JP2007117781A - Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method - Google Patents

Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method Download PDF

Info

Publication number
JP2007117781A
JP2007117781A JP2005309122A JP2005309122A JP2007117781A JP 2007117781 A JP2007117781 A JP 2007117781A JP 2005309122 A JP2005309122 A JP 2005309122A JP 2005309122 A JP2005309122 A JP 2005309122A JP 2007117781 A JP2007117781 A JP 2007117781A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
liquid
metal impurities
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309122A
Other languages
Japanese (ja)
Other versions
JP4441472B2 (en
Inventor
Yoshikazu Ito
美和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005309122A priority Critical patent/JP4441472B2/en
Publication of JP2007117781A publication Critical patent/JP2007117781A/en
Application granted granted Critical
Publication of JP4441472B2 publication Critical patent/JP4441472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the metallic impurity content contained in an ion exchange resin, in which the metallic impurity content contained in the ion exchange resin is reduced surely and amounts of metallic impurities to be eluted into a liquid for production to be purified by the ion exchange resin are reduced, resulting in obtaining the high-purity liquid for production containing small amounts of metallic impurities, to provide the ion exchange resin manufactured by the method and to provide an ion exchange resin column, and a purification apparatus and a purification method using the ion exchange resin. <P>SOLUTION: The ion exchange resin 7 is brought into contact with a mineral acid solution 11 having ≤1 mg/l metallic impurity content and ≥5% mineral acid concentration, thereby the total amount of metallic impurities to be eluted when hydrochloric acid of 3% concentration, the volume of which is twenty five times as large as that of the ion exchange resin, is made to pass through the ion exchange resin becomes ≤5 μg/ml-R. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イオン交換樹脂、イオン交換樹脂カラム、イオン交換樹脂の含有金属量低減方法、精製装置、及び精製方法に係り、特に塩酸等の鉱酸溶液を用いて含有金属量を低減させたイオン交換樹脂、及びそのイオン交換樹脂を用いて工業用水等の被処理液を精製する精製装置等に関する。本発明は、IC、液晶表示素子、撮像素子、各種記録メディア等の電子工業製品の製造に用いる電子材料等、洗浄水、薬液等の精製に好適である。   The present invention relates to an ion exchange resin, an ion exchange resin column, a method for reducing the amount of metal contained in an ion exchange resin, a purification apparatus, and a purification method, and in particular, an ion having a reduced content of metal using a mineral acid solution such as hydrochloric acid. The present invention relates to an exchange resin and a purification apparatus for purifying a liquid to be treated such as industrial water using the ion exchange resin. The present invention is suitable for the purification of cleaning materials, chemicals, etc., such as electronic materials used in the manufacture of electronic industrial products such as ICs, liquid crystal display devices, imaging devices, and various recording media.

IC(半導体集積回路)、液晶ディスプレイ(LCD)等のフラットパネルディスプレイ(FPD)、撮像素子(CCD、CMOS)等の電子部品やCD−ROM、DVD−RAM等の各種記録メディア等(これらを総称して電子工業製品という。)の製造工程においては種々の薬液、溶解溶剤、電子材料(例えば液状のもの)、電子材料の原料や溶解溶剤、洗浄水等(これらを総称して製造用液という。)が使用される。近年の電子工業製品の高性能化・高品質化に伴ってこれらの製造用液、電子材料の原料やその溶解溶剤に対しても高純度化の要求が高まってきている。   IC (semiconductor integrated circuit), flat panel display (FPD) such as liquid crystal display (LCD), electronic components such as image sensor (CCD, CMOS), various recording media such as CD-ROM, DVD-RAM, etc. In the manufacturing process of electronic industrial products), various chemicals, dissolving solvents, electronic materials (for example, liquid materials), raw materials and dissolving solvents for electronic materials, washing water, etc. (collectively referred to as manufacturing liquids) .) Is used. With the recent improvement in performance and quality of electronic industrial products, there is an increasing demand for high purity of these production liquids, raw materials for electronic materials and their dissolving solvents.

この製造用液に金属(ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)、鉄(Fe)等)のイオン性不純物(これらを総称して金属不純物イオンという。)が含まれていると、電子工業製品の性能や品質に重大な影響を及ぼす。そのため、製造用液には不純物(特に、金属)の含有量が極めて低いこと、すなわち高純度であることが必要とされる。例えば、超純水においては1ppt以下程度、その他の薬液等においても10ppb以下程度の金属含有量であることが要求される。   When this manufacturing solution contains ionic impurities (these are collectively referred to as metal impurity ions) of metals (sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), etc.)). It has a significant impact on the performance and quality of electronic industry products. For this reason, the production liquid is required to have a very low content of impurities (particularly metal), that is, high purity. For example, the metal content is required to be about 1 ppt or less for ultrapure water and about 10 ppb or less for other chemicals.

そのため、これらの製造用液は精製によって金属不純物の除去が行われたうえで電子工業製品の製造に用いられるが、その精製に際しては従来よりイオン交換樹脂が使用されている。イオン交換樹脂は、水中及び水以外の液状物質中においてイオン交換能力を有しており、そのイオン交換能力により水及び液状物質内に含まれる金属不純物を除去することができる。また、固体であっても、溶媒に溶解して液状とすることによって金属不純物を低減し、さらに必要に応じて溶媒を取り除いて精製した固体とすることが可能である。   Therefore, these production liquids are used for the manufacture of electronic industrial products after the removal of metal impurities by purification, and ion exchange resins have been conventionally used for the purification. The ion exchange resin has an ion exchange capability in water and in a liquid material other than water, and metal impurities contained in the water and the liquid material can be removed by the ion exchange capability. Moreover, even if it is a solid, it is possible to reduce the metal impurities by dissolving it in a solvent to obtain a liquid, and further to obtain a purified solid by removing the solvent as necessary.

しかし、イオン交換樹脂中にも微量ながら金属不純物が含有されている。そのため、イオン交換樹脂を用いて製造用液を精製する際に、このイオン交換樹脂中の金属不純物が製造用液中に溶出してしまう場合がある。この溶出する金属不純物が製造用液中の金属イオン量を増大させてしまうと、高純度の製造用液が得られなくなってしまうという問題がある。   However, a small amount of metal impurities are contained in the ion exchange resin. Therefore, when the production liquid is purified using the ion exchange resin, the metal impurities in the ion exchange resin may be eluted into the production liquid. If the eluted metal impurities increase the amount of metal ions in the production liquid, there is a problem that a high-purity production liquid cannot be obtained.

特に、水以外の薬液や溶解溶剤等の製造用液はイオン交換樹脂とのイオン交換反応の速度が遅いため、イオン交換樹脂での精製を非常に低い流速、例えばSV5程度で行う必要がある。そのため、イオン交換樹脂からの金属不純物の溶出の影響を受けやすくなってしまう。ここにおいて、SVは空間速度(Space Velocity)を意味し、例えば、h−1(単位時間・単位イオン交換樹脂体積当たりの通過液体積)の単位で表される。 In particular, since liquids for production such as chemical solutions and dissolving solvents other than water have a low rate of ion exchange reaction with the ion exchange resin, it is necessary to perform purification with the ion exchange resin at a very low flow rate, for example, about SV5. Therefore, it becomes easy to be affected by elution of metal impurities from the ion exchange resin. Here, SV means space velocity (Space Velocity), and is expressed in units of, for example, h −1 (passage liquid volume per unit time / unit ion exchange resin volume).

そこで例えば、特許文献1,2に開示のもののように、イオン交換樹脂に鉱酸水溶液を通液させて含有金属不純物量を低減させる方法が提案されている。
特開平11−171508号公報 特表平8−503983号公報
Therefore, for example, as disclosed in Patent Documents 1 and 2, a method of reducing the amount of metal impurities contained by passing a mineral acid aqueous solution through an ion exchange resin has been proposed.
JP-A-11-171508 Japanese translation of Japanese translation of PCT publication No. 8-503983

しかしながら、通液させる鉱酸水溶液自体に金属不純物が含まれていると、イオン交換樹脂内の金属不純物を低減させることができないばかりか、逆にイオン交換樹脂に鉱酸水溶液中の金属不純物を吸着させ増大させてしまう場合がある。それにより、鉱酸水溶液通液後のイオン交換樹脂を使用することによって、却って製造用液中に多量の金属物質等を溶出させてしまうという問題がある。特に、ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)、鉄(Fe)は、他の金属に比較してイオン交換樹脂内での含有量が多く、鉱酸水溶液の通液によっても含有量の低減が困難である。   However, if the mineral acid aqueous solution to be passed itself contains metal impurities, not only the metal impurities in the ion exchange resin can be reduced, but conversely, the metal impurities in the mineral acid aqueous solution are adsorbed on the ion exchange resin. May increase. Accordingly, there is a problem that a large amount of metal substance or the like is eluted in the production liquid by using the ion exchange resin after passing through the mineral acid aqueous solution. In particular, sodium (Na), calcium (Ca), magnesium (Mg), and iron (Fe) are more contained in the ion-exchange resin than other metals, and are also contained by passing a mineral acid aqueous solution. It is difficult to reduce the amount.

本発明は上記の事情に鑑みて為されたもので、イオン交換樹脂内の金属不純物の含有量を確実に低減し、このイオン交換樹脂により精製される製造用液中への金属不純物溶出量を低減し、ひいては含有金属不純物量の少ない高純度の製造用液を得ることができるイオン交換樹脂の含有金属不純物低減方法、その方法により製造されたイオン交換樹脂、イオン交換樹脂カラム、そのイオン交換樹脂を用いた精製装置、及び精製方法を提供することを例示的課題とする。   The present invention has been made in view of the above circumstances, and it is possible to reliably reduce the content of metal impurities in the ion exchange resin and to reduce the amount of metal impurities eluted into the production liquid purified by the ion exchange resin. Method for reducing metal impurity content of ion exchange resin capable of reducing and thus obtaining a high-purity production liquid containing a small amount of metal impurities, ion exchange resin produced by the method, ion exchange resin column, and ion exchange resin It is an exemplary problem to provide a purification apparatus and a purification method using the above.

上記の課題を解決するために、本発明の例示的側面としてのイオン交換樹脂は、含有金属不純物量が1mg/l以下でかつ濃度が5%以上の鉱酸溶液に接触させることにより、濃度3%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量を5μg/ml−R以下としたことを特徴とする。   In order to solve the above-described problems, an ion exchange resin as an exemplary aspect of the present invention has a concentration of 3 by contacting with a mineral acid solution having a metal impurity content of 1 mg / l or less and a concentration of 5% or more. The amount of total metal impurities eluted when 25% by volume hydrochloric acid is passed at a volume ratio of 25 times is 5 μg / ml-R or less.

含有金属不純物量が極めて少ない鉱酸溶液に接触させることにより、確実かつ効果的にイオン交換樹脂内の金属不純物量を低減することができ、溶出金属不純物の少ないイオン交換樹脂を得ることができる。したがって、このイオン交換樹脂を用いて製造用液等の被処理液を精製することにより、含有金属不純物の少ない高純度の被処理液を得ることができる。   By contacting with a mineral acid solution containing a very small amount of metal impurities, the amount of metal impurities in the ion exchange resin can be reliably and effectively reduced, and an ion exchange resin with few eluted metal impurities can be obtained. Therefore, by purifying a liquid to be treated such as a production liquid using this ion exchange resin, a high-purity liquid to be treated with less metal impurities can be obtained.

鉱酸溶液中の含有金属不純物量は1mg/l以下であることが必要であるが、0.5mg/l以下であることが好ましく、0.2mg/l以下であることはさらに好ましい。また、鉱酸溶液の濃度は10%以上であればさらに好ましく、5%未満の場合は充分なイオン交換樹脂内の金属不純物低減効果を得ることができない。   The amount of metal impurities contained in the mineral acid solution needs to be 1 mg / l or less, preferably 0.5 mg / l or less, and more preferably 0.2 mg / l or less. Further, the concentration of the mineral acid solution is more preferably 10% or more, and when it is less than 5%, a sufficient metal impurity reduction effect in the ion exchange resin cannot be obtained.

なお、ここで金属不純物とは金属不純物イオンをも含む概念であり、代表的なものとして例えばNa,Mg,Fe等が挙げられる。鉱酸溶液としては水溶液が望ましく、例えば塩酸溶液、硫酸溶液、硝酸溶液等が考えられる。また、「体積比25倍量」とは、イオン交換樹脂の体積に対して25倍の体積の塩酸(濃度3%)を通過させることを意味する。単位「/ml−R」は、「水膨潤状態におけるイオン交換樹脂の体積1ml当たり」を意味する。「鉱酸溶液に接触させる」は、イオン交換樹脂に鉱酸溶液を通過させることのほか、イオン交換樹脂を鉱酸溶液中に浸漬すること等も含む。   Here, the metal impurity is a concept including metal impurity ions, and representative examples include Na, Mg, Fe and the like. The mineral acid solution is preferably an aqueous solution, for example, a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, or the like. Further, “25 times volume ratio” means passing 25 times the volume of hydrochloric acid (concentration 3%) with respect to the volume of the ion exchange resin. The unit “/ ml-R” means “per 1 ml volume of ion exchange resin in a water-swollen state”. “Contacting the mineral acid solution” includes not only passing the mineral acid solution through the ion exchange resin but also immersing the ion exchange resin in the mineral acid solution.

イオン交換樹脂としては、例えば、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、キレート樹脂等が考えられる。   Examples of the ion exchange resin include strong acid cation exchange resins, weak acid cation exchange resins, strong basic anion exchange resins, weak basic anion exchange resins, and chelate resins.

鉱酸溶液におけるナトリウム(Na),カルシウム(Ca),マグネシウム(Mg),及び鉄(Fe)の各含有量がそれぞれ200μg/l以下であることが望ましい。これらの金属不純物含有量が少ない鉱酸溶液をイオン交換樹脂に接触させることにより、確実かつ効果的にイオン交換樹脂内のNa,Ca,Mg,Feの含有量を低減させることができる。   Each content of sodium (Na), calcium (Ca), magnesium (Mg), and iron (Fe) in the mineral acid solution is preferably 200 μg / l or less. By contacting a mineral acid solution having a low metal impurity content with the ion exchange resin, the contents of Na, Ca, Mg, and Fe in the ion exchange resin can be reliably and effectively reduced.

溶出する金属不純物が、ナトリウム(Na),カルシウム(Ca),マグネシウム(Mg),又は鉄(Fe)のうち少なくともいずれか1の金属を含んでもよい。これらの金属を含む全金属不純物溶出量を5μg/ml−R以下とすることにより、このイオン交換樹脂を被処理液の精製に用いた場合のイオン交換樹脂から被処理液中へのこれら金属不純物の溶出量を低減することができる。   The eluting metal impurity may include at least one of sodium (Na), calcium (Ca), magnesium (Mg), and iron (Fe). By setting the elution amount of all metal impurities containing these metals to 5 μg / ml-R or less, these metal impurities from the ion exchange resin into the liquid to be treated when this ion exchange resin is used for purification of the liquid to be treated The amount of elution can be reduced.

イオン交換樹脂を、鉱酸溶液に接触させた後に純水又は超純水で洗浄することが望ましい。鉱酸溶液を除去する際、金属不純物の再汚染を防止することができる。   It is desirable to wash the ion exchange resin with pure water or ultrapure water after contacting the mineral acid solution. When removing the mineral acid solution, recontamination of metal impurities can be prevented.

