JP2007130763A - Polyhydroxyalkanoate resin extrusion foam and its manufacturing method - Google Patents

Polyhydroxyalkanoate resin extrusion foam and its manufacturing method Download PDF

Info

Publication number
JP2007130763A
JP2007130763A JP2005322977A JP2005322977A JP2007130763A JP 2007130763 A JP2007130763 A JP 2007130763A JP 2005322977 A JP2005322977 A JP 2005322977A JP 2005322977 A JP2005322977 A JP 2005322977A JP 2007130763 A JP2007130763 A JP 2007130763A
Authority
JP
Japan
Prior art keywords
p3ha
foam
resin
extruded
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005322977A
Other languages
Japanese (ja)
Inventor
Fuminobu Hirose
文信 廣瀬
Toshio Miyagawa
登志夫 宮川
Kenichi Senda
健一 千田
Shinichi Fukunaga
真一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005322977A priority Critical patent/JP2007130763A/en
Publication of JP2007130763A publication Critical patent/JP2007130763A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyhydroxyalkanoate resin extrusion foam excellent in environmental compatibility and having biodegredability, and its stable manufacturing method. <P>SOLUTION: A volatile foaming agent is kneaded with a resin composition (A), which is prepared by mixing a copolymer comprising at least one kind of a unit represented by the formula (1): [-O-CHR-CH<SB>2</SB>-CO-] [wherein R is an alkyl group represented by C<SB>n</SB>H<SB>2n+1</SB>(wherein n is 1-15)] [hereinbelow referred to as poly (3-hydroxyalkanoate) (called P3HA for short)] and an organic peroxide, in a molten state to prepare a mixture and this mixture is extruded to a low pressure region through a molding die adjusted to a temperature from 80°C to the melting point of the resin composition Tm+20°C. Immediately after the mixture is extruded, the extrudate is continuously quenched using a cooling medium so that its surface temperature becomes lower than 80°C to manufacture the P3HA resin extruded foam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

植物由来で、生分解性を有するポリヒドロキシアルカノエート樹脂押出発泡体の製造方法および該製造方法により得られる押出発泡体に関する。   The present invention relates to a method for producing a polyhydroxyalkanoate resin extruded foam derived from a plant and having biodegradability, and an extruded foam obtained by the production method.

プラスチックを使用して、すでに、シート、フィルム、繊維、射出成型品等が国内外で製品化されているが、プラスチック廃棄物の中でも包装容器、緩衝材、クッション材等に多量に用いられている発泡プラスチックは嵩高いために大きな社会問題となっており、その解決が望まれている。このため、生分解性を有するプラスチック発泡体の研究が盛んに行われており、これまで脂肪族ポリエステル系樹脂やデンプンとプラスチックの混合樹脂等の押出発泡体やバッチ式で得られる発泡粒子の検討がなされている。   Sheets, films, fibers, injection-molded products, etc. have already been commercialized in Japan and overseas using plastic, but they are used in large quantities in packaging waste, cushioning materials, cushioning materials, etc., among plastic waste. Since foamed plastic is bulky, it has become a big social problem, and its solution is desired. For this reason, research on biodegradable plastic foams has been actively conducted, and so far, investigation of extruded foams such as aliphatic polyester resins and mixed resins of starch and plastic, and foamed particles obtained in batch mode. Has been made.

生分解性の押出発泡体に関して、従来検討されている内容としては石油由来の原料から合成して得られた生分解性の脂肪族ポリエステル樹脂を、発泡性を改良するためジイソシアナート反応させ高分子量化し得られる押出発泡体(特許文献1)や、増粘剤などの添加などにより特定の溶融粘度を有することに特徴を有するポリ乳酸系樹脂の押出発泡体(特許文献2〜4)、発泡剤の種類によりポリ乳酸系樹脂や脂肪族−芳香族ポリエステル系樹脂を適正粘度に調整して得られる押出発泡体(特許文献5〜10)がある。また、押出発泡性を向上させる手段として有機過酸化物を使用し、分岐や架橋を高分子に導入し発泡性を向上させる方法はポリオレフィン発泡等古くから知られているが、脂肪族ポリエステルについても同様で、有機過酸化物添加による押出発泡体についても従来検討されている(特許文献11〜15)。   Regarding the biodegradable extruded foam, the content that has been studied in the past is that a biodegradable aliphatic polyester resin obtained by synthesizing from petroleum-derived raw materials is reacted with a diisocyanate to improve foamability. Extruded foam obtained by molecular weight (Patent Document 1), Polylactic acid resin extruded foam characterized by having a specific melt viscosity by adding a thickener or the like (Patent Documents 2 to 4), foaming There are extruded foams (Patent Documents 5 to 10) obtained by adjusting a polylactic acid resin or an aliphatic-aromatic polyester resin to an appropriate viscosity depending on the type of agent. In addition, a method for improving foamability by using an organic peroxide as a means for improving extrusion foamability and introducing branching or crosslinking into a polymer has been known for a long time, such as polyolefin foaming. Similarly, an extruded foam obtained by adding an organic peroxide has been conventionally studied (Patent Documents 11 to 15).

微生物から生産されるP3HA樹脂においては、非発泡の樹脂自体に関しては有機過酸化物による改質が研究されており、歪み硬化性の発現等に効果がある(非特許文献1)ことや、押出フィルムの生産性の向上に寄与する(特許文献16)ことが判っている。   In the P3HA resin produced from microorganisms, modification with an organic peroxide has been studied for the non-foamed resin itself, which is effective in developing strain-hardening properties (Non-Patent Document 1) It has been found that it contributes to the improvement of film productivity (Patent Document 16).

P3HA押出発泡体については、特許文献17に、P3HA樹脂においても特定の溶融粘度、非ハロゲン系発泡剤の使用により押出発泡体を作成していることが記載されており、P3HAの一種であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、PHBHと称す場合がある)を使用し、発泡剤として炭酸ガス、ジメチルエーテル、炭化水素を使用し、発泡体が得られることが開示されている。しかし、P3HAは一旦溶融すると、遅い結晶化のため、揮発性発泡剤が殆ど発泡に寄与せず(殆ど気泡を形成せず)に気化するため、吐出物は若干気泡の混じった外観不良の低発泡体となったり、気泡形成して発泡したとしても膨らんだ膜が固化せず、収縮し、外観不良の発泡体となってしまう問題があった。   Regarding P3HA extruded foam, Patent Document 17 describes that an extruded foam is prepared by using a specific melt viscosity and non-halogen-based foaming agent in P3HA resin, and is a kind of P3HA. Using (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter sometimes referred to as PHBH) and using carbon dioxide, dimethyl ether, or hydrocarbon as a foaming agent, a foam is obtained. Is disclosed. However, once P3HA is melted, the volatile foaming agent vaporizes almost without contributing to foaming (forms almost no bubbles) because of slow crystallization. Even if foamed or foamed and foamed, the swollen film did not solidify and contracted, resulting in a foam with poor appearance.

更にP3HA樹脂の特徴として、熱分解が挙げられる。融点以上の温度では少なからず熱分解が生じることがあり、押出安定性における問題となっている。このように、発泡体を得るうえで、外観美麗なP3HA押出発泡体を安定的に得る方法が望まれていた。   Furthermore, thermal decomposition is mentioned as a characteristic of P3HA resin. At temperatures above the melting point, thermal decomposition may occur, which is a problem in extrusion stability. Thus, in order to obtain a foam, a method for stably obtaining a P3HA extruded foam having a beautiful appearance has been desired.

また、発泡性を改良する方法として、ポリエステル押出発泡体についてではあるが、ポリエチレンテレフタレートなどの芳香族を分子中に含む熱可塑性ポリエステルの押出発泡体について従来検討がなされており、例えば特定の粘度範囲を有する発泡体を急冷する押出発泡方法について報告されている(特許文献18)。特許文献18には圧力開放した後に押出発泡したポリエステルを、そのガラス転移温度以下に急冷、結晶化を抑制して構造体を製造する方法が開示されている。   Further, as a method for improving foamability, although it is for a polyester extruded foam, a thermoplastic polyester extruded foam containing an aromatic such as polyethylene terephthalate in the molecule has been studied conventionally, for example, in a specific viscosity range. It has been reported about an extrusion foaming method for rapidly cooling a foam having slag (Patent Document 18). Patent Document 18 discloses a method for producing a structure by rapidly cooling a polyester that has been extruded and foamed after releasing the pressure to a temperature lower than its glass transition temperature and suppressing crystallization.

また、一方、連続気泡率の高い押出発泡体の開発も用途の多様さから望まれている。例えば、連続気泡率の高い押出発泡体を一定長に切断したものを、通気性を有する又は有さない袋状物(好ましくは生分解性を有する袋)に充填することで、形状を自由に変化させることが可能なバラ緩衝材とできる。バラ緩衝材はクッション材、隙間部分に形状を自由に変えて挿入できる緩衝材、一方では吸音材等で優れた性能を発揮でき、また、徐放性の薬剤を混合するなどして薬剤徐放性制御粒子としたり、細胞を培養するための担体として利用できる可能性もあるためその開発が望まれている。
特開平10−152572号公報 特開2000−7815号公報 特開2000−7816号公報 特開2003−20355号公報 特開2003−35924号公報 特開2003−103595号公報 特開2003−261704号公報 特開2003−301066号公報 特開2004−58352号公報 特開2004−307662号公報 特開平10−305471号公報 特開2003−128901号公報 特開2004−67894号公報 特開2004−107615号公報 特表2005−523354号公報 米国特許第6201083号公報 特開2003−327737号公報 特開平6−145404号公報 Macromolecule,32,5229−5325
On the other hand, the development of an extruded foam having a high open cell ratio is also desired due to the variety of applications. For example, an extruded foam with a high open cell ratio cut to a certain length is filled into a bag-like product (preferably a biodegradable bag) with or without breathability so that the shape can be freely set. It can be a rose cushioning material that can be changed. The rose cushioning material is a cushioning material, a cushioning material that can be inserted into the gaps freely, and on the other hand, it can exhibit excellent performance with a sound absorbing material, etc. Development is desired because it may be used as a sex control particle or as a carrier for culturing cells.
Japanese Patent Laid-Open No. 10-152572 JP 2000-7815 A Japanese Patent Laid-Open No. 2000-7816 JP 2003-20355 A JP 2003-35924 A JP 2003-103595 A JP 2003-261704 A Japanese Patent Laid-Open No. 2003-301066 JP 2004-58352 A Japanese Patent Laid-Open No. 2004-307661 Japanese Patent Laid-Open No. 10-305471 JP 2003-128901 A JP 2004-67894 A JP 2004-107615 A JP 2005-523354 Gazette US Pat. No. 6,2010,083 JP 2003-327737 A JP-A-6-145404 Macromolecule, 32, 5229-5325

そこで、本発明の課題は、植物由来の環境適合性に優れた生分解性の樹脂押出発泡体の製造方法において、外観美麗な発泡体で連続気泡率の高い成形体が得られる安定な製造方法を提供することである。   Accordingly, an object of the present invention is to produce a biodegradable resin-extruded foam having excellent environmental compatibility derived from a plant, and a stable production method in which a molded article having a high open cell ratio can be obtained with a beautiful appearance. Is to provide.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、P3HAに有機過酸化物を混合してなる樹脂組成物に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を成形ダイを通じて低圧領域に押し出した直後、吐出物の表面温度が80℃未満になるように冷媒で冷却することで樹脂組成物の結晶化を促進し、樹脂組成物からのガス抜けを抑制でき、発泡時のセル膜強度の向上も併せて外観美麗な発泡体が得られることを見出し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention prepared a mixture by melting and kneading a volatile blowing agent into a resin composition obtained by mixing an organic peroxide with P3HA, Immediately after extruding the mixture to the low pressure region through a molding die, the resin composition is cooled with a refrigerant so that the surface temperature of the discharged material is less than 80 ° C, thereby promoting the crystallization of the resin composition and suppressing the outgassing from the resin composition. In addition, the present inventors have found that a foam having a beautiful appearance can be obtained together with an improvement in cell membrane strength during foaming.

即ち、本発明の第一は、微生物から生産される式(1)
[−O−CHR−CH−CO−] (1)
(ここに、RはC2n+1で表されるアルキル基で、n=1以上15以下である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称P3HA)と有機過酸化物とを混合してなる樹脂組成物(A)に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を80℃以上、P3HAの融点+20℃以下に調整された成形ダイを通じて80℃未満の低圧領域に押し出すことを特徴とするP3HA樹脂押出発泡体の製造方法に関する。
ここで樹脂組成物(A)は式(2)の関係を満たす。
That is, the first of the present invention is a formula (1) produced from a microorganism.
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n = 1 or more and 15 or less.)
A volatile foaming agent in a resin composition (A) obtained by mixing a copolymer (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA) composed of one or more units of To produce a mixture, and the mixture is extruded into a low pressure region of less than 80 ° C. through a molding die adjusted to 80 ° C. or higher and the melting point of P3HA + 20 ° C. or lower. Regarding the method.
Here, the resin composition (A) satisfies the relationship of the formula (2).

η>500Pa・s (2)
η:P3HAの融点+20℃、剪断速度122sec−1での溶融粘度
好ましい実施態様としては、
(1)樹脂組成物(A)が脂肪族アミド系化合物を含んでなる樹脂組成物であることを特徴とする、
(2)P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)である、
(3)P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)であり、その共重合成分の組成が、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であることを特徴とする、
(4)揮発性発泡剤が二酸化炭素、炭素数3以上4以下の脂肪族飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルからなる群より選ばれる1種以上であることを特徴とする、
前記記載のP3HA樹脂押出発泡体の製造方法に関する。
η> 500 Pa · s (2)
η: Melting viscosity at melting point of P3HA + 20 ° C. and shear rate of 122 sec −1 As a preferred embodiment,
(1) The resin composition (A) is a resin composition comprising an aliphatic amide compound,
(2) P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate),
(3) P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), and the composition of the copolymer component is such that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. Characterized by the
(4) The volatile blowing agent is one or more selected from the group consisting of carbon dioxide, an aliphatic saturated hydrocarbon having 3 to 4 carbon atoms, dimethyl ether, diethyl ether, and methyl ethyl ether.
The present invention relates to a method for producing the P3HA resin extruded foam described above.

本発明の第2は、前記記載の押出発泡体の製造方法により得られることを特徴とするP3HA樹脂押出発泡体に関し、好ましい態様としては、連続気泡率が60%以上であることを特徴とする前記記載のP3HA樹脂押出発泡体に関する。   A second aspect of the present invention relates to a P3HA resin extruded foam characterized by being obtained by the method for producing an extruded foam described above, and as a preferred embodiment, the open cell ratio is 60% or more. It relates to the P3HA resin extruded foam described above.

本発明の製造方法により、外観美麗で連続気泡率の高いP3HA樹脂押出発泡体を安定的に得ることが出来る。更には押出発泡用樹脂として、P3HAを採用していることから、耐熱性、耐水性に優れた、植物由来の環境適合性に優れた樹脂押出発泡体を得ることが出来る。   By the production method of the present invention, a P3HA resin extruded foam having a beautiful appearance and a high open cell ratio can be stably obtained. Furthermore, since P3HA is adopted as the resin for extrusion foaming, a resin extruded foam having excellent heat resistance and water resistance and excellent environmental compatibility derived from plants can be obtained.

以下、本発明につき、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のポリ(3−ヒドロキシアルカノエート)とは、式(1)で示される一種以上の3−ヒドロキシアルカノエートよりなる単位からなる共重合体である。   The poly (3-hydroxyalkanoate) of the present invention is a copolymer comprising units composed of one or more 3-hydroxyalkanoates represented by the formula (1).

[−O−CHR−CH−CO−] (1)
ここで、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。
[—O—CHR—CH 2 —CO—] (1)
Here, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15.

本発明におけるP3HAとしては、3−ヒドロキシアルカノエートのホモポリマー、または2種以上の組み合わせからなる共重合体、つまりジ−コポリマー、トリ−コポリマー、テトラ−コポリマーなど、またはこれらの2種以上のブレンド物が挙げられ、中でもn=1の3−ヒドロキシブチレート、n=2の3−ヒドロキシバリレート、n=3の3−ヒドロキシヘキサノエート、n=5の3−ヒドロキシオクタノエート、n=15の3−ヒドロキシオクタデカノエートのホモポリマー、及びこれら3−ヒドロキシアルカノエート単位2種以上の組み合わせからなるジ−コポリマー、トリ−コポリマー等の共重合体、及びこれらのブレンド物が好ましく使用できる。更には、n=1の3−ヒドロキシブチレートとn=3の3−ヒドロキシヘキサノエートの共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)が好ましく、その共重合成分の組成としては、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であるのが特に好ましい。3−ヒドロキシヘキサノエートが当該範囲内にあると高温にせずとも加熱加工ができるため、加熱加工時の熱分解による分子量低下を抑制出来る傾向にある。   As P3HA in the present invention, a homopolymer of 3-hydroxyalkanoate, or a copolymer composed of a combination of two or more types, that is, a di-copolymer, a tri-copolymer, a tetra-copolymer, etc., or a blend of two or more thereof N = 1 3-hydroxybutyrate, n = 2 3-hydroxyvalerate, n = 3 3-hydroxyhexanoate, n = 5 3-hydroxyoctanoate, n = 15 homopolymers of 3-hydroxyoctadecanoate, and copolymers such as di-copolymers and tri-copolymers composed of combinations of two or more of these 3-hydroxyalkanoate units, and blends thereof can be preferably used. . Furthermore, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), which is a copolymer of n = 1 3-hydroxybutyrate and n = 3 3-hydroxyhexanoate, is preferred. As a composition of a copolymerization component, it is especially preferable that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. When 3-hydroxyhexanoate is within the above range, heat processing can be performed without increasing the temperature, and thus a decrease in molecular weight due to thermal decomposition during heat processing tends to be suppressed.

本発明のP3HAは、微生物から生産されたものが使用される。たとえば、P3HAの1つであるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)は、微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32を用いて原料、培養条件を適宜調整してJ.Bacteriol., 179, 4821(1997)記載の方法等で得ることが可能である。   The P3HA of the present invention is produced from microorganisms. For example, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), one of P3HA, uses Alcaligenes eutrophus AC32 in which a PHA synthase gene derived from Aeromonas caviae is introduced into Alcaligenes eutrophus as a microorganism. It can be obtained by the method described in J. Bacteriol., 179, 4821 (1997) or the like by appropriately adjusting the raw materials and culture conditions.

前記P3HAの重量平均分子量(Mw)の下限は、好ましくは5万である。重量平均分子量が5万未満の場合、加熱加工時の粘度変化が急激であり、また、発泡時に必要な溶融粘度を十分確保できない場合があるため、安定して発泡体が得られない傾向がある。前記重量平均分子量は、クロロホルム溶液を用いたゲルパーミエーションクロマトグラフィー(GPC)測定でのポリスチレン換算分子量分布測定より得られる重量平均分子量(Mw)をいう。有機過酸化物を添加することで多くの場合は未添加物よりもMwが増大する傾向にある。   The lower limit of the weight average molecular weight (Mw) of the P3HA is preferably 50,000. When the weight average molecular weight is less than 50,000, the viscosity change during heat processing is rapid, and the melt viscosity necessary for foaming may not be sufficiently secured, so there is a tendency that a foam cannot be stably obtained. . The said weight average molecular weight says the weight average molecular weight (Mw) obtained from the polystyrene conversion molecular weight distribution measurement by the gel permeation chromatography (GPC) measurement which used the chloroform solution. In many cases, the addition of the organic peroxide tends to increase the Mw as compared with the unadded material.

本発明における樹脂組成物(A)は、P3HAに有機過酸化物を混合してなる。   The resin composition (A) in the present invention is obtained by mixing an organic peroxide with P3HA.

本発明で用いられる有機過酸化物は、溶融温度や混練時間などを考慮してジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、パーオキシケタールおよびパーオキシジカーボネートが好ましく使用される。具体的には、ブチルパーオキシネオドデカノエート、オクタノイルパーオキサイド、ラウロイルパーオキサイド、サクシニックパーオキサイド、ヘキシルパーオキシエチルヘキサノエート、トルオイルパーオキサイドとベンゾイルパーオキサイドとの混合物、ベンゾイルパーオキサイド、ブチルパーオキシイソブチレート、ビス(ブチルパーオキシ)トリメチルシクロヘキサン、ヘキシルパーオキシイソプロピルモノカーボネート、ブチルパーオキシラウレート、ブチルパーオキシイソプロピルモノカーボネート、ジメチルジ(ベンゾイルパーオキシ)ヘキサン、ビス(ブチルパーオキシ)メチルシクロヘキサン、ビス(ブチルパーオキシ)シクロヘキサン、ブチルパーオキシベンゾエート、ブチルビス(ブチルパーオキシ)バレレート、ジクミルパーオキサイド等が挙げられる。更に、これら有機過酸化物を2種類以上組み合わせたものも使用可能である。本発明においては、使用する有機過酸化物の1分半減期温度が180℃以下のものを使用することが好ましい。使用する有機過酸化物の1分半減期温度が180℃より高いと、P3HAと反応させるために180℃より高温で押出す必要があるが、この様な温度ではP3HAが熱分解し分子量低下を起こすため、押出は不安定となり、得られる組成物、成形体も不均一となる傾向がある。   As the organic peroxide used in the present invention, diacyl peroxide, peroxyester, dialkyl peroxide, hydroperoxide, peroxyketal and peroxydicarbonate are preferably used in consideration of the melting temperature and kneading time. . Specifically, butyl peroxyneodecanoate, octanoyl peroxide, lauroyl peroxide, succinic peroxide, hexyl peroxyethyl hexanoate, a mixture of toluoyl peroxide and benzoyl peroxide, benzoyl peroxide , Butylperoxyisobutyrate, bis (butylperoxy) trimethylcyclohexane, hexylperoxyisopropylmonocarbonate, butylperoxylaurate, butylperoxyisopropylmonocarbonate, dimethyldi (benzoylperoxy) hexane, bis (butylperoxy) ) Methylcyclohexane, bis (butylperoxy) cyclohexane, butylperoxybenzoate, butylbis (butylperoxy) valerate, di Mill peroxide. Further, a combination of two or more of these organic peroxides can be used. In the present invention, it is preferable to use an organic peroxide having a one-minute half-life temperature of 180 ° C. or lower. If the organic peroxide used has a 1 minute half-life temperature higher than 180 ° C, it must be extruded at a temperature higher than 180 ° C in order to react with P3HA. At such temperatures, P3HA is thermally decomposed and the molecular weight decreases. As a result, extrusion becomes unstable, and the resulting composition and molded product tend to be non-uniform.

有機過酸化物の添加量は、P3HA100重量部に対して、好ましくは0.01重量部以上1.0重量部以下、さらには0.05重量部以上0.8重量部以下が好ましい。有機過酸化物の添加量が上記範囲にある場合、過度の反応を抑制して効率良く分岐、架橋反応を進行させ、これにより、ゲルなどの不純物が殆ど生じない長鎖分岐/架橋/高分子量化されたP3HA樹脂組成物を得ることができる。   The addition amount of the organic peroxide is preferably 0.01 parts by weight or more and 1.0 parts by weight or less, and more preferably 0.05 parts by weight or more and 0.8 parts by weight or less with respect to 100 parts by weight of P3HA. When the amount of the organic peroxide added is in the above range, the excessive reaction is suppressed and the branching and crosslinking reaction is efficiently advanced, thereby causing long chain branching / crosslinking / high molecular weight in which impurities such as gel hardly occur. A modified P3HA resin composition can be obtained.

本発明におけるP3HAには押出機内部での結晶固化防止、及び発泡後の固化に影響を与えない若しくは促進することから、脂肪酸アミド系化合物を添加することが好ましい。   In the present invention, it is preferable to add a fatty acid amide-based compound to P3HA because it does not affect or accelerates the solidification of the crystal inside the extruder and the solidification after foaming.

脂肪酸アミド系化合物の分類としては、飽和脂肪酸や不飽和脂肪酸のモノアミド(R−CONH)、その置換アミド(R−CONH−R’)、ビスアミド(R−CONH−・・・−NHCO−R’)、メチロールアミド(R−CONHCHOH)、エステルアミド(R−CONH−・・・−OCO−)、脂肪酸アミドエチレンオキサイド化合物(R−CONH−(CHO)−H)がある。具体的には、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘニン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、N−オレイルパルミトアミド、N−ステアリルエルカアミドなどが挙げられるが、これに限った物ではない。脂肪酸アミド系化合物が押出安定性を向上させたり発泡後の固化を阻害しない、若しくは促進する理由は定かではないが、押出機内部では内外滑剤のような作用、さらには結晶核剤的効果を示すためと考えられる。押出発泡の押出機では、発泡剤添加後に適正粘度および結晶化を促進するための冷却シリンダーやダイス部分があるが、脂肪酸アミド系化合物がここで発生しやすいと考えられる結晶核の押出機への付着を防止すること(外滑剤的作用)で、押出機内部での結晶成長(肥大化)が抑制され、押出安定性は向上していると考えられる。脂肪酸アミド系化合物の添加量については、使用する脂肪酸アミド系化合物の種類にもよるが、通常はP3HA100重量部に対し0.01重量部以上50重量部以下添加することが好ましい。添加量が0.01重量部未満であると押出安定効果が明確でない場合があり、50重量部より多い場合は樹脂への分散不良が起きて均一な押出発泡体が得られない場合がある。 As the classification of fatty acid amide compounds, mono-amides (R-CONH 2 ) of saturated fatty acids and unsaturated fatty acids, substituted amides (R-CONH-R ′), bisamides (R-CONH-... -NHCO-R ′) ), Methylolamide (R—CONHCH 2 OH), ester amide (R—CONH—... —OCO—), and fatty acid amide ethylene oxide compound (R—CONH— (CH 2 O) n —H). Specifically, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, erucic acid amide, ricinoleic acid amide, N-oleyl palmitamide, N-stearyl erucamide, etc. Is not limited to this. The reason why the fatty acid amide compound improves the extrusion stability and does not inhibit or accelerate the solidification after foaming is not clear, but it acts like an internal and external lubricant inside the extruder, and also exhibits a crystal nucleating effect. This is probably because of this. In extrusion foaming extruders, there is a cooling cylinder and a die part for promoting proper viscosity and crystallization after the addition of a foaming agent, but fatty acid amide compounds are considered to be easily generated here. By preventing adhesion (external lubricant action), it is considered that crystal growth (enlargement) inside the extruder is suppressed and the extrusion stability is improved. About the addition amount of a fatty acid amide type compound, although depending on the kind of fatty acid amide type compound to be used, it is preferable to add 0.01 to 50 weight part normally with respect to 100 weight part of P3HA. If the addition amount is less than 0.01 parts by weight, the extrusion stability effect may not be clear. If the addition amount is more than 50 parts by weight, a dispersion into the resin may be poor and a uniform extruded foam may not be obtained.

本発明におけるP3HAには、有機過酸化物、好ましくは脂肪酸アミド系化合物、の他に、得られる押出発泡体の要求性能を阻害しない範囲において、各種添加剤を加えても良い。ここで添加剤とは、たとえば、酸化防止剤、紫外線吸収剤、染料、顔料などの着色剤、可塑剤、滑剤、結晶化核剤、無機充填剤等目的に応じて使用できるが、中でも生分解性を有する配合剤が好ましい。添加剤としては、シリカ、タルク、ケイ酸カルシウム、ワラストナイト、カオリン、クレー、マイカ、酸化亜鉛、酸化チタン、酸化珪素等の無機化合物や、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウムやステアリン酸バリウム等の脂肪酸金属塩、などが挙げられるが、これらに限定された物ではない。また、発泡体の気泡径を調節する必要がある場合は気泡調整剤を添加する。気泡調整剤としては無機造核剤には、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレー、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等があり、その使用量は好ましくは0.005〜10重量部である。   In addition to organic peroxides, preferably fatty acid amide compounds, various additives may be added to P3HA in the present invention as long as the required performance of the obtained extruded foam is not impaired. Here, additives can be used according to purposes such as antioxidants, UV absorbers, dyes, pigments and other colorants, plasticizers, lubricants, crystallization nucleating agents, inorganic fillers, etc. The compounding agent which has property is preferable. Additives include inorganic compounds such as silica, talc, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, silicon oxide, sodium stearate, magnesium stearate, calcium stearate and stearic acid. Although fatty acid metal salts, such as barium, etc. are mentioned, it is not a thing limited to these. Moreover, when it is necessary to adjust the bubble diameter of a foam, a bubble regulator is added. Inorganic nucleating agents include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, baking soda, alumina, barium sulfate, aluminum oxide, bentonite, etc. The amount is preferably 0.005 to 10 parts by weight.

この様にして得られる樹脂組成物(A)は、P3HAの融点+20℃における剪断速度122sec−1での溶融粘度ηが、式(2)を充足する。
η>500Pa・s (2)
ηが当該範囲であれば、発泡時に必要な溶融粘度を確保できる。
In the resin composition (A) thus obtained, the melt viscosity η at the shear rate of 122 sec −1 at the melting point of P3HA + 20 ° C. satisfies the formula (2).
η> 500 Pa · s (2)
When η is within the above range, the melt viscosity necessary for foaming can be ensured.

本発明では、P3HAに対して溶解性を有する揮発性発泡剤を使用することに特徴を有する。中でも、環境適合性を有し、押出時の成形ダイの温度T0において樹脂組成物(A)に溶解している発泡剤が好ましい。具体的に揮発性発泡剤としては、二酸化炭素、窒素、空気などの無機ガス、脂肪族飽和炭化水素、その他のハロゲンを含まない発泡剤等が例示できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The present invention is characterized by using a volatile foaming agent that is soluble in P3HA. Among them, a foaming agent that has environmental compatibility and is dissolved in the resin composition (A) at the temperature T0 of the molding die at the time of extrusion is preferable. Specific examples of the volatile foaming agent include inorganic gases such as carbon dioxide, nitrogen and air, aliphatic saturated hydrocarbons, and other foaming agents not containing halogen. These may be used alone or in combination of two or more.

一般的には、無機ガスは一般的にはP3HAへの溶解性が低いとされているが、例えば二酸化炭素などを高圧制御できる押出機であれば樹脂への可溶化も可能である。また、気泡サイズ調整剤としての作用もある。   In general, inorganic gas is generally considered to have low solubility in P3HA. However, for example, an extruder capable of controlling high pressure of carbon dioxide or the like can be solubilized in a resin. It also acts as a bubble size adjusting agent.

脂肪族飽和炭化水素としては、プロパン、ノルマルブタン、イソブタンなど炭素数3以上4以下の脂肪族飽和炭化水素、ノルマルペンタン、イソペンタン、ネオペンタン等の炭素数5の脂肪族飽和炭化水素が挙げられる。   Examples of the aliphatic saturated hydrocarbon include aliphatic saturated hydrocarbons having 3 to 4 carbon atoms such as propane, normal butane and isobutane, and aliphatic saturated hydrocarbons having 5 carbon atoms such as normal pentane, isopentane and neopentane.

その他のハロゲンを含まない発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル類、ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチルn−ブチルケトン、メチルi−ブチルケトン、メチルn−アミルケトン、メチルn−ヘキシルケトン、エチルn−プロピルケトン、エチルn−ブチルケトンなどのケトン類、メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコールなどのアルコール類、蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル類などを用いることができる。中でも、エーテル類はP3HA樹脂に対して強い溶解性、可塑性能と発泡力を有している。アゾ化合物などの化学発泡剤を発泡助剤や気泡サイズ調整剤として使用することも出来る。   Examples of other halogen-free blowing agents include, for example, dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran, and other ethers, Ketones such as dimethyl ketone, methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl i-butyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, ethyl n-butyl ketone, Alcohols such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol, methyl formate Ester, ethyl formate ester, formate, propyl ester, butyl formate ester formate, amyl esters, methyl propionate, and the like can be used carboxylic acid esters such as propionic acid ethyl ester. Among them, ethers have strong solubility, plastic performance and foaming power with respect to P3HA resin. Chemical foaming agents such as azo compounds can also be used as foaming aids and cell size adjusting agents.

これらの揮発性発泡剤の中では、発泡性、発泡体成形性などの点から、二酸化炭素、炭素数3以上4以下の脂肪族飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルが好ましく使用出来、中でもジメチルエーテルが特に好ましい。   Among these volatile blowing agents, carbon dioxide, aliphatic saturated hydrocarbons having 3 to 4 carbon atoms, dimethyl ether, diethyl ether, and methyl ethyl ether can be preferably used from the viewpoint of foamability and foam moldability. Of these, dimethyl ether is particularly preferable.

発泡剤の添加量は使用する揮発性発泡剤の溶解能によって異なるために範囲規定はできないが、概ねP3HA100重量部に対し1重量部以上100重量部以下であることが好ましい。更に好ましくは1重量部以上30重量部以下の範囲であることが好ましい。1重量部より少ない場合は、急冷しても殆ど発泡しない場合がある。また30重量部より多い場合は、ガスの使用量が過剰であるため経済的でなく、ダイス口からガスが噴出する場合がある。   The amount of the foaming agent added depends on the dissolving ability of the volatile foaming agent to be used, so the range cannot be defined, but it is preferably about 1 to 100 parts by weight with respect to 100 parts by weight of P3HA. More preferably, it is in the range of 1 to 30 parts by weight. When the amount is less than 1 part by weight, there is a case where foaming hardly occurs even when quenched. On the other hand, when the amount is more than 30 parts by weight, the amount of gas used is excessive, which is not economical, and gas may be ejected from the die port.

本発明のP3HA樹脂押出発泡体は、樹脂組成物(A)を押出機で加熱溶融させ(加熱溶融温度:T1)、該溶融樹脂に揮発性発泡剤を圧入し、溶融樹脂と揮発性発泡剤を混練し、80℃以上P3HAの融点+20℃以下に温調された成形ダイを通じて80℃未満の低圧領域に押し出す事で得られる。好ましくは、吐出物の表面温度を、吐出物のガラス転移温度より高く80℃未満の温度に急速に冷却する。一般的には、例えば、特開平6−145404号公報記載の方法のように、ガラス転移点以下に急冷することで発泡させる方法が採られるが、本発明においては、ガラス転移点以下にせずとも発泡させることが可能である。   In the P3HA resin extruded foam of the present invention, the resin composition (A) is heated and melted with an extruder (heating melting temperature: T1), and a volatile foaming agent is press-fitted into the molten resin. Is extruded into a low pressure region of less than 80 ° C. through a molding die temperature-controlled at 80 ° C. or higher and the melting point of P3HA + 20 ° C. or lower. Preferably, the surface temperature of the discharged material is rapidly cooled to a temperature higher than the glass transition temperature of the discharged material and lower than 80 ° C. In general, for example, a method of foaming by quenching below the glass transition point is employed as in the method described in JP-A-6-145404. However, in the present invention, the glass transition point is not required. It is possible to make it foam.

本発明の発泡方法は成形ダイスから押し出された吐出物が80℃未満に急冷されることをきっかけに発泡し外観美麗な発泡体が得られる。樹脂組成物(A)は、可塑性の強い揮発性発泡剤を使用して成形ダイス温度を樹脂の結晶化の温度に調整できる場合以外は、溶解している揮発性発泡剤が、樹脂組成物(A)の結晶化が遅いため殆ど発泡に寄与せず(殆ど気泡を形成せず)に気化し、吐出物は若干気泡の混じった外観不良の低発泡体となったり、気泡形成しても固化が遅いため収縮し、形状の不均一な発泡体となる場合がある。一方、吐出物を急冷することで、樹脂組成物の結晶化を促進し、気泡形成性に優れ外観を向上できる点に特徴がある。   In the foaming method of the present invention, the discharged product extruded from the molding die is foamed by being rapidly cooled to less than 80 ° C. to obtain a foam having a beautiful appearance. In the resin composition (A), the dissolved volatile foaming agent is a resin composition (except for the case where the molding die temperature can be adjusted to the temperature of resin crystallization using a highly plastic volatile foaming agent. Since the crystallization of A) is slow, it almost does not contribute to foaming (forms almost no bubbles), and the ejected matter becomes a low-foam with a poor appearance with some bubbles mixed, or solidifies even if bubbles are formed , It may shrink and become a non-uniform foam. On the other hand, by rapidly cooling the discharged material, it is characterized in that crystallization of the resin composition is promoted and the appearance can be improved with excellent bubble formation.

押出される80℃未満の低圧領域とは、大気圧未満の減圧雰囲気や若干の加圧雰囲気に調整された、気相、液相が選択し得、例えば、温水や冷水による冷却や、冷風による急冷却などが行われる。   The low pressure region of less than 80 ° C. to be extruded can be selected from a gas phase and a liquid phase adjusted to a reduced pressure atmosphere or a slightly pressurized atmosphere less than atmospheric pressure, for example, cooling with hot water or cold water, or cold air Rapid cooling is performed.

樹脂組成物(A)は、発泡用の押出機とは別の押出機で予めP3HAと有機過酸化物を混合した樹脂組成物(A)を一旦作成した後、押出発泡用押出機に使用しても良いし、押出発泡用の押出機においてP3HAと有機過酸化物を混合し樹脂組成物(A)として連続的に、揮発性発泡剤を混練、発泡させても良い。樹脂組成物(A)を加熱溶融する際の溶融温度(T1)は、P3HAを示差走査熱量測定することによって得られる融解温度(融点)を基準として、融点+20℃以下である。T1が融点+20℃を越えると、溶融時間が短時間であっても熱分解による低分子量化が促進され、発泡適性を有するような粘度を得ることが困難になる傾向がある。溶融時間は、単位時間当たりの押出量、溶融手段などによって異なるので一概には決定することができないが、P3HA、発泡剤、添加剤が均一に分散混合し、熱分解による低分子量化を著しく受けない範囲の時間が選ばれる。また、溶融手段としては、例えばスクリュー型押出機など、通常の押出発泡の際に用いられる溶融、混練装置を適宜選択すればよく、特に制限するものではない。   The resin composition (A) is used in an extruder for extrusion foaming after once preparing a resin composition (A) in which P3HA and an organic peroxide are mixed in advance by an extruder different from the foaming extruder. Alternatively, P3HA and an organic peroxide may be mixed in an extruder for extrusion foaming to continuously knead and foam the volatile foaming agent as the resin composition (A). The melting temperature (T1) when the resin composition (A) is heated and melted is a melting point + 20 ° C. or lower based on the melting temperature (melting point) obtained by differential scanning calorimetry of P3HA. If T1 exceeds the melting point + 20 ° C., lowering the molecular weight by thermal decomposition is promoted even if the melting time is short, and it tends to be difficult to obtain a viscosity having foamability. Although the melting time varies depending on the amount of extrusion per unit time and the melting means, etc., it cannot be determined unconditionally. However, P3HA, foaming agent and additives are uniformly dispersed and mixed, and the molecular weight is significantly reduced by thermal decomposition. A range of times is chosen. Further, as a melting means, for example, a melting and kneading apparatus used in normal extrusion foaming, such as a screw type extruder, may be appropriately selected and is not particularly limited.

本発明の発泡剤の押出機への圧入は公知の方法で行うことができる。発泡剤を注入する際の圧力は、特に制限するものではなく、押出機内に圧入するために押出機の内圧力よりも高い圧力であればよい。   The foaming agent of the present invention can be pressed into the extruder by a known method. The pressure when injecting the foaming agent is not particularly limited, and may be any pressure that is higher than the internal pressure of the extruder in order to press-fit into the extruder.

この様にして製造したP3HA樹脂押出発泡体は、比較的均一なセルを形成し外観が美麗である。また、連続気泡率が好ましくは60%以上、更には90%以上である。このような発泡倍率となることで、軽量性、経済性の点で好ましく、また連続気泡率が60%以上であることでクッション性、形状自由度が高い等の点で好ましい。   The P3HA resin extruded foam produced in this way forms a relatively uniform cell and has a beautiful appearance. Further, the open cell ratio is preferably 60% or more, and more preferably 90% or more. Such a foaming ratio is preferable in terms of light weight and economy, and an open cell ratio of 60% or more is preferable in terms of cushioning properties and a high degree of freedom in shape.

なお本発明において、発泡倍率は、23℃のエタノールの入ったメスシリンダーに相対湿度50%、23℃、1atmの条件にて7日間放置した押出発泡体(重量W(g))を沈め、エタノール水位上昇分より発泡体容積V(cm)とP3HA樹脂密度ρ(g/cm)から次式で与えられるものを言う。 In the present invention, the expansion ratio is determined by submerging an extruded foam (weight W (g)) that was allowed to stand for 7 days in a graduated cylinder containing ethanol at 23 ° C. under conditions of 50% relative humidity, 23 ° C. and 1 atm. From the rise in the water level, it is given by the following formula from the foam volume V (cm 3 ) and the P3HA resin density ρ (g / cm 3 ).

発泡倍率=V/(W/ρ)
また、連続気泡率は、ASTM D−2856に準じて、例えば、マルチピクノメーター(ベックマン・ジャパン(株)社製)を用いて得ることが出来る。
Foaming ratio = V / (W / ρ)
The open cell ratio can be obtained, for example, using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.) according to ASTM D-2856.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。本発明で使用した物質は以下の様に略した。
PHBH:ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)
HH率:PHBH中のヒドロキシヘキサノエートのモル分率(mol%)
なお、実施例において特に断りのない限り「部」は重量基準である。各実施例におけるP3HA樹脂発泡体の物性測定は以下のように行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Substances used in the present invention were abbreviated as follows.
PHBH: poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
HH ratio: mole fraction of hydroxyhexanoate in PHBH (mol%)
In the examples, “parts” are based on weight unless otherwise specified. The physical properties of the P3HA resin foam in each example were measured as follows.

<P3HA樹脂の融点(Tm)、ガラス転移温度Tg>
示差走査熱量測定は、JIS K−7121に準じて行った。押出発泡に使用するP3HA樹脂約5mgを精秤し、示差走査熱量計(セイコー電子工業(株)製、SSC5200)にて10℃/分の昇温速度で−20℃から200℃まで昇温を実施し、DSC曲線を得、吸熱曲線の絶対値が最大のピークトップの温度を融点とし、ベースラインの階段状変化において変化前後のベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線が交わる点の温度をTgとした。
<Melting point (Tm) of P3HA resin, glass transition temperature Tg>
Differential scanning calorimetry was performed according to JIS K-7121. About 5 mg of P3HA resin used for extrusion foaming is precisely weighed, and the temperature is raised from −20 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min with a differential scanning calorimeter (Seiko Electronics Co., Ltd., SSC5200). The DSC curve is obtained, the temperature at the peak top where the absolute value of the endothermic curve is the maximum is the melting point, and the straight line that is equidistant from the extended straight line of the baseline before and after the change in the stepwise change of the baseline. The temperature at the point where the curves of the step-like change portion of the glass transition intersect was defined as Tg.

<溶融粘度(η)>
キャピログラフ(東洋精機製作所製)を用い、1mmφ×10mmのダイスを使用して上述の方法で測定した融点を元に、融点+20℃、剪断速度122sec−1にて、P3HAを主とした樹脂組成物(A)の溶融粘度ηを測定した。溶融粘度の評価は以下のように判断した。
○:η>500Pa・s
×:η≦500Pa・s
<Melt viscosity (η)>
A resin composition mainly composed of P3HA at a melting point of + 20 ° C. and a shear rate of 122 sec −1 based on the melting point measured by the above method using a capillograph (manufactured by Toyo Seiki Seisakusho) using a 1 mmφ × 10 mm die. The melt viscosity η of (A) was measured. Evaluation of melt viscosity was judged as follows.
○: η> 500 Pa · s
×: η ≦ 500 Pa · s

<P3HA樹脂組成物の吐出物の表面温度>
非接触温度計(サーモハンターPT-7LD、オプテックス社製)により吐出物表面の温度を測定した。
○:80℃未満
×:80℃以上
<P3HA樹脂押出発泡体の発泡倍率>
23℃のエタノールの入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて7日間放置した押出発泡体(重量W(g))を、金網などを使用して沈め、エタノール水位上昇分より読みとられる発泡粒子群の容積V(cm)としたときに、P3HA樹脂密度ρ(g/cm)から次式で与えられる。
発泡倍率=V/(W/ρ)
<Surface temperature of discharged material of P3HA resin composition>
The temperature of the discharged material surface was measured with a non-contact thermometer (Thermo Hunter PT-7LD, manufactured by Optex).
○: Less than 80 ° C. x: 80 ° C. or more
Prepare a graduated cylinder containing ethanol at 23 ° C. Use an extruded foam (weight W (g)) left in the graduated cylinder for 7 days under conditions of 50% relative humidity, 23 ° C and 1 atm using a wire mesh or the like. Then, when the volume V (cm 3 ) of the expanded particle group is read from the ethanol water level rise, it is given by the following equation from the P3HA resin density ρ (g / cm 3 ).
Foaming ratio = V / (W / ρ)

<P3HA樹脂押出発泡体の連続気泡率>
マルチピクノメーター(ベックマン・ジャパン(株)社製)を用い、ASTM D−2856に準じて測定した。
<P3HA樹脂押出発泡体の外観評価>
押出発泡体の任意の部分に関して目視で観察した。
○:未発泡部分が殆ど観察されない
×:未発泡部分が多く確認され、吐出物表面が荒れている
<P3HA樹脂押出発泡体の生分解性>
P3HA樹脂押出発泡体20mm×20mm×1.5mmを、深さ10cmの土中に埋めて6ヶ月後、形状変化を観察し分解性を以下の基準で評価した。
○:かなりの部分が分解されており形状の変化が確認できるほど分解
×:ほとんど形状に変化なく押出発泡体が観察され、分解していない
<Open cell ratio of P3HA resin extruded foam>
It measured according to ASTM D-2856 using a multi-pynometer (manufactured by Beckman Japan Co., Ltd.).
<Appearance evaluation of P3HA resin extruded foam>
Any part of the extruded foam was visually observed.
◯: Almost no unfoamed portion is observed ×: Many unfoamed portions are confirmed and the surface of the discharged product is rough <Biodegradability of P3HA resin extruded foam>
A P3HA resin extruded foam 20 mm × 20 mm × 1.5 mm was buried in soil having a depth of 10 cm, and after 6 months, the shape change was observed and the degradability was evaluated according to the following criteria.
○: Decomposed so that a considerable part is decomposed and the change in shape can be confirmed. ×: Extruded foam is observed with almost no change in shape, and is not decomposed.

(実施例1)
微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32(J. Bacteriol., 179, 4821(1997))を用いて原料、培養条件を適宜調整して生産されたPHBH(HH率10mol%、Mw=53万、融点135℃)100重量部と有機過酸化物としてブチルパーオキシイソプロピルモノカーボネート0.2重量部(日本油脂株式会社製、パーブチルI(1分間半減期分解温度158.8℃))と脂肪酸アミド系化合物としてベヘニン酸アミド3重量部をニーダー付きφ35mm単軸押出成形機でシリンダー温度155℃にて溶融混練し、押出機先端に取り付けられた3mmφの小孔ダイより押し出されたストランドを、ペレタイザーでカットして粒重量5mgのPHBH樹脂組成物(A1)ペレット(Tg=1℃)を作製した。該ペレットについては溶融粘度を測定したところ、式(2)の条件を満たしていた。該ペレットを、口径65mmのものと口径90mmのものを直列に連結した二段押出機へ約40kg/hrの割合で供給した。前記口径65mmの押出機に供給した樹脂混合物を、T1=145℃に加熱して溶融混練し、発泡剤を添加、これに連結された口径90mmの押出機で樹脂温度Toを105℃(≦融点+20)に冷却し、口径90mmの押出機の先端に設けた厚さ方向1mm、幅方向50mmの長方形断面の口金より連続的に押出、20℃のエアを長方形断面の上下面に約20秒吹き付け吐出物を急冷すると均一に発泡し、厚さ約2.5mm、幅約100mmの板状の押出発泡体を得た。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。
Example 1
PHBH produced by using Alcaligenes eutrophus AC32 (J. Bacteriol., 179, 4821 (1997)) in which a PHA synthase gene derived from Aeromonas caviae was introduced into Alcaligenes eutrophus as a microorganism, with appropriate adjustment of raw materials and culture conditions ( HH ratio 10 mol%, Mw = 530,000, melting point 135 ° C. 100 parts by weight and organic peroxide 0.2 parts by weight of butyl peroxyisopropyl monocarbonate (manufactured by NOF Corporation, perbutyl I (one minute half-life decomposition temperature) 158.8 ° C.)) and 3 parts by weight of behenic acid amide compound as a fatty acid amide compound were melt-kneaded at a cylinder temperature of 155 ° C. using a φ35 mm single screw extruder equipped with a kneader, and a 3 mmφ small hole die attached to the tip of the extruder The extruded strand was cut with a pelletizer and PHBH resin composition (A1) pellets having a particle weight of 5 mg (Tg = 1 ° C.) It was produced. When the melt viscosity of the pellet was measured, the condition of formula (2) was satisfied. The pellets were fed at a rate of about 40 kg / hr to a two-stage extruder having a diameter of 65 mm and a diameter of 90 mm connected in series. The resin mixture supplied to the 65 mm diameter extruder was melted and kneaded by heating to T1 = 145 ° C., a foaming agent was added, and the resin temperature To was 105 ° C. (≦ melting point) with the 90 mm diameter extruder connected thereto. +20) and continuously extruded from a rectangular cross-section die with a thickness of 1 mm and a width of 50 mm provided at the tip of an extruder with a diameter of 90 mm, and air at 20 ° C. is blown onto the upper and lower surfaces of the rectangular cross-section for about 20 seconds. When the discharged product was rapidly cooled, it uniformly foamed to obtain a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 100 mm. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C.

このとき添加した発泡剤として、樹脂組成物(A1)ペレット100重量部に対してジメチルエーテルを10部、前記口径65mmの押出機の先端付近(口径90mmの押出機の口金と反対側の端部側に接続される側の端部)から前記樹脂中に圧入した。得られた発泡体は、発泡倍率5倍、連続気泡率は79%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。   As a foaming agent added at this time, 10 parts of dimethyl ether with respect to 100 parts by weight of the resin composition (A1) pellets, near the tip of the 65 mm diameter extruder (the end side opposite to the die of the 90 mm diameter extruder) The resin was press-fitted into the resin from the end portion on the side connected to the resin. The obtained foam had an expansion ratio of 5 times and an open cell ratio of 79%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例2)
長方形断面の口金より連続的に押出した吐出物を、水温5℃の水槽に約10秒浸漬した以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約6mm、幅約80mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率7倍、連続気泡率は82%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 2)
A foam was prepared in the same manner as in Example 1 except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath having a water temperature of 5 ° C. for about 10 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 6 mm and a width of about 80 mm. The obtained foam had an expansion ratio of 7 times and an open cell ratio of 82%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例3)
長方形断面の口金より連続的に押出した吐出物を、水温30℃の水槽に約10秒浸漬した以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約3mm、幅約90mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率6倍、連続気泡率は82%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 3)
A foam was prepared in the same manner as in Example 1 except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath having a water temperature of 30 ° C. for about 10 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 3 mm and a width of about 90 mm. The obtained foam had an expansion ratio of 6 times and an open cell ratio of 82%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例4)
長方形断面の口金より連続的に押出した吐出物を、水温60℃の水槽に約10秒浸漬した以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約90mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率4倍、連続気泡率は78%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
Example 4
A foam was prepared in the same manner as in Example 1 except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath at a water temperature of 60 ° C. for about 10 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 90 mm. The obtained foam had an expansion ratio of 4 times and an open cell ratio of 78%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例5)
ブチルパーオキシイソプロピルモノカーボネート0.6重量部添加してPHBH樹脂組成物(A2)ペレットを作製し、T1=140℃、T0=115℃(≦融点+20)とした以外は、実施例1と同様の方法で発泡体を作成した。急冷により均一に発泡した。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2mm、幅約150mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率8倍、連続気泡率は85%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 5)
PHBH resin composition (A2) pellets were prepared by adding 0.6 parts by weight of butyl peroxyisopropyl monocarbonate, and the same as Example 1 except that T1 = 140 ° C. and T0 = 115 ° C. (≦ melting point + 20). The foam was made by the method. Foamed uniformly by rapid cooling. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2 mm and a width of about 150 mm. The obtained foam had an expansion ratio of 8 times and an open cell ratio of 85%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例6)
長方形断面の口金より連続的に押出した吐出物を、水温5℃の水槽に約3秒浸漬した以外は、実施例5と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約8mm、幅約100mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率13倍、連続気泡率は87%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 6)
A foam was prepared in the same manner as in Example 5 except that the discharge product continuously extruded from the mouthpiece having a rectangular cross section was immersed in a water bath having a water temperature of 5 ° C. for about 3 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 8 mm and a width of about 100 mm. The obtained foam had an expansion ratio of 13 times and an open cell ratio of 87%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例7)
長方形断面の口金より連続的に押出した吐出物を、水温30℃の水槽に約3秒浸漬した以外は、実施例5と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約5mm、幅約100mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率10倍、連続気泡率は90%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 7)
A foam was prepared in the same manner as in Example 5 except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath at a water temperature of 30 ° C. for about 3 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 5 mm and a width of about 100 mm. The obtained foam had an expansion ratio of 10 times and an open cell ratio of 90%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例8)
発泡剤として、樹脂組成物(A2)ペレット100重量部に対してイソブタンを5部添加した以外は、実施例5と同様の方法で発泡体を作成した。急冷により均一に発泡した。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約120mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率5倍、連続気泡率は78%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
(Example 8)
As a foaming agent, a foam was prepared in the same manner as in Example 5 except that 5 parts of isobutane was added to 100 parts by weight of the resin composition (A2) pellets. Foamed uniformly by rapid cooling. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 120 mm. The obtained foam had an expansion ratio of 5 times and an open cell ratio of 78%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例9)
長方形断面の口金より連続的に押出した吐出物を、水温30℃の水槽に約3秒浸漬した以外は、実施例8と同様の方法で発泡体を作成した。急冷により均一に発泡した。水槽から取り出した時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約120mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率5倍、連続気泡率は80%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の外観および生分解性は良好であった。結果を表1に示す。
Example 9
A foam was prepared in the same manner as in Example 8, except that the discharge product continuously extruded from the die having a rectangular cross section was immersed in a water bath at a water temperature of 30 ° C. for about 3 seconds. Foamed uniformly by rapid cooling. The surface temperature of the discharged material when taken out from the water tank was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 120 mm. The obtained foam had an expansion ratio of 5 times and an open cell ratio of 80%. In addition, the state of the extruder was stable during operation. Further, the appearance and biodegradability of the obtained foam were good. The results are shown in Table 1.

(実施例10)
発泡剤として、樹脂組成物(A2)ペレット100重量部に対して炭酸ガスを10部添加し、T1=135℃、T0=135℃(≦融点+20)とした以外は、実施例5と同様の方法で発泡体を作成した。急冷により均一に発泡した。約20秒エアを吹き付けた時の吐出物の表面温度は80℃未満であった。発泡体は、厚さ約2.5mm、幅約100mmの板状の押出発泡体であった。得られた発泡体は、発泡倍率5倍、連続気泡率は65%であった。また、運転中押出機の状態は安定していた。また、得られた発泡体の比較的外観は良好で、生分解性は良好であった。結果を表1に示す。
(Example 10)
As a foaming agent, 10 parts of carbon dioxide gas was added to 100 parts by weight of the resin composition (A2) pellets, and T1 = 135 ° C. and T0 = 135 ° C. (≦ melting point + 20). The foam was made by the method. Foamed uniformly by rapid cooling. The surface temperature of the discharged product when air was blown for about 20 seconds was less than 80 ° C. The foam was a plate-like extruded foam having a thickness of about 2.5 mm and a width of about 100 mm. The obtained foam had an expansion ratio of 5 times and an open cell ratio of 65%. In addition, the state of the extruder was stable during operation. Moreover, the appearance of the obtained foam was relatively good and the biodegradability was good. The results are shown in Table 1.

(比較例1)
エアによる強制冷却をしなかった以外は実施例1と同様の方法で、長方形断面の口金より大気中へ押し出した。ダイスから出てから約20秒後の吐出物の表面温度は80℃以上であった。吐出物は発泡にムラがあり、発泡、未発泡部分が発生し、厚さ約2mm、幅約77mmの板状のまだらな発泡体を得た。得られた発泡体は、発泡倍率3倍、連続気泡率は58%で、不均一な形態で外観不良であった。
(Comparative Example 1)
Except not performing forced cooling by air, it was extruded into the atmosphere from a base having a rectangular cross section in the same manner as in Example 1. The surface temperature of the discharged material after about 20 seconds after coming out of the die was 80 ° C. or higher. The discharged product had uneven foaming, and foamed and unfoamed portions were generated, and a plate-like mottled foam having a thickness of about 2 mm and a width of about 77 mm was obtained. The obtained foam had a foaming ratio of 3 times and an open cell ratio of 58%.

(比較例2)
エアによる強制冷却をしなかった以外は実施例5と同様の方法で、長方形断面の口金より大気中へ押し出した。ダイスから出てから約20秒後の吐出物の表面温度は80℃以上であった。吐出物は発泡にムラがあり、発泡、未発泡部分が発生し、厚さ約2mm、幅約88mmの板状のまだらな発泡体を得た。得られた発泡体は、発泡倍率5倍、連続気泡率は80%で、不均一な形態で外観不良であった。
(Comparative Example 2)
Except not performing forced cooling by air, it was extruded into the atmosphere from a base having a rectangular cross section in the same manner as in Example 5. The surface temperature of the discharged material after about 20 seconds after coming out of the die was 80 ° C. or higher. The discharged product was uneven in foaming, and foamed and unfoamed portions were generated, and a plate-like mottled foam having a thickness of about 2 mm and a width of about 88 mm was obtained. The obtained foam had a foaming ratio of 5 times and an open cell ratio of 80%, and had a poor appearance in a non-uniform form.

(比較例3)
エアによる強制冷却をしなかった以外は実施例8と同様の方法で、長方形断面の口金より大気中へ押し出した。ダイスから出てから約20秒後の吐出物の表面温度は80℃以上であった。吐出物は発泡にムラがあり、発泡、未発泡部分が発生し、厚さ約2mm、幅約76mmの板状のまだらな発泡体を得た。得られた発泡体は、発泡倍率3倍、連続気泡率は58%で、不均一な形態で外観不良であった。
(Comparative Example 3)
Except not performing forced cooling by air, it was extruded into the atmosphere from a base having a rectangular cross section in the same manner as in Example 8. The surface temperature of the discharged material after about 20 seconds after coming out of the die was 80 ° C. or higher. The discharged product was uneven in foaming, and foamed and unfoamed portions were generated, and a plate-like mottled foam having a thickness of about 2 mm and a width of about 76 mm was obtained. The obtained foam had a foaming ratio of 3 times and an open cell ratio of 58%.

(比較例4)
エアによる強制冷却をしなかった以外は実施例10と同様の方法で、長方形断面の口金より大気中へ押し出した。ダイスから出てから約20秒後の吐出物の表面温度は80℃以上であった。吐出物は発泡にムラがあり、発泡、未発泡部分が発生し、厚さ約2mm、幅約70mmの板状のまだらな発泡体を得た。得られた発泡体は、発泡倍率2倍、連続気泡率は55%で、不均一な形態で外観不良であった。
(Comparative Example 4)
Except not performing forced cooling by air, it was extruded into the atmosphere from a base having a rectangular cross section in the same manner as in Example 10. The surface temperature of the discharged material after about 20 seconds after coming out of the die was 80 ° C. or higher. The discharged product was uneven in foaming, and foamed and unfoamed portions were generated, and a plate-like mottled foam having a thickness of about 2 mm and a width of about 70 mm was obtained. The obtained foam had an expansion ratio of 2 times and an open cell ratio of 55%.

Figure 2007130763
Figure 2007130763

Claims (7)

微生物から生産される式(1)
[−O−CHR−CH−CO−] (1)
(ここに、RはC2n+1で表されるアルキル基で、n=1以上15以下である。)
で示される一種以上の単位からなる共重合体(以下、ポリ(3−ヒドロキシアルカノエート):略称P3HA)と有機過酸化物とを混合してなる樹脂組成物(A)に、揮発性発泡剤を溶融混練して混合物を作製し、該混合物を80℃以上、P3HAの融点+20℃以下に調整された成形ダイを通じて80℃未満の低圧領域に押し出すことを特徴とするP3HA樹脂押出発泡体の製造方法。
ここで樹脂組成物(A)は式(2)の関係を満たす。
η>500Pa・s (2)
η:P3HAの融点+20℃、剪断速度122sec−1での溶融粘度
Formula (1) produced from microorganisms
[—O—CHR—CH 2 —CO—] (1)
(Here, R is an alkyl group represented by C n H 2n + 1 , and n = 1 or more and 15 or less.)
A volatile foaming agent in a resin composition (A) obtained by mixing a copolymer (hereinafter, poly (3-hydroxyalkanoate): abbreviated as P3HA) composed of one or more units of To produce a mixture, and the mixture is extruded into a low pressure region of less than 80 ° C. through a molding die adjusted to 80 ° C. or higher and the melting point of P3HA + 20 ° C. or lower. Method.
Here, the resin composition (A) satisfies the relationship of the formula (2).
η> 500 Pa · s (2)
η: Melting viscosity at melting point of P3HA + 20 ° C. and shear rate of 122 sec −1
樹脂組成物(A)が脂肪族アミド系化合物を含んでなる樹脂組成物であることを特徴とする請求項1項記載のP3HA樹脂押出発泡体の製造方法。   The method for producing a P3HA resin extruded foam according to claim 1, wherein the resin composition (A) is a resin composition comprising an aliphatic amide compound. P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)である、請求項1または2記載のP3HA樹脂押出発泡体の製造方法。   The method for producing a P3HA resin extruded foam according to claim 1 or 2, wherein the P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). P3HAが、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)であり、その共重合成分の組成が、3−ヒドロキシヘキサノエートが1mol%以上20mol%以下であることを特徴とする請求項1〜3何れか1項記載のP3HA押出発泡体の製造方法。   P3HA is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), and the composition of the copolymer component is characterized in that 3-hydroxyhexanoate is 1 mol% or more and 20 mol% or less. The method for producing a P3HA extruded foam according to any one of claims 1 to 3. 揮発性発泡剤が二酸化炭素、炭素数3以上4以下の脂肪族飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルからなる群より選ばれる1種以上であることを特徴とする請求項1〜4何れか1項記載のP3HA樹脂押出発泡体の製造方法。   The volatile blowing agent is at least one selected from the group consisting of carbon dioxide, an aliphatic saturated hydrocarbon having 3 to 4 carbon atoms, dimethyl ether, diethyl ether, and methyl ethyl ether. The manufacturing method of the P3HA resin extrusion foam of any one of Claims 1. 請求項1〜5の何れか1項記載の押出発泡体の製造方法により得られることを特徴とするP3HA樹脂押出発泡体。   A P3HA resin extruded foam obtained by the method for producing an extruded foam according to any one of claims 1 to 5. 連続気泡率が60%以上であることを特徴とする請求項6記載のP3HA樹脂押出発泡体。   The P3HA resin extruded foam according to claim 6, wherein the open cell ratio is 60% or more.
JP2005322977A 2005-11-08 2005-11-08 Polyhydroxyalkanoate resin extrusion foam and its manufacturing method Pending JP2007130763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322977A JP2007130763A (en) 2005-11-08 2005-11-08 Polyhydroxyalkanoate resin extrusion foam and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322977A JP2007130763A (en) 2005-11-08 2005-11-08 Polyhydroxyalkanoate resin extrusion foam and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007130763A true JP2007130763A (en) 2007-05-31

Family

ID=38152824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322977A Pending JP2007130763A (en) 2005-11-08 2005-11-08 Polyhydroxyalkanoate resin extrusion foam and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007130763A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065053A1 (en) * 2008-12-02 2010-06-10 Metabolix, Inc. Production of polyhydroxyalkanoate foam
US20110275729A1 (en) * 2008-10-15 2011-11-10 Institute Of Polymers And Carbon Materials Process for controlled degradation of polyhydroxyalkanoates and products obtainable therefrom
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
WO2019146555A1 (en) * 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
WO2021002092A1 (en) * 2019-07-02 2021-01-07 株式会社カネカ Poly(3-hydroxyalkanoate)-based foam particle and poly(3-hydroxyalkanoate)-based foam molded body
WO2023188942A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Poly(3-hydroxyalkanoate)-based resin foam particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305471A (en) * 1997-03-05 1998-11-17 Jsp Corp Manufacture of aliphatic polyester resin foam
JP2003327737A (en) * 2002-05-09 2003-11-19 Kanegafuchi Chem Ind Co Ltd Biodegradable polyhydroxy alkanoate extruded foam and its production method
JP2004059608A (en) * 2002-07-25 2004-02-26 Mitsui Chemicals Inc Aliphatic polyester foamed sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305471A (en) * 1997-03-05 1998-11-17 Jsp Corp Manufacture of aliphatic polyester resin foam
JP2003327737A (en) * 2002-05-09 2003-11-19 Kanegafuchi Chem Ind Co Ltd Biodegradable polyhydroxy alkanoate extruded foam and its production method
JP2004059608A (en) * 2002-07-25 2004-02-26 Mitsui Chemicals Inc Aliphatic polyester foamed sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110275729A1 (en) * 2008-10-15 2011-11-10 Institute Of Polymers And Carbon Materials Process for controlled degradation of polyhydroxyalkanoates and products obtainable therefrom
WO2010065053A1 (en) * 2008-12-02 2010-06-10 Metabolix, Inc. Production of polyhydroxyalkanoate foam
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
CN111684001A (en) * 2018-01-26 2020-09-18 株式会社钟化 Poly (3-hydroxyalkanoate) foamed particle and poly (3-hydroxyalkanoate) foamed molded article
WO2019146555A1 (en) * 2018-01-26 2019-08-01 株式会社カネカ Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body
JPWO2019146555A1 (en) * 2018-01-26 2021-01-07 株式会社カネカ Poly (3-hydroxy alkanoate) -based foam particles and poly (3-hydroxy alkanoate) -based foam moldings
JP7123980B2 (en) 2018-01-26 2022-08-23 株式会社カネカ Poly(3-hydroxyalkanoate) foamed particles and poly(3-hydroxyalkanoate) foamed molded product
CN111684001B (en) * 2018-01-26 2022-11-08 株式会社钟化 Poly (3-hydroxyalkanoate) foamed particles and poly (3-hydroxyalkanoate) foamed molded article
WO2021002092A1 (en) * 2019-07-02 2021-01-07 株式会社カネカ Poly(3-hydroxyalkanoate)-based foam particle and poly(3-hydroxyalkanoate)-based foam molded body
CN114026161A (en) * 2019-07-02 2022-02-08 株式会社钟化 Poly (3-hydroxyalkanoate) foamed particle and poly (3-hydroxyalkanoate) foamed molded article
CN114026161B (en) * 2019-07-02 2023-06-16 株式会社钟化 Poly (3-hydroxyalkanoate) -based expanded particles and poly (3-hydroxyalkanoate) -based expanded molded article
WO2023188942A1 (en) * 2022-03-30 2023-10-05 株式会社カネカ Poly(3-hydroxyalkanoate)-based resin foam particles

Similar Documents

Publication Publication Date Title
JP2007130763A (en) Polyhydroxyalkanoate resin extrusion foam and its manufacturing method
JP5121446B2 (en) Process for producing expanded particles of polyhydroxyalkanoate resin
JP4954603B2 (en) Process for producing extruded polyhydroxyalkanoate resin and extruded foam obtained by the process
WO2019146555A1 (en) Poly(3-hydroxyalkanoate) foam particles and poly(3-hydroxyalkanoate) foam molded body
JP4578309B2 (en) Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
JP5408877B2 (en) POLYHYDROXYALKANOATE RESIN FOAM PARTICLE, FORMED ITS THEREOF AND METHOD FOR PRODUCING THE RESIN FOAM PARTICLE
JP4258758B2 (en) Polylactic acid resin foam sheet for thermoforming
JP4733694B2 (en) Process for producing extruded polyhydroxyalkanoate resin and extruded foam obtained from the process
JP2009073955A (en) Polylactic acid resin foam
JPWO2006103972A1 (en) Polyhydroxyalkanoate resin expanded particles
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
JP4653162B2 (en) Method for producing extruded product of polyhydroxyalkanoate resin
JP3944281B2 (en) Polyglycolic acid foam
JP2012241166A (en) Poly(3-hydroxyalkanoate)-based preliminarily foamed particle and in-mold expansion-molded body
JP2009068021A (en) Polylactic acid-based resin foam
JP2022104389A (en) Method for producing poly(3-hydroxy alkanoate)-based foam molding
JP2022102730A (en) Poly(3-hydroxyalkanoate) foamed particle and poly(3-hydroxyalkanoate) foamed molding
JP2007119564A (en) Method for producing polyhydroxyalkanoate resin extrusion foam and extrusion foam obtained by the production method
JP2007136693A (en) Extruded foam of polyhydroxyalkanoate resin and its manufacturing method
JP4357998B2 (en) Method for producing polylactic acid resin foam
KR101438032B1 (en) Polylactic acid based-biodegradable polymer blends with excellent compatibility, manufacturing method of heat resistant foamed sheet thereof and foam-molding product thereby
JP4570033B2 (en) Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming
JP2020158608A (en) Polylactic resin foam sheet, resin molding, and method for producing polylactic resin foam sheet
JP6568798B2 (en) Modified polypropylene resin, resin foam and foamed resin container, and method for producing modified polypropylene resin
WO2023188942A1 (en) Poly(3-hydroxyalkanoate)-based resin foam particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308