JP2007119992A - Synthetic acrylic fiber and method for producing the same - Google Patents

Synthetic acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP2007119992A
JP2007119992A JP2006266158A JP2006266158A JP2007119992A JP 2007119992 A JP2007119992 A JP 2007119992A JP 2006266158 A JP2006266158 A JP 2006266158A JP 2006266158 A JP2006266158 A JP 2006266158A JP 2007119992 A JP2007119992 A JP 2007119992A
Authority
JP
Japan
Prior art keywords
fine particles
fiber
conductive fine
white conductive
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266158A
Other languages
Japanese (ja)
Inventor
Toshiyuki Iwabuchi
俊行 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006266158A priority Critical patent/JP2007119992A/en
Publication of JP2007119992A publication Critical patent/JP2007119992A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To bring an acrylic fiber to be white and have excellent electroconductivity without spoiling operationability and processability in producing conventional acrylic fibers. <P>SOLUTION: The synthetic acrylic fiber prepared by composite spinning by conjugating an acrylic polymer layer 11 containing white electroconductive fine particles and an acrylic polymer layer 12 substantially containing no white electroconductive fine particles in at least three layers and a method for producing the same are provided. By the method, a high electroconductivity is attained with less amount of fine particles compared with the case in which the white electroconductive fine particles are homogeneously kneaded in the fiber and operationability, mechanical properties and post processability during the production are also excellent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は導電性を有し、かつ、白色である導電性アクリル系合成繊維およびその製造方法に関する。   The present invention relates to a conductive acrylic synthetic fiber having conductivity and white, and a method for producing the same.

導電性アクリル系合成繊維の製造方法としては、1.導電性物質を繊維表面にメッキもしくはコーティングする方法(特許文献1、4)、2.導電性物質を繊維に練り混む方法(特許文献2)などがあった。   As a manufacturing method of conductive acrylic synthetic fiber, 1. 1. A method of plating or coating a conductive material on a fiber surface (Patent Documents 1 and 4). There was a method (Patent Document 2) of kneading a conductive substance into a fiber.

特許文献1および4記載の導電性物質を繊維表面にメッキもしくはコーティングする方法では導電性物質が繊維表面を覆っているため、染色性、紡績性などの加工性が悪化したり、摩擦などにより脱落が起こりやすく耐久性が劣ったりする懸念がある。一方、特許文献2記載の方法は繊維内部に導電性物質が存在するため、耐久性や加工性が大きく悪化する懸念はない。   In the method of plating or coating the fiber surface with the conductive material described in Patent Documents 1 and 4, since the conductive material covers the fiber surface, the processability such as dyeability and spinnability is deteriorated, or it falls off due to friction or the like. There is a concern that the durability is poor and the durability is poor. On the other hand, since the method described in Patent Document 2 contains a conductive substance inside the fiber, there is no concern that the durability and workability are greatly deteriorated.

導電性物質としてもっとも良く使われているのがカーボンブラックであるが、黒色であるため、添加量および方法により程度の差はあるが、繊維が黒色化してしまう。そのため、デザインが重視される衣料用途、特にアウター向けには使いづらい面があった。導電性物質として白色金属化合物を用いたものもあるが、繊維全体に均一に練り混んでおり、高い導電性を得るには大量に練り混む必要があり、強度などの繊維物性が低下してしまう。   Carbon black is most often used as a conductive material, but since it is black, the fiber becomes black although there is a difference in the amount depending on the amount and method of addition. For this reason, it has been difficult to use in clothing applications where design is important, especially for outerwear. Some of them use white metal compounds as conductive materials, but they are kneaded and mixed uniformly throughout the fiber, and in order to obtain high conductivity, it is necessary to knead and mix in large quantities, resulting in a decrease in fiber properties such as strength. .

特許文献3のように強度低下を防ぐために白色導電性物質を芯鞘構造の芯部にのみ、存在させるようにするものもあるが、この場合、芯鞘口金のような精密な口金を用いるため、口金が詰まりやすく、操業性に劣る。また、導電性微粒子を含む部分が繊維カット面を除き、繊維表面に露出しておらず、不導体であるアクリル系重合体に覆われているため、導電性(除電性)に劣る。
特開2001−40578号公報(特許請求の範囲) 特開2002−138323号公報(特許請求の範囲) 特開平8−337925号公報(特許請求の範囲) 特開昭58−31168号公報(特許請求の範囲)
In some cases, a white conductive material is allowed to exist only in the core portion of the core-sheath structure in order to prevent strength reduction as in Patent Document 3, but in this case, a precise base such as the core-sheath base is used. , The base is easily clogged, and the operability is inferior. Moreover, since the part containing electroconductive fine particles is not exposed to the fiber surface except for the fiber cut surface and is covered with an acrylic polymer which is a nonconductor, it is inferior in electroconductivity (static elimination).
JP 2001-40578 A (Claims) JP 2002-138323 A (Claims) JP-A-8-337925 (Claims) JP 58-31168 A (Claims)

本発明は、従来のアクリル系合成繊維の製造時の操業性および加工性を損なうことなく、白色でかつ優れた導電性を有するアクリル系合成繊維およびその製造方法を提供することにある。   An object of the present invention is to provide an acrylic synthetic fiber that is white and has excellent electrical conductivity and a method for producing the same without impairing the operability and processability during the production of the conventional acrylic synthetic fiber.