水分含有率を30%以下としてもよい。水分含有率を低減する方法としては、減圧乾燥、棚式乾燥、熱風乾燥等の公知の乾燥方法を利用することができる。これにより、例えば有機性の被処理液や非極性溶液のように水分混入が望ましくない被処理液の精製にこのイオン交換樹脂を適用することが可能となる。イオン交換樹脂中の水分量が30%以上であると、このような被処理液の精製時に、被処理液中に水分が溶出したり、水分が障壁となってイオン交換反応が充分に行われなくなってしまう。したがって、イオン交換樹脂中の水分含有率は30%以下、より好ましくは10%以下とされるのがよい。   The moisture content may be 30% or less. As a method for reducing the moisture content, a known drying method such as vacuum drying, shelf drying, hot air drying, or the like can be used. This makes it possible to apply this ion exchange resin to the purification of a liquid to be treated in which moisture is not desirable, such as an organic liquid to be treated or a nonpolar solution. When the amount of water in the ion exchange resin is 30% or more, at the time of purification of such a liquid to be treated, water is eluted in the liquid to be treated, or the ion exchange reaction is sufficiently performed due to moisture as a barrier. It will disappear. Therefore, the water content in the ion exchange resin should be 30% or less, more preferably 10% or less.

本発明の他の例示的側面としてのイオン交換樹脂カラムは、上記のイオン交換樹脂と、供給口と排出口と収納室とを有してかつ供給口から給水された被処理液が収納室内に収納されたイオン交換樹脂を通過した後に排出口から排水されるように構成された収納部材と、を有することを特徴とする。   An ion exchange resin column as another exemplary aspect of the present invention includes the ion exchange resin, a supply port, a discharge port, and a storage chamber, and a liquid to be treated supplied from the supply port is contained in the storage chamber. And a storage member configured to be drained from the discharge port after passing through the stored ion exchange resin.

含有金属不純物量が極めて少ない鉱酸溶液に接触させることで、内部の金属不純物量を低減させたイオン交換樹脂を用いてイオン交換樹脂カラムを構成することにより、このイオン交換樹脂カラムを使用した被処理液の精製において、被処理液中への金属不純物溶出を低減することができる。それにより、含有金属不純物の少ない高純度の被処理液を得ることができる。   By making an ion exchange resin column using an ion exchange resin in which the amount of metal impurities inside is reduced by contacting with a mineral acid solution containing a very small amount of metal impurities, the ion exchange resin column used In the purification of the treatment liquid, elution of metal impurities into the treatment liquid can be reduced. As a result, it is possible to obtain a high-purity liquid to be treated with less metal impurities.

ここにおいて、被処理液は、イオン交換樹脂により精製される製造用液等の液体を意味し、電子工業製品の製造に用いられる薬液、溶剤、電子材料等(電子材料そのものの他、電子材料の原料やそれらの溶解溶剤を含む)、洗浄水等が含まれる。   Here, the liquid to be treated means a liquid such as a production liquid purified by an ion exchange resin, and a chemical solution, a solvent, an electronic material, etc. used for manufacturing an electronic industrial product (in addition to the electronic material itself, Raw materials and their dissolving solvents), washing water and the like.

薬液には、過酸化水素、塩酸、フッ化水素酸、燐酸、酢酸、水酸化テトラメチルアンモニウム、フッ化アンモニウム水溶液等が含まれる。溶剤には、アセトン、2−ブタノン、酢酸−n−ブチル、エタノール、メタノール、2−プロパノール、トルエン、キシレン、酢酸プロピレングリコールメチルエーテル、N−メチル2−ピロリジノン、乳酸エチル、フェノール化合物、ジメチルスルホキシド、テトラヒドラフラン、γ−ブチルラクトン等が含まれる。   The chemical solution includes hydrogen peroxide, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, tetramethylammonium hydroxide, an aqueous ammonium fluoride solution, and the like. Solvents include acetone, 2-butanone, acetic acid-n-butyl, ethanol, methanol, 2-propanol, toluene, xylene, propylene glycol methyl ether acetate, N-methyl 2-pyrrolidinone, ethyl lactate, phenol compound, dimethyl sulfoxide, Tetrahydrafuran, γ-butyl lactone and the like are included.

電子材料等としては、半導体関連材料(レジスト、剥離剤、反射防止膜、層間絶縁膜塗布剤、バッファコート膜用塗布剤等)、FPD材料(液晶用フォトレジスト、カラーフィルター用材料、配向膜、封止材、液晶ミクスチャー、偏光板、反射板、オーバーコート剤、スペーサー等)等が含まれる。洗浄水には、半導体基板、液晶用基板の洗浄に用いられる超純水等が含まれる。   Examples of electronic materials include semiconductor-related materials (resist, release agent, antireflection film, interlayer insulating film coating agent, buffer coating film coating agent, etc.), FPD material (liquid crystal photoresist, color filter material, alignment film, Sealing material, liquid crystal mixture, polarizing plate, reflector, overcoat agent, spacer, etc.). The cleaning water includes ultrapure water used for cleaning semiconductor substrates and liquid crystal substrates.

本発明のさらに他の例示的側面としての精製装置は、上記のイオン交換樹脂カラムと、被処理液をイオン交換樹脂カラムに向けて導くポンプと、を有することを特徴とする。   According to still another exemplary aspect of the present invention, a purification apparatus includes the above-described ion exchange resin column and a pump that guides a liquid to be treated toward the ion exchange resin column.

含有金属不純物量が低減されたイオン交換樹脂を用いたイオン交換樹脂カラムに被処理液を導いて精製することにより、被処理液中への金属不純物溶出を低減することができる。それにより、含有金属不純物の少ない高純度の被処理液を得ることができる。   Elution of metal impurities into the liquid to be treated can be reduced by introducing the liquid to be treated into an ion exchange resin column using an ion exchange resin with a reduced amount of metal impurities and purifying the liquid. As a result, it is possible to obtain a high-purity liquid to be treated with less metal impurities.

この精製装置が、被処理液中に含有される不純物微粒子を除去するためのフィルターをさらに有すると、被処理液中の溶出金属不純物のみならず、不純物微粒子も低減することができ、よりいっそう高純度な被処理液を得ることができる。   If this purification apparatus further has a filter for removing impurity fine particles contained in the liquid to be treated, not only the eluted metal impurities in the liquid to be treated, but also the impurity fine particles can be reduced, which is even higher. A pure liquid to be treated can be obtained.

イオン交換樹脂カラム及びポンプが被処理液に接する接液部が、フッ素系樹脂、ポリプロピレン樹脂、又はポリエチレン樹脂のうち少なくともいずれか1により構成されていてもよい。これにより、接液部から被処理液への金属不純物溶出等の悪影響を防止することができ、この精製装置を用いた精製により金属不純物含有量の少ない高純度の被処理液を得ることができる。なお、フッ素系樹脂としては、PTFE(四フッ化エチレン樹脂)、PFA(四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂)、ETFE(四フッ化エチレン・エチレン共重合樹脂)、FEP(四フッ化エチレン・六フッ化プロピレン共重合樹脂)、PVDF(ビニリデンフロオライド樹脂)、ECTFE(エチレン−クロロトリフルオエチレン樹脂)、PCTFE(クロロトリフルオロエチレン樹脂)、PVF(ビニルフルオライド樹脂)等が考えられる。   The liquid contact portion where the ion exchange resin column and the pump come into contact with the liquid to be treated may be composed of at least one of a fluororesin, a polypropylene resin, and a polyethylene resin. As a result, adverse effects such as elution of metal impurities from the wetted part to the liquid to be processed can be prevented, and a high-purity liquid to be processed with a low content of metal impurities can be obtained by purification using this purification apparatus. . Fluorocarbon resins include PTFE (tetrafluoroethylene resin), PFA (tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin), ETFE (tetrafluoroethylene / ethylene copolymer resin), FEP (tetrafluoroethylene). Ethylene / hexafluoropropylene copolymer resin), PVDF (vinylidene fluoride resin), ECTFE (ethylene-chlorotrifluoroethylene resin), PCTFE (chlorotrifluoroethylene resin), PVF (vinyl fluoride resin), etc. It is done.

本発明のさらに他の例示的側面としてのイオン交換樹脂の含有金属不純物低減方法は、含有金属不純物量が1mg/l以下でかつ濃度が5%以上の鉱酸溶液に接触させることにより、濃度3%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量を5μg/ml−R以下とすることを特徴とする。   According to still another exemplary aspect of the present invention, the method for reducing the content of metal impurities in an ion exchange resin comprises contacting a mineral acid solution having a concentration of metal impurities of 1 mg / l or less and a concentration of 5% or more to obtain a concentration of 3 The amount of total metal impurities eluted when 25% by volume hydrochloric acid is passed in a volume ratio of 25 times is 5 μg / ml-R or less.

含有金属不純物量が極めて少ない鉱酸溶液に接触させることにより、確実かつ効果的にイオン交換樹脂内の金属不純物量を低減することができ、溶出金属不純物の少ないイオン交換樹脂を得ることができる。したがって、このイオン交換樹脂を用いて製造用液等の被処理液を精製することにより、含有金属不純物の少ない高純度の被処理液を得ることができる。   By contacting with a mineral acid solution containing a very small amount of metal impurities, the amount of metal impurities in the ion exchange resin can be reliably and effectively reduced, and an ion exchange resin with few eluted metal impurities can be obtained. Therefore, by purifying a liquid to be treated such as a production liquid using this ion exchange resin, a high-purity liquid to be treated with less metal impurities can be obtained.

本発明のさらに他の例示的側面としての精製方法は、被処理液をポンプによってイオン交換樹脂カラムに向けて導き、イオン交換樹脂カラムの収納部材内に収納された上記のイオン交換樹脂に被処理液を通過させ、被処理液内に含有される金属不純物量を低減させることを特徴とする。   According to still another exemplary aspect of the present invention, a purification method includes a pump for guiding a liquid to be treated toward an ion exchange resin column by a pump, and subjecting the ion exchange resin to the above-described ion exchange resin accommodated in a storage member of the ion exchange resin column. The liquid is allowed to pass through to reduce the amount of metal impurities contained in the liquid to be treated.

含有金属不純物量が低減されたイオン交換樹脂が収納部材内に収納されたイオン交換樹脂カラムに被処理液を導いて精製することにより、被処理液中への金属不純物溶出を低減することができる。それにより、含有金属不純物の少ない高純度の被処理液を得ることができる。   Elution of metal impurities into the liquid to be treated can be reduced by introducing and purifying the liquid to be treated into an ion exchange resin column in which the ion exchange resin with a reduced amount of contained metal impurities is housed in the housing member. . As a result, it is possible to obtain a high-purity liquid to be treated with less metal impurities.

本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。   Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、イオン交換樹脂内の金属物質等の金属不純物の含有量を確実に低減することができる。したがって、このイオン交換樹脂により精製される製造用液等の被処理液中への金属不純物溶出量を低減することができ、ひいては含有金属不純物量の少ない高純度の被処理液を得ることができる。   According to the present invention, the content of metal impurities such as metal substances in the ion exchange resin can be reliably reduced. Therefore, it is possible to reduce the amount of metal impurities eluted into the liquid to be treated such as a production liquid purified by this ion exchange resin, and thus to obtain a high-purity liquid to be treated with a small amount of contained metal impurities. .

[実施の形態]
以下、図面を用いて本発明の実施の形態に係るイオン交換樹脂を用いた精製装置Sについて説明する。図1は、この精製装置Sの全体構成を示す概略ブロック図である。精製装置Sは、ポンプ2、イオン交換樹脂カラム3、フィルター4を有して大略構成され、各々が配管部材6によって略直列状に接続されている。
[Embodiment]
Hereinafter, the refiner | purifier S using the ion exchange resin which concerns on embodiment of this invention using drawing is demonstrated. FIG. 1 is a schematic block diagram showing the overall configuration of the refining device S. The purification apparatus S has a pump 2, an ion exchange resin column 3, and a filter 4.

ポンプ2の上流側には原液タンク1が接続されている。原液タンク1内にはイオン交換樹脂カラム3内のイオン交換樹脂7によって精製処理されるべき被処理液10が貯留されている。この被処理液10は、例えば種々の薬液、溶解溶剤、洗浄水等(製造用液)である。   A stock solution tank 1 is connected to the upstream side of the pump 2. In the stock solution tank 1, a liquid 10 to be processed to be purified by the ion exchange resin 7 in the ion exchange resin column 3 is stored. The liquid 10 to be treated is, for example, various chemical solutions, dissolving solvents, washing water, etc. (manufacturing solution).

ポンプ2は配管部材6によって原液タンク1とイオン交換樹脂カラム3の供給口8aとに接続されている。ポンプ2を駆動すると、原液タンク1内の被処理液10がイオン交換樹脂カラム3の供給口8aに向けて導かれるようになっている。もちろん、ポンプ2は、イオン交換樹脂カラム3とフィルター4との間に設けてもよいし、フィルター4と後述する処理液タンク5との間に設けられてもよい。さらに被処理液10の精製に必要な流量に応じてポンプ2を配管経路内に複数設けてもよい。   The pump 2 is connected to the stock solution tank 1 and the supply port 8 a of the ion exchange resin column 3 by a piping member 6. When the pump 2 is driven, the liquid 10 to be treated in the stock solution tank 1 is guided toward the supply port 8 a of the ion exchange resin column 3. Of course, the pump 2 may be provided between the ion exchange resin column 3 and the filter 4, or may be provided between the filter 4 and a treatment liquid tank 5 described later. Further, a plurality of pumps 2 may be provided in the piping path according to the flow rate required for purification of the liquid 10 to be treated.

図2は、イオン交換樹脂カラム3の概略構成を示す断面図である。イオン交換樹脂カラム3は、収納部材8とイオン交換樹脂7とを有して大略構成される。収納部材8は、例えばフッ素系樹脂等の樹脂材料によって構成され、被処理液10を内部に供給するための供給口8aと外部に排出するために排出口8bとを有している。供給口8aと排出口8bとの経路間には収納室8cが配置され、内部にイオン交換樹脂7が収納されている。すなわち、供給口8aから供給された処理液10がイオン交換樹脂7を通過して排出口8bから外部に向けて排出されるようになっており、それによって被処理液10の精製が行えるようになっている。   FIG. 2 is a cross-sectional view showing a schematic configuration of the ion exchange resin column 3. The ion exchange resin column 3 has a storage member 8 and an ion exchange resin 7 and is generally configured. The storage member 8 is made of, for example, a resin material such as a fluororesin, and has a supply port 8a for supplying the liquid 10 to be processed to the inside and a discharge port 8b for discharging it to the outside. A storage chamber 8c is disposed between the supply port 8a and the discharge port 8b, and the ion exchange resin 7 is stored therein. That is, the processing liquid 10 supplied from the supply port 8a passes through the ion exchange resin 7 and is discharged from the discharge port 8b to the outside so that the liquid 10 to be processed can be purified. It has become.

イオン交換樹脂7としては、強酸性陽イオン交換樹脂(例えば、アンバーライトIR124H,200CTH)、弱酸性陽イオン交換樹脂(例えば、アンバーライトIRC76)、強塩基性陰イオン交換樹脂(例えば、アンバーライトIRA402BL,IRA900)、弱塩基性陰イオン交換樹脂(例えば、アンバーライトIRA96SB,IRA67)等が必要に応じて再生処理等の前処理が行われたうえで用いられる(括弧内は、いずれもローム・アンド・ハース社の商品名)。   Examples of the ion exchange resin 7 include a strong acid cation exchange resin (for example, Amberlite IR124H, 200CTH), a weak acid cation exchange resin (for example, Amberlite IRC76), and a strongly basic anion exchange resin (for example, Amberlite IRA402BL). , IRA900), weakly basic anion exchange resins (for example, Amberlite IRA96SB, IRA67) and the like, after being subjected to pretreatment such as regeneration treatment as necessary (both in parentheses are Rohm and・ Product name of Haas).

このイオン交換樹脂7は、予め内部の含有金属不純物を低減する処理が施されて含有金属不純物量が極めて少ないものとなっている。すなわち、イオン交換樹脂7を所定物性値に規定された鉱酸溶液11(図3(a)参照)に接触させ、その後に超純水12(図3(b)参照)で洗浄することによりイオン交換樹脂7の含有金属不純物が低減されている。   The ion exchange resin 7 has been subjected to a treatment for reducing the contained metal impurities in advance, so that the amount of contained metal impurities is extremely small. That is, the ion exchange resin 7 is brought into contact with a mineral acid solution 11 (see FIG. 3 (a)) having predetermined physical property values, and then washed with ultrapure water 12 (see FIG. 3 (b)). The metal impurities contained in the exchange resin 7 are reduced.

図3は、このイオン交換樹脂7に対して含有金属不純物低減処理を行う方法を説明する説明図であって、図3(a)は、イオン交換樹脂を鉱酸溶液11に接触させた様子を示し、図3(b)は、その後にイオン交換樹脂7を超純水12で洗浄する様子を示している。また、図4は、イオン交換樹脂7に対して含有金属不純物低減処理を行う方法を説明するフローチャートである。   FIG. 3 is an explanatory view for explaining a method of performing a contained metal impurity reduction process on the ion exchange resin 7. FIG. 3A shows a state in which the ion exchange resin is brought into contact with the mineral acid solution 11. FIG. 3B shows how the ion exchange resin 7 is subsequently washed with ultrapure water 12. FIG. 4 is a flowchart for explaining a method for performing a contained metal impurity reduction process on the ion exchange resin 7.

収納部材8の収納室8cにイオン交換樹脂7を収納し、供給口8aから鉱酸溶液11を供給して排出口8bから排出することによって、鉱酸溶液11をイオン交換樹脂7に通過(通液)させる(S.1)。鉱酸溶液11としては、塩酸溶液、硫酸溶液、硝酸溶液等が使用可能であるが、その物性値は含有金属不純物量が1mg/l以下かつ濃度5%以上であることが必要である。含有金属不純物としては、Na,Ca,Mg,Fe等の金属が代表的であり、これらの金属含有量が、各々200μg/l以下であることが望ましい。   By storing the ion exchange resin 7 in the storage chamber 8c of the storage member 8, supplying the mineral acid solution 11 from the supply port 8a and discharging it from the discharge port 8b, the mineral acid solution 11 passes through the ion exchange resin 7 (through). Liquid) (S.1). As the mineral acid solution 11, a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, or the like can be used. However, the physical properties of the mineral acid solution need to be a metal impurity amount of 1 mg / l or less and a concentration of 5% or more. The metal impurities are typically metals such as Na, Ca, Mg, and Fe, and the metal contents are desirably 200 μg / l or less.

このような金属不純物含有量が少なくかつ濃度が高い鉱酸溶液11を用いて含有金属不純物低減処理を行うことにより、イオン交換樹脂7内の含有金属不純物量も極めて少ないものとすることができる。具体的には、濃度3%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量(特にNa,Ca,Mg,Fe等の溶出金属量)を5μg/ml−R以下とすることができる。   By performing the metal impurity reduction process using the mineral acid solution 11 having a low metal impurity content and a high concentration, the metal impurity content in the ion exchange resin 7 can be extremely small. Specifically, the total amount of metal impurities (particularly the amount of eluted metals such as Na, Ca, Mg, Fe, etc.) eluted when 3% concentration hydrochloric acid is passed in a volume ratio of 25 times is 5 μg / ml-R or less. It can be.

なお、本実施の形態においては、精製装置Sに用いられる収納部材8内にイオン交換樹脂7を収納して含有金属不純物低減処理を行っているが、もちろん、収納部材8とは別体とされた含有金属不純物低減処理専用の収納部材(図示せず)にイオン交換樹脂7を収納して処理を行ってもよい。また、イオン交換樹脂7と鉱酸溶液11との接触をイオン交換樹脂7に鉱酸溶液11を通過させることで実現しているが、もちろん、貯留状態の鉱酸溶液11中にイオン交換樹脂7を浸漬してもよい。   In the present embodiment, the ion exchange resin 7 is stored in the storage member 8 used in the refining apparatus S and the contained metal impurity reduction process is performed. Of course, it is separated from the storage member 8. Alternatively, the ion exchange resin 7 may be stored in a storage member (not shown) dedicated to the contained metal impurity reduction process. Further, the contact between the ion exchange resin 7 and the mineral acid solution 11 is realized by passing the mineral acid solution 11 through the ion exchange resin 7. Of course, the ion exchange resin 7 is contained in the mineral acid solution 11 in the storage state. May be immersed.

鉱酸溶液11を通過させ、含有金属不純物量を低減させた後に、イオン交換樹脂7を超純水12によって洗浄する(S.2)。例えば、図3(b)に示すように、供給口8aから超純水12を供給し、排出口8bから排出することによりイオン交換樹脂7に超純水12を通過させてもよいし、貯留状態の超純水12中にイオン交換樹脂7を浸漬してもよい。これにより、含有金属不純物量が極めて少ない高品質のイオン交換樹脂7を得ることができる。   After passing the mineral acid solution 11 and reducing the amount of metal impurities contained, the ion exchange resin 7 is washed with ultrapure water 12 (S.2). For example, as shown in FIG. 3B, the ultrapure water 12 may be supplied from the supply port 8a and discharged from the discharge port 8b, so that the ultrapure water 12 may be passed through the ion exchange resin 7 or stored. The ion exchange resin 7 may be immersed in the ultrapure water 12 in a state. Thereby, the high quality ion exchange resin 7 with a very small amount of contained metal impurities can be obtained.

ここで、精製対象としての被処理液10が有機性溶液や非極性溶液等の微量の水分混入が好ましくない液体である場合(S.3)、減圧乾燥、棚式乾燥、又は熱風乾燥等によりイオン交換樹脂7の水分含有率を30%以下に低減させる(S.4)。これにより、被処理液10中に水分が溶出することもなく、水分がイオン交換反応の障壁となることもない。   Here, when the liquid 10 to be purified is a liquid in which a small amount of water is not preferable, such as an organic solution or a nonpolar solution (S.3), it is reduced pressure drying, shelf drying, hot air drying, or the like. The moisture content of the ion exchange resin 7 is reduced to 30% or less (S.4). Thereby, moisture does not elute into the liquid 10 to be treated, and moisture does not become a barrier for ion exchange reaction.

このように、水分含有率を低減させたイオン交換樹脂7を用いることは、被処理液10中への微量の水分混入が問題となる場合に特に有効である。しかしもちろんそれが問題とならない場合であっても、水分含有率を低減させたイオン交換樹脂7を用いることにより被処理液10の精製前にイオン交換樹脂7内の水分を中間極性溶媒(アルコール等)に置換する必要がなくなるので、好ましい。   Thus, the use of the ion exchange resin 7 having a reduced moisture content is particularly effective when a very small amount of moisture is a problem in the liquid 10 to be treated. However, even if it does not cause a problem, of course, by using the ion exchange resin 7 having a reduced water content, the water in the ion exchange resin 7 is removed from the intermediate polar solvent (alcohol or the like) before purification of the liquid 10 to be treated. ), Which is preferable because it is not necessary to substitute for.

フィルター4は、被処理液10中の不純物微粒子を除去するためのものであり、配管部材6によってイオン交換樹脂カラム3の排出口8bと接続されて、排出口8bから排出された精製後の被処理液10をろ過する。本実施の形態においては、フィルター4はイオン交換樹脂カラム3よりも下流側に設けられているが、もちろん上流側に設けられてもよい。   The filter 4 is for removing impurity fine particles in the liquid 10 to be treated, and is connected to the discharge port 8b of the ion exchange resin column 3 by the pipe member 6, and is subjected to the purified target discharged from the discharge port 8b. The treatment liquid 10 is filtered. In the present embodiment, the filter 4 is provided on the downstream side of the ion exchange resin column 3, but may of course be provided on the upstream side.

フィルター4の下流側には、精製及びろ過後の被処理液10を貯留するための処理液タンク5が配管部材6によって接続されている。この処理液タンク5内に貯留された被処理液10は、イオン交換樹脂7により金属不純物が除去され、フィルター4によって不純物微粒子が除去されているので、非常に高純度なものとなっている。イオン交換樹脂7は予め含有金属不純物低減処理が施されているので、精製によってイオン交換樹脂7側から被処理液10へと金属不純物が溶出してしまうこともない。   A treatment liquid tank 5 for storing the treated liquid 10 after purification and filtration is connected to the downstream side of the filter 4 by a piping member 6. The liquid 10 to be treated stored in the treatment liquid tank 5 has a very high purity because the metal impurities are removed by the ion exchange resin 7 and the impurity fine particles are removed by the filter 4. Since the ion-exchange resin 7 has been subjected to a metal impurity reduction process in advance, the metal impurities are not eluted from the ion-exchange resin 7 side to the liquid 10 to be treated by purification.

なお、この精製装置Sが被処理液10と接触する各部(例えば、ポンプ2の内部流路、配管部材6の内壁、収納部材8の内壁等の接液部)はフッ素系樹脂によって形成又はコーティングされている。したがって、接液部は被処理液10に対して不活性であり、被処理液10に悪影響を与えることがない。もちろん、フッ素系樹脂のほかにもポリプロピレン樹脂、ポリエチレン樹脂を適用することも可能である。   In addition, each part (for example, liquid contact parts, such as the internal flow path of the pump 2, the inner wall of the piping member 6, and the inner wall of the storage member 8) where this refiner S comes into contact with the liquid to be treated 10 is formed or coated with a fluororesin. Has been. Therefore, the liquid contact portion is inactive to the liquid 10 to be processed and does not adversely affect the liquid 10 to be processed. Of course, it is also possible to apply a polypropylene resin and a polyethylene resin in addition to the fluorine-based resin.

以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these, A various deformation | transformation and change are possible within the range of the summary.

表1に示す含有金属量で濃度10%の塩酸溶液によって強酸性陽イオン交換樹脂の含有金属不純物低減処理を行った。なお、低減処理条件を表2に示した。   The content of impurities contained in the strongly acidic cation exchange resin was reduced with a hydrochloric acid solution having a concentration of 10% and containing metal as shown in Table 1. The reduction treatment conditions are shown in Table 2.

Figure 2007117781
Figure 2007117781

Figure 2007117781
Figure 2007117781

このイオン交換樹脂内の含有金属不純物量の低減処理が有りの場合と無しの場合とで測定した比較結果を表3に示す。なお、測定条件を表4に示した。   Table 3 shows the comparison results measured with and without the treatment for reducing the amount of metal impurities contained in the ion exchange resin. The measurement conditions are shown in Table 4.

Figure 2007117781
Figure 2007117781

Figure 2007117781
Figure 2007117781

含有金属不純物低減処理を行ったイオン交換樹脂を用いて、金属不純物を含有する2-プロパノールを精製処理した。精製前後の2−プロパノール中に含有される金属不純物量の測定結果を表5に示した。低減処理有りのイオン交換樹脂を用いて精製した場合、各金属とも2−プロパノール中の含有量が10ppb以下に低減されている。なお、精製条件を表6に示した。   Using the ion exchange resin that had been subjected to the treatment for reducing the content of metal impurities, 2-propanol containing metal impurities was purified. The measurement results of the amount of metal impurities contained in 2-propanol before and after purification are shown in Table 5. When refine | purifying using the ion exchange resin with a reduction process, content in 2-propanol is reduced to 10 ppb or less with each metal. The purification conditions are shown in Table 6.

Figure 2007117781
Figure 2007117781

Figure 2007117781
Figure 2007117781

実施例1と同様の方法にて、多孔質タイプのイオン交換樹脂であるMR形イオン交換樹脂(商品名:アンバーライト200CTH)の含有不純物低減処理を行った。このイオン交換樹脂内の含有不純物量の低減処理が有りの場合と無しの場合とで測定した比較結果を表7に示す。   In the same manner as in Example 1, the content impurity reduction treatment of MR type ion exchange resin (trade name: Amberlite 200CTH) which is a porous type ion exchange resin was performed. Table 7 shows the comparison results measured with and without the treatment for reducing the amount of impurities contained in the ion exchange resin.

Figure 2007117781
Figure 2007117781

含有金属不純物低減処理を行ったMR形イオン交換樹脂を100℃の恒温槽内で15時間乾燥させ、水分含有率を5%とした。その後、これらのMR形イオン交換樹脂を用いて、金属不純物を含有する酢酸プロピレングリコールメチルエーテル(PGMEA)を実施例1と同様の方法で精製処理した。精製前後のPGMEA中に含有される金属不純物量の測定結果を表8に示した。低減処理有りのMR形イオン交換樹脂を用いて精製した場合、各金属ともPGMEA中の含有量が10ppb以下に低減されている。   The MR type ion exchange resin subjected to the treatment for reducing contained metal impurities was dried in a constant temperature bath at 100 ° C. for 15 hours, and the water content was adjusted to 5%. Thereafter, propylene glycol methyl ether acetate (PGMEA) containing metal impurities was purified in the same manner as in Example 1 using these MR ion exchange resins. The measurement results of the amount of metal impurities contained in PGMEA before and after purification are shown in Table 8. When refine | purifying using MR type ion exchange resin with a reduction process, content in each PGMEA is reduced to 10 ppb or less.

Figure 2007117781
Figure 2007117781

実施例2と同様のMR形イオン交換樹脂(低減処理有りで乾燥処理したものと低減処理無しで乾燥処理したもの)それぞれ430gを内径48.5mm、高さ1000mmの円筒形PFA樹脂製カラム収納部材に収納し、電子工業用PGMEA(商品名:関東化学製)で膨潤させ、樹脂体積を1000mlとした。接液部がPVDF樹脂又はPTFE樹脂とされた無脈動定量ポンプによって2L/時の流速で電子工業用PGMEAをMR形イオン交換樹脂に向けて供給し、MR形イオン交換樹脂を洗浄した。その後、実施例2と同様に金属不純物を含有するPGMEAを2L/時の流速でMR形イオン交換樹脂に向けて供給し、20LのPGMEAを精製処理した。   MR type ion exchange resin similar to that of Example 2 (the one subjected to the drying treatment with the reduction treatment and the one subjected to the drying treatment without the reduction treatment) each having 430 g of a cylindrical PFA resin column housing member having an inner diameter of 48.5 mm and a height of 1000 mm And swollen with PGMEA for electronic industry (trade name: manufactured by Kanto Chemical Co., Ltd.) to make the resin volume 1000 ml. The PGMEA for electronic industry was supplied toward the MR ion exchange resin at a flow rate of 2 L / hour by a non-pulsating metering pump in which the liquid contact part was PVDF resin or PTFE resin, and the MR ion exchange resin was washed. Thereafter, PGMEA containing metal impurities was supplied toward the MR ion exchange resin at a flow rate of 2 L / hour in the same manner as in Example 2 to purify 20 L of PGMEA.

配管部材にはすべてPFA樹脂チューブを使用し、バルブ、流量計、配管継ぎ手等の接液部はすべてPVDF樹脂、PTFE樹脂、PFA樹脂等により構成した。精製処理後のPGMEAをPFA樹脂製の処理液タンクに回収し、その液中の含有金属不純物量を測定した。測定結果を表9に示した。低減処理有りのMR形イオン交換樹脂を用いて精製した場合、各金属ともPGMEA中の含有量が10ppb以下に低減されている。   PFA resin tubes were used for all piping members, and all wetted parts such as valves, flow meters, and pipe joints were made of PVDF resin, PTFE resin, PFA resin, and the like. PGMEA after the purification treatment was collected in a treatment liquid tank made of PFA resin, and the amount of metal impurities contained in the liquid was measured. The measurement results are shown in Table 9. When refine | purifying using MR type ion exchange resin with a reduction process, content in each PGMEA is reduced to 10 ppb or less.

Figure 2007117781
Figure 2007117781

比較例1Comparative Example 1

表10に示す含有金属量で濃度10%の塩酸溶液によって実施例1と同様にイオン交換樹脂の含有金属不純物低減処理を行った。なお、低減処理条件は実施例1と同様である。   The content of impurities contained in the ion exchange resin was reduced in the same manner as in Example 1 with a hydrochloric acid solution having a concentration of metals shown in Table 10 and a concentration of 10%. The reduction process conditions are the same as in the first embodiment.

Figure 2007117781
Figure 2007117781

このイオン交換樹脂内の含有金属不純物量の低減処理が有りの場合と無しの場合とで測定した比較結果を表11に示す。なお、測定条件は実施例1と同様である。   Table 11 shows the comparison results measured with and without the treatment for reducing the amount of metal impurities contained in the ion exchange resin. The measurement conditions are the same as in Example 1.

Figure 2007117781
Figure 2007117781

含有金属不純物低減処理を行ったイオン交換樹脂を用いて、実施例1と同様の2-プロパノールを精製処理した。精製前後の2−プロパノール中に含有される金属不純物量の測定結果を表12に示した。なお、精製条件は実施例1と同様である。   The same 2-propanol as in Example 1 was purified using the ion exchange resin that had been subjected to the treatment for reducing the contained metal impurities. Table 12 shows the measurement results of the amount of metal impurities contained in 2-propanol before and after purification. The purification conditions are the same as in Example 1.

Figure 2007117781
Figure 2007117781

比較例2Comparative Example 2

比較例2と同様の塩酸溶液によって実施例2と同様にMR形イオン交換樹脂の含有金属不純物低減処理を行った。このイオン交換樹脂内の含有金属不純物量の低減処理が有りの場合と無しの場合とで測定した比較結果を表13に示す。   In the same manner as in Example 2, treatment for reducing the metal impurities contained in the MR ion exchange resin was performed using the same hydrochloric acid solution as in Comparative Example 2. Table 13 shows the comparison results measured with and without the treatment for reducing the amount of metal impurities contained in the ion exchange resin.

Figure 2007117781
Figure 2007117781

含有金属不純物低減処理を行ったMR形イオン交換樹脂を実施例2と同様に乾燥させ、水分含有率を5%とした。その後、これらのMR形イオン交換樹脂を用いて、金属不純物を含有する酢酸プロピレングリコールメチルエーテル(PGMEA)を実施例2と同様の方法で精製処理した。精製前後のPGMEA中に含有される金属不純物量の測定結果を表14に示した。   The MR type ion exchange resin that had been subjected to the treatment for reducing the contained metal impurities was dried in the same manner as in Example 2 so that the water content was 5%. Thereafter, propylene glycol methyl ether acetate (PGMEA) containing metal impurities was purified in the same manner as in Example 2 using these MR ion exchange resins. Table 14 shows the measurement results of the amount of metal impurities contained in PGMEA before and after purification.

Figure 2007117781
Figure 2007117781

以上の実施例及び比較例より、金属不純物含有量の少ない塩酸を用いて含有金属不純物低減処理を行うことにより、イオン交換樹脂内の含有金属不純物量を効果的に低減することができ、そのイオン交換樹脂を用いた精製によって被処理液中の含有金属不純物量を効果的に低減することができることがわかった。   From the above examples and comparative examples, the amount of metal impurities contained in the ion-exchange resin can be effectively reduced by performing the treatment for reducing the content of metal impurities using hydrochloric acid having a low content of metal impurities. It was found that the amount of metal impurities contained in the liquid to be treated can be effectively reduced by purification using an exchange resin.

この精製装置Sの全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of this refinement | purification apparatus S. イオン交換樹脂カラム3の概略構成を示す断面図である。2 is a cross-sectional view showing a schematic configuration of an ion exchange resin column 3. FIG. このイオン交換樹脂7に対して含有金属不純物低減処理を行う方法を説明する説明図であって、図3(a)は、イオン交換樹脂を鉱酸溶液に接触させた状態を示し、図3(b)は、その後にイオン交換樹脂7を超純水で洗浄する様子を示している。It is explanatory drawing explaining the method of performing a contained metal impurity reduction process with respect to this ion exchange resin 7, Comprising: Fig.3 (a) shows the state which made the ion exchange resin contact the mineral acid solution, FIG. b) shows how the ion exchange resin 7 is subsequently washed with ultrapure water. イオン交換樹脂7に対して含有金属不純物低減処理を行う方法を説明するフローチャートである。4 is a flowchart for explaining a method for performing a contained metal impurity reduction process on the ion exchange resin 7.

符号の説明Explanation of symbols

S:精製装置
1:原液タンク
2:ポンプ
3:イオン交換樹脂カラム
4:フィルター
5:処理液タンク
6:配管部材
7:イオン交換樹脂
8:収納部材
8a:供給口
8b:排出口
8c:収納室
10:被処理液
11:鉱酸溶液
12:超純水
S: Purification apparatus 1: Stock solution tank 2: Pump 3: Ion exchange resin column 4: Filter 5: Treatment liquid tank 6: Piping member 7: Ion exchange resin 8: Storage member 8a: Supply port 8b: Discharge port 8c: Storage chamber 10: Liquid to be treated 11: Mineral acid solution 12: Ultrapure water

Claims (10)

含有金属不純物量が1mg/l以下でかつ濃度が5%以上の鉱酸溶液に接触させることにより、濃度3%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量を5μg/ml−R以下としたことを特徴とするイオン交換樹脂。   By contacting a mineral acid solution having a concentration of metal impurities of 1 mg / l or less and a concentration of 5% or more, the total amount of metal impurities eluted when hydrochloric acid with a concentration of 3% is passed in a volume ratio of 25 times An ion exchange resin characterized by being 5 μg / ml-R or less. 前記鉱酸溶液におけるナトリウム(Na),カルシウム(Ca),マグネシウム(Mg),及び鉄(Fe)の各含有量がそれぞれ200μg/l以下であることを特徴とする請求項1に記載のイオン交換樹脂。   2. The ion exchange according to claim 1, wherein each content of sodium (Na), calcium (Ca), magnesium (Mg), and iron (Fe) in the mineral acid solution is 200 μg / l or less. resin. 前記鉱酸溶液に接触させた後に純水又は超純水で洗浄することを特徴とする請求項1又は請求項2に記載のイオン交換樹脂。   The ion exchange resin according to claim 1 or 2, wherein the ion exchange resin is washed with pure water or ultrapure water after being brought into contact with the mineral acid solution. 水分含有率を30%以下としたことを特徴とする請求項1から請求項3のうちいずれか1項に記載のイオン交換樹脂。   The ion exchange resin according to any one of claims 1 to 3, wherein the moisture content is 30% or less. 請求項1から請求項4のうちいずれか1項に記載のイオン交換樹脂と、
供給口と排出口と収納室とを有してかつ前記供給口から給水された被処理液が前記収納室内に収納された前記イオン交換樹脂を通過した後に前記排出口から排水されるように構成された収納部材と、を有することを特徴とするイオン交換樹脂カラム。
The ion exchange resin according to any one of claims 1 to 4,
A supply port, a discharge port, and a storage chamber are provided, and the liquid to be treated supplied from the supply port is drained from the discharge port after passing through the ion exchange resin stored in the storage chamber. An ion exchange resin column.
請求項5に記載のイオン交換樹脂カラムと、
前記被処理液を前記イオン交換樹脂カラムに向けて導くポンプと、を有することを特徴とする精製装置。
An ion exchange resin column according to claim 5;
And a pump for guiding the liquid to be treated toward the ion exchange resin column.
前記被処理液中に含有される不純物微粒子を除去するためのフィルターをさらに有することを特徴とする請求項6に記載の精製装置。   The purification apparatus according to claim 6, further comprising a filter for removing impurity fine particles contained in the liquid to be treated. 前記イオン交換樹脂カラム及び前記ポンプが前記被処理液に接する接液部が、フッ素系樹脂、ポリプロピレン樹脂、又はポリエチレン樹脂のうち少なくともいずれか1により構成されていることを特徴とする請求項6又は請求項7に記載の精製装置。   The liquid contact portion where the ion exchange resin column and the pump are in contact with the liquid to be treated is composed of at least one of fluorine resin, polypropylene resin, or polyethylene resin. The purification apparatus according to claim 7. 含有金属不純物量が1mg/l以下でかつ濃度が5%以上の鉱酸溶液に接触させることにより、濃度3%の塩酸を体積比25倍量で通過させたときに溶出する全金属不純物量を5μg/ml−R以下とすることを特徴とするイオン交換樹脂の含有金属不純物量低減方法。   By contacting a mineral acid solution having a concentration of metal impurities of 1 mg / l or less and a concentration of 5% or more, the total amount of metal impurities eluted when hydrochloric acid with a concentration of 3% is passed in a volume ratio of 25 times 5. A method for reducing the amount of metal impurities contained in an ion exchange resin, wherein the amount is 5 μg / ml-R or less. 被処理液をポンプによってイオン交換樹脂カラムに向けて導き、
該イオン交換樹脂カラムの収納部材内に収納された請求項1から請求項5のうちいずれか1項に記載のイオン交換樹脂に前記被処理液を通過させ、
前記被処理液内に含有される金属不純物量を低減させることを特徴とする精製方法。
The liquid to be treated is guided toward the ion exchange resin column by a pump,
The treatment liquid is passed through the ion exchange resin according to any one of claims 1 to 5 housed in a housing member of the ion exchange resin column,
A purification method comprising reducing the amount of metal impurities contained in the liquid to be treated.
JP2005309122A 2005-10-24 2005-10-24 Method for reducing the amount of metal impurities contained in a cation exchange resin Active JP4441472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309122A JP4441472B2 (en) 2005-10-24 2005-10-24 Method for reducing the amount of metal impurities contained in a cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309122A JP4441472B2 (en) 2005-10-24 2005-10-24 Method for reducing the amount of metal impurities contained in a cation exchange resin

Publications (2)

Publication Number Publication Date
JP2007117781A true JP2007117781A (en) 2007-05-17
JP4441472B2 JP4441472B2 (en) 2010-03-31

Family

ID=38142208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309122A Active JP4441472B2 (en) 2005-10-24 2005-10-24 Method for reducing the amount of metal impurities contained in a cation exchange resin

Country Status (1)

Country Link
JP (1) JP4441472B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
JP2011067793A (en) * 2009-09-28 2011-04-07 Kurita Water Ind Ltd Ion exchange apparatus
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
JP2015188828A (en) * 2014-03-28 2015-11-02 オルガノ株式会社 Cartridge for water purifier, and water purifier
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
WO2017057320A1 (en) * 2015-10-02 2017-04-06 三菱瓦斯化学株式会社 High-purity carboxylic acid ester and method for producing same
JP2019141800A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 Method and apparatus for producing chelate resin, and method for purifying liquid to be treated
KR20210052674A (en) * 2019-10-30 2021-05-11 주식회사 삼양사 Method for preparing ion exchange resin with reduced metal impurity content
CN113992895A (en) * 2021-10-27 2022-01-28 西安热工研究院有限公司 Resin conveying remote monitoring system and method of condensate polishing system
KR20220056308A (en) * 2020-10-27 2022-05-06 주식회사 삼양사 Method for preparing ion exchange resin with reduced content of metallic impurities
WO2022168570A1 (en) * 2021-02-05 2022-08-11 オルガノ株式会社 Ion exchange device and ultrapure water production apparatus
WO2022209392A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent
WO2022209233A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device
WO2023062925A1 (en) * 2021-10-14 2023-04-20 オルガノ株式会社 Acid solution purification method
JP7421019B1 (en) 2022-10-06 2024-01-23 オルガノ株式会社 Method for producing cation exchange resin and method for purifying organic acid solution

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2010234339A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Treatment liquid for refining crude ion exchange resin
JP2011067793A (en) * 2009-09-28 2011-04-07 Kurita Water Ind Ltd Ion exchange apparatus
JP2015188828A (en) * 2014-03-28 2015-11-02 オルガノ株式会社 Cartridge for water purifier, and water purifier
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
CN105314612A (en) * 2014-07-18 2016-02-10 Oci有限公司 Method for removing metal ions from phosphoric acid solution
WO2017057320A1 (en) * 2015-10-02 2017-04-06 三菱瓦斯化学株式会社 High-purity carboxylic acid ester and method for producing same
JPWO2017057320A1 (en) * 2015-10-02 2018-07-19 三菱瓦斯化学株式会社 High purity carboxylic acid ester and method for producing the same
US11046634B2 (en) 2015-10-02 2021-06-29 Mitsubishi Gas Chemical Company, Inc. High-purity carboxylic acid ester and method for producing same
JP2019141800A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 Method and apparatus for producing chelate resin, and method for purifying liquid to be treated
CN111699040A (en) * 2018-02-22 2020-09-22 奥加诺株式会社 Method and apparatus for producing chelate resin, and method for purifying liquid to be treated
TWI773881B (en) * 2018-02-22 2022-08-11 日商奧璐佳瑙股份有限公司 Production method and production device for chelate resin, and method for refining liquid to be processed
CN111699040B (en) * 2018-02-22 2023-09-12 奥加诺株式会社 Method for purifying liquid to be treated
JP7137318B2 (en) 2018-02-22 2022-09-14 オルガノ株式会社 Method for purifying liquid to be treated
KR20210052674A (en) * 2019-10-30 2021-05-11 주식회사 삼양사 Method for preparing ion exchange resin with reduced metal impurity content
KR102346812B1 (en) 2019-10-30 2022-01-04 주식회사 삼양사 Method for preparing ion exchange resin with reduced metal impurity content
KR20220056308A (en) * 2020-10-27 2022-05-06 주식회사 삼양사 Method for preparing ion exchange resin with reduced content of metallic impurities
KR102499164B1 (en) 2020-10-27 2023-02-14 주식회사 삼양사 Method for preparing ion exchange resin with reduced content of metallic impurities
WO2022168570A1 (en) * 2021-02-05 2022-08-11 オルガノ株式会社 Ion exchange device and ultrapure water production apparatus
WO2022209392A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent
WO2022209233A1 (en) * 2021-03-31 2022-10-06 オルガノ株式会社 Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device
WO2023062925A1 (en) * 2021-10-14 2023-04-20 オルガノ株式会社 Acid solution purification method
CN113992895A (en) * 2021-10-27 2022-01-28 西安热工研究院有限公司 Resin conveying remote monitoring system and method of condensate polishing system
JP7421019B1 (en) 2022-10-06 2024-01-23 オルガノ株式会社 Method for producing cation exchange resin and method for purifying organic acid solution

Also Published As

Publication number Publication date
JP4441472B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4441472B2 (en) Method for reducing the amount of metal impurities contained in a cation exchange resin
CN111699040B (en) Method for purifying liquid to be treated
KR100361799B1 (en) Method and apparatus for regenerating photoresist developing waste liquid
JP5081690B2 (en) Production method of ultra pure water
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP2014100706A (en) Water treatment for particularly producing ultrapure water
JP2002052322A (en) Washing method
JP2004181351A (en) Method for refining non-aqueous liquid material
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JP2010234339A (en) Treatment liquid for refining crude ion exchange resin
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
WO2022209233A1 (en) Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device
WO2015016230A1 (en) Preparation method of aqueous tetraalkyl ammonium salt solution
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus
TW202402370A (en) Organic solvent purification method and purification device
JPH11128691A (en) Apparatus for regenerating and recovering photoresist developer
JP2023002284A (en) Operation control method for solution purification apparatus, operation control device, solution purification method, and solution purification apparatus
TW202216295A (en) Pure water production method and production device
JP2023137717A (en) Preparation method of mixed bed ion exchanger for purifying hydrogen peroxide water, and purification method of purifying hydrogen peroxide water
WO2020031616A1 (en) Method for removing microparticles in water
TW202302499A (en) Method for refining hydrolyzable organic solvent, and method for producing resin for refining hydrolyzable organic solvent
JPH01245893A (en) Method for making ultrapure water
JP2014036924A (en) Method for purifying an anion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250