot air at 100 ° C. for 24 hours to obtain a dry molded sample, and the elastic modulus of the dried molded product was measured. did. A solvent-containing molded body sample having a size of 100 mm × 70 mm and a thickness of 20 mm was humidified and dried for 24 hours at a temperature of 30 ° C. and a relative humidity of 60%, and the presence or absence of cracks was confirmed. Further, a 100 mm × 70 mm, 20 mm thick solvent-containing molded body sample was humidified and dried at a temperature of 30 ° C. and a relative humidity of 80% for 5 days, and then dried with hot air at 100 ° C. for 24 hours to obtain a dried molded body. After the temperature was raised to 25 ° C./hour at 25 ° C./hour, the temperature was further raised and sintered at 1600 ° C. for 2 hours to obtain a sintered body sample. The density was measured with the obtained sintered body sample. As a result, as shown in Table 1, the elastic modulus of the solvent-containing molded product was high, and dry cracking did not occur. The relative density of the sintered body was 99% or more.

実施例2
表1の実施例2に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(比表面積:BET値 6m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(坂本薬品工業製“SR−PG”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(東和合成製“アロンA−6330”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は実施例1と同様とした。
脱型後、イオン交換水溶液中に浸漬し、溶液を加熱し、100℃で10分保持後、室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。結果は表1に示すとおり、含溶媒成形体の弾性率は高く、また乾燥割れは発生しなかった。焼結体の相対密度は99%以上であった。
Example 2
The formulation shown in Example 2 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (specific surface area: BET value 6 m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) ("SR-PG" manufactured by Sakamoto Pharmaceutical Co., Ltd.)
Solvent: ion-exchange water dispersant: polycarboxylate ("Aron A-6330" manufactured by Towa Gosei Co., Ltd. (content 40%))
Next, the mixture was taken out from the ball mill, the curing agent was mixed with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The mold was the same as in Example 1.
After demolding, it was immersed in an ion exchange aqueous solution, the solution was heated, held at 100 ° C. for 10 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. As a result, as shown in Table 1, the elastic modulus of the solvent-containing molded product was high, and dry cracking did not occur. The relative density of the sintered body was 99% or more.

実施例3
表1の実施例3に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:酸化ジルコニウム(BET値 12m/g)
硬化性樹脂:ウレタン樹脂(住友バイエルウレタン製“バイヒドロールA145”)
溶媒:イオン交換水、γ−ブチロラクトン
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合しながら脱泡し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は住友バイエルウレタン製(“バイヒジュール3100”)を使用した。成形型は実施例1と同様とした。脱型後、イオン交換水とγ−ブチロラクトンの混合溶液中に浸漬し、溶液を加熱し、100℃で10分保持後、室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は1400℃で2時間保持した。結果は表1に示すとおり、混合物の粘度は少し高めであったが、含溶媒成形体の弾性率は高く、また乾燥割れは発生しなかった。焼結体の相対密度は98.8%と高い値であった。
Example 3
The formulation shown in Example 3 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Zirconium oxide (BET value 12m 2 / g)
Curable resin: Urethane resin (“Bihydrol A145” manufactured by Sumitomo Bayer Urethane)
Solvent: ion-exchanged water, γ-butyrolactone dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, defoamed while mixing the curing agent with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded article. The curing agent used was Sumitomo Bayer Urethane (“Baihijoule 3100”). The mold was the same as in Example 1. After demolding, it was immersed in a mixed solution of ion-exchanged water and γ-butyrolactone, the solution was heated, held at 100 ° C. for 10 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. Sintering was held at 1400 ° C. for 2 hours. As a result, as shown in Table 1, the viscosity of the mixture was slightly higher, but the elastic modulus of the solvent-containing molded article was high, and dry cracking did not occur. The relative density of the sintered body was as high as 98.8%.

