JP2007128764A - Composite electrolyte membrane and fuel cell using the same - Google Patents

Composite electrolyte membrane and fuel cell using the same Download PDF

Info

Publication number
JP2007128764A
JP2007128764A JP2005320991A JP2005320991A JP2007128764A JP 2007128764 A JP2007128764 A JP 2007128764A JP 2005320991 A JP2005320991 A JP 2005320991A JP 2005320991 A JP2005320991 A JP 2005320991A JP 2007128764 A JP2007128764 A JP 2007128764A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer
proton
functional group
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005320991A
Other languages
Japanese (ja)
Other versions
JP4860237B2 (en
Inventor
Hiroshi Tajima
洋 田島
Daisuke Narishima
大介 成嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005320991A priority Critical patent/JP4860237B2/en
Publication of JP2007128764A publication Critical patent/JP2007128764A/en
Application granted granted Critical
Publication of JP4860237B2 publication Critical patent/JP4860237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane in which a proton conductivity of bridged electrolyte is improved having good swelling resistance and dissolution resistance to liquid fuel represented by water or methanol, and excellent in permeation resistance of fuel, and to provide a method for manufacturing the same. <P>SOLUTION: The electrolyte membrane is formed by loading a second component of a polymer of a dissociative monomer having dissociative protons and double bonds of C=C into a first component which is a precursor of the electrolyte membrane including a functional group having dissociative protons and composed of a polymer having a bridge structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は燃料電池、特に固体高分子型燃料電池及び直接メタノール型燃料電池用の複合電解質膜およびそれを用いた電池に関する。   The present invention relates to a fuel cell, and more particularly to a composite electrolyte membrane for a polymer electrolyte fuel cell and a direct methanol fuel cell, and a cell using the same.

燃料電池用電解質膜として、スルホン酸基をはじめとする、解離性プロトンを有する官能基を含む重合体からなる電解質膜が知られている。なかでも、燃料電池内で生成する水や、メタノールに代表される、液体燃料への膨潤や溶解が抑制され、メタノール透過性が抑制され、かつ高いプロトン伝導性を有する電解質膜へのニーズが高い。
解離性プロトンを有する官能基を含む重合体の具体例には、パーフルオロスルホン酸の重合体、ポリエーテルスルホン、ポリエーテルケトンやポリベンズイミダゾールなどの剛直な骨格にスルホン化により解離性プロトンを有する官能基が導入された重合体、あるいは該剛直な骨格にスルホン酸基を有する側鎖を結合させた重合体、スチレンスルホン酸、ビニルスルホン酸、2−アクリルアミド−2−メチル−1−プロパンスルホン酸(以下AMPS)等の、C=C二重結合と解離性プロトンを有する官能基を有するモノマーを含む重合体、等が挙げられる。
As an electrolyte membrane for a fuel cell, an electrolyte membrane made of a polymer containing a functional group having a dissociable proton such as a sulfonic acid group is known. In particular, there is a high need for electrolyte membranes that are suppressed in swelling and dissolution in liquid fuel, such as water generated in fuel cells and methanol, suppressed in methanol permeability, and have high proton conductivity. .
Specific examples of the polymer containing a functional group having a dissociative proton include a polymer of perfluorosulfonic acid, polyether sulfone, polyether ketone, polybenzimidazole, and the like that have a dissociable proton by sulfonation. Polymer having functional group introduced therein, polymer having side chain having sulfonic acid group bonded to rigid skeleton, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid And a polymer containing a monomer having a functional group having a C═C double bond and a dissociable proton, such as (hereinafter AMPS).

このような解離性プロトンを有する官能基を含む重合体は、単独で電解質膜として用いられる場合もあるが、これらの解離性プロトンを有する官能基を含む重合体には、電解質に使用する場合、(a)該重合体中の解離性プロトンを有する官能基量が多いと、高いプロトン伝導性が得られるが、水や、液体燃料に膨潤、溶解しやすくなり、メタノール透過性が増大する(b)該重合体中の解離性プロトンを有する官能基量が少ないと、水や液体燃料に膨潤、溶解しにくくなり、メタノール透過性が抑制されるが、プロトン伝導性も低下する、という問題がある。
上記(a)(b)の解決のため、あるいはこれに加えて、耐熱性を高めたい、膜の乾燥−湿潤時の寸法変化を抑えたいなどの目的のため、重合体構造内部に、ジビニルベンゼン(以下DVB)やN,N’−メチレンビスアクリルアミドなどの多官能性モノマー、多官能カルボン酸化合物、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミン化合物等、多官能化合物による架橋構造を含む重合体からなる電解質膜として、水や、液体燃料と接触しても寸法変化を起こしにくい基材に該重合体を含浸、充填した電解質膜として、あるいは架橋構造を含む重合体が含浸、充填された電解質膜として使用される。
Such a polymer containing a functional group having a dissociative proton may be used alone as an electrolyte membrane, but a polymer containing a functional group having these dissociative protons may be used in an electrolyte. (A) When the amount of the functional group having a dissociable proton in the polymer is large, high proton conductivity can be obtained, but it easily swells and dissolves in water and liquid fuel, and the methanol permeability increases (b ) If the amount of the functional group having a dissociable proton in the polymer is small, it becomes difficult to swell and dissolve in water and liquid fuel, and methanol permeability is suppressed, but proton conductivity also decreases. .
In order to solve the above (a) and (b), or in addition to this, for the purpose of increasing the heat resistance and suppressing the dimensional change at the time of drying-wetting of the film, divinylbenzene is incorporated inside the polymer structure. (Including DVB) and polyfunctional monomers such as N, N′-methylenebisacrylamide, polyfunctional carboxylic acid compounds, polyfunctional epoxy compounds, polyfunctional isocyanate compounds, polyfunctional amine compounds, and the like. As an electrolyte membrane made of a polymer, impregnated and filled with an electrolyte membrane in which the polymer is impregnated and filled with water or a base material that does not easily change its dimensions even when contacted with liquid fuel, or with a polymer having a crosslinked structure. Used as an electrolyte membrane.

なかでも、架橋構造を含む重合体からなる電解質膜は、該重合体の水や液体燃料への膨潤や溶解を分子レベルで抑えられるため、水や、液体燃料への耐膨潤、耐溶解性向上やメタノール透過性の抑制等の目的で広く使用されている。架橋構造を含む重合体には、一般に、(I)スルホン化ポリスチレンをジビニルベンゼンで架橋した重合体(特開2001−135328)、等、解離性プロトンを有する官能基のかわりに、反応性の官能基を有する架橋性の官能基を導入した重合体、(II)スルホン化ポリエーテルエーテルケトンとジアミンを用いた、スルホンアミド結合により架橋した重合体(特表2002−516348)、スルホン化ポリエーテルエーテルケトンのスルホン酸基同士を脱硫酸縮合させ、スルホネート結合させて架橋した重合体(特表2000−501223)、等、解離性プロトンを有する官能基同士を架橋した重合体、(III)スルホン化芳香族ポリマー中のカルボニル基や、芳香環に直接結合したアルキル基や、末端の不飽和結合に、紫外線照射などによりエネルギーを供給して架橋構造を形成した重合体(国際公開WO2003/33566)、等、解離性プロトンを有する官能基を以外の官能基同士を架橋した重合体、等がある。   In particular, an electrolyte membrane made of a polymer containing a crosslinked structure can suppress swelling and dissolution of the polymer in water and liquid fuel at the molecular level, and therefore improves resistance to swelling and dissolution in water and liquid fuel. It is widely used for the purpose of suppressing methanol permeability. In general, a polymer having a crosslinked structure includes a reactive functional group in place of a functional group having a dissociating proton such as (I) a polymer obtained by crosslinking sulfonated polystyrene with divinylbenzene (Japanese Patent Laid-Open No. 2001-135328). A polymer having a crosslinkable functional group having a group introduced therein, (II) a polymer crosslinked with a sulfonamide bond using a sulfonated polyetheretherketone and a diamine (Special Table 2002-516348), and a sulfonated polyetherether Polymers obtained by crosslinking functional groups having dissociative protons such as polymers obtained by desulfurization condensation of ketone sulfonic acid groups and sulfonate bonding and crosslinking (Special Table 2000-501223), (III) Sulfonated aroma UV light on carbonyl groups, alkyl groups directly bonded to aromatic rings, and terminal unsaturated bonds Polymers by supplying energy to form a crosslinked structure by irradiation or the like (International Publication WO2003 / 33,566), etc., polymers obtained by crosslinking functional groups together other than a functional group having a dissociative proton, and the like.

