JP2007119325A - Group iii nitride crystal and growing method thereof - Google Patents

Group iii nitride crystal and growing method thereof Download PDF

Info

Publication number
JP2007119325A
JP2007119325A JP2005316956A JP2005316956A JP2007119325A JP 2007119325 A JP2007119325 A JP 2007119325A JP 2005316956 A JP2005316956 A JP 2005316956A JP 2005316956 A JP2005316956 A JP 2005316956A JP 2007119325 A JP2007119325 A JP 2007119325A
Authority
JP
Japan
Prior art keywords
crystal
substrate
group iii
iii nitride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316956A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Tomoyoshi Kamimura
智喜 上村
Hideaki Nakahata
英章 中幡
Takuji Okahisa
拓司 岡久
Koji Uematsu
康二 上松
Manabu Okui
学 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005316956A priority Critical patent/JP2007119325A/en
Publication of JP2007119325A publication Critical patent/JP2007119325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III nitride crystal having a low dislocation density on the crystal growth plane after the crystal is grown and to provide a growing method of the crystal. <P>SOLUTION: The method for growing a group III nitride crystal 11 on a substrate 10 is characterized in that while an Al<SB>x</SB>Ga<SB>y</SB>In<SB>1-x-y</SB>N crystal (wherein 0≤x, 0≤y and x+y≤1) as a group III nitride crystal 11 is grown, at least a part of dislocation remaining in the Al<SB>x</SB>Ga<SB>y</SB>In<SB>1-x-y</SB>N crystal is made to propagate in a direction substantially parallel to the crystal growth plane of the Al<SB>x</SB>Ga<SB>y</SB>In<SB>1-x-y</SB>N crystal and discharged to the outer periphery of the Al<SB>x</SB>Ga<SB>y</SB>In<SB>1-x-y</SB>N crystal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子、電子素子、半導体センサなどの各種半導体デバイスの基板として好ましく用いられる転位密度が低いIII族窒化物結晶およびその成長方法に関する。   The present invention relates to a group III nitride crystal having a low dislocation density, which is preferably used as a substrate for various semiconductor devices such as light emitting elements, electronic elements, and semiconductor sensors, and a growth method thereof.

AlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1、以下同じ)などのIII族窒化物結晶は、発光素子、電子素子、半導体センサなどの各種半導体デバイスの基板を形成するための材料として非常に有用なものである。ここで、各種半導体デバイスの特性を向上させるために、転位密度が低く結晶性のよいIII族窒化物結晶が必要とされている。 Group III nitride crystals such as Al x Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1, and so on) are substrates for various semiconductor devices such as light emitting elements, electronic elements, and semiconductor sensors. It is very useful as a material for forming. Here, in order to improve the characteristics of various semiconductor devices, a group III nitride crystal having a low dislocation density and good crystallinity is required.

かかるIII族窒化物結晶の結晶成長においては、たとえば、基板上にGaN結晶を成長させる際に、GaN結晶の成長厚さが大きくなるほどGaN結晶の結晶成長後の結晶成長面における転位密度が低減することが知られている(たとえば、非特許文献1を参照)。かかる成長厚さの増大に伴う転位密度の低減によると、たとえばGaN結晶を厚さ100μm程度に成長させることにより、結晶成長開始面における転位密度1×108cm-2〜1×109cm-2程度を結晶成長後の結晶成長面における転位密度5×107cm-2程度に低減することができる。しかし、かかる転位密度の低減方法によりGaN結晶の結晶成長後の結晶成長面における転位密度を1×105cm-2程度まで低減するためには、5mm〜10mm以上の厚さのGaN結晶を成長させることが必要と考えられる。しかも、かかる転位密度の低減方法においては、基板面内の転位密度のバラツキによりGaN結晶の転位密度にもバラツキが生じるため、GaN結晶に転位密度の高い領域が残存することが考えられる。 In such group III nitride crystal growth, for example, when growing a GaN crystal on a substrate, the dislocation density on the crystal growth surface after the crystal growth of the GaN crystal decreases as the growth thickness of the GaN crystal increases. It is known (for example, refer nonpatent literature 1). According to the reduction of the dislocation density accompanying the increase in the growth thickness, for example, by growing a GaN crystal to a thickness of about 100 μm, the dislocation density at the crystal growth start surface is 1 × 10 8 cm −2 to 1 × 10 9 cm −. 2 degrees can be reduced to the dislocation density 5 × 10 7 cm about 2 in the crystal growth surface after crystal growth. However, in order to reduce the dislocation density on the crystal growth surface of the GaN crystal after crystal growth to about 1 × 10 5 cm −2 by such a method of reducing the dislocation density, a GaN crystal having a thickness of 5 mm to 10 mm or more is grown. It is considered necessary to In addition, in such a method for reducing the dislocation density, the dislocation density of the GaN crystal varies due to the variation of the dislocation density in the substrate surface, and therefore it is considered that a region having a high dislocation density remains in the GaN crystal.

上記の成長厚さの増大に伴う転位密度の低減は、基本的にバーガースベクトルの方向が異なる転位同士間の引力による転位同士の合体による転位の消滅に起因すると考えられる。ここで、転位同士間の引力は、おおよそ転位同士間の距離に反比例するため、転位密度が低くなると転位の低減が起こりにくくなる。これが成長厚さの増大に伴う転位密度の低減において、転位密度を1×105cm-2以下とすることが困難な理由である。 The reduction in the dislocation density accompanying the increase in the growth thickness is considered to be basically caused by the disappearance of dislocations due to coalescence of dislocations due to attractive forces between dislocations having different Burgers vector directions. Here, since the attractive force between dislocations is approximately inversely proportional to the distance between dislocations, the dislocation is less likely to be reduced when the dislocation density is low. This is the reason why it is difficult to reduce the dislocation density to 1 × 10 5 cm −2 or less in the reduction of the dislocation density accompanying the increase in the growth thickness.

結晶の転位のその他の低減方法としては、昇華法またはハロゲン化学輸送法により種結晶上にII−VI族化合物結晶を成長させる際に、転位の伝搬方向を結晶の成長方向から傾けて十分な厚さの結晶を成長させることにより、転位を結晶の外部に掃き出す方法が提案されている(たとえば、特許文献1を参照)。しかし、AlxGayIn1-x-yN結晶などのIII族窒化物結晶においては、厚さの大きい結晶を成長させることが困難であり、また、転位は結晶の成長方向である<0001>方向に平行(すなわち、結晶成長面である(0001)面に垂直)に伝搬していくため、上記II−VI族化合物結晶の結晶成長をIII族窒化物結晶の成長に適用することは困難である。 As another method for reducing crystal dislocations, when a II-VI group compound crystal is grown on a seed crystal by a sublimation method or a halogen chemical transport method, the dislocation propagation direction is tilted from the crystal growth direction to obtain a sufficient thickness. A method of sweeping dislocations out of the crystal by growing the crystal is proposed (see, for example, Patent Document 1). However, in a group III nitride crystal such as an Al x Ga y In 1-xy N crystal, it is difficult to grow a crystal having a large thickness, and the dislocation is the <0001> direction which is the crystal growth direction. Therefore, it is difficult to apply the crystal growth of the II-VI group compound crystal to the growth of the group III nitride crystal. .

III族窒化物結晶の成長において、ELO(epitaxial lateral overgrowth) により結晶成長面である(0001)面に対して傾きを有する傾斜面(たとえば、{11−22}面、{1−101}面など)を形成することにより、結晶成長方向である<0001>方向に垂直な方向(すなわち、結晶成長面である(0001)面に平行な方向)に転位を伝搬させることは可能である(たとえば、非特許文献2を参照)。しかし、この方法では、上記傾斜面と結晶成長面とのなす傾き角が大きいため、III族窒化物結晶の転位を結晶の外部に排出させるためには大きな傾斜面が必要となり、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などに行なわれるIII族窒化物結晶の成長に適用するのは現実的に困難である。   In the growth of a group III nitride crystal, an inclined surface (e.g., {11-22} plane, {1-101} plane, etc.) having an inclination with respect to the (0001) plane as a crystal growth plane by ELO (epitaxial lateral overgrowth) ), It is possible to propagate dislocations in a direction perpendicular to the <0001> direction that is the crystal growth direction (that is, a direction parallel to the (0001) plane that is the crystal growth surface) (for example, (Refer nonpatent literature 2). However, in this method, since the inclination angle formed by the inclined surface and the crystal growth surface is large, a large inclined surface is required to discharge the dislocations of the group III nitride crystal to the outside of the crystal, and HVPE (hydride gas) It is practically difficult to apply to the growth of group III nitride crystals performed in the phase growth) method, MOCVD (metal organic chemical vapor deposition) method, and the like.

このため、III族窒化物結晶の成長において、結晶成長面上に微小な傾斜面を持ったピットを多数形成し、このピット内に転位を集中させてピット外の領域の転位を低減する方法が提案されている(たとえば、特許文献2を参照)。しかし、この方法では、III族窒化物結晶中に転位密度の高いピット領域が多数残存する。
特開平11−158000号公報 特開2001−102307号公報 X. Xu,他5名,“Growth and characterization of low defect GaN by hydride vapor phase epitaxy”,J. Crystal Growth,246,(2002),p223-229 K.Hiramatsu,他8名,“Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth(FACELO)”,J. Crystal Growth,221,(2000),p316-326
For this reason, in the growth of group III nitride crystals, there is a method in which a large number of pits having minute inclined surfaces are formed on the crystal growth surface and the dislocations are concentrated in the pits to reduce dislocations in the region outside the pits. It has been proposed (see, for example, Patent Document 2). However, in this method, a large number of pit regions having a high dislocation density remain in the group III nitride crystal.
Japanese Patent Laid-Open No. 11-158000 JP 2001-102307 A X. Xu and 5 others, “Growth and characterization of low defect GaN by hydride vapor phase epitaxy”, J. Crystal Growth, 246, (2002), p223-229 K. Hiramatsu, 8 others, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Crystal Growth, 221, (2000), p316-326

本発明は、結晶成長後の結晶成長面の転位密度が低いIII族窒化物結晶およびその成長方法を提供することを目的とする。   An object of the present invention is to provide a group III nitride crystal having a low dislocation density on the crystal growth surface after crystal growth and a method for growing the same.

本発明は、基板上にIII族窒化物結晶を成長させる方法であって、III族窒化物結晶であるAlxGayIn1-x-yN結晶の成長の際に、AlxGayIn1-x-yN結晶に残留する転位の少なくとも一部をAlxGayIn1-x-yN結晶の結晶成長面に対して実質的に平行な方向に伝搬させて、AlxGayIn1-x-yN結晶の外周部に排出させることを特徴とするIII族窒化物結晶の成長方法である。 The present invention relates to a method for growing a group III nitride crystal on a substrate, and when an Al x Ga y In 1-xy N crystal, which is a group III nitride crystal, is grown, Al x Ga y In 1- at least some of the dislocations remaining in the xy N crystal substantially propagate in a direction parallel to the crystal growth surface of the Al x Ga y in 1-xy N crystal, Al x Ga y in 1- xy N crystal In the method for growing a group III nitride crystal, the gas is discharged to the outer peripheral portion of the substrate.

本発明にかかるIII族窒化物結晶の成長方法において、AlxGayIn1-x-yN結晶の結晶成長後の結晶成長面における転位密度を、1×105cm-2以下または結晶成長開始面の転位密度の1/100以下に低減することができる。また、基板の面積をScm2とするとき、AlxGayIn1-x-yN結晶を0.1×S1/2cm以上の厚さに成長させることができる。さらに基板の面積を1cm2以上とすることができる。 また、本発明にかかるIII族窒化物結晶の成長方法において、基板として、その主面がAlxGayIn1-x-yN結晶の結晶成長面に対して0.5°以上10°以下の傾き角を有する傾斜基板を準備し、この傾斜基板の主面上にAlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1、以下同じ)を成長させる工程を有することができる。また、上記基板はAlpGaqIn1-p-qN基板(0≦p、0≦q、p+q≦1、以下同じ)とし、AlxGayIn1-x-yN結晶の結晶成長面は(0001)面とすることができる。さらに、上記AlpGaqIn1-p-qN基板の主面の法線は<0001>方向から<1−100>方向または<11−20>方向に傾いていることが好ましい。 In the method for growing a group III nitride crystal according to the present invention, the dislocation density in the crystal growth surface of the Al x Ga y In 1-xy N crystal after crystal growth is 1 × 10 5 cm −2 or less or the crystal growth start surface The dislocation density can be reduced to 1/100 or less. Further, when the area of the substrate is Scm 2 , an Al x Ga y In 1 -xy N crystal can be grown to a thickness of 0.1 × S 1/2 cm or more. Furthermore, the area of the substrate can be 1 cm 2 or more. Further, in the growing method of a group III nitride crystal according to the present invention, as the substrate, the main surface is Al x Ga y In 1-xy N of 0.5 ° to 10 ° with respect to the crystal growth surface of the crystal inclination Preparing a tilted substrate having a corner and growing an Al x Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1, hereinafter the same) on the main surface of the tilted substrate; Can do. The substrate is an Al p Ga q In 1-pq N substrate (0 ≦ p, 0 ≦ q, p + q ≦ 1, the same shall apply hereinafter), and the crystal growth surface of the Al x Ga y In 1-xy N crystal is (0001 ) Surface. Furthermore, it is preferable that the normal line of the main surface of the Al p Ga q In 1-pq N substrate is inclined from the <0001> direction to the <1-100> direction or the <11-20> direction.

また、本発明は、上記の成長方法により得られたAlxGayIn1-x-yN結晶からAlxGayIn1-x-yN結晶基板を形成し、このAlxGayIn1-x-yN結晶基板上にさらに第2のIII族窒化物結晶であるAlvGawIn1-v-wN結晶(0≦v、0≦w、v+w≦1、以下同じ)を成長させる方法であって、上記AlxGayIn1-x-yN結晶基板は、その主面が(0001)面に対して0.5°以上10°以下の傾き角を有する傾斜結晶基板であることを特徴とするIII族窒化物結晶の成長方法である。 Further, the present invention is, Al obtained by the above growth method x Ga y In 1-xy N the Al x Ga y In 1-xy N crystal substrates formed of crystallized, the Al x Ga y In 1-xy N A method of further growing an Al v Ga w In 1-vw N crystal (0 ≦ v, 0 ≦ w, v + w ≦ 1, the same shall apply hereinafter), which is a second group III nitride crystal, on a crystal substrate, The Al x Ga y In 1-xy N crystal substrate is a tilted crystal substrate whose principal surface has a tilt angle of 0.5 ° or more and 10 ° or less with respect to the (0001) plane. This is a method for growing a physical crystal.

上記のIII族窒化物結晶の成長方法において、AlpGaqIn1-p-qN基板の主面の法線およびAlxGayIn1-x-yN結晶基板の主面の法線は、<0001>方向から、それぞれ<1−100>方向および<11−20>方向のいずれかの方向とすることができる。また、AlxGayIn1-x-yN結晶基板の主面の法線の<0001>方向からの傾き方向が、AlpGaqIn1-p-qN基板の主面の法線の<0001>方向からの傾き方向と異なることが好ましい。 In the group III nitride crystal growth method described above, the normal of the main surface of the Al p Ga q In 1 -pq N substrate and the normal of the main surface of the Al x Ga y In 1 -xy N crystal substrate are <0001 > Direction from the <1-100> direction and <11-20> direction. In addition, the direction of inclination from the <0001> direction of the main surface of the Al x Ga y In 1 -xy N crystal substrate from the <0001> direction is <0001> of the normal surface of the Al p Ga q In 1 -pq N substrate. It is preferable that the inclination direction is different from the direction.

また、本発明は、上記のいずれかの成長方法により得られたIII族窒化物結晶である。   Further, the present invention is a group III nitride crystal obtained by any one of the above growth methods.

結晶成長後の結晶成長面の転位密度が低いIII族窒化物結晶およびその成長方法を提供することができる。   A group III nitride crystal having a low dislocation density on the crystal growth surface after crystal growth and a method for growing the same can be provided.

本発明にかかるIII族窒化物結晶の成長方法は、図1を参照して、基板10上にIII族窒化物結晶11を成長させる方法であって、III族窒化物結晶であるAlxGayIn1-x-yN結晶の成長の際に、AlxGayIn1-x-yN結晶に残留する転位の少なくとも一部をAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sに対して実質的に平行な方向に伝搬させて、AlxGayIn1-x-yN結晶の外周部に排出させることを特徴とする。 A group III nitride crystal growth method according to the present invention is a method of growing a group III nitride crystal 11 on a substrate 10 with reference to FIG. 1, and is a group III nitride crystal Al x Ga y. during growth of an in 1-xy N crystal, Al x Ga y in 1- xy least a portion of the Al x N-dislocation remaining in crystal Ga y in 1-xy N crystal growth surface 11a of the crystal, 11b, 11c , 11s, and is discharged to the outer peripheral portion of the Al x Ga y In 1-xy N crystal.

より具体的には、本発明にかかるIII族窒化物結晶の成長方法は、図1を参照して、基板10として、その主面10mがAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sに対して0.5°以上10°以下の傾き角θを有する傾斜基板を準備し、この傾斜基板の主面10m上にAlxGayIn1-x-yN結晶を成長させる工程を有することにより、AlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1)の成長の際に、基板10の主面10mの転位を受け継いでAlxGayIn1-x-yN結晶に残留する転位の少なくとも一部をAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sに対して実質的に平行な方向に伝搬(転位の伝搬11d)させて、AlxGayIn1-x-yN結晶の外周部に排出させることを特徴とする。なお、図1において、結晶成長面11a,11b,11cは結晶成長中の結晶成長面を示し、結晶成長面11sは結晶成長後の結晶成長面を示す。 More specifically, method for growing a group III nitride crystal according to the present invention, with reference to FIG. 1, as the substrate 10, the crystal growth surface of the main surface 10m is Al x Ga y In 1-xy N crystal 11a, 11b, 11c, and prepared inclined substrate having a 0.5 ° to 10 ° of tilt angle θ relative to 11s, the Al x Ga y in 1-xy N crystal on the main surface 10m of this inclined substrate by having a step of growing, Al x Ga y in 1- xy N crystal (0 ≦ x, 0 ≦ y , x + y ≦ 1) during growth of, Al x inherited the dislocation of the main surface 10m of substrate 10 Ga y in 1-xy at least some Al x N-dislocation remaining in crystal Ga y in 1-xy N crystal growth surface 11a of the crystal, 11b, 11c, substantially propagates in a direction parallel to the 11s ( and propagation 11d) is allowed dislocation, discharged to the outer peripheral portion of the Al x Ga y in 1-xy N crystal And characterized in that. In FIG. 1, crystal growth surfaces 11a, 11b, and 11c indicate crystal growth surfaces during crystal growth, and crystal growth surface 11s indicates a crystal growth surface after crystal growth.

すなわち、本発明は、図1を参照して、その主面10mがAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sに対して0.5°以上10°以下の傾き角θを有する傾斜基板上にAlxGayIn1-x-yN結晶を成長させると、その成長の際にその結晶成長中の結晶成長面11a,11b上にその結晶成長面11a,11bに対して実質的に垂直なマクロステップ面11tが形成され、結晶の成長とともにマクロステップ面11tは結晶の外周部にまで移動して消滅する。結晶中の転位は、結晶成長面11a,11bに実質的に平行でマクロステップ面11tに実質的に垂直な方向に伝搬し、マクロステップ面11tの結晶の外周部までの移動に伴って、結晶外に排出されることを見出し、この現象をIII族窒化物結晶の成長方法に適用することによって、結晶中に転位密度の高い領域を残存させることなく、転位密度がきわめて低いIII族窒化物結晶11を成長させることを可能とするものである。 That is, in the present invention, referring to FIG. 1, the main surface 10m is 0.5 ° or more and 10 ° or less with respect to the crystal growth surfaces 11a, 11b, 11c, 11s of the Al x Ga y In 1-xy N crystal. of the the inclined substrate having an inclination angle θ Al x Ga y in 1- xy N growing crystals, the crystal growth surface 11a of the crystal growth during its growth, the crystal growth plane 11a on 11b, 11b A macro step surface 11t substantially perpendicular to the surface is formed, and as the crystal grows, the macro step surface 11t moves to the outer periphery of the crystal and disappears. The dislocations in the crystal propagate in a direction substantially parallel to the crystal growth surfaces 11a and 11b and substantially perpendicular to the macrostep surface 11t, and the crystal moves along the macrostep surface 11t to the outer periphery of the crystal. By finding this phenomenon to be discharged to the outside and applying this phenomenon to the growth method of group III nitride crystals, the group III nitride crystal having a very low dislocation density without leaving a region with a high dislocation density in the crystal. 11 can be grown.

ここで、傾き角θが0.5°未満であると転位をマクロステップ面の形成が起こりにくくマクロステップ面に実質的に垂直な方向の転位の伝搬が困難となり、傾き角θが10°を超えると安定な結晶成長面の形成が起こりにくく結晶成長面に実質的に平行な転位の伝搬が困難となる。かかる観点から、傾き角θは2°より大きく8°より小さいことが好ましい。   Here, when the tilt angle θ is less than 0.5 °, the formation of the macro step surface is difficult for the dislocation, and the propagation of the dislocation in the direction substantially perpendicular to the macro step surface is difficult, and the tilt angle θ is 10 °. If it exceeds, formation of a stable crystal growth surface hardly occurs, and propagation of dislocations substantially parallel to the crystal growth surface becomes difficult. From this viewpoint, it is preferable that the inclination angle θ is larger than 2 ° and smaller than 8 °.

なお、結晶成長の際に、上記のように結晶成長面は結晶の成長とともに、結晶成長面11a,結晶成長面11b,結晶成長面11c,結晶成長面11sと、徐々にマクロステップ面11tを消滅させながら、その法線方向に平行移動していくため、転位線11d(転位の伝搬の軌跡を示す線をいう、以下同じ)の方向は、任意に特定した結晶成長面に対して一定の転位伝搬角φを有する。かかる転位伝搬角φは、転位の伝搬速度と結晶の成長速度によって定まり、結晶の成長速度に対する転位の伝搬速度が大きくなるほど転位伝搬角は小さくなる。本発明にかかるIII族窒化物結晶の成長方法においては、転位の伝搬速度はマクロステップ面の移動速度とほぼ等しく、かかるステップ面の移動速度は、結晶成長条件によって、結晶の成長速度(すなわち、結晶成長面の移動速度)に比べて5倍以上さらには10倍以上となるため、上記転位伝搬角は11°以下さらには5.5°以下となる。   During crystal growth, as described above, as the crystal grows, the crystal growth surface 11a, the crystal growth surface 11b, the crystal growth surface 11c, the crystal growth surface 11s, and the macro step surface 11t gradually disappear. Therefore, the direction of the dislocation line 11d (referring to a line indicating the trajectory of dislocation propagation, hereinafter the same) is constant with respect to the crystal growth plane that is arbitrarily specified. Has a propagation angle φ. The dislocation propagation angle φ is determined by the dislocation propagation speed and the crystal growth speed, and the dislocation propagation angle decreases as the dislocation propagation speed increases with respect to the crystal growth speed. In the III-nitride crystal growth method according to the present invention, the dislocation propagation speed is approximately equal to the macro step plane movement speed, and the step plane movement speed depends on the crystal growth conditions (i.e., the crystal growth speed (i.e., The dislocation propagation angle is 11 ° or less, and further 5.5 ° or less.

したがって、本願において、「結晶成長面に対して実質的に平行な方向」とは「結晶成長面に対する傾き角が0°〜11°の範囲にある方向」にあることをいい、「マクロステップ面に対して実質的に垂直な方向」とは「マクロステップ面に対する傾き角が79°〜90°の範囲にある方向」をいう。   Therefore, in the present application, the “direction substantially parallel to the crystal growth surface” means “the direction in which the tilt angle with respect to the crystal growth surface is in the range of 0 ° to 11 °”, "A direction substantially perpendicular to" refers to a "direction in which the tilt angle with respect to the macrostep plane is in the range of 79 ° to 90 °".

上記の傾斜基板としては、成長させるAlxGayIn1-x-yN結晶との格子整合性の観点からAlpGaqIn1-p-qN基板を用いるのが好ましい。ここで、xとp、yとqは、同一の数値であっても異なる数値であってもよいが、格子整合する組み合わせが好ましいことは言うまでもない。ここで、xとp、yとqが同一の数値であれば格子整合するのは当然のことであるが、xとp、yとqの少なくともいずれかが異なる数値であっても格子整合する組み合わせも存在するため、そのような組み合わせを用いてもよい。また、成長させるAlxGayIn1-x-yN結晶の結晶成長面は(0001)面であることが、大きな成長速度で結晶性のよい結晶が得られる観点から、好ましい。 As the inclined substrate, an Al p Ga q In 1 -pq N substrate is preferably used from the viewpoint of lattice matching with the Al x Ga y In 1 -xy N crystal to be grown. Here, x and p, y and q may be the same numerical value or different numerical values, but it goes without saying that a lattice matching combination is preferable. Here, if x and p and y and q are the same numerical value, it is natural to match the lattice. However, even if at least one of x and p or y and q is a different numerical value, the lattice matches. Since combinations exist, such combinations may be used. The crystal growth surface of the Al x Ga y In 1-xy N crystal to be grown is preferably a (0001) plane from the viewpoint of obtaining a crystal with good crystallinity at a high growth rate.

以下、傾斜基板としてその主面が(0001)面に対して0.5°以上10°以下の傾き角を有するAlpGaqIn1-p-qN基板を用い、このAlpGaqIn1-p-qN基板上にAlxGayIn1-x-yN結晶をその結晶成長面が(0001)面となるように成長させる場合について、さらに具体的に説明する。 Hereinafter, an Al p Ga q In 1-pq N substrate having an inclination angle of 0.5 ° to 10 ° with respect to the (0001) plane is used as the inclined substrate, and this Al p Ga q In 1− The case where an Al x Ga y In 1-xy N crystal is grown on a pq N substrate so that its crystal growth surface is the (0001) plane will be described more specifically.

(実施形態1)
本発明にかかるIII族窒化物結晶の成長方法の一実施形態は、図1を参照して、その主面10mが(0001)面10s(この面は、AlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sである(0001)面と平行である、以下同じ)に対して0.5°以上10°以下の傾き角θを有するAlpGaqIn1-p-qN基板上に、AlxGayIn1-x-yN結晶をその結晶成長面11a,11b,11c,11sが(0001)面となるように成長させる。AlxGayIn1-x-yN結晶の成長の際には、(0001)面およびマクロステップ面11tから形成される結晶成長中の結晶成長面11a,11bが形成され、この(0001)面の法線方向およびマクロステップ面の法線方向に結晶が成長していくことにより、この(0001)面に実質的に平行でマクロステップ面に実質的に垂直な方向への転位の伝搬11dが起こり、結晶内の転位が外周部に排出されるとともに、平らな(0001)面から形成される結晶成長後の結晶成長面12が得られる。
(Embodiment 1)
An embodiment of a method for growing a group III nitride crystal according to the present invention, with reference to FIG. 1, the principal face 10m is (0001) plane 10s (this plane, Al x Ga y In 1- xy N crystal Al p Ga q In 1-pq having an inclination angle θ of 0.5 ° or more and 10 ° or less with respect to the crystal growth planes 11a, 11b, 11c, and 11s (parallel to the (0001) plane, the same applies hereinafter). On the N substrate, an Al x Ga y In 1-xy N crystal is grown so that its crystal growth surfaces 11a, 11b, 11c, and 11s become (0001) planes. During the growth of the Al x Ga y In 1 -xy N crystal, crystal growth surfaces 11a and 11b are formed which are formed from the (0001) plane and the macrostep plane 11t. As the crystal grows in the normal direction and the normal direction of the macrostep plane, dislocation propagation 11d occurs in a direction substantially parallel to the (0001) plane and substantially perpendicular to the macrostep plane. The dislocations in the crystal are discharged to the outer peripheral portion, and the crystal growth surface 12 after crystal growth formed from a flat (0001) plane is obtained.

ここで、(0001)面が結晶成長面となるようにAlxGayIn1-x-yN結晶を成長させる条件には特に制限はないが、HVPE法、MOCVD法などにおいては、成長温度を高くする、窒素原料の比率(たとえば、NH3ガスの分圧)を低下する、Ti、V、Cr、Mn、Fe、Co、Ni、Cuなどの遷移元素および/またはCをドーピングするなどが好ましく用いられる。 Here, there are no particular restrictions on the conditions for growing the Al x Ga y In 1-xy N crystal so that the (0001) plane becomes the crystal growth plane. However, in the HVPE method, the MOCVD method, etc., the growth temperature is increased. It is preferable to reduce the ratio of nitrogen source (for example, partial pressure of NH 3 gas), dope transition elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu and / or C. It is done.

ここで、傾斜基板であるAlpGaqIn1-p-qN基板としては、その主面が、成長させるAlxGayIn1-x-yN結晶の結晶成長面である(0001)面10sに対して、0.5°以上10°以下の傾き角θを有する基板であれば特に制限はない。たとえば、図1に示すように、基板10の主面10mが、(0001)面10sに対して、全体に一様な傾斜方向を有する基板が好ましく用いられる。また、図2に示すように、基板10の主面10mが全体としては傾斜方向が一様でなく主面内に頂点および/または稜線を有する基板も好ましく用いられる。特に図2に示す基板は、図1に示す基板に比べて、結晶の転位を結晶の外部に排出するための転位線dの長さ(転位の伝搬距離)が短くなる点で有利である。 Here, the Al p Ga q In 1-pq N substrate, which is an inclined substrate, has a main surface that is a crystal growth surface of the Al x Ga y In 1-xy N crystal to be grown with respect to the (0001) plane 10s. As long as the substrate has an inclination angle θ of 0.5 ° or more and 10 ° or less, there is no particular limitation. For example, as shown in FIG. 1, a substrate in which the main surface 10m of the substrate 10 has a uniform inclination direction with respect to the (0001) surface 10s is preferably used. In addition, as shown in FIG. 2, a substrate having a principal surface 10 m of the substrate 10 that is not uniform in inclination as a whole and has apexes and / or ridge lines in the principal surface is also preferably used. In particular, the substrate shown in FIG. 2 is advantageous in that the length of dislocation lines d (dislocation propagation distance) for discharging crystal dislocations to the outside of the crystal is shorter than the substrate shown in FIG.

基板の主面内に頂点および/または稜線を形成させる表面加工を行なうと、加工技術上の問題から、この表面加工がされた主面の平坦度は低下するが、結晶成長前にこの主面の表面を十分にエッチング処理して加工変質層(結晶表面の加工によって結晶の表面側領域に形成される結晶格子が乱れた層をいう、以下同じ)を除去すれば、結晶成長に支障が生じない基板が得られる。この加工変質層の除去は、ウエットエッチング、ドライエッチングのどちらを用いてよい。また、エッチング条件よっては主面上に(0001)面とマクロステップ面とが形成される場合もあるが、この様な表面は本発明では何の支障にもならず、むしろ好ましい表面である。   When surface processing is performed to form vertices and / or ridge lines in the main surface of the substrate, the flatness of the main surface that has been surface processed decreases due to problems in processing technology. If the surface of the film is sufficiently etched to remove the work-affected layer (the layer in which the crystal lattice formed in the surface area of the crystal is disturbed by the processing of the crystal surface, the same applies hereinafter), the crystal growth will be hindered. No substrate is obtained. For removing the work-affected layer, either wet etching or dry etching may be used. Also, depending on the etching conditions, the (0001) plane and the macrostep plane may be formed on the main surface, but such a surface is not a problem in the present invention and is a preferable surface.

また、上記基板は、(0001)面に対する基板の主面の傾き角の調整が容易な観点から、単結晶基板であることが好ましく、AlpGaqIn1-p-qN単結晶基板であることがより好ましい。 The substrate is preferably a single crystal substrate from the viewpoint of easy adjustment of the tilt angle of the main surface of the substrate with respect to the (0001) plane, and is an Al p Ga q In 1-pq N single crystal substrate. Is more preferable.

また、基板として用いるAlpGaqIn1-p-qN基板とこの基板上に成長させるAlxGayIn1-x-yN結晶とは、それらの化学組成は同一である必要はない(すなわち、x=p、y=qである必要はない)が、格子整合性の観点から、これらの化学組成が近い方が好ましい。 Further, the Al p Ga q In 1-pq N substrate used as the substrate and the Al x Ga y In 1-xy N crystal grown on the substrate do not need to have the same chemical composition (ie, x = P and y = q are not required), but from the viewpoint of lattice matching, it is preferable that these chemical compositions are close.

また、本実施形態の成長方法においては、AlpGaqIn1-p-qN基板の主面の法線は、<0001>方向から、<1−100>方向または<11−20>方向に傾いていることが、AlxGayIn1-x-yN結晶の結晶成長中の結晶成長面11a,11b上に安定なマクロステップ面11を形成させる観点から好ましい。 In the growth method of the present embodiment, the normal line of the main surface of the Al p Ga q In 1-pq N substrate is tilted from the <0001> direction to the <1-100> direction or the <11-20> direction. It is preferable from the viewpoint of forming the stable macrostep surface 11 on the crystal growth surfaces 11a and 11b during the crystal growth of the Al x Ga y In 1 -xy N crystal.

ここで、<0001>方向とは、幾何学的に等価な[0001]方向および[000−1]方向を含む総称である。また、<1−100>方向とは、幾何学的に等価な[1−100]方向、[10−10]方向、[01−10]方向、[−1100]方向、[−1010]方向および[0−110]方向を含む総称である。また、<11−20>方向とは、幾何学的に等価な[11−20]方向、[−12−10]方向、[−2110]方向、[−1−120]方向、[1−210]方向および[2−1−10]方向を含む総称である。   Here, the <0001> direction is a generic name including a geometrically equivalent [0001] direction and [000-1] direction. The <1-100> direction is a geometrically equivalent [1-100] direction, [10-10] direction, [01-10] direction, [-1100] direction, [-1010] direction, and A generic term including the [0-110] direction. The <11-20> direction is a geometrically equivalent [11-20] direction, [-12-10] direction, [-2110] direction, [-1-120] direction, [1-210]. ] Direction and [2-1-10] direction.

なお、当然のことながら、図1において、傾斜基板の主面10mの法線10vとAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sの法線11vとのなす傾き角は、傾斜基板の主面10mとAlxGayIn1-x-yN結晶の結晶成長面11a,11b,11c,11sとのなす傾き角に等しく、いずれもθとなる。 Of course, in FIG. 1, the normal line 10v of the principal surface 10m of the tilted substrate and the normal line 11v of the crystal growth surfaces 11a, 11b, 11c and 11s of the Al x Ga y In 1 -xy N crystal are formed. The tilt angle is equal to the tilt angle formed between the main surface 10m of the tilted substrate and the crystal growth surfaces 11a, 11b, 11c, 11s of the Al x Ga y In 1-xy N crystal, and all are θ.

本実施形態の成長方法においては、上記のように、AlxGayIn1-x-yN結晶の転位を結晶成長面11a,11b,11c,11sである(0001)面に実質的に平行に伝搬させて、AlxGayIn1-x-yN結晶の外周部に排出させることができるため、AlxGayIn1-x-yN結晶をAlxGayIn1-x-yN結晶の結晶成長後の結晶成長面11sにおける転位密度を、1×105cm-3以下またはAlxGayIn1-x-yN結晶の結晶成長開始面11rにおける転位密度の1/100以下に容易に低減することができる。 In the growth method of the present embodiment, as described above, the dislocations of the Al x Ga y In 1 -xy N crystal propagate substantially parallel to the (0001) plane that is the crystal growth planes 11a, 11b, 11c, and 11s. by, Al x for Ga y in 1-xy N can be discharged to the outer circumferential portion of the crystal, Al x Ga y in 1- xy N crystal Al x Ga y in 1-xy N after crystal growth of crystals The dislocation density at the crystal growth surface 11s can be easily reduced to 1 × 10 5 cm −3 or less or 1/100 or less of the dislocation density at the crystal growth start surface 11r of the Al x Ga y In 1-xy N crystal. .

より具体的には、AlpGaqIn1-p-qN基板の面積をScm2とするとき、AlxGayIn1-x-yN結晶を0.1×S1/2cm以上の厚さに成長させることによって、AlxGayIn1-x-yN結晶をAlxGayIn1-x-yN結晶の結晶成長後の結晶成長面11sにおける転位密度を、1×105cm-3以下またはAlxGayIn1-x-yN結晶の結晶成長開始面11rにおける転位密度の1/100以下に低減することができる。 More specifically, when the area of the Al p Ga q In 1-pq N substrate is Scm 2 , the Al x Ga y In 1-xy N crystal has a thickness of 0.1 × S 1/2 cm or more. By growing the Al x Ga y In 1 -xy N crystal, the dislocation density at the crystal growth surface 11 s after the crystal growth of the Al x Ga y In 1 -xy N crystal is 1 × 10 5 cm −3 or less or Al It can be reduced to 1/100 or less of the dislocation density at the crystal growth start surface 11r of the x Ga y In 1-xy N crystal.

また、本実施形態のAlxGayIn1-x-yN結晶の成長方法によれば、大面積の基板上に大面積のAlxGayIn1-x-yN結晶を転位密度の高い領域を形成することなく結晶全体の転位密度を大きく低減することができる。したがって、本実施形態のAlxGayIn1-x-yN結晶の成長方法は、基板の主面の面積が1cm2以上の大面積基板に好ましく適用される。産業的な利用を考えると、本実施形態のAlxGayIn1-x-yN結晶の成長方法は、基板の主面の面積が10cm2以上の大面積基板に好ましく適用される。本発明の特徴は、この様に産業上の利用が可能なレベルの大きさの基板の全面を、転位の集中部を残すことなく低転位化することを可能にした点にある。 In addition, according to the growth method of the Al x Ga y In 1 -xy N crystal of the present embodiment, a large area Al x Ga y In 1 -xy N crystal is formed on a large area substrate. The dislocation density of the entire crystal can be greatly reduced without this. Therefore, the Al x Ga y In 1-xy N crystal growth method of this embodiment is preferably applied to a large area substrate having an area of the main surface of the substrate of 1 cm 2 or more. Considering industrial use, the growth method of the Al x Ga y In 1 -xy N crystal of the present embodiment is preferably applied to a large area substrate having an area of the main surface of the substrate of 10 cm 2 or more. The feature of the present invention is that the entire surface of the substrate having such a size that can be used industrially can be reduced in the dislocation without leaving the dislocation concentration portion.

(実施形態2)
本発明にかかるIII族窒化物結晶の成長方法の他の実施形態は、図1を参照して、上記実施形態1の成長方法により得られたAlxGayIn1-x-yN結晶からAlxGayIn1-x-yN結晶基板を形成し、このAlxGayIn1-x-yN結晶基板(基板10)上にさらに第2のIII族窒化物結晶11であるAlvGawIn1-v-wN結晶を成長させる方法であって、上記AlxGayIn1-x-yN結晶基板(基板10)は、その主面10mが(0001)面10sに対して0.5°以上10°以下の傾き角を有する傾斜結晶基板板であり、AlvGawIn1-v-wN結晶の結晶成長面が(0001)面であることを特徴とする。
(Embodiment 2)
Another embodiment of the method for growing a group III nitride crystal according to the present invention, with reference to FIG. 1, Al obtained by the growth method of the embodiment 1 x Ga y In 1-xy N crystal from Al x A Ga y In 1-xy N crystal substrate is formed, and Al v Ga w In 1− which is the second group III nitride crystal 11 is further formed on the Al x Ga y In 1-xy N crystal substrate (substrate 10). vw N crystal growth method, wherein the Al x Ga y In 1-xy N crystal substrate (substrate 10) has a main surface 10m of 0.5 ° or more and 10 ° or less with respect to (0001) surface 10s. An inclined crystal substrate plate having an inclination angle of 5 % , wherein the crystal growth surface of the Al v Ga w In 1 -vw N crystal is a (0001) plane.

実施形態1で得られた転位密度の低いAlxGayIn1-x-yN結晶から、その主面が(0001)面に対して0.5°以上10°以下の傾き角を有するように切り出しその主面を研磨により平坦化してAlxGayIn1-x-yN結晶基板を形成する。次に、このAlxGayIn1-x-yN結晶基板上に、結晶成長面が(0001)面となるようにAlvGawIn1-v-wN結晶を成長させる。実施形態1と同様に、AlxGayIn1-x-yN結晶基板の主面の低密度の転位を受け継いでAlvGawIn1-v-wN結晶に残留する低密度の転位を、結晶成長面である(0001)面に対して実質的に平行な方向に伝搬させて、AlvGawIn1-v-wN結晶の外周部に排出させることにより、AlvGawIn1-v-wN結晶の転位をさらに低減することができ、AlxGayIn1-x-yN結晶基板よりもさらに転位密度が低いAlvGawIn1-v-wN結晶が得られる。 Cut from the Al x Ga y In 1-xy N crystal having a low dislocation density obtained in Embodiment 1 so that its principal surface has an inclination angle of 0.5 ° to 10 ° with respect to the (0001) plane. The main surface is flattened by polishing to form an Al x Ga y In 1 -xy N crystal substrate. Next, an Al v Ga w In 1 -vw N crystal is grown on the Al x Ga y In 1 -xy N crystal substrate so that the crystal growth surface becomes the (0001) plane. As in the first embodiment, the low density dislocations remaining in the Al v Ga w In 1 -vw N crystal inheriting the low density dislocations of the main surface of the Al x Ga y In 1 -xy N crystal substrate are grown. The Al v Ga w In 1 -vw N crystal is propagated in a direction substantially parallel to the (0001) plane, and is discharged to the outer periphery of the Al v Ga w In 1 -vw N crystal. Can be further reduced, and an Al v Ga w In 1 -vw N crystal having a lower dislocation density than the Al x Ga y In 1 -xy N crystal substrate can be obtained.

本実施形態のAlvGawIn1-v-wN結晶の成長方法において、AlxGayIn1-x-yN結晶基板の主面の法線は、<0001>方向から、<1−100>方向または<11−20>方向に傾いていることがAlxGayIn1-x-yN結晶の結晶成長中の結晶成長面11a,11b上に安定なマクロステップ面11を形成させる観点から好ましい。 In the Al v Ga w In 1-vw N crystal growth method of the present embodiment, the normal line of the main surface of the Al x Ga y In 1-xy N crystal substrate is from the <0001> direction to the <1-100> direction. Alternatively, it is preferable to incline in the <11-20> direction from the viewpoint of forming the stable macrostep surface 11 on the crystal growth surfaces 11a and 11b during the crystal growth of the Al x Ga y In 1 -xy N crystal.

また、実施形態1において説明したように、AlxGayIn1-x-yN結晶基板となるAlxGayIn1-x-yN結晶を成長させる際に用いられるAlpGaqIn1-p-qN基板の主面の法線は、<0001>方向から、<1−100>方向または<11−20>方向に傾いていることが好ましい。 Further, as described in the first embodiment, Al p Ga q In 1 -pq N used when growing an Al x Ga y In 1 -xy N crystal serving as an Al x Ga y In 1 -xy N crystal substrate. The normal line of the main surface of the substrate is preferably inclined from the <0001> direction to the <1-100> direction or the <11-20> direction.

したがって、本実施形態のAlvGawIn1-v-wN結晶の成長方法において用いられるAlpGaqIn1-p-qN基板およびAlxGayIn1-x-yN結晶基板に関しては、AlpGaqIn1-p-qN基板の主面の法線およびAlxGayIn1-x-yN結晶基板の主面の法線は、<0001>方向から、それぞれ<1−100>方向および<11−20>方向のいずれかの方向に傾いていることが好ましい。 Therefore, for the Al p Ga q In 1 -pq N substrate and the Al x Ga y In 1 -xy N crystal substrate used in the Al v Ga w In 1 -vw N crystal growth method of the present embodiment, Al p Ga q in 1-pq N normal normal and Al x Ga y in 1-xy N main surface of the crystal substrate major surface of the substrate, from the <0001> direction, respectively <1-100> direction and <11- It is preferable to incline in any of the 20> directions.

また、本実施形態のAlvGawIn1-v-wN結晶の成長方法において、AlxGayIn1-x-yN結晶基板の主面の法線の<0001>方向からの傾き方向は、AlpGaqIn1-p-qN基板の主面の法線の<0001>方向からの傾き方向と異なることが好ましい。2回目の結晶成長(AlvGawIn1-v-wN結晶の成長をいう、以下同じ)におけるAlxGayIn1-x-yN結晶基板の主面の傾き方向を、1回目の結晶成長(AlxGayIn1-x-yN結晶の成長をいう、以下同じ)におけるAlpGaqIn1-p-qN基板の主面の傾き方向と異ならせて、2回目の結晶成長の際の転位の伝搬方向を1回目の結晶成長の際の転位の伝搬方向と異ならせることにより、1回目の結晶成長の際には結晶から排出できなかった転位を、2回目の結晶成長において結晶から排出させることが可能となる。 Further, in the Al v Ga w In 1 -vw N crystal growth method of the present embodiment, the inclination direction from the <0001> direction of the principal line of the principal surface of the Al x Ga y In 1 -xy N crystal substrate is Al It is preferable that the normal direction of the principal surface of the p Ga q In 1 -pq N substrate is different from the inclination direction from the <0001> direction. The tilt direction of the main surface of the Al x Ga y In 1-xy N crystal substrate in the second crystal growth (referred to as growth of Al v Ga w In 1 -vw N crystal, hereinafter the same) is expressed as the first crystal growth ( This is different from the inclination direction of the main surface of the Al p Ga q In 1 -pq N substrate in the Al x Ga y In 1 -xy N crystal (hereinafter the same), and the dislocations during the second crystal growth By making the propagation direction different from the propagation direction of dislocations during the first crystal growth, dislocations that could not be ejected from the crystal during the first crystal growth are ejected from the crystal during the second crystal growth. Is possible.

また、基板として用いるAlxGayIn1-x-yN結晶基板とこの基板上に成長させるAlvGawIn1-v-wN結晶とは、それらの化学組成は同一である必要はない(すなわち、v=x、w=yである必要はない)が、格子整合性の観点から、これらの化学組成が近い方が好ましい。 In addition, the Al x Ga y In 1-xy N crystal substrate used as the substrate and the Al v Ga w In 1-vw N crystal grown on the substrate do not need to have the same chemical composition (ie, It is not necessary that v = x and w = y), but these chemical compositions are preferably closer from the viewpoint of lattice matching.

なお、上記実施形態1および実施形態2において説明したように、本発明にかかるIII族窒化物結晶の成長方法は、結晶の転位を結晶成長面に実質的に平行に伝搬させて、その結晶の外周部に排出させることによって、結晶の転位密度の低減を図るものであるが、転位の伝搬過程において、一部の転位が合体によって消滅して転位密度が低減する場合もある。かかる合体による転位の消滅は、本発明の本質に関わるものではなく、本発明において結晶の転位を結晶成長面に実質的に平行に伝搬させることによる効果の一部である。   As described in the first embodiment and the second embodiment, the method for growing a group III nitride crystal according to the present invention propagates crystal dislocations substantially parallel to the crystal growth surface. By discharging to the outer periphery, the dislocation density of the crystal is reduced, but in the dislocation propagation process, some dislocations may disappear due to coalescence and the dislocation density may be reduced. The disappearance of dislocations due to such coalescence does not relate to the essence of the present invention, and is part of the effect of propagating crystal dislocations substantially parallel to the crystal growth surface in the present invention.

上記実施形態1または実施形態2の成長方法により得られたIII族窒化物結晶は、転位密度が極めて低いため、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視−紫外光検出器などの半導体センサ、SAW(Surface Acoustic Wave;表面弾性波)デバイス、振動子、共振子、発振器、MEMS(Micro Electro Mechanical System)部品、電圧アクチュエータなどの半導体デバイス用の基板として広く用いることができる。   Since the group III nitride crystal obtained by the growth method of Embodiment 1 or Embodiment 2 has an extremely low dislocation density, a light emitting element such as a light emitting diode or a laser diode, a rectifier, a bipolar transistor, a field effect transistor, a HEMT ( Electronic elements such as High Electron Mobility Transistor (Temperature Electron Mobility Transistor), temperature sensors, pressure sensors, radiation sensors, semiconductor sensors such as visible-ultraviolet light detectors, SAW (Surface Acoustic Wave) devices, vibrators It can be widely used as a substrate for semiconductor devices such as a resonator, an oscillator, a micro electro mechanical system (MEMS) component, and a voltage actuator.

(実施例1)
本実施例は、実施形態1に対応するものである。図3を参照して、HVPE法により、基板10として直径5.08cm(2インチ)×厚さ350μmのGaN基板を用いて、AlxGayIn1-x-yN結晶であるGaN結晶を成長させた。上記GaN基板は、その主面の法線が[0001]方向から[1−100]方向に5°の傾き角を有する傾斜基板であり、その主面は研磨により鏡面化されており、その主面における転位密度をカソードルミネッセンス法(この方法によれば、転位が暗点として観察できる)により測定したところ5×106cm-2〜5×107cm-2であった。
Example 1
This example corresponds to the first embodiment. Referring to FIG. 3, by HVPE, a substrate 10 by using a GaN substrate having a diameter of 5.08 cm (2 inches) × thickness 350 .mu.m, grown GaN crystal is Al x Ga y In 1-xy N crystal It was. The GaN substrate is an inclined substrate in which the normal of the main surface has an inclination angle of 5 ° from the [0001] direction to the [1-100] direction, and the main surface is mirror-finished by polishing. When the dislocation density in the plane was measured by the cathodoluminescence method (according to this method, the dislocation can be observed as a dark spot), it was 5 × 10 6 cm −2 to 5 × 10 7 cm −2 .

図3を参照して、本実施例において用いられるHVPE装置300は、反応室301内に基板10を保持するための基板ホルダ302が配置され、反応室301に導入するGa塩化物ガス33を合成するためのGa塩化物合成室303、Ga塩化物合成室303にHClガス31を導入するためのHClガス導入管305、反応室301にN原料ガス36を導入するためのN原料ガス導入管306および反応後のガスを排気するための排気管307が配設されている。また、Ga塩化物合成室303にはGa32が収納されているGaボート304が配置されている。また、Ga塩化物合成室303および反応室301の周囲には、それぞれGaボート304および基板10を加熱するためのヒータ308,309,310が配設されている。   Referring to FIG. 3, in the HVPE apparatus 300 used in the present embodiment, a substrate holder 302 for holding the substrate 10 is disposed in the reaction chamber 301, and a Ga chloride gas 33 introduced into the reaction chamber 301 is synthesized. A Ga chloride synthesis chamber 303, an HCl gas introduction pipe 305 for introducing the HCl gas 31 into the Ga chloride synthesis chamber 303, and an N source gas introduction pipe 306 for introducing the N source gas 36 into the reaction chamber 301. An exhaust pipe 307 is provided for exhausting the gas after the reaction. In addition, a Ga boat 304 containing Ga32 is disposed in the Ga chloride synthesis chamber 303. In addition, heaters 308, 309, and 310 for heating the Ga boat 304 and the substrate 10 are disposed around the Ga chloride synthesis chamber 303 and the reaction chamber 301, respectively.

上記HVPE装置300においては、以下のようにして反応室301に導入するGa塩化物ガス33を合成する。すなわち、Ga塩化物合成室303内に配置されているGaボート304をヒータ309により800℃に加熱し、HClガス導入管305によりGa塩化物合成室303内にHClガス31を導入して、HClガス31とGaボート304内のGa32とを反応させてGaClガス(Ga塩化物ガス33)を合成する。ここで、HClガス31は、H2ガスなどのキャリアガスとともにGa塩化物合成室303に導入される。 In the HVPE apparatus 300, the Ga chloride gas 33 introduced into the reaction chamber 301 is synthesized as follows. That is, the Ga boat 304 disposed in the Ga chloride synthesis chamber 303 is heated to 800 ° C. by the heater 309, the HCl gas 31 is introduced into the Ga chloride synthesis chamber 303 by the HCl gas introduction pipe 305, and HCl Gas 31 and Ga 32 in Ga boat 304 are reacted to synthesize GaCl gas (Ga chloride gas 33). Here, the HCl gas 31 is introduced into the Ga chloride synthesis chamber 303 together with a carrier gas such as H 2 gas.

上記のGaClガス(Ga塩化物ガス33)およびNH3ガス(N原料ガス36)をキャリアガスであるH2ガスとともに反応室301内に導入し、反応室301内の基板ホルダ302上に配置され基板温度1250℃に加熱されたGaN基板(基板10)上で、GaClガス(Ga塩化物ガス33)とNH3ガス(N原料ガス36)とを反応させてGaN結晶を100時間成長させて、厚さ6mm〜10mmのGaN結晶を得た。このGaN結晶の成長の際に、GaN基板の主面へのGaClガス(Ga塩化物ガス33)およびNH3ガス(N原料ガス36)の供給量の均一性を高めるために、GaN基板(基板10)を水平面に対して10°傾くように基板ホルダ302上に配置し、回転数60回/minで回転させた。また、GaClガス(Ga塩化物ガス33)の分圧は5.065kPa(0.05atm)、NH3ガス(N原料ガス36)の分圧は10.13kPa(0.1atm)とした。 The above-described GaCl gas (Ga chloride gas 33) and NH 3 gas (N source gas 36) are introduced into the reaction chamber 301 together with the carrier gas H 2 gas and placed on the substrate holder 302 in the reaction chamber 301. A GaN crystal is grown for 100 hours by reacting GaCl gas (Ga chloride gas 33) and NH 3 gas (N source gas 36) on a GaN substrate (substrate 10) heated to a substrate temperature of 1250 ° C. A GaN crystal having a thickness of 6 mm to 10 mm was obtained. During the growth of the GaN crystal, a GaN substrate (substrate) is used to increase the uniformity of the supply amount of GaCl gas (Ga chloride gas 33) and NH 3 gas (N source gas 36) to the main surface of the GaN substrate. 10) was placed on the substrate holder 302 so as to be inclined by 10 ° with respect to the horizontal plane, and rotated at a rotation speed of 60 times / min. The partial pressure of GaCl gas (Ga chloride gas 33) was 5.065 kPa (0.05 atm), and the partial pressure of NH 3 gas (N source gas 36) was 10.13 kPa (0.1 atm).

図1を参照して、得られたGaN結晶(III族窒化物結晶11)は、その結晶成長後の結晶成長表面11sがGaN基板の主面に対して5°の傾き角を有しており、この結晶成長面11sはGaN結晶の(0001)面であった。このGaN結晶の厚さは、最も厚い部分で10mm、最も薄い部分で6mmであった。また、このGaN結晶の結晶成長後の結晶成長面11sにおける転位密度をカソードルミネッセンス法により測定したところ2×104cm-2〜1×105cm-2であった。また、このGaN結晶の転位線11dを光散乱トモグラフ法により観察したところ、GaN基板に近い領域において、転位が(0001)面に実質的に平行に伝搬していることを確認した。 Referring to FIG. 1, in the obtained GaN crystal (group III nitride crystal 11), the crystal growth surface 11s after the crystal growth has an inclination angle of 5 ° with respect to the main surface of the GaN substrate. The crystal growth surface 11s was a (0001) plane of a GaN crystal. The thickness of this GaN crystal was 10 mm at the thickest part and 6 mm at the thinnest part. Further, the dislocation density on the crystal growth surface 11s after the crystal growth of the GaN crystal was measured by a cathodoluminescence method, and found to be 2 × 10 4 cm −2 to 1 × 10 5 cm −2 . Further, when the dislocation line 11d of the GaN crystal was observed by a light scattering tomography method, it was confirmed that the dislocation propagated substantially parallel to the (0001) plane in a region close to the GaN substrate.

(実施例2)
本実施例は、実施形態2に対応するものである。実施例1で得られたGaN結晶の結晶成長後の結晶成長面に近い領域から、その主面の法線が[0001]方向から[01−10]方向に5°の傾き角を有する直径5.08cm(2インチ)×厚さ350μmのGaN結晶基板を切り出し、その主面を研磨により鏡面化した。ここで、[01−10]方向は、[1−100]方向から[0001]方向の軸の回りに120°回転させた方向に相当する。図1を参照して、このGaN結晶基板(基板10)上に、実施例1と同様にして、GaN結晶(III族窒化物結晶11)を成長させた。図1を参照して、得られたGaN結晶の厚さは、最も厚い部分で10mm、最も薄い部分で6mmであった。また、このGaN結晶の結晶成長後の結晶成長表面11sにおける転位密度は1×103cm-2〜5×103cm-2と極めて低くなった。
(Example 2)
This example corresponds to the second embodiment. From the region near the crystal growth surface after the crystal growth of the GaN crystal obtained in Example 1, the normal of the main surface has a diameter of 5 with an inclination angle of 5 ° from the [0001] direction to the [01-10] direction. A GaN crystal substrate of 0.08 cm (2 inches) × 350 μm in thickness was cut out and its main surface was mirror-finished by polishing. Here, the [01-10] direction corresponds to a direction rotated from the [1-100] direction by 120 ° around the axis in the [0001] direction. Referring to FIG. 1, a GaN crystal (Group III nitride crystal 11) was grown on the GaN crystal substrate (substrate 10) in the same manner as in Example 1. Referring to FIG. 1, the thickness of the obtained GaN crystal was 10 mm at the thickest part and 6 mm at the thinnest part. Further, the dislocation density on the crystal growth surface 11s after the crystal growth of the GaN crystal was extremely low, 1 × 10 3 cm −2 to 5 × 10 3 cm −2 .

(実施例3)
本実施例も、実施形態2に対応するものであるが、実施例1で得られたGaN結晶の結晶成長後の結晶成長面に近い領域から、その主面が(0001)面となるように切り出し、その主面を研磨により鏡面化した直径5.08cm(2インチ)×厚さ350μmのGaN結晶基板を用いる点において、実施例2と異なる。
(Example 3)
This example also corresponds to the second embodiment, but the principal surface is a (0001) plane from a region close to the crystal growth surface after the crystal growth of the GaN crystal obtained in Example 1. This is different from Example 2 in that a GaN crystal substrate having a diameter of 5.08 cm (2 inches) and a thickness of 350 μm, which is cut out and mirrored on its main surface, is used.

このGaN結晶基板上に導電性GaN結晶を成長させた。結晶成長の際の基板温度を1100℃、Ga塩化物ガスの分圧を1.013kPa(0.01atm)、NH3ガスの分圧を5.065kPa(0.05atm)、SiをGaN結晶にドーピングするためのSiH4ガスの分圧を10.13Pa(0.0001atm)とした以外は、実施例1と同様にして導電性GaN結晶を成長させた。 A conductive GaN crystal was grown on the GaN crystal substrate. The substrate temperature during crystal growth is 1100 ° C., the Ga chloride gas partial pressure is 1.013 kPa (0.01 atm), the NH 3 gas partial pressure is 5.065 kPa (0.05 atm), and Si is doped into the GaN crystal. A conductive GaN crystal was grown in the same manner as in Example 1 except that the partial pressure of the SiH 4 gas for this purpose was 10.13 Pa (0.0001 atm).

得られた導電性GaN結晶の厚さは8mmであった。また、この導電性GaN結晶の転位密度および抵抗率は、結晶全体について、それぞれ1×103cm-2〜5×103cm-2および0.03Ω・cm〜0.05Ω・cmであった。 The thickness of the obtained conductive GaN crystal was 8 mm. Moreover, the dislocation density and resistivity of this conductive GaN crystal were 1 × 10 3 cm −2 to 5 × 10 3 cm −2 and 0.03 Ω · cm to 0.05 Ω · cm, respectively, for the entire crystal. .

(実施例4)
GaN基板として、その主面の法線が[0001]方向から[11−20]方向に5°の傾き角を有する傾斜基板を用いた以外は、実施例1と同様にしてGaN結晶を成長させた。得られたGaN結晶の厚さは、最も厚い部分で10mm、最も薄い部分で6mmであった。また、このGaN結晶の結晶成長後の結晶成長面における転位密度は2×104cm-2〜1×105cm-2であった。また、このGaN結晶の転位線を光散乱トモグラフ法により観察することにより、GaN基板に近い領域において、転位が(0001)面に実質的に平行に伝搬していることを確認した。
Example 4
As a GaN substrate, a GaN crystal was grown in the same manner as in Example 1 except that an inclined substrate having a main surface normal line having an inclination angle of 5 ° from the [0001] direction to the [11-20] direction was used. It was. The thickness of the obtained GaN crystal was 10 mm at the thickest part and 6 mm at the thinnest part. Further, the dislocation density on the crystal growth surface of the GaN crystal after crystal growth was 2 × 10 4 cm −2 to 1 × 10 5 cm −2 . Further, by observing the dislocation lines of the GaN crystal by a light scattering tomography method, it was confirmed that the dislocations propagated substantially parallel to the (0001) plane in a region close to the GaN substrate.

(実施例5)
実施例4で得られたGaN結晶の結晶成長後の結晶成長面に近い領域から、その主面の法線が[0001]方向から[−2110]方向に5°の傾き角を有する直径5.08cm(2インチ)×厚さ350μmのGaN結晶基板を切り出しした以外は、実施例2と同様にして、GaN結晶基板上にGaN結晶を成長させた。ここで、[−2110]方向は、[11−20]方向から[0001]方向の軸の回りに120°回転させた方向に相当する。得られたGaN結晶の厚さは、最も厚い部分で10mm、最も薄い部分で6mmであった。また、このGaN結晶の結晶成長後の結晶成長面における転位密度は1×103cm-2〜5×103cm-2であった。
(Example 5)
From the region close to the crystal growth surface after the crystal growth of the GaN crystal obtained in Example 4, the normal of the principal surface has a tilt angle of 5 ° from the [0001] direction to the [−2110] direction. A GaN crystal was grown on the GaN crystal substrate in the same manner as in Example 2 except that a GaN crystal substrate of 08 cm (2 inches) × 350 μm thick was cut out. Here, the [-2110] direction corresponds to a direction rotated from the [11-20] direction around the axis in the [0001] direction by 120 °. The thickness of the obtained GaN crystal was 10 mm at the thickest part and 6 mm at the thinnest part. The dislocation density on the crystal growth surface of the GaN crystal after crystal growth was 1 × 10 3 cm −2 to 5 × 10 3 cm −2 .

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかるIII族窒化物結晶の成長方法の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the growth method of the group III nitride crystal concerning this invention. 図1において、主面内に頂点および/または稜線を有する基板を用いた場合のIII族窒化物結晶の成長状態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a growth state of a group III nitride crystal when a substrate having a vertex and / or a ridge line in the main surface is used in FIG. 本発明においてIII族窒化物結晶の成長に用いられるHVPE装置を示す模式図である。It is a schematic diagram which shows the HVPE apparatus used for the growth of a group III nitride crystal in this invention.

符号の説明Explanation of symbols

10 基板、10m 主面、10s (0001)面、10v,11v 法線、11 III族窒化物結晶、11a,11b,11c,11s 結晶成長面、11d 転位線、11r 結晶成長開始面、11t マクロステップ面、θ 傾き角、φ 転位伝搬角、31 HClガス、32 Ga、33 Ga塩化物ガス、36 N原料ガス、300 HVPE装置、301 反応室、302 基板ホルダ、303 Ga塩化物合成室、304 Gaボート、305 HClガス導入管、306 N原料ガス導入管、307 排気管、308,309,310 ヒータ。   10 substrate, 10m main surface, 10s (0001) surface, 10v, 11v normal, 11 group III nitride crystal, 11a, 11b, 11c, 11s crystal growth surface, 11d dislocation line, 11r crystal growth start surface, 11t macrostep Surface, θ tilt angle, φ dislocation propagation angle, 31 HCl gas, 32 Ga, 33 Ga chloride gas, 36 N source gas, 300 HVPE apparatus, 301 reaction chamber, 302 substrate holder, 303 Ga chloride synthesis chamber, 304 Ga Boat, 305 HCl gas introduction pipe, 306 N source gas introduction pipe, 307 exhaust pipe, 308, 309, 310 heater.

Claims (11)

基板上にIII族窒化物結晶を成長させる方法であって、
前記III族窒化物結晶であるAlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1)の成長の際に、前記AlxGayIn1-x-yN結晶に残留する転位の少なくとも一部を前記AlxGayIn1-x-yN結晶の結晶成長面に対して実質的に平行な方向に伝搬させて、前記AlxGayIn1-x-yN結晶の外周部に排出させることを特徴とするIII族窒化物結晶の成長方法。
A method for growing a group III nitride crystal on a substrate, comprising:
In the growth of the Al x Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1) which is the group III nitride crystal, it remains in the Al x Ga y In 1-xy N crystal. at least some of the dislocations substantially propagate in a direction parallel to the Al x Ga y in 1-xy N crystal growth surface of the crystal, the outer peripheral portion of the Al x Ga y in 1-xy N crystal A method of growing a group III nitride crystal, characterized in that
前記AlxGayIn1-x-yN結晶の結晶成長後の結晶成長面における転位密度を、1×105cm-2以下または結晶成長開始面の転位密度の1/100以下に低減することを特徴とする請求項1に記載のIII族窒化物結晶の成長方法。 Reducing the dislocation density on the crystal growth surface of the Al x Ga y In 1-xy N crystal after crystal growth to 1 × 10 5 cm −2 or less or 1/100 or less of the dislocation density on the crystal growth start surface. The group III nitride crystal growth method according to claim 1, wherein the group III nitride crystal is a growth method. 前記基板の面積をScm2とするとき、前記AlxGayIn1-x-yN結晶を0.1×S1/2cm以上の厚さに成長させることを特徴とする請求項1または請求項2に記載のIII族窒化物結晶の成長方法。 2. The Al x Ga y In 1-xy N crystal is grown to a thickness of 0.1 × S 1/2 cm or more when the area of the substrate is Scm 2. 3. A method for growing a group III nitride crystal according to 2. 前記基板の面積が1cm2以上であることを特徴とする請求項1から請求項3までのいずれかに記載のIII族窒化物結晶の成長方法。 The method for growing a group III nitride crystal according to any one of claims 1 to 3, wherein an area of the substrate is 1 cm 2 or more. 前記基板として、その主面が前記AlxGayIn1-x-yN結晶の結晶成長面に対して0.5°以上10°以下の傾き角を有する傾斜基板を準備し、前記傾斜基板の前記主面上に前記AlxGayIn1-x-yN結晶を成長させる工程を有する請求項1から請求項4までのいずれかに記載のIII族窒化物結晶の成長方法。 As the substrate, an inclined substrate whose main surface has an inclination angle of not less than 0.5 ° and not more than 10 ° with respect to the crystal growth surface of the Al x Ga y In 1-xy N crystal is prepared. the Al x Ga y in 1-xy N growing method of a group III nitride crystal according to any one of claims 1 to 4, comprising the step of growing the crystal on the main surface. 前記基板がAlpGaqIn1-p-qN基板(0≦p、0≦q、p+q≦1)であり、前記AlxGayIn1-x-yN結晶の結晶成長面が(0001)面であることを特徴とする請求項1から請求項5までのいずれかに記載のIII族窒化物結晶の成長方法。 The substrate is an Al p Ga q In 1-pq N substrate (0 ≦ p, 0 ≦ q, p + q ≦ 1), and the crystal growth plane of the Al x Ga y In 1-xy N crystal is a (0001) plane. The method for growing a group III nitride crystal according to any one of claims 1 to 5, wherein: 前記AlpGaqIn1-p-qN基板の主面の法線が、<0001>方向から、<1−100>方向または<11−20>方向に傾いていることを特徴とする請求項6に記載のIII族窒化物結晶の成長方法。 The normal line of the main surface of the Al p Ga q In 1 -pq N substrate is inclined from the <0001> direction to the <1-100> direction or the <11-20> direction. 3. A method for growing a group III nitride crystal according to 1. 請求項6の成長方法により得られたAlxGayIn1-x-yN結晶からAlxGayIn1-x-yN結晶基板を形成し、前記AlxGayIn1-x-yN結晶基板上にさらに第2のIII族窒化物結晶であるAlvGawIn1-v-wN結晶(0≦v、0≦w、v+w≦1)を成長させる方法であって、
前記AlxGayIn1-x-yN結晶基板は、その主面が(0001)面に対して0.5°以上10°以下の傾き角を有する傾斜結晶基板であり、
前記AlvGawIn1-v-wN結晶の結晶成長面が(0001)面であることを特徴とするIII族窒化物結晶の成長方法。
The Al x Ga y In 1-xy N crystal substrate formed from the resulting Al x Ga y In 1-xy N crystal by growing method according to claim 6, in the Al x Ga y In 1-xy N crystal substrate Furthermore, a method of growing an Al v Ga w In 1-vw N crystal (0 ≦ v, 0 ≦ w, v + w ≦ 1), which is a second group III nitride crystal,
The Al x Ga y In 1-xy N crystal substrate is a tilted crystal substrate whose principal surface has an inclination angle of 0.5 ° or more and 10 ° or less with respect to the (0001) plane,
A method for growing a group III nitride crystal, wherein the crystal growth surface of the Al v Ga w In 1 -vw N crystal is a (0001) plane.
前記AlpGaqIn1-p-qN基板の主面の法線および前記AlxGayIn1-x-yN結晶基板の主面の法線が、<0001>方向から、それぞれ<1−100>方向および<11−20>方向のいずれかの方向に傾いていることを特徴とする請求項8に記載のIII族窒化物結晶の成長方法。 The normal of the main surface of the Al p Ga q In 1-pq N substrate and the normal of the main surface of the Al x Ga y In 1-xy N crystal substrate are <1-100> from the <0001> direction, respectively. 9. The method for growing a group III nitride crystal according to claim 8, wherein the group is tilted in any one of a direction and a <11-20> direction. 前記AlxGayIn1-x-yN結晶基板の主面の法線の<0001>方向からの傾き方向が前記AlpGaqIn1-p-qN基板の主面の法線の<0001>方向からの傾き方向と異なることを特徴とする請求項8に記載のIII族窒化物結晶の成長方法。 The direction of inclination from the <0001> direction of the main surface of the Al x Ga y In 1-xy N crystal substrate is the <0001> direction of the normal of the main surface of the Al p Ga q In 1-pq N substrate. The method for growing a group III nitride crystal according to claim 8, wherein the growth direction is different from the direction of inclination from the top. 請求項1から請求項10までのいずれかの成長方法により得られたIII族窒化物結晶。   A group III nitride crystal obtained by the growth method according to claim 1.
JP2005316956A 2005-10-31 2005-10-31 Group iii nitride crystal and growing method thereof Pending JP2007119325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316956A JP2007119325A (en) 2005-10-31 2005-10-31 Group iii nitride crystal and growing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316956A JP2007119325A (en) 2005-10-31 2005-10-31 Group iii nitride crystal and growing method thereof

Publications (1)

Publication Number Publication Date
JP2007119325A true JP2007119325A (en) 2007-05-17

Family

ID=38143556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316956A Pending JP2007119325A (en) 2005-10-31 2005-10-31 Group iii nitride crystal and growing method thereof

Country Status (1)

Country Link
JP (1) JP2007119325A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051686A (en) * 2007-08-24 2009-03-12 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal
JP2009057247A (en) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal, and group iii nitride crystal substrate
JP2009062229A (en) * 2007-09-06 2009-03-26 Sumitomo Electric Ind Ltd Group iii nitride crystal and method for growing the same
JP2009073704A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal
JP2009292705A (en) * 2008-06-09 2009-12-17 Nippon Steel Corp Silicon carbide single crystal wafer for epitaxial growth of silicon carbide and silicon carbide epitaxial wafer
WO2010007867A1 (en) * 2008-07-17 2010-01-21 住友電気工業株式会社 Process for producing group iii nitride crystal and group iii nitride crystal
WO2010084675A1 (en) * 2009-01-21 2010-07-29 日本碍子株式会社 Group 3b nitride crystal plate
WO2011004726A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Method for manufacturing nitride semiconductor substrate
JP2011157231A (en) * 2010-02-01 2011-08-18 Nichia Corp Method for producing nitride semiconductor single crystal and nitride semiconductor substrate
JPWO2010079541A1 (en) * 2009-01-06 2012-06-21 パナソニック株式会社 Semiconductor laser device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130597A (en) * 1997-10-24 1999-05-18 Mitsubishi Cable Ind Ltd Control of dislocation line in transmission direction and its use
JP2000223743A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and growth of nitride semiconductor layer
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
WO2005050707A2 (en) * 2003-11-14 2005-06-02 Cree, Inc. Vicinal gallium nitride substrate for high quality homoepitaxy
JP2005298319A (en) * 2004-03-17 2005-10-27 Sumitomo Electric Ind Ltd METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130597A (en) * 1997-10-24 1999-05-18 Mitsubishi Cable Ind Ltd Control of dislocation line in transmission direction and its use
JP2000223743A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and growth of nitride semiconductor layer
JP2001196632A (en) * 2000-01-14 2001-07-19 Sharp Corp Gallium nitride compound semiconductor light emission and its manufacturing method
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
WO2005050707A2 (en) * 2003-11-14 2005-06-02 Cree, Inc. Vicinal gallium nitride substrate for high quality homoepitaxy
JP2005298319A (en) * 2004-03-17 2005-10-27 Sumitomo Electric Ind Ltd METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051686A (en) * 2007-08-24 2009-03-12 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal
JP2009057247A (en) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal, and group iii nitride crystal substrate
JP2009062229A (en) * 2007-09-06 2009-03-26 Sumitomo Electric Ind Ltd Group iii nitride crystal and method for growing the same
JP2009073704A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal
JP2009292705A (en) * 2008-06-09 2009-12-17 Nippon Steel Corp Silicon carbide single crystal wafer for epitaxial growth of silicon carbide and silicon carbide epitaxial wafer
WO2010007867A1 (en) * 2008-07-17 2010-01-21 住友電気工業株式会社 Process for producing group iii nitride crystal and group iii nitride crystal
JPWO2010079541A1 (en) * 2009-01-06 2012-06-21 パナソニック株式会社 Semiconductor laser device
JP5604292B2 (en) * 2009-01-06 2014-10-08 パナソニック株式会社 Semiconductor laser device
WO2010084675A1 (en) * 2009-01-21 2010-07-29 日本碍子株式会社 Group 3b nitride crystal plate
JPWO2010084675A1 (en) * 2009-01-21 2012-07-12 日本碍子株式会社 Group 3B nitride crystal plate
JP5688294B2 (en) * 2009-01-21 2015-03-25 日本碍子株式会社 Group 3B nitride crystal plate
US9677192B2 (en) 2009-01-21 2017-06-13 Ngk Insulators, Ltd. Group 3B nitride crystal substrate
WO2011004726A1 (en) * 2009-07-07 2011-01-13 住友電気工業株式会社 Method for manufacturing nitride semiconductor substrate
JP2011157231A (en) * 2010-02-01 2011-08-18 Nichia Corp Method for producing nitride semiconductor single crystal and nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
JP2007119325A (en) Group iii nitride crystal and growing method thereof
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP7255817B2 (en) GaN crystal manufacturing method
JP4462251B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
WO2016140074A1 (en) Method for manufacturing group-iii nitride semiconductor crystal substrate
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
WO2009090904A1 (en) Method for growing group iii nitride crystal
JP2010030896A (en) Growth method using nanostructure compliant layer and hvpe (hydride vapor phase epitaxy) for producing high quality compound semiconductor material
JP2005101475A (en) Iii-v group nitride semiconductor substrate and method for manufacturing the same
JP2006332570A (en) Method for improving surface flatness of group iii nitride crystal, substrate for epitaxial growth and semiconductor device
JP6731590B2 (en) Method for manufacturing nitride crystal substrate
JP2011119761A (en) Iii-v group nitride semiconductor substrate
TW201202489A (en) Manufacturing method of nitride-based compound semiconductor substrate and nitride-based compound semiconductor free-standing substrate
JP5162895B2 (en) Aluminum nitride crystal manufacturing method, aluminum nitride crystal, aluminum nitride crystal substrate, and semiconductor device
WO2007069388A1 (en) AlxGayIn1-x-yN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING THE SAME
JP2012140328A (en) AlxGa1-xN CRYSTAL SUBSTRATE
JP6906205B2 (en) Manufacturing method of semiconductor laminate and manufacturing method of nitride crystal substrate
JP6669157B2 (en) C-plane GaN substrate
JPWO2013058352A1 (en) Group III nitride semiconductor crystal
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2013209274A (en) Periodic table group 13 metal nitride crystal
JP2010222187A (en) Production method of group iii nitride semiconductor layer
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP4612403B2 (en) Method for manufacturing group III nitride semiconductor free-standing substrate
JP2009051686A (en) Method for growing group iii nitride crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026