本発明者らは鋭意検討した結果、白色導電性微粒子を繊維中に均一に分散させるのではなく、層状に局在化させることにより製造時の操業性および製品加工時の加工性と導電性を両立できることを見いだした。   As a result of intensive studies, the present inventors have not dispersed the white conductive fine particles uniformly in the fiber, but localized them in a layered manner, thereby improving the operability during manufacturing and the workability and conductivity during product processing. I found that I can achieve both.

すなわち本発明は、アクリル系重合体が繊維軸方向に沿って3層以上接合された多層複合構造を有するアクリル系合成繊維であって、該複合構造が白色導電性微粒子含有量5重量%以上20重量%以下である層および白色導電性微粒子含有量1重量%以下である層からなることを特徴とするアクリル系合成繊維である。   That is, the present invention is an acrylic synthetic fiber having a multilayer composite structure in which three or more acrylic polymers are bonded along the fiber axis direction, and the composite structure has a white conductive fine particle content of 5% by weight or more and 20%. An acrylic synthetic fiber comprising a layer having a weight percent of 1% by weight or less and a layer having a weight percent of 1% or less.

さらに、本発明は、少なくとも一つの白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体、および少なくとも一つの白色導電性微粒子含有量1重量%以下であるアクリル系重合体を、繊維軸方向に沿って3層以上に接合して紡糸することを特徴とする前記アクリル系合成繊維の製造方法である。   Furthermore, the present invention provides an acrylic polymer having at least one white conductive fine particle content of 5 wt% to 20 wt% and an acrylic polymer having at least one white conductive fine particle content of 1 wt% or less. The method for producing an acrylic synthetic fiber according to claim 1, wherein the synthetic fiber is spun by bonding to three or more layers along the fiber axis direction.

繊維全体に白色導電性微粒子を均一に練り込んだ場合より高い導電性が得られる。繊維の生産時操業性、機械物性および後加工性の低下もなく、生産が可能である。   Higher conductivity is obtained than when white conductive fine particles are uniformly kneaded into the entire fiber. Production is possible without degradation of operability, mechanical properties and post-processability during fiber production.

本発明を詳細に説明する。   The present invention will be described in detail.

本発明で使用する白色導電性微粒子としては、白色でかつ導電性を有する微粒子であれば、いずれも使用することができる。例えば金属酸化物、もしくは金属酸化物を被覆した微粒子があげられるが、これらに限るものではない。金属酸化物として酸化錫、酸化亜鉛、酸化インジウム、酸化アンチモンなどがあげられるが、これらに限るものではない。金属酸化物を被覆した微粒子の例として、酸化錫および酸化インジウムを被覆した酸化チタンなどが上げられるが、これに限らない。また、これらの混合物でも良く、導電性を阻害しないものであれば、さらに白色導電性微粒子以外も混合しても良い。   As the white conductive fine particles used in the present invention, any fine particles that are white and conductive can be used. Examples thereof include metal oxides or fine particles coated with metal oxides, but are not limited thereto. Examples of the metal oxide include, but are not limited to, tin oxide, zinc oxide, indium oxide, and antimony oxide. Examples of the fine particles coated with metal oxide include, but are not limited to, tin oxide and titanium oxide coated with indium oxide. Further, a mixture of these may be used, and other than the white conductive fine particles may be mixed as long as the conductivity is not impaired.

これら白色導電性微粒子の後述する溶媒もしくは繊維への分散性を向上するため、導電性および白色度を悪化させないものであれば、表面処理しても構わない。表面処理方法は、ポリエチレングリコールと白色導電性微粒子を混合し、再粉砕するなどの方法があるが、使用する表面処理剤および方法はこれらに限らない。   In order to improve the dispersibility of these white conductive fine particles in a solvent or fiber described later, surface treatment may be performed as long as the conductivity and whiteness are not deteriorated. As the surface treatment method, there are methods such as mixing polyethylene glycol and white conductive fine particles and re-grinding, but the surface treatment agent and method to be used are not limited thereto.

なお、白色導電性微粒子の直径は0.05μm以上0.5μm以下がであることが好ましい。0.05μm以下の場合は分散液調製時に凝集しやすく、0.5μmを超えると紡糸時に口金が閉塞しやすくなる。また、白色導電性微粒子の形状は外接球の大きさが先に挙げた範囲であれば、立方体、直方体、多面体および不定形などでも良く、球状である必要はない。   The diameter of the white conductive fine particles is preferably 0.05 μm or more and 0.5 μm or less. If it is 0.05 μm or less, it tends to agglomerate when preparing the dispersion, and if it exceeds 0.5 μm, the die tends to be clogged during spinning. In addition, the shape of the white conductive fine particles may be a cube, a rectangular parallelepiped, a polyhedron, an indeterminate shape, or the like as long as the size of the circumscribed sphere is in the above-described range, and does not need to be spherical.

白色導電性微粒子は後述する紡糸原液に使用しているものと同じ溶媒に分散し、練り込む。使用するアクリル系重合体を溶解できる溶媒であれば違う溶媒でも構わないが、溶剤回収工程が煩雑になる。分散濃度は凝集せず、流動性を確保できる範囲で可能な限り、高くすることが好ましい。分散はホモミキサーもしくはプロペラ撹拌機で容器中の溶媒を攪拌しながら、白色導電性微粒子を投入する。投入完了し、均一に分散した液をサンドグラインダー(ビーズミル)にて処理することが好ましい。特に高濃度に分散させる場合はサンドグラインダー処理した方が紡糸時の口金圧上昇も少ない。   The white conductive fine particles are dispersed and kneaded in the same solvent used for the spinning dope described later. A different solvent may be used as long as it can dissolve the acrylic polymer to be used, but the solvent recovery step becomes complicated. The dispersion concentration is preferably as high as possible within a range in which fluidity is ensured without aggregation. For dispersion, white conductive fine particles are added while stirring the solvent in the container with a homomixer or a propeller stirrer. It is preferable to complete the charging and treat the uniformly dispersed liquid with a sand grinder (bead mill). In particular, when dispersed at a high concentration, the sand grinder treatment causes less increase in the die pressure during spinning.

本発明で使用するアクリル系重合体としては、アクリロニトリルを30重量%以上含有するアクリル系ポリマーで繊維形成能を有していれば良い。アクリロニトリル以外の共重合成分としてはアクリル酸、メタクリル酸およびそれらのアルキルエステル類、イタコン類、アクリルアミド、メタクリルアミド、酢酸ビニル、塩化ビニル、スチレン、塩化ビニリデンなどのビニル系化合物の他に、ビニルスルホン酸、アクリルスルホン酸、メタクリルスルホン酸、パラスチレンスルホン酸などの不飽和スルホン酸およびそれらの塩類を用いることができる。   The acrylic polymer used in the present invention may be an acrylic polymer containing 30% by weight or more of acrylonitrile and having fiber forming ability. As copolymerization components other than acrylonitrile, in addition to vinyl compounds such as acrylic acid, methacrylic acid and their alkyl esters, itacones, acrylamide, methacrylamide, vinyl acetate, vinyl chloride, styrene, vinylidene chloride, vinyl sulfonic acid , Unsaturated sulfonic acids such as acrylic sulfonic acid, methacryl sulfonic acid, and parastyrene sulfonic acid, and salts thereof can be used.

上記アクリル系重合体は懸濁重合、溶液重合、乳化重合等のいずれの方法によって製造されたものでも良い。また、溶媒は上記アクリル系重合体を溶解するものであればよく、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、アセトン等の有機系溶媒や硝酸、ロダン酸ソーダ、塩化亜鉛等の無機塩水溶液等の無機系溶媒が好ましく用いられる。これら溶媒にアクリル系重合体を溶解し、紡糸原液とする。紡糸原液中の重合体濃度は10重量%以上30重量%以下に設定する。   The acrylic polymer may be produced by any method such as suspension polymerization, solution polymerization, and emulsion polymerization. The solvent may be any solvent that dissolves the acrylic polymer, and is an organic solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, or acetone, or an inorganic salt solution such as nitric acid, sodium rhodanate, or zinc chloride. A system solvent is preferably used. An acrylic polymer is dissolved in these solvents to obtain a spinning dope. The polymer concentration in the spinning dope is set to 10% by weight or more and 30% by weight or less.

この紡糸原液中に繊維形成能および操業性を阻害しないその他の添加剤を練り込んでも構わない。例えば、紫外線吸収剤、染料、顔料などであるが、これらに限らない。   Other additives that do not impair fiber forming ability and operability may be incorporated into the spinning dope. For example, ultraviolet absorbers, dyes, pigments and the like are not limited thereto.

白色導電性微粒子を繊維中に層状に練り込むには以下のような方法で行う。すなわち、まったく白色導電性微粒子を含まない紡糸原液と白色導電性微粒子を含む紡糸原液を用意する。この時の白色導電性微粒子を含む部分の微粒子濃度は使用する白色導電性微粒子の導電性、要求される導電性および製糸条件などにもよるが5重量%以上である必要がある。5重量%未満だと導電性が低すぎる。好ましくは10重量%以上20重量%以下、さらに好ましくは10〜15重量%である。当然、白色導電性微粒子が多いほど導電性は高くなるが、その反面、口金圧が上がり易くなるなど操業性が悪化し、繊維強度も低下するので20重量%以下とすることが好ましい。 白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体と白色導電性微粒子含有量1重量%以下のアクリル系重合体を複合紡糸する方法を図2により説明する。図2は本発明の繊維を製造するための複合紡糸装置の一実施態様の概略平面図である。まず、白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体を含む紡糸原液(1)と白色導電性微粒子含有量1重量%以下の、好ましくは白色導電性微粒子を含まないアクリル系重合体を含む紡糸原液(2)を用意する。これら2種の紡糸原液を図2の紡糸装置を用いて混合する。二種の紡糸原液(1)、(2)は各々ろ過部(図示せず)を通過した後、多層化エレメント(3)に供給され、混練される。この多層化エレメント(3)によって、紡糸原液(1)(2)は3層以上に積層される。多層化エレメント(3)で多層に積層された後、口金ユニット(4)に入り、紡糸孔(5)より流出されフィラメント群として吐出される。ここで多層化エレメントでの混合が過剰であると白色導電性微粒子含有量の違う2種の原液が過剰に混合され、均一化し、目的の層状構造とならないので、注意が必要である。本発明で用いる多層化エレメント(3)は、一般に、スタティックミキサーと言われるものである。例えばケニックス社製「スタティックミキサー」、東レエンジニアリング(株)製「ミキシングユニット」、スルーザー社製ミキシングエレメント、エーテックジャパン(株)製「スタティックミキサー」など公知のものが用いられる。図4にエーテックジャパン(株)製スタティックミキサーを構成するエレメントとスタティックミキサーにより、多層化する様子を示す。図4の下段に示すのは各流路における2種の物質の層状状態をあらわす概略断面図である。2種の物質(本発明では白色導電性微粒子含有量5重量%以上20重量%以下含むアクリル系重合体と白色導電性微粒子含有量1重量%以下のアクリル系重合体)が層状化する様子を図示した。スタティックミキサーの段数により、層数を調整できる。実際の繊維はこの多層化したものを口金の孔で切り取ったものになる。多層構造を有する繊維の形状は、紡糸孔の形状により丸断面,三角断面,偏平などの任意の形状を選択することができる。   The following method is used to knead the white conductive fine particles into the fiber in layers. That is, a spinning stock solution containing no white conductive fine particles and a spinning stock solution containing white conductive fine particles are prepared. The fine particle concentration in the portion containing the white conductive fine particles at this time is required to be 5% by weight or more, although it depends on the conductivity of the white conductive fine particles to be used, the required conductivity and the spinning conditions. If it is less than 5% by weight, the conductivity is too low. Preferably it is 10 to 20 weight%, More preferably, it is 10 to 15 weight%. Naturally, the more white conductive fine particles, the higher the conductivity, but on the other hand, the operability deteriorates, such as the pressure on the die being easily raised, and the fiber strength also decreases, so it is preferably 20% by weight or less. A method for composite spinning of an acrylic polymer having a white conductive fine particle content of 5 wt% or more and 20 wt% or less and an acrylic polymer having a white conductive fine particle content of 1 wt% or less will be described with reference to FIG. FIG. 2 is a schematic plan view of one embodiment of a composite spinning apparatus for producing the fiber of the present invention. First, a spinning dope (1) containing an acrylic polymer having a white conductive fine particle content of 5 wt% to 20 wt% and a white conductive fine particle content of 1 wt% or less, preferably no white conductive fine particles. A spinning dope (2) containing an acrylic polymer is prepared. These two types of spinning stock solutions are mixed using the spinning device shown in FIG. The two spinning stock solutions (1) and (2) each pass through a filtration unit (not shown), and then are supplied to the multilayer element (3) and kneaded. By this multilayer element (3), the spinning dope (1) (2) is laminated in three or more layers. After being laminated in multiple layers by the multilayer element (3), it enters the die unit (4), flows out from the spinning hole (5), and is discharged as a filament group. Here, if mixing in the multilayer element is excessive, two types of stock solutions having different white conductive fine particle contents are excessively mixed and uniform, and the target layered structure is not obtained. The multilayer element (3) used in the present invention is generally called a static mixer. For example, known ones such as “Static Mixer” manufactured by Kenix Co., Ltd., “Mixing Unit” manufactured by Toray Engineering Co., Ltd., Mixing Element manufactured by Sruzer Co., Ltd., “Static Mixer” manufactured by Atech Japan Co., Ltd. are used. FIG. 4 shows a state of multilayering with the elements constituting the static mixer manufactured by ATEC Japan Co., Ltd. and the static mixer. The lower part of FIG. 4 is a schematic cross-sectional view showing a layered state of two kinds of substances in each channel. Two kinds of substances (in the present invention, an acrylic polymer containing 5% by weight to 20% by weight of white conductive fine particles and an acrylic polymer having a content of white conductive fine particles of 1% by weight or less) are layered. Illustrated. The number of layers can be adjusted by the number of stages of the static mixer. The actual fiber is a multi-layered product cut by a hole in the die. As the shape of the fiber having a multilayer structure, an arbitrary shape such as a round cross section, a triangular cross section, and a flat shape can be selected depending on the shape of the spinning hole.

紡糸方法はアクリル系合成繊維で公知の方法がいずれも可能であるが、湿式が最も簡便である。   As the spinning method, any known method can be used for acrylic synthetic fibers, but wet is the simplest.

紡糸・凝固した後、延伸・水洗を行う。延伸倍率を変更することにより、導電性を調整できる。その後、膠着防止油剤を付与し、乾燥緻密化する。その後、必要に応じて、再延伸、クリンプ付与・熱セット・後乾燥を行い、カットもしくはフィラメントのまま梱包し、製品とする。 かくして、本発明の、アクリル系重合体が繊維軸方向に沿って3層以上接合された多層構造を有するアクリル系複合繊維を得ることができる。ここで、多層構造とは、繊維の長手方向に延在する第1のアクリル系重合体の層が、繊維の長手方向に延在する第2のアクリル系重合体の層と接触し、第2のアクリル系重合体は任意に1つ以上の別のアクリル系重合体層と接触する繊維を意味する。   After spinning and solidification, drawing and washing are performed. The conductivity can be adjusted by changing the draw ratio. Thereafter, an anti-sticking oil is applied to dry and densify. Then, if necessary, redrawing, crimping, heat setting, and post-drying are performed, and the cut or filament is packaged to obtain a product. Thus, the acrylic composite fiber of the present invention having a multilayer structure in which three or more acrylic polymers are joined along the fiber axis direction can be obtained. Here, the multilayer structure means that the first acrylic polymer layer extending in the longitudinal direction of the fiber is in contact with the second acrylic polymer layer extending in the longitudinal direction of the fiber, and the second An acrylic polymer of the term means a fiber that is optionally in contact with one or more other acrylic polymer layers.

本発明の3層以上接合された多層構造を有するアクリル系複合繊維の一実施態様を図1に示す。図1は本発明の一実施態様の繊維の横断面概略図である。白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体(11)と白色導電性微粒子含有量1重量%以下のアクリル系重合体(12)が層状に接合された多層構造を形成している。図1にあるようにアクリル系重合体(11)とアクリル系重合体(12)を3層以上複合紡糸し、繊維外周部にアクリル系重合体(12)が露出するようにすることが好ましい。それによって従来のアクリル系合成繊維と同程度の加工性を得ることができる。   One embodiment of the acrylic composite fiber having a multilayer structure in which three or more layers of the present invention are joined is shown in FIG. FIG. 1 is a schematic cross-sectional view of a fiber according to an embodiment of the present invention. A multilayer structure in which an acrylic polymer (11) having a white conductive fine particle content of 5% by weight to 20% by weight and an acrylic polymer (12) having a white conductive fine particle content of 1% by weight or less are joined in layers. Forming. As shown in FIG. 1, it is preferable that three or more layers of the acrylic polymer (11) and the acrylic polymer (12) are composite-spun so that the acrylic polymer (12) is exposed on the outer periphery of the fiber. Thereby, processability comparable to that of conventional acrylic synthetic fibers can be obtained.

また、本発明の繊維において、地層状に白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体と遠赤微粒子含有量1重量%以下のアクリル系重合体からなる層が3層以上積み重なり、それを繊維断面に応じて、切り抜いたとき、各層は直線状である必要はなく、曲線や波線状でも構わないし、層の厚みは一定である必要はない。しかし、各層の少なくとも一方、好ましくは両端が繊維外周に接している必要がある。これは特殊なものを除き、アクリル系重合体は不導体であるため、白色導電性微粒子を含む層が繊維表面にまったく露出していないと電荷の移動が困難で、導電性が得られにくいためである。   Further, in the fiber of the present invention, a layer composed of an acrylic polymer having a white conductive fine particle content of 5 wt% or more and 20 wt% or less and an acrylic polymer having a far red fine particle content of 1 wt% or less is formed in the formation. When layers are stacked and cut according to the fiber cross section, each layer does not have to be linear, may be curved or wavy, and the layer thickness need not be constant. However, at least one of each layer, preferably both ends, must be in contact with the outer circumference of the fiber. This is because, except for special ones, the acrylic polymer is non-conductive, so if the layer containing white conductive fine particles is not exposed at all on the fiber surface, it is difficult to transfer charges and it is difficult to obtain conductivity. It is.

以下、実施例および比較例を示し、本発明を詳細に説明する。   EXAMPLES Hereinafter, an Example and a comparative example are shown and this invention is demonstrated in detail.

実施例中、各特性値の測定・判定方法は以下のとおりである。   In the examples, the measurement / judgment method of each characteristic value is as follows.

<繊維全体の白色導電性微粒子含有量>
絶乾した繊維の質量を測定した後、700℃×5時間加熱処理して、灰化させる。灰化前後の質量から式1にて計算する。
繊維全体の白色導電性微粒子含有量(質量%)=(灰分質量(g)/絶乾した繊維の質量(g))×100・・・(式1)。
<Content of white conductive fine particles in the entire fiber>
After measuring the mass of the absolutely dried fiber, it is heat-treated at 700 ° C. for 5 hours. It calculates with Formula 1 from the mass before and after ashing.
White conductive fine particle content (mass%) of the entire fiber = (mass ash (g) / mass of dried fiber (g)) × 100 (Equation 1).

<局在部の白色導電性微粒子含有量>
微粒子を含む紡糸原液を水中に細くたらし、ラーメン状に固化した後、溶媒および水を完全に除き(絶乾)、質量を測定した後、上記と同様の方法で灰化させる。灰化前後の質量から式2にて計算する。局在部とは複合紡糸された繊維の中で微粒子を含む層の部分(図1における網掛け部分)を指す。
局在部の白色導電性微粒子含有量(質量%)=(灰分質量(g)/絶乾した固化物の質量(g))×100・・・(式2)。
<Content of white conductive fine particles in localized portion>
The spinning stock solution containing fine particles is thinned into water, solidified into a ramen shape, the solvent and water are completely removed (absolutely dried), the mass is measured, and then incinerated in the same manner as described above. It calculates with Formula 2 from the mass before and after ashing. The localized portion refers to a portion of the layer containing fine particles in the composite-spun fiber (shaded portion in FIG. 1).
White conductive fine particle content (% by mass) in localized portion = (mass content of ash (g) / mass of solidified solid (g)) × 100 (Equation 2).

<操業性>
紡糸開始から24時間後の口金圧上昇率で評価した。0.3MPa/日以下が良好なレベル。
<Operability>
Evaluation was made based on the die pressure increase rate 24 hours after the start of spinning. A good level is 0.3 MPa / day or less.

<染色性>
染料マラカイトグリーンを濃度0.5重量%に調整した染色液20gにサンプル1gを投入し、10分間煮沸(98℃)した後、良く水洗し、乾燥させる。染色・乾燥後のサンプルを良く開繊する。このサンプルを目視にて判定する。白色導電性微粒子を含まない通常のアクリル系合成繊維と同様に染色斑などなく、鮮やかに染色されているものを◎、染色斑は無いが、若干、淡色であるものを○、染色斑がわずかにあるか、淡色度が○より低いものを△、染色斑が著しく激しいか、淡色度が著しく低いものを×とする。◎、○、△を合格レベルとする。
<Dyeability>
1 g of a sample is put into 20 g of a dyeing solution adjusted to a concentration of 0.5% by weight of the dye malachite green, boiled for 10 minutes (98 ° C.), washed well with water and dried. Open the dyed and dried sample well. This sample is judged visually. As with normal acrylic synthetic fibers that do not contain white conductive fine particles, there are no stained spots, ◎ vividly dyed, no stained spots, slightly slightly colored ○, slightly stained spots , And those where the light chromaticity is lower than ◯, Δ, and those where the stained spots are remarkably severe, or those where the light chromaticity is remarkably low are indicated as x. ◎, ○, and △ are acceptable levels.

<後加工性(編み立て性)>
編み立て時の操業性(毛羽たち、糸切れなど)を総合的に判断した。かなり良好◎、良好○、劣る△、悪い(操業困難)×とした。◎および○が通常の紡績が操業できるレベル。微粒子未添加品を◎とする。
<Post-processing (knitting)>
The operability at the time of knitting (fluff, yarn breakage, etc.) was comprehensively judged. Quite good ◎, good ○, inferior △, bad (operation difficulty) ×. ◎ and ○ are the levels at which normal spinning can be operated. The product without added fine particles is marked with ◎.

<導電性(比抵抗)>
図3は導電性(比抵抗)を測定する装置の原理概略図である。左右の金属電極は上下に分かれ、その間に測定サンプルの端を挟む。サンプルのもう一方も同様に金属電極にサンプルを挟み、金属電極間の抵抗値を極超絶縁計で測定する。図3のように10cm間隔にある2組の金属電極の間に測定サンプルを挟み、その間の抵抗値を極超絶縁計(東亜DKK SM−8220)を用いて、印加電圧100Vで測定する。10Ω・cm以下の比抵抗である場合、導電性ありとした。
<Conductivity (specific resistance)>
FIG. 3 is a schematic diagram showing the principle of an apparatus for measuring conductivity (specific resistance). The left and right metal electrodes are divided into upper and lower parts, and the end of the measurement sample is sandwiched between them. Similarly, the other sample is sandwiched between metal electrodes, and the resistance value between the metal electrodes is measured with a hyper insulation meter. As shown in FIG. 3, a measurement sample is sandwiched between two sets of metal electrodes at intervals of 10 cm, and the resistance value between them is measured using a hyper insulation meter (Toa DKK SM-8220) at an applied voltage of 100V. When the specific resistance was 10 8 Ω · cm or less, it was considered to be conductive.

<繊維強度>
JIS L1015に従い、測定した。つかみ間隔は20mm、試験機は定速伸長形(伸長速度つかみ間隔の100%/分)。
<Fiber strength>
It measured according to JIS L1015. The holding interval is 20 mm, and the tester is a constant speed extension type (100% / min of the extension rate holding interval).

(実施例1)
繊維を形成するポリマーとして、アクリロニトリル(AN)/アクリル酸メチル(MEA)/メタクリルスルホン酸ナトリウム(SMAS)=95.5/4.2/0.3(mol%)を用い、これを溶媒ジメチルスルホキシド(DMSO)にポリマー濃度25重量%になるように溶解し、紡糸原液とした。
Example 1
As the polymer forming the fiber, acrylonitrile (AN) / methyl acrylate (MEA) / sodium methacryl sulfonate (SMAS) = 95.5 / 4.2 / 0.3 (mol%) was used, and this was used as the solvent dimethyl sulfoxide. (DMSO) was dissolved to a polymer concentration of 25% by weight to prepare a spinning dope.

白色導電性微粒子として、酸化スズ((株)ジェムコ製)を用いた。これをホモミキサーにて溶媒DMSOに分散した後、分散安定化剤として、上記ポリマーを溶解し、白色導電性微粒子分散液を得た。分散・溶解比率は、酸化スズ/ポリマー/DMSO=24/2/74(重量%)。   Tin oxide (manufactured by Gemco Co., Ltd.) was used as the white conductive fine particles. This was dispersed in the solvent DMSO with a homomixer, and then the polymer was dissolved as a dispersion stabilizer to obtain a white conductive fine particle dispersion. The dispersion / dissolution ratio is tin oxide / polymer / DMSO = 24/2/74 (% by weight).

上記紡糸原液をプロペラ攪拌機で攪拌しながら、白色導電性微粒子濃度がポリマーに対して15重量%になるように白色導電性微粒子分散液を加えた。この白色導電性微粒子を15重量%含む紡糸原液と含まない紡糸原液を図2に示す装置にて混合した。図2の装置にて混合した紡糸原液をDMSO濃度57重量%、温度30℃の水溶液中に口金より押し出吐出し、凝固させた。口金はφ0.06mm×48ホールである。凝固した繊維束を順次DMSO濃度が低下する数段の浴にて、脱溶媒させながら、5倍延伸した。延伸後、水洗機にて完全にDMSOを除き、膠着防止油剤を付与した。その後、乾燥緻密化して、単糸繊度3.3dtex(トータル繊度158.4dtex)のサンプルを得た。   While stirring the spinning solution with a propeller stirrer, the white conductive fine particle dispersion was added so that the white conductive fine particle concentration was 15% by weight based on the polymer. The spinning stock solution containing 15% by weight of the white conductive fine particles and the spinning stock solution not containing the white conductive fine particles were mixed in the apparatus shown in FIG. The spinning dope mixed with the apparatus of FIG. 2 was extruded and discharged from a die into an aqueous solution having a DMSO concentration of 57% by weight and a temperature of 30 ° C. to be solidified. The base is φ0.06 mm × 48 holes. The coagulated fiber bundle was stretched 5 times while removing the solvent in several baths where the DMSO concentration gradually decreased. After stretching, DMSO was completely removed with a washing machine, and an anti-sticking oil agent was applied. Thereafter, the sample was dried and densified to obtain a sample having a single yarn fineness of 3.3 dtex (total fineness of 158.4 dtex).

この手順で調製されたサンプルは操業性、後加工性ともに良好で導電性も高かった。   The sample prepared by this procedure had good operability and post-processability and high conductivity.

(実施例2および3)
延伸倍率を表1記載の値とした以外は実施例1と同じ方法で実施例2および3のサンプルを調製した(実施例1と同じ単糸繊度となるように口金からの吐出量を調整した)。操業性、後加工性ともに良好だった。延伸倍率が実施例1より高い実施例2は導電性が低く、逆に延伸倍率が実施例1より低い実施例3は導電性が高くなった。
(Examples 2 and 3)
Samples of Examples 2 and 3 were prepared in the same manner as in Example 1 except that the draw ratio was set to the value described in Table 1. (The discharge rate from the die was adjusted so that the single yarn fineness was the same as in Example 1. ). Both operability and post-processability were good. Example 2 having a higher draw ratio than Example 1 had low conductivity, and conversely, Example 3 having a draw ratio lower than Example 1 had higher conductivity.

(比較例1)
実施例1と同様の方法で紡糸原液中のポリマーに対して白色導電性微粒子が15重量%となるように白色導電性微粒子分散液を練り込んだ。この紡糸原液を多層化エレメントを通すことなく、白色導電性微粒子が繊維中に均一になるように紡糸し、サンプルを得た。それ以外は実施例1と同じ条件である。得られたサンプルは強度などの物性が悪く、導電性が低く、繊維摩擦が大きく、後加工性が悪かった。
(Comparative Example 1)
In the same manner as in Example 1, the white conductive fine particle dispersion was kneaded so that the white conductive fine particles were 15% by weight with respect to the polymer in the spinning dope. The spinning solution was spun so that the white conductive fine particles would be uniform in the fiber without passing through the multilayer element to obtain a sample. The other conditions are the same as in the first embodiment. The obtained sample had poor physical properties such as strength, low electrical conductivity, large fiber friction, and poor post-processability.

(比較例2)
実施例1と同様の方法で紡糸原液中のポリマーに対して微粒子が15重量%となるように白色導電性微粒子分散液を練り込んだ。この白色導電性微粒子を練り込んだ紡糸原液と未添加の紡糸原液とを多層化エレメントを通すことなく、芯鞘型口金を用いて、紡糸し、芯鞘型の繊維を得た(芯部が白色導電性微粒子含有)。多層化エレメント未使用および口金以外の条件は実施例1と同じである。微粒子を芯部に局在化させたことにより、後加工性も良く、染色性も良好だが、口金圧上昇率が大きく、頻繁に口金交換が必要であった。また、実施例1と同量の白色導電性微粒子を練り混んだにも係わらず、導電性が著しく低かった。
(Comparative Example 2)
In the same manner as in Example 1, the white conductive fine particle dispersion was kneaded so that the fine particles were 15% by weight with respect to the polymer in the spinning dope. The spinning stock solution kneaded with the white conductive fine particles and the non-added spinning stock solution were spun using a core-sheath die without passing through the multilayer element to obtain a core-sheath type fiber (the core part was Contains white conductive fine particles). The conditions other than the use of the multilayer element and the base are the same as those in Example 1. Since the fine particles were localized at the core, the post-processability was good and the dyeability was good, but the die pressure increase rate was large, and frequent die replacement was necessary. Further, although the same amount of white conductive fine particles as in Example 1 was kneaded, the conductivity was remarkably low.

(比較例3,4)
実施例1と同じ方法にてポリマーに対して微粒子の含有量を表1記載のように変更して、サンプルを調製した。微粒子量が少ない比較例3は導電性が低い。局在部の練り混み量が著しく多い比較例4は口金詰まりが多発し、安定的に操業できなかった。
(Comparative Examples 3 and 4)
Samples were prepared in the same manner as in Example 1, except that the fine particle content was changed as shown in Table 1 with respect to the polymer. Comparative Example 3 with a small amount of fine particles has low conductivity. In Comparative Example 4 in which the amount of kneading in the localized portion was remarkably large, clogging occurred frequently, and stable operation was not possible.

Figure 2007119992
Figure 2007119992

本発明により得られるアクリル系合成繊維は高い導電性を有し、かつ、製造時の操業性および後加工性も良好である。また、繊維外周のほとんどを通常のアクリル系重合体が覆っているため、染色性も通常のアクリル系合成繊維と同程度である。そのため、ファッション性に加え、制電性も要求される衣料などに最適である。   The acrylic synthetic fiber obtained by the present invention has high conductivity, and also has good operability and post-processability during production. Moreover, since most of the outer periphery of the fiber is covered with a normal acrylic polymer, the dyeability is similar to that of a normal acrylic synthetic fiber. Therefore, it is most suitable for clothing that requires anti-electricity as well as fashion.

本発明の繊維の一態様の横断面概略図である。It is a cross-sectional schematic of the one aspect | mode of the fiber of this invention. 本発明で使用する、アクリル系合成繊維に白色導電性微粒子を層状に練り込む装置の一態様の側面概略図である。1 is a schematic side view of an embodiment of an apparatus for kneading white conductive fine particles in a layer form into an acrylic synthetic fiber used in the present invention. 導電性(比抵抗)を測定する装置の原理概略図である。It is the principle schematic of the apparatus which measures electroconductivity (specific resistance). 多層化エレメント(スタティックミキサー)を構成するエレメントおよび多層化エレメントにより多層化する様子を示す概略図である。It is the schematic which shows a mode that multilayering is carried out by the element which comprises a multilayered element (static mixer), and a multilayered element.

符号の説明Explanation of symbols

1:白色導電性微粒子を5重量%以上20重量%以下含む紡糸原液
2:白色導電性微粒子を1重量%以下含む紡糸原液
3:多層化エレメント
4:口金ユニット
5:紡糸孔
6:導電性測定サンプル
7:金属電極
11:白色導電性微粒子を5重量%以上20重量%以下含む層
12:白色導電性微粒子を1重量%以下含む層
1: Spinning stock solution containing 5% by weight or more and 20% by weight or less of white conductive fine particles 2: Spinning stock solution containing white conductive fine particles of 1% by weight or less 3: Multilayered element 4: Die unit 5: Spinning hole 6: Conductivity measurement Sample 7: Metal electrode 11: Layer containing white conductive fine particles 5 wt% or more and 20 wt% or less 12: Layer containing white conductive fine particles 1 wt% or less

Claims (4)

アクリル系重合体が繊維軸方向に沿って3層以上接合された多層複合構造を有するアクリル系合成繊維であって、該複合構造が白色導電性微粒子含有量5重量%以上20重量%以下である層および白色導電性微粒子含有量1重量%以下である層からなることを特徴とするアクリル系合成繊維。   An acrylic synthetic fiber having a multilayer composite structure in which three or more acrylic polymers are joined along the fiber axis direction, and the composite structure has a white conductive fine particle content of 5 wt% or more and 20 wt% or less. An acrylic synthetic fiber comprising a layer and a layer having a white conductive fine particle content of 1% by weight or less. 白色導電性微粒子が導電性金属酸化物もしくは金属酸化物を被覆した微粒子である請求項1記載のアクリル系合成繊維。   2. The acrylic synthetic fiber according to claim 1, wherein the white conductive fine particles are conductive metal oxide or fine particles coated with a metal oxide. 導電性金属酸化物が酸化錫、酸化亜鉛、酸化インジウムおよび酸化アンチモンから選ばれる1種以上の金属酸化物である請求項2記載のアクリル系合成繊維。   The acrylic synthetic fiber according to claim 2, wherein the conductive metal oxide is at least one metal oxide selected from tin oxide, zinc oxide, indium oxide and antimony oxide. 少なくとも一つの白色導電性微粒子含有量5重量%以上20重量%以下のアクリル系重合体、および少なくとも一つの白色導電性微粒子含有量1重量%以下であるアクリル系重合体を、繊維軸方向に沿って3層以上に接合して複合紡糸することを特徴とする請求項1〜3のいずれか記載のアクリル系合成繊維の製造方法。   An acrylic polymer having a content of at least one white conductive fine particle of 5 wt% or more and 20 wt% or less and an acrylic polymer having a content of at least one white conductive fine particle of 1 wt% or less are arranged along the fiber axis direction. The method for producing an acrylic synthetic fiber according to any one of claims 1 to 3, wherein the composite spinning is performed by bonding to three or more layers.
JP2006266158A 2005-09-30 2006-09-29 Synthetic acrylic fiber and method for producing the same Pending JP2007119992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266158A JP2007119992A (en) 2005-09-30 2006-09-29 Synthetic acrylic fiber and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289435 2005-09-30
JP2006266158A JP2007119992A (en) 2005-09-30 2006-09-29 Synthetic acrylic fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007119992A true JP2007119992A (en) 2007-05-17

Family

ID=38144114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266158A Pending JP2007119992A (en) 2005-09-30 2006-09-29 Synthetic acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007119992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299205A (en) * 2008-06-10 2009-12-24 Toray Ind Inc Acrylic synthetic fiber and method for producing the same
JP2010012407A (en) * 2008-07-03 2010-01-21 Nippon Paint Co Ltd Method of forming composite layer coating film
CN103789863A (en) * 2014-01-07 2014-05-14 江南大学 Manufacturing method of white acrylic conductive fiber
US11078608B2 (en) * 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299205A (en) * 2008-06-10 2009-12-24 Toray Ind Inc Acrylic synthetic fiber and method for producing the same
JP2010012407A (en) * 2008-07-03 2010-01-21 Nippon Paint Co Ltd Method of forming composite layer coating film
CN103789863A (en) * 2014-01-07 2014-05-14 江南大学 Manufacturing method of white acrylic conductive fiber
US11078608B2 (en) * 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product

Similar Documents

Publication Publication Date Title
DE2707275C2 (en)
JP2007119992A (en) Synthetic acrylic fiber and method for producing the same
CN108728924A (en) A kind of 66 nanofiber of halogen-free flame-retardant reinforced nylon and preparation method thereof
JP2010252712A (en) Aramid fiber for fishing net, and fishing net
JP7154816B2 (en) Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JP4564322B2 (en) Method for producing conductive acrylic fiber
US4999245A (en) Multi-layered conjugated acrylic fibers and the method for their production
JP2007270390A (en) Acrylic synthetic fiber, method for producing the same and textile product
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JP3847923B2 (en) Fine particle-containing phase separation fiber and method for producing the same
JP2007092229A (en) Acrylic conjugate fiber and method for producing the same
JP4665557B2 (en) Black original polyester fiber
JP3213152B2 (en) Method for producing acrylic synthetic fiber containing carbon black excellent in spinnability
KR20210134404A (en) Process for producing homogeneous solutions of polyacrylonitrile-based polymers
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JP5700240B2 (en) Acrylic fiber paper and manufacturing method thereof
JPH0931747A (en) Acrylic fiber having excellent conductivity and its production
JPH11200149A (en) White electroconductive fiber
JP5183329B2 (en) Wet spinning method of antibacterial acrylic fiber
JP2570319B2 (en) Acrylic fiber with a new feel
JP2018096009A (en) Synthetic fiber and production method thereof
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP2018053378A (en) Acrylic fiber excellent in ultraviolet shielding property
JPS6341936B2 (en)