(I)(II)の架橋構造を含む重合体においては、架橋結合を多く導入するためには、該架橋重合体中において、プロトン伝導性を支配する、解離性プロトンを有する官能基の数を、減らす必要があり、プロトン伝導性を維持して、メタノール透過性の抑制や、水や液体燃料への耐膨潤、耐溶解性の向上を行うのは困難であると考えられる。
例えば、特開2005−5171では、架橋構造を含む重合体として、スルホン化スチレン−ジビニルベンゼン重合体を使用し、基材として、ポリオレフィン樹脂からなる多孔膜を使用し、該架橋構造を含む重合体が基材に含浸、重合された電解質膜であって、基材の厚み、気孔率、平均孔径と、該架橋構造を含む重合体の架橋構造の導入量を特定の範囲とすることにより、高いプロトン伝導性と低いメタノール透過性の電解質膜が得られるとの開示がある。しかしながら、本文献の実施例において、架橋構造の導入量が増大するにしたがって、メタノール透過性の低下が見られるものの、プロトン伝導性も同時に低下することが示されており、架橋構造を多く導入するだけでは、高いプロトン伝導性を維持しながらメタノール透過性を抑制することが難しいことが考えられる。
(I) In the polymer containing the crosslinked structure of (II), in order to introduce a large number of crosslinking bonds, the number of functional groups having dissociative protons that govern proton conductivity in the crosslinked polymer is determined. Therefore, it is considered difficult to maintain proton conductivity, suppress methanol permeability, and improve resistance to swelling and dissolution in water and liquid fuel.
For example, in JP-A-2005-5171, a sulfonated styrene-divinylbenzene polymer is used as a polymer having a crosslinked structure, and a porous film made of a polyolefin resin is used as a base material. Is an electrolyte membrane impregnated and polymerized on the base material, and the thickness, porosity, average pore diameter of the base material, and the amount of introduction of the cross-linked structure of the polymer containing the cross-linked structure are set within a specific range, There is a disclosure that an electrolyte membrane having proton conductivity and low methanol permeability can be obtained. However, in the examples of this document, it is shown that although the methanol permeability decreases as the amount of introduction of the crosslinked structure increases, the proton conductivity also decreases at the same time. It is considered that it is difficult to suppress methanol permeability while maintaining high proton conductivity.

(III)の架橋構造を含む重合体においては、国際公開WO2003/33566では、架橋結合を多く導入しても、該架橋構造を含む重合体中において、解離性プロトンを有する官能基に直接影響を与えることがないので、架橋構造を多く導入してもプロトン伝導性の低下が起こりにくいことが開示されているが、架橋反応に関与する官能基の導入密度や、エネルギー誘起型架橋反応の反応確率によって決まると考えられる、該架橋構造を含む重合体中への架橋構造の導入量に限界があり、プロトン伝導性を維持して、メタノール透過性の抑制や、水や液体燃料への耐膨潤、耐溶解性の向上を行うのには限界があると考えられる。   In the polymer containing the crosslinked structure of (III), in International Publication WO2003 / 33566, even if a large number of crosslinked bonds are introduced, the functional group having a dissociative proton is directly affected in the polymer containing the crosslinked structure. Although it is disclosed that proton conductivity is hardly lowered even if a large amount of cross-linked structure is introduced, the introduction density of functional groups involved in the cross-linking reaction and the reaction probability of energy-induced cross-linking reaction are disclosed. There is a limit to the amount of cross-linked structure introduced into the polymer containing the cross-linked structure, which is considered to be determined by the above, maintaining proton conductivity, suppressing methanol permeability, and resistance to swelling to water and liquid fuel, There seems to be a limit to improving the dissolution resistance.

特開平6−231778では、パーフルオロカーボン電解質膜において、少なくとも2種類の異なる解離性官能基容量の重合体のブレンド物、即ちプロトン伝導性の高い重合体とプロトン伝導性の低い重合体を組み合わせたブレンド物からなる、固体高分子型燃料電池用の複合電解質膜が開示されている。しかしながら、当該技術において、複合電解質膜は機械強度とプロトン伝導性の両立が可能な方法を開示したに過ぎず、高いプロトン伝導性と、低いメタノール透過性、もしくは水や液体燃料に対する良好な耐膨潤、耐溶解性を両立する方法についての開示はなく、複合電解質膜に架橋電解質を使用すべき旨の教示もない。
国際公開WO2005/76396には、メタノールを含む有機溶媒及び水に対して実質的に膨張しない多孔質基材の細孔内に、プロトン伝導性を有する架橋重合体を充填してなり、膜の水膨潤率を特定の範囲に規定した電解質膜の開示がある。膜の水膨潤率の値を下げる方法として、架橋重合体を充填する充填回数を増やす等の手段が有効である旨の記載があるが、異種の解離性プロトンとC=C二重結合を有する解離性モノマーの重合体を充填した複合電解質膜を教示するものではなく、同種の重合体の複数回充填で得られる効果には限界があると考えられる。
In JP-A-6-231778, in a perfluorocarbon electrolyte membrane, a blend of at least two types of polymers having different dissociative functional group capacities, that is, a combination of a polymer having a high proton conductivity and a polymer having a low proton conductivity. A composite electrolyte membrane for a polymer electrolyte fuel cell is disclosed. However, in this technology, the composite electrolyte membrane only discloses a method capable of achieving both mechanical strength and proton conductivity, and has high proton conductivity and low methanol permeability, or good swelling resistance against water and liquid fuel. However, there is no disclosure of a method for achieving both dissolution resistance, and there is no teaching that a crosslinked electrolyte should be used for the composite electrolyte membrane.
International Publication WO 2005/76396 includes a porous polymer having proton conductivity filled in pores of a porous base material that does not substantially expand with respect to an organic solvent containing water and water, and water in the membrane. There is a disclosure of an electrolyte membrane in which the swelling ratio is defined within a specific range. As a method of reducing the value of the water swelling rate of the membrane, there is a description that the means such as increasing the number of times of filling the crosslinked polymer is effective, but it has different dissociable protons and C = C double bonds. It does not teach a composite electrolyte membrane filled with a polymer of a dissociative monomer, and it is considered that there is a limit to the effect obtained by filling the same type of polymer multiple times.

特開2001−13532号公報JP 2001-13532 A 特表2002−516348号公報JP-T-2002-516348 特表2000−501223号公報JP 2000-501223 Gazette 国際公開WO2003/33566パンフレットInternational Publication WO2003 / 33566 Pamphlet 特開2005−5171号公報Japanese Patent Laying-Open No. 2005-5171 特開平6−231778号公報JP-A-6-231778 国際公開WO2005/76396パンフレットInternational Publication WO2005 / 76396 Pamphlet

本発明の目的は、水や、メタノールに代表される液体燃料に対する良好な耐膨潤、耐溶解性が向上し、メタノール透過性が抑制されているが、プロトン伝導性の低い、架橋構造を含む重合体を使用し、かつ、プロトン伝導性を改善した複合電解質膜、及びこれを使用した燃料電池を提供することにある。   The object of the present invention is to improve the good swelling and dissolution resistance to water and liquid fuels typified by methanol, and suppress the methanol permeability, but has a low proton conductivity and includes a crosslinked structure. It is an object of the present invention to provide a composite electrolyte membrane using a coalescence and having improved proton conductivity, and a fuel cell using the same.

本発明者等は、上記の課題を解決すべく検討を行った結果、第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーの重合体からなる、第2成分が充填されてなることを特徴とする複合電解質膜が、架橋構造を含む重合体のもつ、水や液体燃料に対する高い耐膨潤、耐溶解性と、低いメタノール透過性を維持し、かつ、プロトン伝導性を向上させ、燃料電池に好適に使用できることを見出し、本発明を完成するに至った。   As a result of studies conducted by the present inventors to solve the above-described problems, the electrolyte membrane precursor containing a functional group having a dissociating proton as the first component and having a cross-linked structure is combined with a dissociating proton and C = A composite electrolyte membrane comprising a polymer of a dissociative monomer having a C double bond, filled with a second component, has a high swelling resistance to water and liquid fuel possessed by a polymer containing a crosslinked structure The inventors have found that the present invention has been completed by finding that it can be suitably used in a fuel cell by maintaining dissolution resistance and low methanol permeability and improving proton conductivity.

即ち、本発明は、
(1)第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する重合体からなる電解質膜前駆体に、解離性プロトンを有する官能基とC=C二重結合を有する解離性モノマーを重合して得られる第2成分が充填されてなることを特徴とする複合電解質膜。
(2)電解質膜前駆体の架橋構造含有量が、10〜50mol%であることを特徴とする、(1)記載の複合電解質膜。
(3)電解質膜前駆体が、スルホン化されたスチレン−ジビニルベンゼンの重合体を含浸、重合した多孔質膜であることを特徴とする、(1)または(2)記載の複合電解質膜。
(4)第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーを含浸し、重合し、得られた重合体である第2成分が少なくとも電解質膜前駆体内に存在することを特徴とする、複合電解質膜の製造方法。
(5)電解質膜前駆体の架橋構造含有量が、10〜50mol%であることを特徴とする、(4)記載の複合電解質膜の製造方法
(6)電解質膜前駆体が、スルホン化されたスチレン−ジビニルベンゼンの重合体を含浸、重合した多孔質膜であることを特徴とする、(4)または(5)記載の複合電解質膜の製造方法。
(7)(1)記載の複合電解質膜を使用した燃料電池。
に係る。
That is, the present invention
(1) A dissociation property having a functional group having a dissociating proton and a C = C double bond in an electrolyte membrane precursor made of a polymer having a crosslink structure, which contains a functional group having a dissociating proton as the first component. A composite electrolyte membrane comprising a second component obtained by polymerizing a monomer.
(2) The composite electrolyte membrane according to (1), wherein the content of the crosslinked structure of the electrolyte membrane precursor is 10 to 50 mol%.
(3) The composite electrolyte membrane according to (1) or (2), wherein the electrolyte membrane precursor is a porous membrane impregnated and polymerized with a sulfonated styrene-divinylbenzene polymer.
(4) An electrolyte membrane precursor containing a functional group having a dissociative proton as the first component and having a crosslinked structure is impregnated with a dissociative monomer having a dissociable proton and a C═C double bond, and is polymerized. A method for producing a composite electrolyte membrane, wherein the second component which is the obtained polymer is present at least in the electrolyte membrane precursor.
(5) The method for producing a composite electrolyte membrane according to (4), wherein the content of the crosslinked structure of the electrolyte membrane precursor is 10 to 50 mol%. (6) The electrolyte membrane precursor is sulfonated. The method for producing a composite electrolyte membrane according to (4) or (5), which is a porous membrane impregnated and polymerized with a styrene-divinylbenzene polymer.
(7) A fuel cell using the composite electrolyte membrane according to (1).
Concerning.

本発明の複合電解質膜は、第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する重合体からなる電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーを重合して得られる第2成分が充填されてなることを特徴とする複合電解質膜で、架橋構造を有する電解質膜前駆体のもつ、水や、メタノールに代表される液体燃料に対する良好な耐膨潤、耐溶解性と、低いメタノール透過性を維持し、かつ、プロトン伝導性が向上した複合電解質膜である。また、本発明の複合電解質膜は、第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーを含浸し、重合し、得られた重合体である第2成分が少なくとも電解質膜前駆体内に存在する方法により得られ、燃料電池、特に固体高分子型燃料電池や直接メタノール型に好適に使用可能である。   The composite electrolyte membrane of the present invention includes a functional group having a dissociable proton as a first component, and a dissociation having a dissociable proton and a C = C double bond in an electrolyte membrane precursor made of a polymer having a crosslinked structure. The composite electrolyte membrane is characterized in that it is filled with a second component obtained by polymerizing a functional monomer, and is excellent for water and liquid fuels typified by methanol, possessed by an electrolyte membrane precursor having a crosslinked structure. The composite electrolyte membrane maintains swelling resistance, dissolution resistance, low methanol permeability, and improved proton conductivity. In addition, the composite electrolyte membrane of the present invention includes a functional group having a dissociable proton as a first component, and a dissociative monomer having a dissociable proton and a C═C double bond in an electrolyte membrane precursor having a cross-linked structure. Is obtained by a method in which a second component, which is a polymer obtained, is present at least in the electrolyte membrane precursor, and can be suitably used for fuel cells, particularly solid polymer fuel cells and direct methanol types It is.

以下本発明を具体的に説明する。本発明の複合電解質膜は、第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する重合体からなる電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーを重合して得られる第2成分が充填されてなることを特徴とする複合電解質膜である。更に詳しくは、解離性プロトンとC=C二重結合を有する解離性モノマーの重合体からなる第2成分の効果で、第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する電解質膜前駆体の、プロトン伝導性を向上し、かつ該前駆体の長所である、水や、メタノールに代表される液体燃料に対する良好な耐膨潤、耐溶解性と、低いメタノール透過性を維持した複合電解質膜である。   The present invention will be specifically described below. The composite electrolyte membrane of the present invention includes a functional group having a dissociable proton as a first component, and a dissociation having a dissociable proton and a C = C double bond in an electrolyte membrane precursor made of a polymer having a crosslinked structure. The composite electrolyte membrane is characterized by being filled with a second component obtained by polymerizing a functional monomer. More specifically, due to the effect of the second component consisting of a polymer of a dissociable proton and a dissociable monomer having a C = C double bond, it contains a functional group having a dissociable proton as the first component and has a crosslinked structure. The electrolyte membrane precursor has improved proton conductivity and maintained good swelling resistance and dissolution resistance with respect to water and liquid fuels typified by methanol, and low methanol permeability, which are the advantages of the precursor. It is a composite electrolyte membrane.

本発明において、第1成分である電解質膜前駆体は、架橋された解離性プロトンを有する官能基を含んだ重合体から構成される。解離性プロトンを有する官能基には、例えば、スルホン酸基、ホスホン酸基、カルボン酸基などが好適に使用可能であるが、複合電解質膜として、良好なプロトン伝導性が発現されるとの観点から、スルホン酸基であることが好ましい。本発明において、解離性プロトンを有する官能基を含んだ重合体の好ましい例として、スルホン酸基を含んだ重合体を例に列挙すると、パーフルオロスルホン酸を含んだ重合体、スルホン酸基を含むエーテルスルホン構造を含んだ重合体、スルホン酸基を含む芳香族イミド構造を含んだ重合体、スルホン酸基を含む芳香族エーテルエーテルケトン構造を含んだ重合体、2−アクリルアミド−2−メチルプロパンスルホン酸を含んだ重合体、ポリスチレンスルホン酸を含んだ重合体、ビニルスルホン酸を含んだ重合体、アリルスルホン酸を含んだ重合体、メタリルスルホン酸を含んだ重合体、ビニルトルエンスルホン酸を含んだ重合体、ビニルキシレンスルホン酸を含んだ重合体、αメチルスチレンスルホン酸を含んだ重合体、ビニルナフタレンスルホン酸を含んだ重合体、スルホン酸基を含むフェノール構造を含んだ重合体、等が好適に使用可能である。   In the present invention, the electrolyte membrane precursor as the first component is composed of a polymer containing a functional group having a crosslinked dissociable proton. As the functional group having a dissociable proton, for example, a sulfonic acid group, a phosphonic acid group, a carboxylic acid group, and the like can be preferably used. However, as a composite electrolyte membrane, good proton conductivity is expressed. Therefore, a sulfonic acid group is preferable. In the present invention, as a preferred example of a polymer containing a functional group having a dissociable proton, a polymer containing a sulfonic acid group is listed as an example. A polymer containing a perfluorosulfonic acid and a polymer containing a sulfonic acid group are included. Polymer containing ether sulfone structure, polymer containing aromatic imide structure containing sulfonic acid group, polymer containing aromatic ether ether ketone structure containing sulfonic acid group, 2-acrylamido-2-methylpropane sulfone Polymers containing acid, polymers containing polystyrene sulfonic acid, polymers containing vinyl sulfonic acid, polymers containing allyl sulfonic acid, polymers containing methallyl sulfonic acid, vinyl toluene sulfonic acid included Polymer containing vinyl xylene sulfonic acid, polymer containing α-methylstyrene sulfonic acid, vinyl naphthalene Polymers containing sulfonic acid, polymers containing phenol structure containing a sulfonic acid group, etc. can be suitably used.

本発明において、電解質膜前駆体は、解離性プロトンを有する官能基を含んだ重合体を架橋したものである。架橋の種類として、例えば共有結合による架橋、水素結合による架橋、配位結合による架橋が挙げられるが、架橋構造の強さの観点から、共有結合による架橋が好ましい。解離性プロトンを有する官能基を含んだ重合体に対して、共有結合による架橋構造は、例えば、あらかじめ解離性プロトンを有する官能基を含んだ重合体から該前駆体を得る際に、解離性プロトンを有する官能基と、C=C二重結合を含んだモノマーと、例えば、ジビニルベンゼン、ジビニルスルホン、ブタジエン、イソプレン、ジビニルピリジン、N,N’−メチレンビスアクリルアミド、ジビニルビフェニル、トリアリルイソシアヌレート、トリビニルベンゼン、等の、複数のC=C二重結合を有する架橋性のモノマーを共重合させて、架橋構造を導入する方法(例、スルホン化ポリスチレンをジビニルベンゼンで架橋する、)、解離性プロトンを有する複数の官能基同士に対し、架橋構造を導入する方法(スルホン化ポリエーテルエーテルケトンとジアミンとを用いて、複数のスルホン酸基同士をスルホンアミド結合により架橋する、スルホン化ポリエーテルエーテルケトンの複数のスルホン酸基同士を脱硫酸縮合させ、スルホネート結合させて架橋する)、解離性プロトンを有する官能基以外の反応性の構造を架橋する方法(スルホン化芳香族ポリマー中のカルボニル基や、芳香環に直接結合したアルキル基や、末端の不飽和結合に、紫外線照射などによりエネルギーを供給して架橋構造を形成する、スルホン化フェノールをホルムアルデヒドで架橋して架橋型スルホン化フェノール樹脂とする)方法、等の方法で、好適に導入可能である。架橋構造の導入比は、10〜50mol%が好ましく、更に好ましくは15〜45mol%である。本発明においては、第1成分である電解質膜前駆体に架橋構造を多く導入しても、後から複合化させる第2成分の効果で、プロトン伝導性を向上させることが出来、しかも架橋構造が多く導入されていることで、水や液体燃料に対する耐膨潤、耐溶解性が良好で、メタノール透過性が小さい複合電解質膜となるので好ましい。   In the present invention, the electrolyte membrane precursor is obtained by crosslinking a polymer containing a functional group having a dissociative proton. Examples of the type of cross-linking include cross-linking by covalent bond, cross-linking by hydrogen bond, and cross-linking by coordination bond. From the viewpoint of the strength of the cross-linked structure, cross-linking by covalent bond is preferable. For a polymer containing a functional group having a dissociating proton, a covalently crosslinked structure is obtained by, for example, obtaining the precursor from a polymer containing a functional group having a dissociating proton in advance. And a monomer containing a C═C double bond, for example, divinylbenzene, divinylsulfone, butadiene, isoprene, divinylpyridine, N, N′-methylenebisacrylamide, divinylbiphenyl, triallyl isocyanurate, A method of introducing a crosslinked structure by copolymerizing a crosslinkable monomer having a plurality of C═C double bonds, such as trivinylbenzene (eg, sulfonated polystyrene is crosslinked with divinylbenzene), dissociation property A method of introducing a crosslinked structure between a plurality of functional groups having protons (sulfonated polyether agent) Using ketones and diamines, the sulfonic acid groups of the sulfonated polyether ether ketone are cross-linked by sulfonamide bonds, and the sulfonic acid groups of the sulfonated polyetheretherketone are desulfurized and crosslinked to form a sulfonate bond. To crosslink reactive structures other than functional groups with functional protons (for example, carbonyl groups in sulfonated aromatic polymers, alkyl groups bonded directly to aromatic rings, and unsaturated bonds at the ends, by irradiation with ultraviolet rays, etc.) Can be suitably introduced by a method such as a method in which a crosslinked structure is formed by supplying a sulfonated phenol and a sulfonated phenol is crosslinked with formaldehyde to obtain a crosslinked sulfonated phenol resin). The introduction ratio of the crosslinked structure is preferably 10 to 50 mol%, more preferably 15 to 45 mol%. In the present invention, even if a large amount of cross-linked structure is introduced into the electrolyte membrane precursor, which is the first component, the proton conductivity can be improved by the effect of the second component to be combined later, and the cross-linked structure can be improved. The introduction of a large amount is preferable because it provides a composite electrolyte membrane having good resistance to swelling and dissolution with respect to water and liquid fuel and low methanol permeability.

電解質膜前駆体には、上記の方法により得られる、架橋された解離性プロトンを有する官能基を含んだ重合体に加え、水や、液体燃料と接触しても膨潤、溶解、寸法変化を起こしにくい基材を含んでも良い。該基材には、例えば、ポリオレフィン、ポリイミド、ポリテトラフルオロエチレンからなるフィルム、多孔質フィルム、不織布、織物が好適に使用可能であるが、得られる複合電解質のプロトン伝導性や、架橋された解離性プロトンを有する官能基を含んだ重合体と基材との親和性、等の観点から、該基材は多孔質フィルムであることが好ましい。
特に好ましい電解質膜前駆体は、例えば、ポリエチレン微多孔フィルムをはじめとする多孔質フィルムに、例えば、スチレンに代表されるプロトン解離性官能基が導入可能な官能基を有するモノマーとジビニルベンゼンに代表される架橋性のモノマーを含む重合体をスルホン化した電解質膜前駆体である。というのは、ジビニルベンゼンで架橋したスルホン化ポリスチレン重合体は、ジビニルベンゼンの含有比を高めることにより、電解質膜前駆体の水や液体燃料に対する耐膨潤、耐溶解性や耐メタノール透過性を高めることが可能であり、ポリエチレン微多孔膜が、膜全体の乾湿寸法変化を抑制する効果を持つと同時に、電解質膜前駆体の製造時に、プロトン解離性官能基が導入可能な官能基を有するモノマーや架橋性モノマーに対する良好な含浸性があり、さらに架橋度の高い重合体を使用しても、多孔質フィルムの効果で電解質膜前駆体に適度な柔軟性を付与でき、しかもスルホン化時に多孔質フィルムがスルホン化剤により劣化しにくいと考えられるからである。
In addition to the polymer containing a functional group having a cross-linkable dissociable proton obtained by the above method, the electrolyte membrane precursor swells, dissolves, and changes its dimensions even when contacted with water or liquid fuel. A difficult base material may be included. For the base material, for example, a film made of polyolefin, polyimide, polytetrafluoroethylene, a porous film, a non-woven fabric, and a woven fabric can be suitably used, but the proton conductivity of the obtained composite electrolyte and the cross-linked dissociation From the viewpoint of the affinity between the polymer containing a functional group having a functional proton and the substrate, the substrate is preferably a porous film.
Particularly preferred electrolyte membrane precursors are represented by, for example, divinylbenzene and a monomer having a functional group capable of introducing a proton dissociable functional group represented by styrene into a porous film such as a polyethylene microporous film. An electrolyte membrane precursor obtained by sulfonating a polymer containing a crosslinkable monomer. This is because sulfonated polystyrene polymer cross-linked with divinylbenzene increases the swelling ratio, dissolution resistance and methanol permeability resistance of the electrolyte membrane precursor to water and liquid fuel by increasing the content ratio of divinylbenzene. The polyethylene microporous membrane has the effect of suppressing changes in the wet and dry dimensions of the entire membrane, and at the same time, a monomer having a functional group capable of introducing a proton-dissociating functional group or a cross-linkage during the production of the electrolyte membrane precursor. Even if a polymer having a good impregnation property for the functional monomer and having a high degree of cross-linking is used, the effect of the porous film can impart an appropriate flexibility to the electrolyte membrane precursor, and the porous film can be formed during sulfonation. It is because it is thought that it is hard to deteriorate with a sulfonating agent.