実施例4
表1の実施例4に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:炭化珪素(BET値 15m/g)
硬化性樹脂:ウレタン樹脂(住友バイエルウレタン製“バイヒドロールA145”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(東和合成製“アロンA−30SL”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合しながら脱泡し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は住友バイエルウレタン製(“バイヒジュール3100”)を使用した。成形型は実施例1と同様とした。脱型後、イオン交換水に浸漬し、溶液を加熱し、100℃で30分保持後室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は真空焼結炉を用い、1450℃で2時間保持した。結果は表1に示すとおり、混合物の粘度は少し高めであったが、含溶媒成形体の弾性率は高く、また乾燥割れは発生しなかった。焼結体の相対密度は98.5%と高い値であった。
Example 4
The formulation shown in Example 4 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Silicon carbide (BET value 15 m 2 / g)
Curable resin: Urethane resin (“Bihydrol A145” manufactured by Sumitomo Bayer Urethane)
Solvent: ion-exchange water dispersant: polycarboxylate ("Aron A-30SL" manufactured by Towa Gosei Co., Ltd. (content 40%))
Next, the mixture was taken out from the ball mill, defoamed while mixing the curing agent with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded article. The curing agent used was Sumitomo Bayer Urethane (“Baihijoule 3100”). The mold was the same as in Example 1. After demolding, it was immersed in ion-exchanged water, the solution was heated, held at 100 ° C. for 30 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. In addition, sintering was hold | maintained at 1450 degreeC for 2 hours using the vacuum sintering furnace. As a result, as shown in Table 1, the viscosity of the mixture was slightly higher, but the elastic modulus of the solvent-containing molded article was high, and dry cracking did not occur. The relative density of the sintered body was as high as 98.5%.

実施例5
表1の実施例5に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:窒化珪素 (BET値6m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(ナガセケムテックス製“EX−314”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−735(含有量20%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。脱型後、イオン交換水に浸漬し、溶液を加熱し、100℃で30分保持後室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は雰囲気焼結炉を用い窒素雰囲気で2000℃2時間保持した。結果は表1に示すとおり、混合物の粘度は少し高めであったが、含溶媒成形体の弾性率は高く、また乾燥割れは発生しなかった。焼結体の相対密度は98%と高い値であった。
Example 5
The formulation shown in Example 5 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Silicon nitride (BET value 6m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) (“EX-314” manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (manufactured by Chukyo Yushi "D-735 (content 20%))"
Next, the mixture was taken out from the ball mill, the curing agent was mixed with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. After demolding, it was immersed in ion-exchanged water, the solution was heated, held at 100 ° C. for 30 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. Sintering was performed at 2000 ° C. for 2 hours in a nitrogen atmosphere using an atmosphere sintering furnace. As a result, as shown in Table 1, the viscosity of the mixture was slightly higher, but the elastic modulus of the solvent-containing molded article was high, and dry cracking did not occur. The relative density of the sintered body was as high as 98%.

比較例1
表1の比較例1に示す処方をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(BET値 4m/g)
硬化性樹脂:エポキシ樹脂(グリシジルエーテル型)(坂本薬品工業製“SR−PG”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は実施例1と同様とした。
含溶媒成形体サンプルを実施例1と同様にして各測定を実施した。結果は表1に示すとおり、混合物の粘度は低く、また焼結体の相対密度は98%と高い値であったが、含溶媒成形体の弾性率は低くて保形性が悪かった。また乾燥割れが発生した。
Comparative Example 1
The formulation shown in Comparative Example 1 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (BET value 4m 2 / g)
Curable resin: Epoxy resin (glycidyl ether type) ("SR-PG" manufactured by Sakamoto Pharmaceutical Co., Ltd.)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, the curing agent was mixed with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The mold was the same as in Example 1.
Each measurement was performed in the same manner as in Example 1 on the solvent-containing molded body sample. As a result, as shown in Table 1, the viscosity of the mixture was low and the relative density of the sintered body was as high as 98%, but the elastic modulus of the solvent-containing molded body was low and the shape retention was poor. Moreover, dry cracks occurred.

比較例2
表1の比較例2に示す処方で、水硬性アルミナ以外をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(BET値 6m/g)
硬化性樹脂:ウレタン樹脂(住友バイエルウレタン製(“バイヒドロールA145”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(東亜合成製“アロンA−30SL”(含有量40%))
次に、水硬性アルミナを添加し、20℃で2時間混合後、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は(住友バイエルウレタン製(“バイヒジュール3100”)を使用した。成形型は実施例1と同様とした。水硬性アルミナは(住友化学製、BK−103)を用いた。実施例1と同様にして各測定を実施した。結果は表1に示すとおり、含溶媒成形体の弾性率は高かったが、乾燥中に割れが発生し、また焼結体の相対密度も低かった。
Comparative Example 2
According to the formulation shown in Comparative Example 2 in Table 1, a material other than hydraulic alumina was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (BET value 6m 2 / g)
Curable resin: Urethane resin (manufactured by Sumitomo Bayer Urethane (“Bihydrol A145”))
Solvent: ion-exchange water dispersant: polycarboxylate ("Aron A-30SL" manufactured by Toa Gosei (content 40%))
Next, hydraulic alumina is added and mixed for 2 hours at 20 ° C., then the mixture is taken out from the ball mill, the curing agent is mixed with a rotary evaporator, poured into a mold, and allowed to cure for 15 hours at 20 ° C. A molded body was obtained. The curing agent used was (manufactured by Sumitomo Bayer Urethane (“Baihijoule 3100”). The mold was the same as in Example 1. The hydraulic alumina was (Sumitomo Chemical, BK-103). Each measurement was carried out in the same manner, and the results were as shown in Table 1. Although the elastic modulus of the solvent-containing molded body was high, cracks occurred during drying, and the relative density of the sintered body was also low.

Figure 2007136912
Figure 2007136912

表1の実施例1〜5に示す通り、本発明のセラミックス成形体の製造方法によると、含溶媒成形体の弾性率が高く、かつ乾燥割れがなく、焼結体とした場合の特性に優れた成形体を得ることができる。 As shown in Examples 1 to 5 of Table 1, according to the method for producing a ceramic molded body of the present invention, the solvent-containing molded body has a high elastic modulus, has no dry cracks, and has excellent characteristics when used as a sintered body. A molded product can be obtained.

本発明による成形体の製造方法は、複雑形状物、大型複雑形状物等を好適に提供できるため、大型構造用部品、半導体部品、各種精密部品などに応用することができるが、その応用範囲がこれらに限られるものではない。   The method for producing a molded body according to the present invention can be suitably applied to large-sized structural parts, semiconductor parts, various precision parts, etc., because it can suitably provide complicated shaped objects, large-sized complicated shaped objects, etc. However, it is not limited to these.

Claims (7)

セラミックス粉体、分散剤、硬化性樹脂、ならびに溶媒を含む混合物を成形型内に注入する工程、注入した該混合物を成形し、含溶媒セラミックス成形体とする工程、該成形型を取り除く脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該含溶媒セラミックス成形体とする工程が硬化性樹脂を硬化させる工程を有しており、脱型工程と含溶媒セラミックス成形体を乾燥させる工程の間に含溶媒セラミックス成形体を熱処理する工程を有することを特徴とするセラミックス成形体の製造方法。 A step of injecting a mixture containing ceramic powder, a dispersant, a curable resin, and a solvent into a mold, a step of forming the injected mixture into a solvent-containing ceramic molded body, and a demolding step of removing the mold In the method for producing a ceramic molded body having a step of drying the solvent-containing ceramic molded body obtained by the demolding step, the step of forming the solvent-containing ceramic molded body has a step of curing the curable resin. A method for producing a ceramic molded body comprising a step of heat-treating the solvent-containing ceramic molded body between the demolding step and the step of drying the solvent-containing ceramic molded body. 熱処理する工程が、溶媒中に前記含溶媒セラミックス成形体を浸漬した状態で加熱して熱処理する工程であることを特徴とする請求項1記載のセラミックス成形体の製造方法。 2. The method for producing a ceramic molded body according to claim 1, wherein the heat treatment step is a step of heating and heat-treating the solvent-containing ceramic molded body in a solvent. 前記分散剤がポリカルボン酸塩であり、分散剤の量がセラミックス粉体の表面積に対し、0.3mg/m〜1.7mg/mであることを特徴とする請求項1または2に記載のセラミックス成形体の製造方法。 The dispersant is a polycarboxylic acid salt, relative to the surface area of the amount of the dispersant is a ceramic powder, to claim 1 or 2, characterized in that it is 0.3mg / m 2 ~1.7mg / m 2 The manufacturing method of the ceramic molded object of description. 前記混合物が溶媒を27〜36体積%含有することを特徴とする請求項1〜3のいずれか記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to any one of claims 1 to 3, wherein the mixture contains 27 to 36% by volume of a solvent. 前記硬化性樹脂が水溶性のエポキシ樹脂であることを特徴とする請求項1〜4のいずれかに記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to claim 1, wherein the curable resin is a water-soluble epoxy resin. 前記水溶性のエポキシ樹脂がグリシジルエーテル型の水溶性エポキシ樹脂であることを特徴とする請求項1〜5のいずれかに記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to any one of claims 1 to 5, wherein the water-soluble epoxy resin is a glycidyl ether-type water-soluble epoxy resin. 請求項1〜6のいずれかの製造方法によって得られたセラミックス成形体を焼結することを特徴とするセラミック焼結体の製造方法。 A method for producing a ceramic sintered body, comprising sintering a ceramic molded body obtained by the production method according to claim 1.
JP2005335286A 2005-11-21 2005-11-21 Method for producing ceramic molded body and method for producing ceramic sintered body using the same Expired - Fee Related JP4946014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335286A JP4946014B2 (en) 2005-11-21 2005-11-21 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335286A JP4946014B2 (en) 2005-11-21 2005-11-21 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Publications (2)

Publication Number Publication Date
JP2007136912A true JP2007136912A (en) 2007-06-07
JP4946014B2 JP4946014B2 (en) 2012-06-06

Family

ID=38200345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335286A Expired - Fee Related JP4946014B2 (en) 2005-11-21 2005-11-21 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Country Status (1)

Country Link
JP (1) JP4946014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247672A (en) * 2007-03-30 2008-10-16 Toray Ind Inc Method for manufacturing ceramic sintered compact
CN107042309A (en) * 2017-03-07 2017-08-15 长沙理工大学 A kind of water-soluble core part and preparation method thereof
WO2018038031A1 (en) * 2016-08-24 2018-03-01 旭硝子株式会社 Method for molding ceramic material, method for producing ceramic article, and ceramic article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10217212A (en) * 1997-02-07 1998-08-18 Toray Ind Inc Manufacture of ceramic formed body
JP2001278673A (en) * 2000-03-30 2001-10-10 Toray Ind Inc Aqueous-solvent curable resin for wet molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10217212A (en) * 1997-02-07 1998-08-18 Toray Ind Inc Manufacture of ceramic formed body
JP2001278673A (en) * 2000-03-30 2001-10-10 Toray Ind Inc Aqueous-solvent curable resin for wet molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247672A (en) * 2007-03-30 2008-10-16 Toray Ind Inc Method for manufacturing ceramic sintered compact
WO2018038031A1 (en) * 2016-08-24 2018-03-01 旭硝子株式会社 Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN109641807A (en) * 2016-08-24 2019-04-16 Agc株式会社 The forming method of ceramic material, the manufacturing method of ceramic articles and ceramic articles
JPWO2018038031A1 (en) * 2016-08-24 2019-06-20 Agc株式会社 Method of forming ceramic material, method of manufacturing ceramic article, and ceramic article
JP7092030B2 (en) 2016-08-24 2022-06-28 Agc株式会社 How to mold ceramic materials and how to manufacture ceramic articles
US11572316B2 (en) 2016-08-24 2023-02-07 AGC Inc. Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN107042309A (en) * 2017-03-07 2017-08-15 长沙理工大学 A kind of water-soluble core part and preparation method thereof
CN107042309B (en) * 2017-03-07 2019-12-20 长沙理工大学 Water-soluble mold core part and preparation method thereof

Also Published As

Publication number Publication date
JP4946014B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5146010B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
CN107500781B (en) Preparation method of porous ceramic
JP4536943B2 (en) Method for producing powder compact
US7517490B2 (en) Method of manufacturing ceramic green body
WO2021225158A1 (en) Method for producing ceramic sintered body, and ceramic sintered body
CN102898141A (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
JP4946014B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
CN109734457B (en) High-hardness Sialon ceramic material and preparation method and application thereof
KR101904874B1 (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
EP1552913A1 (en) Method for producing ceramic formed article
JP2009234852A (en) Method of manufacturing ceramic molded boy and method of manufacturing ceramic sintered compact
JP3692682B2 (en) Manufacturing method of ceramic molded body
JP2011157222A (en) Method for producing ceramic molding
CN112759399B (en) Aluminum-based silicon carbide packaging part material and preparation method of silicon carbide preset blank thereof
JP4470407B2 (en) Manufacturing method of ceramic molded body
JP2010228424A (en) Method for manufacturing ceramic molding, and method for manufacturing ceramic sintered body using the same
JP4735586B2 (en) Manufacturing method of ceramic sintered body
CN112341164A (en) Ceramic mold for glass hot bending molding and preparation method thereof
JP5033087B2 (en) Method for producing powder compact
JPH06227854A (en) Production of formed ceramic article
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same
JP7392729B2 (en) Evaluation method and manufacturing method for ceramic articles
CN115108840B (en) Adhesive for powder injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees