JP2007127448A - Analyzing optical device - Google Patents

Analyzing optical device Download PDF

Info

Publication number
JP2007127448A
JP2007127448A JP2005318496A JP2005318496A JP2007127448A JP 2007127448 A JP2007127448 A JP 2007127448A JP 2005318496 A JP2005318496 A JP 2005318496A JP 2005318496 A JP2005318496 A JP 2005318496A JP 2007127448 A JP2007127448 A JP 2007127448A
Authority
JP
Japan
Prior art keywords
light
light beam
optical system
liquid sample
liquid holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005318496A
Other languages
Japanese (ja)
Inventor
Ichiji Ohashi
一司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005318496A priority Critical patent/JP2007127448A/en
Publication of JP2007127448A publication Critical patent/JP2007127448A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing optical device capable of measuring a small amount of a liquid sample with high precision. <P>SOLUTION: The analyzing optical device 1 includes a floodlight optical system 6 having a light source, a measuring container 2 for holding the liquid sample and a light detecting optical system for detecting the luminous flux emitted from the floodlight optical system and transmitted through the liquid sample. The measuring container 2 includes a transmission part 4 for permitting the transmission of luminous flux and a liquid holding part 2a having a plurality of reflection parts 3a and 3b which reflect the luminous flux. A plurality of the reflection parts 3a and 3b are arranged so that the luminous flux transmitted through the transmission part to enter the liquid holding part is reflected by a plurality of reflection parts to enter the light detecting optical system through the transmission part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体試料を光学的に分析する分析光学装置に関するものである。   The present invention relates to an analysis optical apparatus that optically analyzes a liquid sample.

従来、液体試料を光学的に分析する分析光学装置、例えば、採取した体液等の成分分析等を行う生化学分析装置は、液体試料の吸収スペクトルを測定する吸光分光法を用いて分析を行っている(例えば、特許文献1参照)。このとき、吸光分光法は、基本的にランベルト−ベール(Lambert-Beer)の法則に基づいて液体試料中における対象成分の濃度を求めている。   Conventionally, an analysis optical device that optically analyzes a liquid sample, for example, a biochemical analysis device that performs component analysis of a collected body fluid or the like, performs analysis using absorption spectroscopy that measures the absorption spectrum of the liquid sample. (For example, refer to Patent Document 1). At this time, the absorption spectroscopy basically obtains the concentration of the target component in the liquid sample based on the Lambert-Beer law.

特開2001−91455号公報JP 2001-91455 A

ところで、特許文献1に開示された生化学分析装置は、反応管(キュベット)が保持する液体試料が60μLあれば十分に測定をして分析することができる。しかし、特許文献1の生化学分析装置は、液体試料の量が更に少なくなると、測定光が部分的に液体試料を透過できなくなることから正確な測定を行うことが出来ず、測定値の精度が低下するという問題があった。   By the way, the biochemical analyzer disclosed in Patent Document 1 can sufficiently measure and analyze if the liquid sample held by the reaction tube (cuvette) is 60 μL. However, the biochemical analyzer of Patent Document 1 cannot perform accurate measurement because measurement light cannot partially pass through the liquid sample when the amount of the liquid sample is further reduced, and the accuracy of the measurement value is low. There was a problem of lowering.

本発明は、上記に鑑みてなされたものであって、少量の液体試料であっても高精度に測定することが可能な分析光学装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an analytical optical apparatus capable of measuring even a small amount of liquid sample with high accuracy.

上述した課題を解決し、目的を達成するために、請求項1に係る分析光学装置は、光源を有する投光光学系と、液体試料を保持する測定容器と、前記投光光学系から出射され、前記液体試料を透過した光束を受光する受光光学系とを備えた分析光学装置であって、前記測定容器は、前記光束が透過する透過部と、前記光束を反射する複数の反射部とを有する液体保持部を備え、前記複数の反射部は、前記透過部を透過して前記液体保持部に入射した光束が、当該複数の反射部で反射した後、前記透過部を通って前記受光光学系に入射するように配置されていることを特徴とする。   In order to solve the above-described problems and achieve the object, an analysis optical apparatus according to claim 1 is provided with a light projecting optical system having a light source, a measurement container holding a liquid sample, and the light projecting optical system. A light receiving optical system that receives a light beam that has passed through the liquid sample, wherein the measurement container includes a transmission part that transmits the light beam and a plurality of reflection parts that reflect the light beam. The plurality of reflection units includes a light holding optical unit that passes through the transmission unit and is incident on the liquid holding unit, is reflected by the plurality of reflection units, and then passes through the transmission unit. It is arranged to be incident on the system.

また、請求項2に係る分析光学装置は、上記の発明において、前記測定容器は、前記光束が前記複数の反射部においてm回(mは奇数)反射し、(m+1)/2番目に反射する反射部に前記光源の像が結像するように前記投光光学系に対して配置されていることを特徴とする。   In the analysis optical device according to claim 2, in the above invention, the measurement container reflects the light beam m times (m is an odd number) and (m + 1) / 2nd reflections at the plurality of reflection portions. It is arranged with respect to the light projecting optical system so that an image of the light source is formed on a reflecting portion.

また、請求項3に係る分析光学装置は、上記の発明において、前記測定容器は、前記透過部と前記複数の反射部とが鉛直方向に配置され、前記液体試料中を透過する前記光束の光路長が一定に保持されることを特徴とする。   In the analysis optical apparatus according to claim 3, in the above-described invention, the measurement container includes an optical path of the light beam that is transmitted through the liquid sample, the transmission unit and the plurality of reflection units being arranged in a vertical direction. The length is kept constant.

また、請求項4に係る分析光学装置は、上記の発明において、前記液体保持部は、多角柱形状に成形されていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the analytical optical device according to the above invention, wherein the liquid holding part is formed in a polygonal column shape.

また、請求項5に係る分析光学装置は、上記の発明において、前記多角柱は、四角柱であることを特徴とする。   According to a fifth aspect of the present invention, in the above-described analysis optical apparatus, the polygonal column is a quadrangular column.

本発明にかかる分析光学装置は、測定容器が、光束が透過する透過部と、光束を反射する複数の反射部とを有する液体保持部を備え、前記複数の反射部は、前記透過部を透過して前記液体保持部に入射した光束が、当該複数の反射部で反射した後、前記透過部を通って前記受光光学系に入射するように配置されているので、液体試料中を透過する光束の光路長は従来と同じになり、少量の液体試料であっても高精度に測定することができるという効果を奏する。   In the analysis optical device according to the present invention, the measurement container includes a liquid holding unit having a transmission part that transmits the light beam and a plurality of reflection parts that reflect the light beam, and the plurality of reflection parts transmit the transmission part. The light beam that has entered the liquid holding unit is reflected by the plurality of reflection units, and then passes through the transmission unit and enters the light receiving optical system. The optical path length is the same as in the prior art, and there is an effect that even a small amount of liquid sample can be measured with high accuracy.

(実施の形態1)
以下、本発明の分析光学装置にかかる実施の形態1について、図面を参照しつつ詳細に説明する。図1は、実施の形態1に係る分析光学装置の概略構成図である。図2は、図1に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。図3は、図2のA部拡大図である。
(Embodiment 1)
Hereinafter, Embodiment 1 according to the analysis optical apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an analytical optical device according to the first embodiment. FIG. 2 is a plan view showing a schematic configuration of a light projecting optical system, a measurement container, and a light receiving optical system that constitute the analysis optical apparatus shown in FIG. FIG. 3 is an enlarged view of a portion A in FIG.

分析光学装置1は、図1に示すように、測定容器2、投光光学系6及び受光光学系7を備えており、投光光学系6から出射された光束を測定容器2で反射させて受光光学系7で受光し、演算制御部8で液体試料中の対象成分の濃度が計算される。   As shown in FIG. 1, the analysis optical device 1 includes a measurement container 2, a light projecting optical system 6, and a light receiving optical system 7, and reflects the light beam emitted from the light projecting optical system 6 by the measurement container 2. Light is received by the light receiving optical system 7, and the concentration of the target component in the liquid sample is calculated by the arithmetic control unit 8.

測定容器2は、図1及び図2に示すように、本体3、カバー4及び底板5を有し、水平断面が直角二等辺三角形からなる三角柱形状であり、上部が開放された液体保持部2aを複数備えている。液体試料の測定の際、測定容器2は、本体3、カバー4及び底板5が一体に保持されて分析装置内において移動手段に所定方向(図1に示す矢印方向)へ移動自在に設置される。このため、測定容器2は分析装置側の制御手段によって移動動作が制御される。但し、測定容器2は、本体3、カバー4及び底板5が固定的に一体に保持されるのではなく、互いに分離可能な構成とすることが望ましい。   As shown in FIGS. 1 and 2, the measurement container 2 has a main body 3, a cover 4, and a bottom plate 5, is a triangular prism having a horizontal section made of right-angled isosceles triangles, and a liquid holding portion 2a having an open top. There are multiple. When measuring a liquid sample, the measurement container 2 is installed in the analyzer so as to be movable in a predetermined direction (arrow direction shown in FIG. 1) in the analyzer, with the main body 3, the cover 4 and the bottom plate 5 held together. . For this reason, the movement operation of the measurement container 2 is controlled by the control means on the analyzer side. However, it is desirable that the measurement container 2 has a structure in which the main body 3, the cover 4, and the bottom plate 5 are not fixedly and integrally held, but are separable from each other.

本体3は、液体保持部2aとなる複数の凹部を有しており、カバー4及び底板5によって囲まれる液体保持部2aが形成されている。本体3は、金属を加工して形成した各凹部の面を鏡面加工することによって反射部3a,3bが形成されている。このとき、本体3は、凹部を表面粗さの小さい高精度な平面を有するように加工した後、凹部を形成する平面に反射膜を設けることによって反射部3a,3bを形成してもよい。カバー4は、剛性の高い透光性を有する板材、例えば、石英板からなる光束の透過部である。底板5は、本体3及びカバー4を載置して複数の液体保持部2aを形成する部材であり、上面が平坦に成形されている。   The main body 3 has a plurality of recesses to be the liquid holding portion 2a, and the liquid holding portion 2a surrounded by the cover 4 and the bottom plate 5 is formed. The main body 3 is formed with reflecting portions 3a and 3b by mirror-finishing the surface of each recess formed by processing metal. At this time, the main body 3 may form the reflective portions 3a and 3b by processing the concave portion so as to have a highly accurate plane with small surface roughness and then providing a reflective film on the plane on which the concave portion is formed. The cover 4 is a light beam transmitting portion made of a plate material having high rigidity and translucency, for example, a quartz plate. The bottom plate 5 is a member on which the main body 3 and the cover 4 are placed to form a plurality of liquid holding portions 2a, and the upper surface is formed flat.

ここで、液体保持部2aは、図1には6つ描いてあるが、6つに限られるものではない。また、液体保持部2aは、水平断面が直角二等辺三角形からなる三角柱形状に成形されるが、水平断面形状は、必ずしも正確な直角二等辺三角形である必要はない。例えば、液体保持部2aは、図2に示す底角αを45°から多少増減してもよい。   Here, although six liquid holding parts 2a are illustrated in FIG. 1, the number is not limited to six. Further, the liquid holding portion 2a is formed into a triangular prism shape whose horizontal cross section is a right-angled isosceles triangle, but the horizontal cross-sectional shape is not necessarily an accurate right-angled isosceles triangle. For example, the liquid holding unit 2a may slightly increase or decrease the base angle α shown in FIG. 2 from 45 °.

但し、測定容器2は、液体保持部2aに入射した光束が反射部3a,3bにおいて3回反射し、2{=(3+1)/2}番目に反射する反射部3bに光源の像が結像するように投光光学系6に対して配置する。これにより、反射部3bに到達した光束は、反射部3bで反射された後、再度反射部3aで反射されてカバー4を透過し、受光光学系7に入射する。   However, in the measurement container 2, the light beam incident on the liquid holding unit 2a is reflected three times by the reflection units 3a and 3b, and an image of the light source is formed on the reflection unit 3b that reflects 2 {= (3 + 1) / 2} th. It arrange | positions with respect to the light projection optical system 6 so that it may. As a result, the light beam that has reached the reflecting portion 3 b is reflected by the reflecting portion 3 b, is reflected again by the reflecting portion 3 a, passes through the cover 4, and enters the light receiving optical system 7.

投光光学系6は、光源61、集光レンズ62、開口を有する絞り63及び投影レンズ64が光軸AL6に沿ってこの順に配置されている。投光光学系6は、光軸AL6が測定容器2の前面に対し直角よりも小さい約80〜88°の角で交わるように配置される。   In the light projecting optical system 6, a light source 61, a condenser lens 62, a diaphragm 63 having an aperture, and a projection lens 64 are arranged in this order along the optical axis AL6. The light projecting optical system 6 is arranged so that the optical axis AL6 intersects with the front surface of the measurement container 2 at an angle of about 80 to 88 ° which is smaller than a right angle.

光源61は、所定の波長帯域、例えば、近紫外から近赤外までの光束を出射する。光源61は、発光部の大きさが小さいキセノンランプ等を使用することが望ましい。集光レンズ62は、光源61から出射された光束を絞り63の開口に結像させる。従って、絞り63は、集光レンズ62に関して光源61と光学的に共役な位置に配置され、この位置に光源61の像が2次光源61aとして結像される。投影レンズ64は、絞り63を通過して拡がった光源61が出射した光束を集光して液体保持部2aに投影するレンズであり、出射側の開口数(NA)は、小さいことが望ましく、0.1以下であることが望ましい。   The light source 61 emits a light beam from a predetermined wavelength band, for example, from near ultraviolet to near infrared. As the light source 61, it is desirable to use a xenon lamp having a small light emitting portion. The condenser lens 62 forms an image of the light beam emitted from the light source 61 on the aperture of the diaphragm 63. Accordingly, the diaphragm 63 is disposed at a position optically conjugate with the light source 61 with respect to the condenser lens 62, and an image of the light source 61 is formed at this position as a secondary light source 61a. The projection lens 64 is a lens that collects the light beam emitted from the light source 61 that has passed through the diaphragm 63 and projects it onto the liquid holding unit 2a, and it is desirable that the numerical aperture (NA) on the emission side is small. It is desirable that it is 0.1 or less.

ここで、測定容器2は、液体試料の測定に際し、図1に示す矢印方向へ移動されて、各液体保持部2aが保持した液体試料に投光光学系6から出射された光束が順次入射される。また、光軸AL6が絞り63と交わる点と光軸AL6の延長線が反射部3bと交差する点P1とは、投影レンズ64に関して互いに光学的に共役な位置にある。このため、点P1には、絞り63の開口に結像した2次光源61aが結像する。ここで、投光光学系6は、出射する光の波長帯域を所定範囲に制限するフィルタを、適当な位置、例えば、絞り63と投影レンズ64との間に設けてもよい。   Here, the measurement container 2 is moved in the direction of the arrow shown in FIG. 1 when measuring the liquid sample, and the light beams emitted from the light projecting optical system 6 are sequentially incident on the liquid samples held by the liquid holding units 2a. The Further, the point where the optical axis AL6 intersects with the stop 63 and the point P1 where the extended line of the optical axis AL6 intersects the reflecting portion 3b are at optically conjugate positions with respect to the projection lens 64. For this reason, the secondary light source 61a focused on the aperture of the stop 63 is focused on the point P1. Here, the light projecting optical system 6 may be provided with a filter that limits the wavelength band of the emitted light to a predetermined range, for example, between the diaphragm 63 and the projection lens 64.

受光光学系7は、光軸AL7に沿って光束の入射側からリレーレンズ71、スリット72、凹面回折格子73及び光検出器74が配置されている。   In the light receiving optical system 7, a relay lens 71, a slit 72, a concave diffraction grating 73, and a photodetector 74 are arranged along the optical axis AL7 from the incident side of the light beam.

受光光学系7は、光軸AL7が反射部3a,3bに対して光軸AL6の延長上に位置している。リレーレンズ71は、点P1に結像した2次光源61aの像をスリット72の位置に結像させる。スリット72は、リレーレンズ71に関して反射部3b上の点P1と光学的に共役な位置にあり、光検出器74と共に凹面回折格子73のローランド円に接するように配置される。凹面回折格子73は、光軸AL7と凹面回折格子73の凹面の半径を直径とするローランド円の中心とを含む平面に垂直な方向(図2の紙面に垂直な方向)に格子溝を有する反射型の回折格子である。光検出器74は、複数の光センサをスリット72の方向に垂直な方向(図2の紙面に平行な方向)に沿って配列したものであり、例えば、フォトダイオードアレイや1次元CCD(電荷結合素子)イメージセンサ等を用いることができる。光検出器74は、検出した光の光量に関する情報を演算制御部8に出力する。ここで、光軸AL7は、投光光学系6を伝搬する光束の液体保持部2a内における反射を経た後の伝搬経路を示している。このため、光軸AL7は、図3に示すように、液体保持部2aの底角αが45°の場合、点P2からカバー4に下ろした垂線に関して、光軸AL6と線対称となる。   In the light receiving optical system 7, the optical axis AL7 is positioned on the extension of the optical axis AL6 with respect to the reflecting portions 3a and 3b. The relay lens 71 forms an image of the secondary light source 61 a formed at the point P 1 at the position of the slit 72. The slit 72 is at a position optically conjugate with the point P 1 on the reflection portion 3 b with respect to the relay lens 71, and is disposed so as to contact the Roland circle of the concave diffraction grating 73 together with the photodetector 74. The concave diffraction grating 73 is a reflection having a grating groove in a direction perpendicular to the plane including the optical axis AL7 and the center of the Roland circle whose diameter is the radius of the concave surface of the concave diffraction grating 73 (direction perpendicular to the paper surface of FIG. 2). Type diffraction grating. The photodetector 74 has a plurality of photosensors arranged in a direction perpendicular to the direction of the slit 72 (a direction parallel to the paper surface of FIG. 2). For example, a photodiode array or a one-dimensional CCD (charge coupled) Element) An image sensor or the like can be used. The photodetector 74 outputs information related to the amount of detected light to the arithmetic control unit 8. Here, the optical axis AL7 indicates a propagation path after the light beam propagating through the light projecting optical system 6 is reflected in the liquid holding unit 2a. For this reason, as shown in FIG. 3, when the base angle α of the liquid holding portion 2a is 45 °, the optical axis AL7 is symmetrical with the optical axis AL6 with respect to a perpendicular line dropped from the point P2 to the cover 4.

演算制御部8は、投光光学系6における光源61による光束の出射を制御すると共に、受光光学系7で受光した光量に基づいて液体保持部2aに保持された液体試料の成分濃度を演算する部分であり、例えば、マイクロコンピュータ等が使用される。   The calculation control unit 8 controls the emission of the light beam by the light source 61 in the light projecting optical system 6 and calculates the component concentration of the liquid sample held in the liquid holding unit 2 a based on the amount of light received by the light receiving optical system 7. For example, a microcomputer or the like is used.

以上のように構成される分析光学装置1は、本体3、カバー4及び底板5によって囲まれる液体保持部2aに検体と試薬とが順次上方から所定量注入される。注入量は、測定用の光束が透過可能な液面高さとなる量である。   In the analysis optical apparatus 1 configured as described above, a predetermined amount of specimen and reagent are sequentially injected from above into the liquid holding unit 2a surrounded by the main body 3, the cover 4, and the bottom plate 5. The injection amount is an amount that provides a liquid level that allows the measurement light beam to pass therethrough.

次に、図2に示すように、カバー4を通して液体保持部2aに光束を入射させる。すると、入射した光束は、反射部3a,3bで反射されながら検体と試薬とを含む液体試料中を透過した後、カバー4を通って測定容器2から出射される。次いで、測定容器2から出射された光束は、受光光学系7に入射され、光検出器74が検出した光量に関する分析結果の情報が演算制御部8に出力される。   Next, as shown in FIG. 2, a light beam is incident on the liquid holding unit 2 a through the cover 4. Then, the incident light beam passes through the liquid sample containing the specimen and the reagent while being reflected by the reflecting portions 3 a and 3 b, and then is emitted from the measurement container 2 through the cover 4. Next, the light beam emitted from the measurement container 2 enters the light receiving optical system 7, and information on the analysis result regarding the light amount detected by the photodetector 74 is output to the arithmetic control unit 8.

演算制御部8は、このようにして入力された光量に関する分析結果の情報に基づいて液体試料中における所定成分の濃度をランベルト−ベールの法則に基づいて演算する。この測定に際し、測定容器2は、複数の液体保持部2aを備えているので、図1に示すように、矢印で示す複数の液体保持部2aの配列方向に沿って順次移動される。これにより、分析光学装置1は、複数の液体保持部2aに保持された液体試料に対する光学測定を繰り返す。このとき、測定容器2は、複数の液体保持部2aにそれぞれ異なる検体を注入してもよいが、例えば、血液分析等の場合は、同一の被験者から採取した血液を所定量ずつに分け、それぞれの血液に検査項目ごとに対応した試薬を投入してもよい。   The calculation control unit 8 calculates the concentration of the predetermined component in the liquid sample based on the Lambert-Beer law based on the analysis result information regarding the light quantity input in this manner. In this measurement, the measurement container 2 is provided with a plurality of liquid holding portions 2a, and therefore is sequentially moved along the arrangement direction of the plurality of liquid holding portions 2a indicated by arrows as shown in FIG. Thereby, the analysis optical apparatus 1 repeats the optical measurement with respect to the liquid sample hold | maintained at the some liquid holding | maintenance part 2a. At this time, the measurement container 2 may inject different samples into the plurality of liquid holding units 2a. For example, in the case of blood analysis or the like, blood collected from the same subject is divided into predetermined amounts. A reagent corresponding to each test item may be added to the blood.

このようにして一連の測定が終了した後、測定容器2は、各液体保持部2aに保持された液体試料が抜き取られる。このとき、測定容器2は、本体3、カバー4及び底板5を個々に分離可能な構成であれば、先ず底板5を分離して複数の液体保持部2aから液体試料を落下させる。次に、本体3からカバー4を分離した後、本体3、カバー4及び底板5のそれぞれを洗浄し、これらを再使用に供する。このように、測定容器2は、本体3、カバー4及び底板5を個々に分離可能な構成であれば、液体試料の廃棄や分離した各構成部分の洗浄が容易になる。   After a series of measurements are completed in this way, the liquid sample held in each liquid holding part 2a is extracted from the measurement container 2. At this time, if the measurement container 2 has a configuration in which the main body 3, the cover 4, and the bottom plate 5 can be individually separated, first, the bottom plate 5 is separated, and the liquid sample is dropped from the plurality of liquid holding portions 2a. Next, after separating the cover 4 from the main body 3, each of the main body 3, the cover 4, and the bottom plate 5 is washed, and these are reused. As described above, if the measurement container 2 has a structure in which the main body 3, the cover 4, and the bottom plate 5 can be individually separated, the liquid sample can be easily discarded and the separated components can be easily cleaned.

このとき、投光光学系6においては、光源61から出射された光束は、集光レンズ62によって絞り63の位置に光源61の像を形成する。即ち、投光光学系6においては、絞り63の位置に光源61の像である2次光源61aが形成される。このときの2次光源61aの大きさは、絞り63の開口の大きさによって制限される。そして、2次光源61aが形成される絞り63を通過した光束は、投影レンズ64を介して測定容器2の対応する液体保持部2aに向かい、カバー4を透過する。   At this time, in the light projecting optical system 6, the light beam emitted from the light source 61 forms an image of the light source 61 at the position of the diaphragm 63 by the condenser lens 62. That is, in the light projecting optical system 6, a secondary light source 61 a that is an image of the light source 61 is formed at the position of the diaphragm 63. At this time, the size of the secondary light source 61 a is limited by the size of the aperture of the diaphragm 63. Then, the light beam that has passed through the diaphragm 63 where the secondary light source 61a is formed passes through the cover 4 through the projection lens 64 toward the corresponding liquid holding unit 2a of the measurement container 2.

カバー4を透過した光束は、直角二等辺三角形の斜辺に対応する反射部3aで反射し、等辺の一方である反射部3b上に結像する。このとき、投光光学系6は、絞り63の直径及び投影レンズ64の倍率を適宜設定することにより、形成される絞り63の像が反射部3bの領域内に収まる。即ち、投影レンズ64を通過した光束は、液体試料による吸収分や回折や散乱による微小な影響を除いて総て反射部3bに到達し、反射部3bで反射される。反射部3bで反射された光束は、再度反射部3aで反射されてカバー4を透過し、受光光学系7に入射する。   The light beam transmitted through the cover 4 is reflected by the reflecting portion 3a corresponding to the hypotenuse of the right isosceles triangle and forms an image on the reflecting portion 3b which is one of the equilateral sides. At this time, the light projecting optical system 6 appropriately sets the diameter of the diaphragm 63 and the magnification of the projection lens 64 so that the formed image of the diaphragm 63 falls within the region of the reflecting portion 3b. That is, all the light beams that have passed through the projection lens 64 reach the reflecting portion 3b except for the minute amount of absorption by the liquid sample and diffraction and scattering, and are reflected by the reflecting portion 3b. The light beam reflected by the reflecting portion 3 b is reflected again by the reflecting portion 3 a, passes through the cover 4, and enters the light receiving optical system 7.

ここで、測定容器2においては、カバー4を透過して入射した光束は、反射部3a,3bで反射して再びカバー4を透過して出射するまでの間、液体試料中を透過しながら液体試料中の対象成分濃度に応じて吸収を受ける。特に、対象成分に応じた特定波長の光は、強く吸収される。   Here, in the measurement container 2, the incident light beam that has passed through the cover 4 is reflected by the reflecting portions 3 a and 3 b, passes through the cover 4 again, and passes through the liquid sample while being transmitted through the liquid sample. Absorption is performed according to the concentration of the target component in the sample. In particular, light having a specific wavelength corresponding to the target component is strongly absorbed.

一方、受光光学系7においては、測定容器2の各液体保持部2aから出射された光束は、リレーレンズ71によって反射面3bに形成された2次光源61aの像をスリット72上に結像させる。スリット72を通過した光束は、凹面回折格子73に入射して反射回折を受ける。凹面回折格子73によって反射回折された光は、波長毎に異なる方向に向かうと共に、光検出器74の表面にスリット72上に結像された像を形成する。図2に示す光検出器74には、この様子を異なる代表的な3つの波長について示している。光検出器74は、チャンネル毎の光センサが入射する光の強度を検出する。検出したチャンネル毎の光強度は、演算制御部8へ出力され、液体試料中における所定成分の濃度が演算される。   On the other hand, in the light receiving optical system 7, the light beam emitted from each liquid holding unit 2 a of the measurement container 2 forms an image of the secondary light source 61 a formed on the reflection surface 3 b by the relay lens 71 on the slit 72. . The light beam that has passed through the slit 72 enters the concave diffraction grating 73 and undergoes reflection diffraction. The light reflected and diffracted by the concave diffraction grating 73 travels in a different direction for each wavelength and forms an image formed on the slit 72 on the surface of the photodetector 74. In the photodetector 74 shown in FIG. 2, this state is shown for three different representative wavelengths. The photodetector 74 detects the intensity of light incident on the optical sensor for each channel. The detected light intensity for each channel is output to the calculation control unit 8, and the concentration of the predetermined component in the liquid sample is calculated.

このとき、基準とする入射光強度は、実質的に吸収を無視し得る参照液を液体保持部2aに注入し、上述と同じ測定を行って求める。このようにして測定すると、液体試料と参照液とにおける反射部3a,3bにおける反射率の影響等を計算上無視することができる。また、光路長は、厳密には、光軸上に存在する軸上光と、光軸から外れた周辺光及び軸外光では多少異なるが、2次光源61aの大きさが小さく、また、投影レンズ64の出射側の開口数(NA)も小さいので、実際上、軸上光の光路長で代表させることができる。   At this time, the reference incident light intensity is obtained by injecting a reference liquid that can substantially ignore absorption into the liquid holding unit 2a and performing the same measurement as described above. When measured in this way, the influence of the reflectance at the reflecting portions 3a and 3b in the liquid sample and the reference liquid can be ignored in the calculation. Strictly speaking, the optical path length is slightly different between on-axis light existing on the optical axis and ambient light and off-axis light deviating from the optical axis, but the size of the secondary light source 61a is small, and the projection is performed. Since the numerical aperture (NA) on the exit side of the lens 64 is also small, it can be represented by the optical path length of the axial light in practice.

一方、各液体保持部2aにおける光軸AL6及び光軸AL7に沿った光路長Lは、図3に示すように、液体保持部2aの直角を挟む辺の長さをa、光軸AL6の測定容器2のカバー4への入射角(光軸AL6とカバー4の法線とのなす角度)をθとすると、次式で与えられる。ここで、図3において、点P2は、反射面3aに関して点P1と面対称の位置にある点であり、点P3は、点P2からカバー4に下ろした垂線の足である。また、P4は、光軸AL6とカバー4との液体保持部2a側の交点である。従って、△P2P3P4において、P2P3=a、P2P4=L/2、∠P4P2P3=θより、
L=2a/cosθ(∵cosθ=a/(L/2)
≒2a…………………(1)
On the other hand, the optical path length L along the optical axis AL6 and the optical axis AL7 in each liquid holding portion 2a is a measurement of the optical axis AL6 as a length of a side sandwiching a right angle of the liquid holding portion 2a as shown in FIG. Assuming that the incident angle of the container 2 to the cover 4 (the angle between the optical axis AL6 and the normal of the cover 4) is θ, the following equation is given. Here, in FIG. 3, a point P2 is a point that is plane-symmetric with respect to the point P1 with respect to the reflecting surface 3a, and the point P3 is a perpendicular foot that extends from the point P2 to the cover 4. P4 is an intersection of the optical axis AL6 and the cover 4 on the liquid holding unit 2a side. Therefore, in ΔP2P3P4, P2P3 = a, P2P4 = L / 2, and ∠P4P2P3 = θ,
L = 2a / cosθ (∵cosθ = a / (L / 2)
≒ 2a …………………… (1)

また、液体保持部2aへ注入する液体試料の液面高さをaとすると、液体保持部2aの底面積がa2/2より、液体保持部2aに保持される液体試料の体積Vは次式で与えられる。
V=a2/2・a=a3/2…………………(2)
Further, when the liquid level of the liquid sample injected into the liquid holding portion 2a is a, the volume V of liquid sample bottom area is held from a 2/2, the liquid holding portion 2a of the liquid holding portion 2a next It is given by the formula.
V = a 2/2 · a = a 3/2 ..................... (2)

これに対して、直方体形状のセルの一方の側面から光束を入射させ、対向する他方の側面から光束を出射させる従来の測光セルは、内法に関して、光束の入射方向に沿った奥行き(=光路長)をb、光束の入射方向に直交する横幅をb/2、液体試料の液面高さをb/2とすると、液体試料の体積Vfはb3/4となる。このとき、光路長は、従来の測光セルでも本発明においても同じである必要からb=2aとすると、体積Vfは次式で与えられる。
Vf=b3/4=2a3=4・(a3/2)=4V…………(3)
On the other hand, a conventional photometric cell in which a light beam is incident from one side surface of a rectangular parallelepiped cell and is emitted from the opposite side surface has a depth (= optical path) along the incident direction of the light beam with respect to the internal method. long) b, the width b / 2 perpendicular to the incident direction of the light beam, when the liquid level of the liquid sample to b / 2, the volume Vf of the liquid sample becomes b 3/4. At this time, since the optical path length needs to be the same in the conventional photometric cell and in the present invention, if b = 2a, the volume Vf is given by the following equation.
Vf = b 3/4 = 2a 3 = 4 · (a 3/2) = 4V ............ (3)

(2)式と(3)式との比較から明らかなように、実施の形態1の分析光学装置1は、液体試料の体積が従来の測光セルの1/4でよいことになり、液体試料を大幅に削減することができる。しかも、本体3は、図3に示すように、液体保持部2aを形成する凹部の厚さ方向に沿った深さである反射部3bの長さa(=b/2)が従来の測光セルに比べて半分であるため、本体3自体の厚さが低減され、測定容器2が小型化される。   As is clear from the comparison between the equations (2) and (3), the analysis optical device 1 according to the first embodiment requires that the volume of the liquid sample be ¼ that of a conventional photometric cell. Can be greatly reduced. Moreover, as shown in FIG. 3, in the main body 3, the length a (= b / 2) of the reflecting portion 3b, which is the depth along the thickness direction of the concave portion forming the liquid holding portion 2a, is a conventional photometric cell. Therefore, the thickness of the main body 3 itself is reduced and the measurement container 2 is downsized.

また、分析光学装置1は、投光光学系6が出射した光束が測定容器2の各液体保持部2aに入射すると、入射した光束は反射部3a,3bで反射された後、受光光学系7側に入射する。このとき、液体保持部2aに入射する光束の入射位置が変化し、投光光学系6が出射した光束の光軸AL6が、例えば、図4に示すように、図3に比べて右側に移動し、光軸AL6の延長線が反射部3bと交差する点が点P1よりもカバー4側の点P11に移動したとする。この場合、液体保持部2aに入射した光束の光軸AL6及び光軸AL7に沿った光路長Lは、図3の場合と同様に計算され、(1)式で示すように直角を挟む辺の長さaの約2倍と一定である。このため、分析光学装置1は、測定容器2の位置決め精度を高く設定する必要はない。このとき、点P12は、反射面3aに関して点P11と面対称の位置にある点である。   Further, when the light beam emitted from the light projecting optical system 6 is incident on each liquid holding unit 2a of the measurement container 2, the analysis optical device 1 reflects the incident light beam on the reflection units 3a and 3b, and then receives the light receiving optical system 7. Incident to the side. At this time, the incident position of the light beam incident on the liquid holding unit 2a changes, and the optical axis AL6 of the light beam emitted from the light projecting optical system 6 moves to the right as compared with FIG. 3, for example, as shown in FIG. It is assumed that the point where the extension line of the optical axis AL6 intersects the reflecting portion 3b has moved to the point P11 on the cover 4 side from the point P1. In this case, the optical path length L along the optical axis AL6 and the optical axis AL7 of the light beam incident on the liquid holding unit 2a is calculated in the same manner as in FIG. It is constant at about twice the length a. For this reason, the analysis optical apparatus 1 does not need to set the positioning accuracy of the measurement container 2 high. At this time, the point P12 is a point symmetrical to the point P11 with respect to the reflecting surface 3a.

分析光学装置1は、測定に要する液体試料の体積が従来の測光セルの1/4であるにも拘わらず、液体試料中を透過する光束の光路長は従来と同じであることから、少量の液体試料であっても高精度に測定することができる。   The analysis optical apparatus 1 has a small amount of light because the optical path length of the light beam transmitted through the liquid sample is the same as that of the prior art even though the volume of the liquid sample required for the measurement is ¼ that of the conventional photometric cell. Even a liquid sample can be measured with high accuracy.

(実施の形態2)
次に、本発明の分析光学装置にかかる実施の形態2について、図面を参照しつつ詳細に説明する。実施の形態1の分析光学装置は、水平断面が直角二等辺三角形からなり、等辺が前面側となる三角柱形状の液体保持部2aを複数備えていた。これに対し、実施の形態2の分析光学装置は、水平断面が直角二等辺三角形からなり、斜辺が前面側となる三角柱形状の液体保持部2aを複数備えている。図5は、実施の形態2に係る分析光学装置の概略構成図である。図6は、図5に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。
(Embodiment 2)
Next, a second embodiment of the analytical optical apparatus of the present invention will be described in detail with reference to the drawings. The analysis optical device according to the first embodiment includes a plurality of triangular prism-shaped liquid holding portions 2a whose horizontal cross section is a right-angled isosceles triangle and whose equilateral side is the front side. On the other hand, the analysis optical device of Embodiment 2 includes a plurality of triangular prism-shaped liquid holding portions 2a having a horizontal section made of a right isosceles triangle and a hypotenuse on the front side. FIG. 5 is a schematic configuration diagram of an analytical optical device according to the second embodiment. FIG. 6 is a plan view showing a schematic configuration of a light projecting optical system, a measurement container, and a light receiving optical system that constitute the analysis optical apparatus shown in FIG.

ここで、以下に説明する分析光学装置は、実施の形態1の分析光学装置と同一の構成要素には同一の符号を付して説明している。   Here, in the analysis optical apparatus described below, the same components as those in the analysis optical apparatus according to Embodiment 1 are denoted by the same reference numerals.

分析光学装置10は、図5及び図6に示すように、測定容器2の本体3が、液体保持部2aとなる複数の凹部を有している。本体3が有する各凹部は、水平断面が直角二等辺三角形からなり、等辺が前面側となる三角柱形状をなしており、斜辺を挟む2つの等辺が反射部3bとなっている。また、カバー4は、光束が透過する右半部分に隣接する左半部分が光を反射する反射部4aが形成されて反射面となっている。   As shown in FIGS. 5 and 6, in the analysis optical device 10, the main body 3 of the measurement container 2 has a plurality of concave portions that serve as the liquid holding portion 2a. Each concave portion of the main body 3 has a triangular prism shape in which the horizontal cross section is a right-angled isosceles triangle and the equilateral side is the front side, and the two equilateral sides sandwiching the oblique side are the reflecting portions 3b. Further, the cover 4 has a reflective surface in which a left half portion adjacent to the right half portion through which the light beam is transmitted is formed with a reflection portion 4a that reflects light.

従って、分析光学装置10は、投光光学系6が出射した光束が測定容器2の各液体保持部2aに入射すると、入射した光束が反射部3b,4aで反射された後、受光光学系7側に入射し、光検出器74が検出した光量に関する分析結果の情報が演算制御部8に出力される。そして、演算制御部8における演算結果に基づいて液体試料中における所定成分の濃度が決定される。   Therefore, when the light beam emitted from the light projecting optical system 6 enters each liquid holding unit 2a of the measurement container 2, the analysis optical device 10 reflects the incident light beam on the reflection units 3b and 4a, and then receives the light receiving optical system 7. The information on the analysis result relating to the amount of light incident on the side and detected by the photodetector 74 is output to the arithmetic control unit 8. The concentration of the predetermined component in the liquid sample is determined based on the calculation result in the calculation control unit 8.

このとき、測定容器2は、図6に示すように、液体保持部2aに入射した光束が反射部3b,4aにおいて5回反射し、3{=(5+1)/2}番目に反射する反射部4aに光源の像が結像するように投光光学系6に対して配置する。これにより、反射部4aに到達した光束は、反射部4aで反射された後、再度2箇所の反射部3bで反射されてカバー4を透過し、受光光学系7に入射する。   At this time, as shown in FIG. 6, the measurement container 2 reflects the light beam incident on the liquid holding unit 2a five times at the reflection units 3b and 4a and reflects the 3 {= (5 + 1) / 2} th reflection unit. Arranged with respect to the light projecting optical system 6 so that an image of the light source is formed on 4a. Thereby, the light beam that has reached the reflecting portion 4 a is reflected by the reflecting portion 4 a, is then reflected again by the two reflecting portions 3 b, passes through the cover 4, and enters the light receiving optical system 7.

また、各液体保持部2aにおける光軸AL6及び光軸AL7に沿った光路長Lは、液体保持部2aの斜辺の長さをc、光軸AL6の測定容器2のカバー4への入射角(光軸AL6とカバー4の法線とのなす角度)をθとすると、実施の形態1と同様に次式で与えられる。
L=2c/cosθ(∵cosθ=c/(L/2)
≒2c…………………(4)
Further, the optical path length L along the optical axis AL6 and the optical axis AL7 in each liquid holding portion 2a is the length of the hypotenuse of the liquid holding portion 2a c, and the incident angle of the optical axis AL6 to the cover 4 of the measuring container 2 ( Assuming that the angle formed between the optical axis AL6 and the normal line of the cover 4 is θ, it is given by the following equation as in the first embodiment.
L = 2c / cosθ (∵cosθ = c / (L / 2)
≒ 2c …………………… (4)

また、液体保持部2aへ注入する液体試料の液面高さをc/2とすると、液体保持部2aの底面積がc2/4より、液体保持部2aに保持される液体試料の体積Vは次式で与えられる。
V=c2/4・c/2=c3/8…………………(5)
Further, when the liquid level of the liquid sample injected into the liquid holding portion 2a and c / 2, the bottom area of the liquid holding portion 2a than c 2/4, the volume V of liquid sample held in the liquid holding portion 2a Is given by:
V = c 2/4 · c / 2 = c 3/8 ..................... (5)

これに対して、直方体形状のセルの一方の側面から光束を入射させ、対向する他方の側面から光束を出射させる従来の測光セルは、内法に関して、光束の入射方向に沿った奥行き(=光路長)をb、光束の入射方向に直交する横幅をb/2、液体試料の液面高さをb/2とすると、液体試料の体積Vfはb3/4となる。このとき、光路長は、従来の測光セルでも本発明においても同じである必要からb=2cとすると、体積Vfは次式で与えられる。
Vf=b3/4=2c3=16・(c3/8)=16V…………(6)
On the other hand, a conventional photometric cell in which a light beam is incident from one side surface of a rectangular parallelepiped cell and is emitted from the opposite side surface has a depth (= optical path) along the incident direction of the light beam with respect to the internal method. long) b, the width b / 2 perpendicular to the incident direction of the light beam, when the liquid level of the liquid sample to b / 2, the volume Vf of the liquid sample becomes b 3/4. At this time, since the optical path length needs to be the same in the conventional photometric cell and the present invention, if b = 2c, the volume Vf is given by the following equation.
Vf = b 3/4 = 2c 3 = 16 · (c 3/8) = 16V ............ (6)

(5)式と(6)式との比較から明らかなように、実施の形態2の分析光学装置10は、液体試料の体積が従来の測光セルの1/16でよいことになり、液体試料を大幅に削減することができる。しかも、本体3は、液体保持部2aの斜辺の長さをcとしたことから、図6に示す液体保持部2aの厚さ方向に沿った深さが約0.7cとなり、従来の測光セルでは2cであることから、本体3自体の厚さが低減され、測定容器2が小型化される。   As is clear from the comparison between the equations (5) and (6), the analysis optical device 10 according to the second embodiment requires that the volume of the liquid sample be 1/16 of that of the conventional photometric cell. Can be greatly reduced. Moreover, since the length of the hypotenuse of the liquid holding part 2a is c in the main body 3, the depth along the thickness direction of the liquid holding part 2a shown in FIG. Then, since it is 2c, the thickness of the main body 3 itself is reduced, and the measurement container 2 is downsized.

分析光学装置10は、測定に要する液体試料の体積が従来の測光セルの1/16であるにも拘わらず、液体試料中を透過する光束の光路長は従来と同じであることから、少量の液体試料であっても高精度に測定することができる。   Although the analysis optical apparatus 10 has a volume of a liquid sample required for measurement of 1/16 of that of a conventional photometric cell, the optical path length of a light beam transmitted through the liquid sample is the same as that of the prior art. Even a liquid sample can be measured with high accuracy.

(実施の形態3)
次に、本発明の分析光学装置にかかる実施の形態3について、図面を参照しつつ詳細に説明する。実施の形態1の分析光学装置は、三角柱形状の液体保持部2aを複数備えていた。これに対し、実施の形態3の分析光学装置は、四角柱形状の液体保持部2bを複数備えている。図7は、実施の形態2に係る分析光学装置の概略構成図である。図8は、図7に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。図9は、図8のB部拡大図である。
(Embodiment 3)
Next, a third embodiment of the analytical optical apparatus of the present invention will be described in detail with reference to the drawings. The analysis optical device according to the first embodiment includes a plurality of triangular prism-shaped liquid holding portions 2a. On the other hand, the analysis optical device according to Embodiment 3 includes a plurality of quadrangular prism-shaped liquid holding portions 2b. FIG. 7 is a schematic configuration diagram of an analytical optical device according to the second embodiment. FIG. 8 is a plan view showing a schematic configuration of a light projecting optical system, a measurement container, and a light receiving optical system that constitute the analysis optical apparatus shown in FIG. FIG. 9 is an enlarged view of a portion B in FIG.

分析光学装置20は、図7及び図8に示すように、測定容器2の本体3が、液体保持部2bとなる複数の凹部を有している。本体3が有する各凹部は、水平断面が長方形からなり、短辺が前面側となる四角柱形状をなしており、2つの長辺と2つの長辺によって挟まれる短辺の計3つの辺が反射部3c,3dとなっている。   As shown in FIGS. 7 and 8, in the analysis optical device 20, the main body 3 of the measurement container 2 has a plurality of recesses that become the liquid holding portions 2b. Each concave portion of the main body 3 has a rectangular column shape in which the horizontal cross section is rectangular and the short side is the front side, and the three long sides sandwiched between the two long sides and the two long sides are a total of three sides. Reflecting portions 3c and 3d are formed.

従って、分析光学装置20は、投光光学系6が出射した光束が測定容器2の各液体保持部2bに入射すると、入射した光束が反射部3c,3dで反射された後、受光光学系7側に入射し、光検出器74が検出した光量に関する分析結果の情報が演算制御部8に出力される。そして、演算制御部8における演算結果に基づいて液体試料中における所定成分の濃度が決定される。   Therefore, when the light beam emitted from the light projecting optical system 6 is incident on each liquid holding unit 2b of the measurement container 2, the analysis optical device 20 reflects the incident light beam on the reflection units 3c and 3d, and then receives the light receiving optical system 7. The information on the analysis result relating to the amount of light incident on the side and detected by the photodetector 74 is output to the arithmetic control unit 8. The concentration of the predetermined component in the liquid sample is determined based on the calculation result in the calculation control unit 8.

このとき、測定容器2は、図8及び図9に示すように、液体保持部2bに入射した光束が反射部3c,3dにおいて3回反射し、2{=(3+1)/2}番目に反射する反射部3dに光源の像が結像するように投光光学系6に対して配置する。これにより、反射部3dに到達した光束は、反射部3dで反射された後、再度反射部3cで反射されてカバー4を透過し、受光光学系7に入射する。   At this time, as shown in FIGS. 8 and 9, the measurement container 2 reflects the light beam incident on the liquid holding unit 2b three times at the reflection units 3c and 3d and reflects the 2 {= (3 + 1) / 2} th. It arrange | positions with respect to the light projection optical system 6 so that the image of a light source may form in the reflective part 3d to perform. As a result, the light beam that has reached the reflecting portion 3d is reflected by the reflecting portion 3d, then is reflected again by the reflecting portion 3c, passes through the cover 4, and enters the light receiving optical system 7.

また、各液体保持部2bにおける光軸AL6及び光軸AL7に沿った光路長Lは、図9に示すように、液体保持部2bの長辺によって形成される反射部3cの長さをd、光軸AL6の測定容器2のカバー4への入射角(光軸AL6とカバー4の法線とのなす角度)をθとすると、実施の形態1と同様に次式で与えられる。
L=≒2d…………………(7)
Further, as shown in FIG. 9, the optical path length L along the optical axis AL6 and the optical axis AL7 in each liquid holding part 2b is the length d of the reflection part 3c formed by the long side of the liquid holding part 2b. Assuming that the incident angle of the optical axis AL6 to the cover 4 of the measurement container 2 (the angle formed by the optical axis AL6 and the normal line of the cover 4) is θ, the following equation is given as in the first embodiment.
L = ≈2d ......... (7)

また、液体保持部2bの短辺によって形成される反射部3dの長さをd/2、液体保持部2bへ注入する液体試料の液面高さをd/2とすると、液体保持部2bの底面積がd2/2より、液体保持部2bに保持される液体試料の体積Vは次式で与えられる。
V=d2/2・d/2=d3/4…………………(8)
Further, when the length of the reflection part 3d formed by the short side of the liquid holding part 2b is d / 2 and the liquid surface height of the liquid sample injected into the liquid holding part 2b is d / 2, the liquid holding part 2b bottom area than d 2/2, the volume V of liquid sample held in the liquid holding portion 2b is given by the following equation.
V = d 2/2 · d / 2 = d 3/4 ..................... (8)

これに対して、直方体形状のセルの一方の側面から光束を入射させ、対向する他方の側面から光束を出射させる従来の測光セルは、内法に関して、光束の入射方向に沿った奥行き(=光路長)をb、光束の入射方向に直交する横幅をb/2、液体試料の液面高さをb/2とすると、液体試料の体積Vfはb3/4となる。このとき、光路長は、従来の測光セルでも本発明においても同じである必要からb=2dとすると、体積Vfは次式で与えられる。
Vf=b3/4=2d3=8・(d3/4)=8V…………(9)
On the other hand, a conventional photometric cell in which a light beam is incident from one side surface of a rectangular parallelepiped cell and is emitted from the opposite side surface has a depth (= optical path) along the incident direction of the light beam with respect to the internal method. long) b, the width b / 2 perpendicular to the incident direction of the light beam, when the liquid level of the liquid sample to b / 2, the volume Vf of the liquid sample becomes b 3/4. At this time, since the optical path length needs to be the same in the conventional photometric cell and in the present invention, assuming that b = 2d, the volume Vf is given by the following equation.
Vf = b 3/4 = 2d 3 = 8 · (d 3/4) = 8V ............ (9)

(8)式と(9)式との比較から明らかなように、実施の形態3の分析光学装置20は、液体試料の体積が従来の測光セルの1/8でよいことになり、液体試料を大幅に削減することができる。しかも、本体3は、図9に示すように、液体保持部2aを形成する凹部の厚さ方向に沿った深さd(=b/2)が従来の測光セルに比べて半分であるため、本体3自体の厚さが低減され、測定容器2が小型化される。   As is clear from the comparison between the equations (8) and (9), the analysis optical device 20 according to the third embodiment requires that the volume of the liquid sample be 1/8 that of the conventional photometric cell. Can be greatly reduced. Moreover, as shown in FIG. 9, the main body 3 has a depth d (= b / 2) along the thickness direction of the concave portion forming the liquid holding portion 2a, which is half that of the conventional photometric cell. The thickness of the main body 3 itself is reduced, and the measurement container 2 is downsized.

分析光学装置20は、測定に要する液体試料の体積が従来の測光セルの1/8であるにも拘わらず、液体試料中を透過する光束の光路長は従来と同じであることから、少量の液体試料であっても高精度に測定することができる。   The analysis optical apparatus 20 has a small amount of light because the optical path length of the light beam passing through the liquid sample is the same as the conventional one even though the volume of the liquid sample required for the measurement is 1/8 that of the conventional photometric cell. Even a liquid sample can be measured with high accuracy.

実施の形態1に係る分析光学装置の概略構成図である。1 is a schematic configuration diagram of an analysis optical device according to Embodiment 1. FIG. 図1に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。It is a top view which shows schematic structure of the light projection optical system which comprises the analysis optical apparatus shown in FIG. 1, a measurement container, and a light reception optical system. 図2のA部拡大図である。It is the A section enlarged view of FIG. 液体保持部に入射する光束の入射位置が変化した場合を図3と同様にして示す説明図である。It is explanatory drawing shown similarly to FIG. 3 when the incident position of the light beam which injects into a liquid holding part changes. 実施の形態2に係る分析光学装置の概略構成図である。FIG. 5 is a schematic configuration diagram of an analytical optical device according to a second embodiment. 図5に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。It is a top view which shows schematic structure of the light projection optical system which comprises the analysis optical apparatus shown in FIG. 5, a measurement container, and a light reception optical system. 実施の形態3に係る分析光学装置の概略構成図である。FIG. 5 is a schematic configuration diagram of an analytical optical device according to a third embodiment. 図7に示す分析光学装置を構成する投光光学系、測定容器及び受光光学系の概略構成を示す平面図である。It is a top view which shows schematic structure of the light projection optical system which comprises the analysis optical apparatus shown in FIG. 7, a measurement container, and a light reception optical system. 図8のB部拡大図である。It is the B section enlarged view of FIG.

符号の説明Explanation of symbols

1,10,20 分析光学装置
2 測定容器
2a,2b 液体保持部
3 本体
3a,3b 反射部
3c,3d 反射部
4 カバー
4a 反射部
6 投光光学系
61 光源
62 集光レンズ
63 絞り
64 投影レンズ
7 受光光学系
71 リレーレンズ
72 スリット
73 凹面回折格子
74 光検出器
AL6,AL7 光軸
DESCRIPTION OF SYMBOLS 1,10,20 Analysis optical apparatus 2 Measuring container 2a, 2b Liquid holding part 3 Main body 3a, 3b Reflecting part 3c, 3d Reflecting part 4 Cover 4a Reflecting part 6 Projection optical system 61 Light source 62 Condensing lens 63 Diaphragm 64 Projecting lens 7 Light receiving optical system 71 Relay lens 72 Slit 73 Concave diffraction grating 74 Optical detector AL6, AL7 Optical axis

Claims (5)

光源を有する投光光学系と、液体試料を保持する測定容器と、前記投光光学系から出射され、前記液体試料を透過した光束を受光する受光光学系とを備えた分析光学装置であって、
前記測定容器は、前記光束が透過する透過部と、前記光束を反射する複数の反射部とを有する液体保持部を備え、
前記複数の反射部は、前記透過部を透過して前記液体保持部に入射した光束が、当該複数の反射部で反射した後、前記透過部を通って前記受光光学系に入射するように配置されていることを特徴とする分析光学装置。
An analysis optical apparatus comprising: a light projecting optical system having a light source; a measurement container that holds a liquid sample; and a light receiving optical system that receives a light beam emitted from the light projecting optical system and transmitted through the liquid sample. ,
The measurement container includes a liquid holding unit including a transmission unit through which the light beam is transmitted and a plurality of reflection units that reflect the light beam,
The plurality of reflecting portions are arranged so that a light beam that has passed through the transmitting portion and entered the liquid holding portion is reflected by the plurality of reflecting portions and then enters the light receiving optical system through the transmitting portion. An analytical optical device characterized in that:
前記測定容器は、前記光束が前記複数の反射部においてm回(mは奇数)反射し、(m+1)/2番目に反射する反射部に前記光源の像が結像するように前記投光光学系に対して配置されていることを特徴とする請求項1に記載の分析光学装置。   In the measurement container, the light projecting optics is configured such that the light beam is reflected m times (m is an odd number) at the plurality of reflecting portions, and an image of the light source is formed on the reflecting portion that is reflected (m + 1) / 2 times. The analysis optical apparatus according to claim 1, wherein the analysis optical apparatus is arranged with respect to the system. 前記測定容器は、前記透過部と前記複数の反射部とが鉛直方向に配置され、前記液体試料中を透過する前記光束の光路長が一定に保持されることを特徴とする請求項1に記載の分析光学装置。   2. The measurement container according to claim 1, wherein the transmission container and the plurality of reflection units are arranged in a vertical direction, and an optical path length of the light beam transmitted through the liquid sample is kept constant. Analysis optical device. 前記液体保持部は、多角柱形状に成形されていることを特徴とする請求項1に記載の分析光学装置。   The analysis optical apparatus according to claim 1, wherein the liquid holding unit is formed in a polygonal column shape. 前記多角柱は、四角柱であることを特徴とする請求項4に記載の分析光学装置。   The analytical optical apparatus according to claim 4, wherein the polygonal column is a quadrangular column.
JP2005318496A 2005-11-01 2005-11-01 Analyzing optical device Withdrawn JP2007127448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318496A JP2007127448A (en) 2005-11-01 2005-11-01 Analyzing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318496A JP2007127448A (en) 2005-11-01 2005-11-01 Analyzing optical device

Publications (1)

Publication Number Publication Date
JP2007127448A true JP2007127448A (en) 2007-05-24

Family

ID=38150229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318496A Withdrawn JP2007127448A (en) 2005-11-01 2005-11-01 Analyzing optical device

Country Status (1)

Country Link
JP (1) JP2007127448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023923A (en) * 2016-08-09 2018-02-15 旭化成株式会社 Ultraviolet irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023923A (en) * 2016-08-09 2018-02-15 旭化成株式会社 Ultraviolet irradiation device

Similar Documents

Publication Publication Date Title
AU725643B2 (en) Method and device for measuring reflected optical radiation
US7292333B2 (en) Optical interrogation system and method for 2-D sensor arrays
US9383311B2 (en) Non-scanning SPR system
JP4804716B2 (en) Multi-wavelength read head for use in measuring analytes in body fluids
RU2593623C2 (en) Device for photometric or spectrometric analysis of liquid sample
CN102308199A (en) Sample analyzing apparatus
JP5743558B2 (en) Analysis equipment
US8743367B2 (en) Optical resonance analysis using a multi-angle source of illumination
JP2007127449A (en) Measuring container
JP2899651B2 (en) Light transmission type spectrometer
JPH07286957A (en) Refractometer
US20140227136A1 (en) Surface plasmon resonance biosensor system
RU2442973C2 (en) Immunoturbidimetric flatbed analyzer
JP2004361256A (en) Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus
JP2007225400A (en) Optical detector
JP2002527744A (en) In particular, optical measuring heads for automatic analyzers of chemical or biochemical reactions
JP2007218633A (en) Autoanalyzer
JP2004219401A (en) Surface plasmon sensor, apparatus for measuring surface plasmon resonance and detection chip
JP2007127448A (en) Analyzing optical device
JP2007218632A (en) Analyzer, refractive index measuring instrument and analysis method
JP2008267959A (en) Inspection apparatus
JPH01295134A (en) Automatic chemical analyzer
US20210181095A1 (en) Compact imaging-based sensors
US20130094019A1 (en) Sample carrier with light refracting structures
RU2492449C2 (en) Optical device for measurement of index of deflection of transparent solid materials of light gauge and small size with the method of parallel displacement of light beam

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106