電解質膜前駆体の特に好ましい態様を、ポリエチレン微多孔フィルムに、スチレンとジビニルベンゼンを含むモノマー液を含浸、重合し、これをスルホン化した、電解質膜前駆体(以下スルホン化SDVB含浸重合前駆体とする)を例に挙げて説明する。スルホン化SDVB含浸重合前駆体は、スチレン構造が、後のスルホン化で解離性プロトンを有する官能基を含む構造に相当し、ジビニルベンゼン構造が架橋構造に相当する重合体が、多孔質基材に含浸・重合された電解質膜前駆体である。
本好ましい態様において、多孔質基材は、ポリエチレン樹脂製の多孔質フィルムであり、厚みが10〜100μm、好ましくは15〜50μm、気孔率が30〜60%、好ましくは35〜50%、厚み25μm換算透気度が200〜900秒/100cc、好ましくは300〜800秒/100ccの、通気性多孔質フィルムである。含浸重合させる重合体の含水膨張を抑えるために、更に、多孔質フィルムを構成するポリエチレン樹脂の重量平均分子量が25万以上であり、二軸方向に3×3〜10×10倍、好ましくは5×5〜10×10倍延伸処理がなされたものであることが好ましい。
As a particularly preferable embodiment of the electrolyte membrane precursor, an electrolyte membrane precursor (hereinafter referred to as a sulfonated SDVB-impregnated polymerization precursor) obtained by impregnating and polymerizing a polyethylene microporous film with a monomer liquid containing styrene and divinylbenzene and polymerizing the polymer solution. Will be described as an example. The sulfonated SDVB-impregnated polymerization precursor corresponds to a structure in which the styrene structure includes a functional group having a dissociable proton in the subsequent sulfonation, and a polymer in which the divinylbenzene structure corresponds to a crosslinked structure is formed on the porous substrate. An electrolyte membrane precursor impregnated and polymerized.
In this preferred embodiment, the porous substrate is a polyethylene resin porous film having a thickness of 10 to 100 μm, preferably 15 to 50 μm, a porosity of 30 to 60%, preferably 35 to 50%, and a thickness of 25 μm. The air-permeable porous film has a converted air permeability of 200 to 900 seconds / 100 cc, preferably 300 to 800 seconds / 100 cc. In order to suppress the water-containing expansion of the polymer to be impregnated, the polyethylene resin constituting the porous film has a weight average molecular weight of 250,000 or more, and 3 × 3 to 10 × 10 times in the biaxial direction, preferably 5 It is preferred that the film is stretched by 5 to 10 times 10 times.

本好ましい態様において、スチレンとジビニルベンゼンの構成比は、ジビニルベンゼンが好ましくは10〜50mol%、更に好ましくは15〜45mol%である。また、スチレンとジビニルベンゼンに加え、共重合可能な他のモノマーを使用した重合体であっても良い。
本好ましい態様において、多孔質基材へのスチレンとジビニルベンゼンの含浸は、あらかじめスチレンとジビニルベンゼンと、公知の重合開始剤、共重合可能な他のモノマーや可塑剤等の添加剤を混合したモノマー液を作成し、このモノマー液に多孔質基材を浸漬する方法などにより可能である。必要に応じてPETフィルムなどの支持体を使用しても良い。
In this preferred embodiment, the constituent ratio of styrene and divinylbenzene is preferably 10 to 50 mol%, more preferably 15 to 45 mol% of divinylbenzene. Moreover, in addition to styrene and divinylbenzene, a polymer using another copolymerizable monomer may be used.
In this preferred embodiment, the porous substrate is impregnated with styrene and divinylbenzene in advance by mixing styrene and divinylbenzene with a known polymerization initiator, another monomer that can be copolymerized, or an additive such as a plasticizer. It is possible to prepare a liquid and immerse the porous substrate in this monomer liquid. A support such as a PET film may be used as necessary.

本好ましい態様において、多孔質基材へのスチレンとジビニルベンゼンの重合は、多孔質基材に含浸されたスチレンとジビニルベンゼン等の含まれた溶液の組成に応じて、公知の方法を適宜選択して行うことが出来る。例えば、溶液がスチレンとジビニルベンゼンと有機過酸化物から構成される場合、例えば、無酸素下、80℃で数時間重合すればよい。
本好ましい態様において、スチレンとジビニルベンゼンを含浸重合した多孔質基材に対するスルホン化は、無水硫酸、硫酸、クロロスルホン酸などを使用して公知の方法で行うことが出来る。
In the present preferred embodiment, for the polymerization of styrene and divinylbenzene on the porous substrate, a known method is appropriately selected according to the composition of the solution containing styrene and divinylbenzene impregnated in the porous substrate. Can be done. For example, when the solution is composed of styrene, divinylbenzene, and an organic peroxide, for example, polymerization may be performed at 80 ° C. for several hours in the absence of oxygen.
In this preferred embodiment, the sulfonation of the porous substrate impregnated and polymerized with styrene and divinylbenzene can be carried out by a known method using sulfuric anhydride, sulfuric acid, chlorosulfonic acid or the like.

本発明で第2成分を構成する、解離性プロトンとC=C二重結合とを含む解離性モノマーを重合して得られる重合体は、第1成分の重合体よりも解離性官能基容量の多い重合体である。第2成分の重合体の具体例は、ビニルスルホン酸の重合体、アリルスルホン酸の重合体、メタリルスルホン酸の重合体、スチレンスルホン酸の重合体、2−アクリルアミド−2−メチルプロパンスルホン酸の重合体、アクリル酸の重合体、メタクリル酸の重合体、ビニル安息香酸の重合体、ビニルホスホン酸の重合体、スチレンホスホン酸の重合体、等、公知のC=C二重結合とスルホン酸、カルボン酸、ホスホン酸基を有するモノマーの重合体が好適に使用可能である。また上記公知のC=C二重結合とスルホン酸、カルボン酸、ホスホン酸基を有するモノマーの塩類の重合体も、イオン交換することによりプロトン解離性官能基を形成するので、好ましく使用可能である。これらの解離性モノマーは、必要に応じて複数種類用いた重合体として使用しても良い。また、これらの解離性モノマーには、第2成分の重合体の解離性官能基容量が第1成分の重合体の解離性官能基容量よりも多い範囲内で、少なくともひとつのC=C二重結合を含むが解離性官能基を含まない他のモノマーを少なくとも1種類以上組み合わせて使用しても良い。   The polymer obtained by polymerizing a dissociative monomer comprising a dissociable proton and a C═C double bond constituting the second component in the present invention has a dissociative functional group capacity higher than that of the polymer of the first component. Many polymers. Specific examples of the second component polymer include a vinyl sulfonic acid polymer, an allyl sulfonic acid polymer, a methallyl sulfonic acid polymer, a styrene sulfonic acid polymer, and 2-acrylamido-2-methylpropane sulfonic acid. Polymers of acrylic acid, polymers of methacrylic acid, polymers of vinyl benzoic acid, polymers of vinyl phosphonic acid, polymers of styrene phosphonic acid, etc., known C = C double bond and sulfonic acid Polymers of monomers having carboxylic acid and phosphonic acid groups can be preferably used. In addition, a polymer of a salt of a monomer having the above-described known C═C double bond and a sulfonic acid, carboxylic acid, or phosphonic acid group can be preferably used because it forms a proton dissociable functional group by ion exchange. . You may use these dissociative monomers as a polymer used multiple types as needed. Further, these dissociative monomers include at least one C═C double bond within a range in which the dissociative functional group capacity of the second component polymer is larger than the dissociative functional group capacity of the first component polymer. You may use it combining at least 1 or more types of the other monomer which contains a coupling | bonding but does not contain a dissociative functional group.

本発明において、第1成分と第2成分の構成比は、各成分それぞれを構成する重合体等に依存するため特に限定されるものではないが、例えば第1成分が99.5〜70wt%、好ましくは99〜80wt%、更に好ましくは99〜85wt%である場合がある。
第2成分の重合体が多くのプロトン解離性官能基を多く含む重合体である場合、第2成分の構成比が少なくなり、第2成分の重合体が多くのプロトン解離性官能基を少なく含む重合体である場合、第2成分の構成比は多くなる。第2成分を添加する効果で、複合電解質膜全体のプロトン伝導性を改善する効果を大きくするため、少量の、より多くのプロトン解離性官能基を含む重合体、例えばプロトン解離性官能基あたりの分子量が小さい、ビニルスルホン酸を含む重合体を第2成分として、第1成分に対して少量含浸・重合するのが好ましい。というのは、第2成分は第1成分に比べて、含水、含溶媒による膨張が大きく、多量に用いると複合電解質膜を変形させる場合があり、好ましくないからである。また、第2成分の重合体の膨張を小さくするために、架橋構造を導入する場合、プロトン解離性官能基あたりの分子量の小さい解離性モノマーを使用すると、架橋構造を多くしても、第1成分の重合体のプロトン解離性官能基容量を上回ることがないので、プロトン伝導性の向上効果が大きく、特に好ましい。
In the present invention, the composition ratio of the first component and the second component is not particularly limited because it depends on the polymer constituting each component, but for example, the first component is 99.5 to 70 wt%, Preferably it may be 99-80 wt%, more preferably 99-85 wt%.
When the polymer of the second component is a polymer containing many proton dissociable functional groups, the composition ratio of the second component is reduced, and the polymer of the second component contains few proton dissociating functional groups In the case of a polymer, the composition ratio of the second component is increased. In order to increase the effect of improving the proton conductivity of the entire composite electrolyte membrane by adding the second component, a small amount of a polymer containing more proton-dissociable functional groups, for example, per proton-dissociable functional group It is preferable to impregnate and polymerize the first component in a small amount with the polymer containing vinyl sulfonic acid having a small molecular weight as the second component. This is because the second component has a larger expansion due to water and solvent than the first component, and if used in a large amount, the composite electrolyte membrane may be deformed, which is not preferable. Further, when a cross-linked structure is introduced in order to reduce the expansion of the polymer of the second component, if a dissociative monomer having a small molecular weight per proton-dissociable functional group is used, the first structure can be increased even if the cross-linked structure is increased. Since it does not exceed the proton dissociable functional group capacity of the component polymer, the effect of improving proton conductivity is great, which is particularly preferable.

本発明の複合電解質膜の製造方法において、解離性モノマーは、モノマーだけで、または溶媒に溶解させて、モノマー液として、例えば浸漬法やコート法などの公知の方法で、第一成分である電解質膜前駆体に含浸される。含浸の際、溶媒を使用する場合は、電解質膜前駆体に浸透しやすい、例えば、水、アルコール類、ジメチルスルホキシド、等の極性溶媒が好適に使用可能であるが、得られた電解質膜の洗浄等の操作が不要、もしくは容易であるとの理由により、溶媒を使用しないか、あるいは水を溶媒として使用するのが特に好ましい。また、必要に応じて、界面活性剤、可塑剤などの添加剤を少量用いることも可能である。   In the method for producing a composite electrolyte membrane of the present invention, the dissociative monomer is a monomer alone or dissolved in a solvent and used as a monomer solution by a known method such as a dipping method or a coating method, for example, as the first component electrolyte. Impregnated into the film precursor. In the case of using a solvent during impregnation, polar solvents such as water, alcohols, dimethyl sulfoxide, etc. that can easily penetrate into the electrolyte membrane precursor can be preferably used. It is particularly preferable not to use a solvent or to use water as a solvent because the operation such as the above is unnecessary or easy. If necessary, a small amount of additives such as a surfactant and a plasticizer can be used.

電解質膜前駆体に含浸させた該解離性モノマーは、公知のラジカル重合法により重合されて第2成分となる。該解離性モノマーをを重合させるために、該解離性モノマーとともに、光重合開始剤、熱重合開始剤等の、公知の各種ラジカル発生型重合開始剤を該解離性モノマーに、重合開始剤の種類に応じて少量、好ましくは5wt%以下添加して使用しても良い。また、重合開始剤を使用せずに、あらかじめ電解質膜前駆体に、γ線、電子線、プラズマなどの高エネルギー線を照射し、電解質膜前駆体内にラジカルを形成して、その後該解離性モノマーを含浸して重合しても良い。各種重合開始剤使用法、高エネルギー線照射法、等、ラジカルを発生させる方法に応じて、公知の重合条件をとることにより、該解離性モノマーが該電解質膜前駆体内で重合し、第2成分となり、該電解質膜前駆体とともに複合電解質膜を形成する。例えば、熱重合開始剤の1種である過硫酸塩を重合開始剤として用いる場合、電解質膜前駆体を無酸素状態で該解離性モノマーと過硫酸塩の水溶液に含浸し、無酸素状態で加熱することにより本発明の複合電解質膜を得ることが可能である。   The dissociative monomer impregnated in the electrolyte membrane precursor is polymerized by a known radical polymerization method to become a second component. In order to polymerize the dissociable monomer, together with the dissociable monomer, various known radical generating polymerization initiators such as a photopolymerization initiator and a thermal polymerization initiator are used as the dissociative monomer, and the kind of the polymerization initiator. Depending on the conditions, a small amount, preferably 5 wt% or less may be added. In addition, without using a polymerization initiator, the electrolyte membrane precursor is irradiated with high energy rays such as γ rays, electron beams, and plasma in advance to form radicals in the electrolyte membrane precursor, and then the dissociative monomer May be impregnated for polymerization. The dissociative monomer is polymerized in the electrolyte membrane precursor by taking a known polymerization condition according to a method for generating radicals such as various polymerization initiator use methods, high energy ray irradiation methods, etc. Thus, a composite electrolyte membrane is formed together with the electrolyte membrane precursor. For example, when persulfate, which is one of thermal polymerization initiators, is used as a polymerization initiator, the electrolyte membrane precursor is impregnated in an aqueous solution of the dissociative monomer and persulfate in an oxygen-free state and heated in an oxygen-free state. By doing so, it is possible to obtain the composite electrolyte membrane of the present invention.

本発明の燃料電池は、公知の方法に従って、複合電解質膜の両面にガス拡散電極を密着させ、ついで膜全体を集電体で挟んで燃料電池を組み立てる。
ガス拡散電極は、公知の方法に従って、白金、もしくは白金と例えばルテニウム等の異種金属との合金からなる微粒子を担持した、カーボンブラック粉末を、公知の解離性プロトンを有する官能基を含む重合体やPTFEなどの疎水性樹脂バインダーで保持した、多孔質体のシートよりなる。該ガス拡散電極は、公知の方法、例えばあらかじめ支持体上にガス拡散電極を作成した後、ホットプレスにより複合電解質膜と密着させる、複合電解質膜上にスクリーン印刷で直接形成する、等の方法により、複合電解質膜に密着させる。
In the fuel cell of the present invention, according to a known method, a gas diffusion electrode is adhered to both surfaces of a composite electrolyte membrane, and then the entire membrane is sandwiched between current collectors to assemble the fuel cell.
In accordance with a known method, the gas diffusion electrode is a polymer containing carbon black powder carrying fine particles made of platinum or an alloy of platinum and a dissimilar metal such as ruthenium. It consists of a porous sheet held by a hydrophobic resin binder such as PTFE. The gas diffusion electrode is formed by a known method, for example, a gas diffusion electrode is prepared on a support in advance, and then adhered to the composite electrolyte membrane by hot pressing, or directly formed by screen printing on the composite electrolyte membrane. Then, it is adhered to the composite electrolyte membrane.

集電体には、導電性カーボン板などの導電性材料からなり、陰極側には燃料ガスもしくは液体、陽極側には酸化剤ガスの流路となる溝が形成される。
固体高分子型燃料電池では、例えば、陰極側には水素ガスが、陽極側には空気が供給され、次の反応により電気エネルギーが生成する。
陰極:H→2H+2e
陽極:1/2O+2H+2e→H
直接メタノール型燃料電池では、例えば、陰極側にはメタノール水溶液が、陽極側には空気が供給され、次の反応により電気エネルギーが生成する。
陰極:CHOH+HO→CO+6H+6e
陽極:3/2O+6H+6e→3H
The current collector is made of a conductive material such as a conductive carbon plate, and a groove serving as a flow path for fuel gas or liquid is formed on the cathode side and an oxidant gas is formed on the anode side.
In a polymer electrolyte fuel cell, for example, hydrogen gas is supplied to the cathode side and air is supplied to the anode side, and electric energy is generated by the following reaction.
Cathode: H 2 → 2H + + 2e
Anode: 1 / 2O 2 + 2H + + 2e → H 2 O
In a direct methanol fuel cell, for example, an aqueous methanol solution is supplied to the cathode side and air is supplied to the anode side, and electric energy is generated by the following reaction.
Cathode: CH 3 OH + H 2 O → CO 2 + 6H + + 6e
Anode: 3 / 2O 2 + 6H + + 6e → 3H 2 O

下記実施例、比較例にて本発明を説明する。尚本実施例は発明の範囲を限定するものではない。
[重合体のプロトン解離性官能基容量の測定]
まず、膜を2N食塩水に1時間浸漬し、膜から浸漬した食塩水中に追い出されたプロトン量を、1/100N水酸化ナトリウム溶液で滴定、定量し(xmol)、食塩水中でナトリウム体になった膜の乾燥重量(yg)し、両者の値から式(1000/((y/x)−22))を用いて膜のプロトン解離性官能基容量(mmol/g)を求めた。基材に解離性プロトンを有する官能基を含んだ重合体が含浸された電解質膜前駆体の場合、基材を除いた架橋重合体のプロトン解離性官能基容量(mmol/g)は、電解質膜前駆体のプロトン解離性官能基容量を電解質膜前駆体中の重合体の重量分率(g/g)で割ることにより求めた。充填した重合体のプロトン解離性官能基容量は、複合電解質膜中の、充填した重合体の重量分率(m(g/g))と、複合電解質膜のプロトン解離性官能基容量(C2(mmol/g))と電解質膜前駆体のプロトン解離性官能基容量(C1(mmol/g))から、式(C2−(1−m)×C1)/mにより求めた。
The following examples and comparative examples illustrate the present invention. Note that this example does not limit the scope of the invention.
[Measurement of proton dissociative functional group capacity of polymer]
First, the membrane was immersed in 2N saline for 1 hour, and the amount of protons expelled from the membrane immersed in saline was titrated and quantified with a 1 / 100N sodium hydroxide solution (xmol) to become a sodium body in saline. The dry weight (yg) of the membrane was determined, and the proton dissociable functional group capacity (mmol / g) of the membrane was determined from the value of both using the formula (1000 / ((y / x) -22)). In the case of an electrolyte membrane precursor in which a base material is impregnated with a polymer containing a functional group having a dissociable proton, the proton dissociative functional group capacity (mmol / g) of the crosslinked polymer excluding the base material is the electrolyte membrane. It was determined by dividing the proton dissociative functional group capacity of the precursor by the weight fraction (g / g) of the polymer in the electrolyte membrane precursor. The proton-dissociative functional group capacity of the filled polymer is the weight fraction (m (g / g)) of the filled polymer in the composite electrolyte membrane and the proton-dissociative functional group capacity (C2 ( mmol / g)) and the proton dissociable functional group capacity (C1 (mmol / g)) of the electrolyte membrane precursor, which was obtained by the formula (C2- (1-m) × C1) / m.

[プロトン伝導性の測定]
40℃、水中における膜面方向のプロトン伝導度(S/cm)を、4端子法により測定した交流インピーダンスから求め、この値を膜厚み(cm)で割り、プロトン伝導性(S/cm)とした。
[メタノール透過性の測定]
膜を40℃に制御されたチャンバー内のセルにセットし、膜の上面に30wt%メタノール水溶液を循環させ、膜の下面に乾燥ヘリウムを流し、メタノールを浸透気化させた。膜下面に流したヘリウムを、ガスサンプラーを設けた六方バルブにより一定間隔でサンプリングし、ガスクロマトグラフでヘリウム中のメタノール量を定量した。メタノール量の経時変化を追跡し、一定になった時点のメタノール量から、メタノール透過性を求めた。
[Measurement of proton conductivity]
The proton conductivity (S / cm) in the direction of the membrane surface in water at 40 ° C. was determined from the AC impedance measured by the 4-terminal method, and this value was divided by the membrane thickness (cm) to obtain proton conductivity (S / cm 2 ). It was.
[Measurement of methanol permeability]
The membrane was set in a cell in a chamber controlled at 40 ° C., a 30 wt% aqueous methanol solution was circulated on the upper surface of the membrane, dry helium was allowed to flow on the lower surface of the membrane, and methanol was permeated and vaporized. The helium flowed on the lower surface of the membrane was sampled at regular intervals by a six-way valve provided with a gas sampler, and the amount of methanol in the helium was quantified with a gas chromatograph. The change in the amount of methanol over time was followed, and the methanol permeability was determined from the amount of methanol when the amount became constant.

[比較例1](電解質膜前駆体の作成)
ポリエチレン微多孔膜(厚み38μm、気孔率43%、透気度610秒/100cc)を、スチレンモノマー83mol%、ジビニルベンゼン17mol%からなるモノマー95wt%、過酸化エステル型重合開始剤5wt%からなるモノマー液に浸漬し、引き上げた後、2枚のPETフィルムに挟み、窒素雰囲気下、80℃で5時間重合した。得られた膜をPETフィルムから剥離し。無水硫酸の塩化メチレン溶液で、室温12時間スルホン化を行い、電解質膜前駆体を得た。得られた電解質膜前駆体の、基材を除いた重合体のプロトン解離性官能基容量は、3.8mmol/g、プロトン伝導性は10S/cm、メタノール透過性は14kg/m・日であった。
[Comparative Example 1] (Preparation of electrolyte membrane precursor)
Polyethylene microporous membrane (thickness 38 μm, porosity 43%, air permeability 610 seconds / 100 cc), styrene monomer 83 mol%, monomer 17 wt% of divinylbenzene 95 wt%, monomer of peroxide type polymerization initiator 5 wt% After being immersed in the liquid and pulled up, it was sandwiched between two PET films and polymerized at 80 ° C. for 5 hours in a nitrogen atmosphere. The obtained film was peeled from the PET film. Sulfonation was carried out with a methylene chloride solution of anhydrous sulfuric acid at room temperature for 12 hours to obtain an electrolyte membrane precursor. The obtained electrolyte membrane precursor has a proton-dissociable functional group capacity of 3.8 mmol / g, proton conductivity of 10 S / cm 2 , and methanol permeability of 14 kg / m 2 · day. Met.

[実施例1]
比較例1の電解質膜前駆体を40℃18時間乾燥後、ビニルスルホン酸(以下VSA)70mol%とトリアリルイソシアヌレート30mol%(以下TAIC)からなるモノマー99wt%、水溶性アゾ系開始剤1wt%からなるモノマー液に浸漬し、引き上げたのち、50℃のオーブンで18時間加熱し、VSAとTAICを重合させた。得られた複合電解質膜のうち、電解質膜前駆体が占める割合は88wt%、充填した重合体のプロトン解離性官能基容量は4.7mmol/gで、比較例1の電解質膜前駆体の基材を除いた重合体のプロトン解離性官能基容量より低く、プロトン伝導性は13S/cm、メタノール透過性は13kg/m・日で、比較例1の電解質膜と比べて、メタノール水に対する溶解性も変化なかった。
[Example 1]
After the electrolyte membrane precursor of Comparative Example 1 was dried at 40 ° C. for 18 hours, 99 wt% of a monomer consisting of 70 mol% of vinyl sulfonic acid (hereinafter referred to as VSA) and 30 mol% of triallyl isocyanurate (hereinafter referred to as TAIC), 1 wt% of a water-soluble azo initiator After being soaked in the monomer solution consisting of the above and pulled up, it was heated in an oven at 50 ° C. for 18 hours to polymerize VSA and TAIC. The proportion of the electrolyte membrane precursor in the obtained composite electrolyte membrane is 88 wt%, the proton-dissociative functional group capacity of the filled polymer is 4.7 mmol / g, and the base material of the electrolyte membrane precursor of Comparative Example 1 Lower than the proton-dissociative functional group capacity of the polymer excluding the polymer, proton conductivity is 13 S / cm 2 , methanol permeability is 13 kg / m 2 · day, and it is dissolved in methanol water compared to the electrolyte membrane of Comparative Example 1. There was no change in sex.

[実施例2]
比較例1の電解質膜前駆体を、VSA49wt%、水50wt%、光重合開始剤1wt%からなるモノマー液に浸漬し、引き上げたのち、高圧水銀ランプにて、VSAを重合させた。得られた電解質膜のうち、電解質膜前駆体が占める割合は94wt%、充填した重合体のプロトン解離性官能基容量は9.3mmol/gで、比較例1の電解質膜前駆体の基材を除いた重合体のプロトン解離性官能基容量より低く、プロトン伝導性は14S/cm、メタノール透過性は14kg/m・日で、比較例1の電解質膜と比べて、メタノール水に対する溶解性も変化なかった。
[Example 2]
The electrolyte membrane precursor of Comparative Example 1 was immersed in a monomer solution consisting of 49 wt% VSA, 50 wt% water, and 1 wt% photopolymerization initiator, pulled up, and then VSA was polymerized using a high-pressure mercury lamp. The proportion of the electrolyte membrane precursor in the obtained electrolyte membrane is 94 wt%, the proton-dissociative functional group capacity of the filled polymer is 9.3 mmol / g, and the electrolyte membrane precursor substrate of Comparative Example 1 is used as the base material. The polymer capacity of the removed polymer is lower than the proton-dissociable functional group capacity, proton conductivity is 14 S / cm 2 , and methanol permeability is 14 kg / m 2 · day, which is more soluble in methanol water than the electrolyte membrane of Comparative Example 1. There was no change.

本発明の電解質膜及び燃料電池は、燃料電池、特に固体高分子型燃料電池及び直接メタノール型燃料電池の分野で好適に利用できる。   The electrolyte membrane and fuel cell of the present invention can be suitably used in the field of fuel cells, particularly solid polymer fuel cells and direct methanol fuel cells.

Claims (7)

第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する重合体からなる電解質膜前駆体に、解離性プロトンを有する官能基とC=C二重結合を有する解離性モノマーを重合して得られる第2成分が充填されてなることを特徴とする複合電解質膜。 Polymerization of a functional group having a dissociating proton and a dissociating monomer having a C = C double bond on an electrolyte membrane precursor made of a polymer having a crosslink structure and containing a functional group having a dissociating proton as the first component A composite electrolyte membrane characterized by being filled with a second component obtained in this manner. 電解質膜前駆体の架橋構造含有量が、10〜50mol%であることを特徴とする、請求項1記載の複合電解質膜 The composite electrolyte membrane according to claim 1, wherein the content of the crosslinked structure of the electrolyte membrane precursor is 10 to 50 mol%. 電解質膜前駆体が、スルホン化されたスチレン−ジビニルベンゼンの重合体を含浸、重合した多孔質膜であることを特徴とする、請求項1または2記載の複合電解質膜。 The composite electrolyte membrane according to claim 1 or 2, wherein the electrolyte membrane precursor is a porous membrane impregnated and polymerized with a sulfonated styrene-divinylbenzene polymer. 第1成分である解離性プロトンを有する官能基を含み、架橋構造を有する電解質膜前駆体に、解離性プロトンとC=C二重結合を有する解離性モノマーを含浸し、重合し、得られた重合体である第2成分が少なくとも電解質膜前駆体内に存在することを特徴とする、複合電解質膜の製造方法。 An electrolyte membrane precursor containing a functional group having a dissociable proton as the first component and having a cross-linked structure was impregnated with a dissociative monomer having a dissociable proton and a C═C double bond, and polymerized. A method for producing a composite electrolyte membrane, wherein the second component that is a polymer is present at least in the electrolyte membrane precursor. 電解質膜前駆体の架橋構造含有量が、10〜50mol%であることを特徴とする、請求項4記載の複合電解質膜の製造方法 The method for producing a composite electrolyte membrane according to claim 4, wherein the content of the crosslinked structure of the electrolyte membrane precursor is 10 to 50 mol%. 電解質膜前駆体が、スルホン化されたスチレン−ジビニルベンゼンの重合体を含浸、重合した多孔質膜であることを特徴とする、請求項4または5記載の複合電解質膜の製造方法。 6. The method for producing a composite electrolyte membrane according to claim 4, wherein the electrolyte membrane precursor is a porous membrane impregnated and polymerized with a sulfonated styrene-divinylbenzene polymer. 請求項1記載の複合電解質膜を使用した燃料電池。 A fuel cell using the composite electrolyte membrane according to claim 1.
JP2005320991A 2005-11-04 2005-11-04 Composite electrolyte membrane and fuel cell using the same Expired - Fee Related JP4860237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320991A JP4860237B2 (en) 2005-11-04 2005-11-04 Composite electrolyte membrane and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320991A JP4860237B2 (en) 2005-11-04 2005-11-04 Composite electrolyte membrane and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2007128764A true JP2007128764A (en) 2007-05-24
JP4860237B2 JP4860237B2 (en) 2012-01-25

Family

ID=38151244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320991A Expired - Fee Related JP4860237B2 (en) 2005-11-04 2005-11-04 Composite electrolyte membrane and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4860237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711966A (en) * 2009-11-02 2012-10-03 Itm动力(研究)有限公司 Ionic membrane preparation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310649A (en) * 1998-04-28 1999-11-09 Tokuyama Corp Cation exchange membrane and its use
JP2001135328A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Diaphragm for solid high molecular electrolyte fuel cell
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
WO2003075386A1 (en) * 2002-03-07 2003-09-12 Japan Science And Technology Agency Electrolyte film and solid polymer fuel cell using the same
JP2004171994A (en) * 2002-11-21 2004-06-17 Ube Ind Ltd Manufacturing method of hybrid material using porous membrane as base material
JP2004253183A (en) * 2003-02-18 2004-09-09 Toagosei Co Ltd Manufacturing method of electrolyte membrane, and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310649A (en) * 1998-04-28 1999-11-09 Tokuyama Corp Cation exchange membrane and its use
JP2001135328A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Diaphragm for solid high molecular electrolyte fuel cell
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
WO2003075386A1 (en) * 2002-03-07 2003-09-12 Japan Science And Technology Agency Electrolyte film and solid polymer fuel cell using the same
JP2004171994A (en) * 2002-11-21 2004-06-17 Ube Ind Ltd Manufacturing method of hybrid material using porous membrane as base material
JP2004253183A (en) * 2003-02-18 2004-09-09 Toagosei Co Ltd Manufacturing method of electrolyte membrane, and fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711966A (en) * 2009-11-02 2012-10-03 Itm动力(研究)有限公司 Ionic membrane preparation
JP2013509480A (en) * 2009-11-02 2013-03-14 アイティーエム パワー (リサーチ) リミティド Preparation of ionic membrane
JP2015165026A (en) * 2009-11-02 2015-09-17 アイティーエム パワー (リサーチ) リミティド Ionic membrane preparation
US9327244B2 (en) 2009-11-02 2016-05-03 Itm Power (Research) Limited Ionic membrane preparation
CN106731872A (en) * 2009-11-02 2017-05-31 Itm动力(研究)有限公司 The preparation of ionic film

Also Published As

Publication number Publication date
JP4860237B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
KR100833056B1 (en) Reinforced composite electrolyte membrane for fuel cell
WO2006059582A1 (en) Electrolyte membrane and solid polymer fuel cell using same
KR20050036849A (en) Solid polymer membrane for fuel cell prepared by in situ polymerization
KR100914340B1 (en) Highly proton conductive crosslinked vinylsulfonic acid polymer electrolyte composite membranes and its preparation method for polymer electrolyte fuel cells
JP5089917B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2006216531A (en) Electrolyte membrane and solid polymer fuel cell using the same
JPWO2007119344A1 (en) Diaphragm for direct liquid fuel cell
KR101109143B1 (en) Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same
JP2004247182A (en) Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
US8609743B2 (en) Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
JP4979236B2 (en) Cross-linked electrolyte membrane and method for producing the same
JP5164149B2 (en) Cation exchange membrane and method for producing the same
JP4860237B2 (en) Composite electrolyte membrane and fuel cell using the same
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
WO2016002227A1 (en) Liquid fuel cell partitioning membrane and membrane-electrode-assembly provided with same
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2007115535A (en) Electrolyte film and its manufacturing method
JP2007280653A (en) Composite electrolyte membrane
JP2008204928A (en) Solid polymer electrolyte membrane, and fuel cell using it
JP2007080558A (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2004296278A (en) Small fuel cell and electrolyte film
JP2010282863A (en) Solid polymer electrolyte membrane, and method of manufacturing the same
JP2009104810A (en) Electrolyte membrane, membrane electrode assembly, fuel cell, and method of manufacturing electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees