JP2007116101A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2007116101A
JP2007116101A JP2006237158A JP2006237158A JP2007116101A JP 2007116101 A JP2007116101 A JP 2007116101A JP 2006237158 A JP2006237158 A JP 2006237158A JP 2006237158 A JP2006237158 A JP 2006237158A JP 2007116101 A JP2007116101 A JP 2007116101A
Authority
JP
Japan
Prior art keywords
positive
polarizable electrode
negative
activated carbon
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006237158A
Other languages
Japanese (ja)
Other versions
JP4952900B2 (en
Inventor
Hiroshi Yoshida
浩 吉田
Hidenori Nakada
英憲 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2006237158A priority Critical patent/JP4952900B2/en
Publication of JP2007116101A publication Critical patent/JP2007116101A/en
Application granted granted Critical
Publication of JP4952900B2 publication Critical patent/JP4952900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor having high capacitance retention, a low rate of increase in internal resistance and excellent durability, even if continuously charged with a high voltage applied thereon. <P>SOLUTION: The electric double layer capacitor is provided with a pair of current collectors; a positive polarizable electrode provided on one of the pair of current collectors, and configured so as to include activated carbon of a weight W<SB>+</SB>and having a capacitance C<SB>+</SB>; a negative polarizable electrode provided on the other of the pair of current collectors, and configured so as to include activated carbon of a weight W<SB>-</SB>and having a capacitance C<SB>-</SB>; a separator interposed between the positive and negative polarizable electrodes; and an organic electrolytic solution to be impregnated into at least the positive and negative polarizable electrodes and the separator. In the capacitor, the capacitance C<SB>+</SB>of the positive polarizable electrode and the capacitance C<SB>-</SB>of the negative polarizable electrode satisfy C<SB>-</SB>/C<SB>+</SB>=0.6 to 1.0, and the weight W<SB>+</SB>of the carbon included in the positive polarizable electrode and the weight W<SB>-</SB>of the carbon included in the negative polarizable electrode satisfy W<SB>-</SB>/W<SB>+</SB>=1.1 to 2.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor.

電気二重層キャパシタに蓄えられるエネルギーは、キャパシタに印加される電圧の2乗に比例する。このため、理論的には、キャパシタへの印加電圧を大きくすれば、キャパシタの貯蔵エネルギーを高めることができる。
しかし、従来の有機系電解液を用いた電気二重層キャパシタでは、2.5V程度以上の比較的高い電圧を印加すると、正負極ともに反応電位に達して電解液の分解が生じ、キャパシタの耐久性や、サイクル特性が低下するなどの問題があった。
この点に鑑み、正負の分極性電極の静電容量比を適正範囲に制御することで、正負極それぞれの反応電位(分解電位)に到達しない範囲内でキャパシタの定格電圧を高める方法が検討されている。
The energy stored in the electric double layer capacitor is proportional to the square of the voltage applied to the capacitor. Therefore, theoretically, if the voltage applied to the capacitor is increased, the stored energy of the capacitor can be increased.
However, in a conventional electric double layer capacitor using an organic electrolyte, when a relatively high voltage of about 2.5 V or more is applied, both the positive and negative electrodes reach the reaction potential, causing the electrolyte to decompose, and the durability of the capacitor In addition, there are problems such as deterioration of cycle characteristics.
In view of this point, a method for increasing the rated voltage of the capacitor within a range that does not reach the reaction potential (decomposition potential) of each of the positive and negative electrodes by controlling the capacitance ratio of the positive and negative polarizable electrodes within an appropriate range has been studied. ing.

例えば、特許文献1(特公平6−65206号公報)には、正負の分極性電極の静電容量を、電位−電流特性の0電位を基準にして正負極の反応電位比の逆比に合わせることで、電圧印加時に、正負極の反応電位に到達する時間が同じになるようにした電気二重層キャパシタが開示されている。
特許文献2(特開平8−107047号公報)には、正負の分極性電極に用いる活性炭の比表面積と、活性炭の重量比とを適正な範囲に制御した電気二重層キャパシタが開示されている。
特許文献3(特開平9−92583号公報)には、正負の分極性電極の目付け比を制御することにより、正負極それぞれに不可逆電流が発生する電位に応じて正負の分極性電極の静電容量比を決定した電気二重層キャパシタが開示されている。
For example, in Patent Document 1 (Japanese Patent Publication No. 6-65206), the capacitance of the positive and negative polarizable electrodes is adjusted to the inverse ratio of the reaction potential ratio of the positive and negative electrodes based on the zero potential of the potential-current characteristic. Thus, an electric double layer capacitor is disclosed in which the time to reach the reaction potential of the positive and negative electrodes is the same when a voltage is applied.
Patent Document 2 (Japanese Patent Laid-Open No. 8-107047) discloses an electric double layer capacitor in which the specific surface area of activated carbon used for positive and negative polarizable electrodes and the weight ratio of activated carbon are controlled within an appropriate range.
In Patent Document 3 (Japanese Patent Laid-Open No. 9-92583), by controlling the basis weight ratio of the positive and negative polarizable electrodes, the electrostatic potential of the positive and negative polarizable electrodes according to the potential at which an irreversible current is generated in each positive and negative electrode. An electric double layer capacitor having a determined capacitance ratio is disclosed.

特許文献4(特開平10−270293号公報)には、正負の分極性電極の面積を変えるなどにより、正負各極の静電容量を異ならせた電気二重層キャパシタが開示されている。
特許文献5(特開2000−188244号公報)には、分極性電極として使用する正極と負極との静電容量比が少なくとも1.5倍以上である電気二重層キャパシタが開示されている。
特許文献6(特開2003−289022号公報)には、正負の分極性電極の固体体積あるいは重量の配分の最適化を行った電気二重層キャパシタが開示されている。
Patent Document 4 (Japanese Patent Laid-Open No. 10-270293) discloses an electric double layer capacitor in which the positive and negative polarities are made different by changing the area of the positive and negative polarizable electrodes.
Patent Document 5 (Japanese Patent Laid-Open No. 2000-188244) discloses an electric double layer capacitor in which the capacitance ratio between the positive electrode and the negative electrode used as a polarizable electrode is at least 1.5 times or more.
Patent Document 6 (Japanese Patent Laid-Open No. 2003-289022) discloses an electric double layer capacitor in which the distribution of solid volume or weight of positive and negative polarizable electrodes is optimized.

ところで、従来の有機系電解液を用いた電気二重層キャパシタは、高電圧印加時に正極側が反応電位に先に到達することが知られている。
このため、上記特許文献1〜6のキャパシタにおいても、正極側活性炭の目付量を負極側のそれよりも大きくすることで、正極の静電容量を高めて正極分極電位を小さくし、結果として、正極側反応電位への到達を遅らせるという手法が採用されている。
しかし、正負極電位の制御は一過性であって、正負の分極性電極の静電容量比や、目付量比を正極過多にするだけで、必ずしも耐久性やサイクル特性に優れたキャパシタが得られるわけではない。
By the way, it is known that the electric double layer capacitor using the conventional organic electrolyte solution first reaches the reaction potential on the positive electrode side when a high voltage is applied.
For this reason, also in the capacitors of Patent Documents 1 to 6, by increasing the basis weight of the activated carbon on the positive electrode side than that on the negative electrode side, the capacitance of the positive electrode is increased and the positive electrode polarization potential is reduced. A technique of delaying the arrival at the positive electrode side reaction potential is employed.
However, the positive and negative electrode potentials are temporarily controlled. Capacitors with excellent durability and cycle characteristics are always obtained simply by increasing the capacitance ratio and the basis weight ratio of the positive and negative polarizable electrodes. It is not done.

また、特許文献7(特開平11−67608号公報参照)には、正負の分極性電極の活性炭として、それぞれ細孔径分布の異なるものを用いた電気二重層キャパシタが開示されている。
しかし、この技術では、用いられる電解質との関連性等の記載が無く、正負の細孔径分布の組み合わせと、キャパシタ特性について具体的に示唆するものではないうえに、正負各極に用いられる活性炭の目付量は同じである。
Further, Patent Document 7 (see Japanese Patent Application Laid-Open No. 11-67608) discloses an electric double layer capacitor using positive and negative polarizable electrodes having different pore diameter distributions.
However, in this technology, there is no description of the relationship with the electrolyte used, and it does not specifically suggest the combination of positive and negative pore size distribution and capacitor characteristics, and the activated carbon used for each positive and negative electrode The basis weight is the same.

いずれにしても、3V程度の高い電圧を印加して連続充電した場合に、容量低下および内部抵抗上昇が顕著に抑制された、耐久性に優れた電気二重層キャパシタは、現在のところ知られていない。   In any case, when the battery is continuously charged by applying a high voltage of about 3 V, an electric double layer capacitor excellent in durability in which a decrease in capacity and an increase in internal resistance are remarkably suppressed is currently known. Absent.

特公平6−65206号公報Japanese Examined Patent Publication No. 6-65206 特開平8−107047号公報JP-A-8-107047 特開平9−92583号公報JP-A-9-92583 特開平10−270293号公報Japanese Patent Laid-Open No. 10-270293 特開2000−188244号公報JP 2000-188244 A 特開2003−289022号公報JP 2003-289022 A 特開平11−67608号公報JP-A-11-67608

本発明は、このような事情に鑑みてなされたものであり、高電圧を印加した状態で連続充電した場合であっても、容量維持率が高く、かつ、内部抵抗上昇率が低い、耐久性に優れた電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of such circumstances, and even when continuously charged with a high voltage applied, the capacity retention rate is high and the internal resistance increase rate is low. An object of the present invention is to provide an electric double layer capacitor excellent in the above.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、正の分極性電極の静電容量と負の分極性電極の静電容量との比を所定の範囲に制御するとともに、正極側活性炭と負極側活性炭との質量比を所定の範囲に制御することで、高電圧を印加した状態で連続充電した場合であっても、容量維持率が高く、かつ、内部抵抗上昇率が低いという、極めて耐久性に優れた電気二重層キャパシタが得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have controlled the ratio of the capacitance of the positive polarizable electrode and the capacitance of the negative polarizable electrode to a predetermined range, By controlling the mass ratio of the positive electrode side activated carbon and the negative electrode side activated carbon to a predetermined range, even when continuously charged with a high voltage applied, the capacity retention rate is high and the internal resistance increase rate is The present inventors have found that an electric double layer capacitor having a low and extremely excellent durability can be obtained.

すなわち、本発明は、
1. 一対の集電体と、この一対の集電体の一方に設けられ、質量W+の活性炭を含んで構成された静電容量C+を有する正の分極性電極と、前記一対の集電体の他方に設けられ、質量W-の活性炭を含んで構成された静電容量C-を有する負の分極性電極と、これら正負の分極性電極間に介在するセパレータと、少なくとも前記正負の分極性電極およびセパレータに含浸する有機系電解液とを備え、前記正の分極性電極の静電容量C+と、前記負の分極性電極の静電容量C-とが、C-/C+=0.6〜1.0を満たし、かつ、前記正の分極性電極に含まれる活性炭の質量W+と、前記負の分極性電極に含まれる活性炭の質量W-とが、W-/W+=1.1〜2.0を満たすことを特徴とする電気二重層キャパシタ、
2. 前記有機系電解液が、少なくとも式(1)で示されるイオン液体を含む1の電気二重層キャパシタ、

Figure 2007116101
〔式中、R1〜R4は互いに同一もしくは異種の炭素数1〜5のアルキル基、またはR′−O−(CH2n−で表されるアルコキシアルキル基(R′はメチル基またはエチル基を示し、nは1〜4の整数である。)を示し、これらR1、R2、R3およびR4のいずれか2個の基が、Xとともに環を形成していても構わない。ただし、R1〜R4の内少なくとも1つは前記アルコキシアルキル基である。Xは窒素原子またはリン原子を示し、Yは一価のアニオンを示す。〕
3. 前記有機系電解液が、非水系有機溶媒を含む1または2の電気二重層キャパシタ、
4. 前記負の分極性電極に含まれる活性炭が、MP法により求めたマイクロ孔の細孔半径分布のピークが4.0×10-10〜1.0×10-9mの範囲内にある水蒸気賦活活性炭を主成分とする1〜3のいずれかの電気二重層キャパシタ、
5. 前記正の分極性電極に含まれる活性炭が、アルカリ賦活活性炭を主成分とする1〜4のいずれかの電気二重層キャパシタ
を提供する。 That is, the present invention
1. A pair of current collectors, a positive polarizable electrode provided on one of the pair of current collectors and having a capacitance C + configured to include activated carbon having a mass W + , and the pair of current collectors , A negative polarizable electrode having a capacitance C configured to include activated carbon having a mass W , a separator interposed between the positive and negative polarizable electrodes, and at least the positive and negative polarizability An organic electrolyte solution impregnated in the electrode and the separator, and a capacitance C + of the positive polarizable electrode and a capacitance C of the negative polarizable electrode are C / C + = 0 .6 to 1.0 and the mass W + of the activated carbon contained in the positive polarizable electrode and the mass W − of the activated carbon contained in the negative polarizable electrode are W / W + = An electric double layer capacitor satisfying 1.1 to 2.0,
2. 1 electric double layer capacitor in which the organic electrolytic solution contains at least an ionic liquid represented by the formula (1),
Figure 2007116101
[Wherein, R 1 to R 4 are the same or different alkyl groups having 1 to 5 carbon atoms, or an alkoxyalkyl group represented by R′—O— (CH 2 ) n — (R ′ is a methyl group or Represents an ethyl group, and n is an integer of 1 to 4 , and any two groups of R 1 , R 2 , R 3 and R 4 may form a ring together with X. Absent. However, at least one of R 1 to R 4 is the alkoxyalkyl group. X represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent anion. ]
3. 1 or 2 electric double layer capacitors in which the organic electrolyte contains a non-aqueous organic solvent,
4). The activated carbon contained in the negative polarizable electrode has a water vapor activation in which the peak of the pore radius distribution of the micropores determined by the MP method is in the range of 4.0 × 10 −10 to 1.0 × 10 −9 m. Any one of 1-3 electric double layer capacitors mainly composed of activated carbon,
5. The activated carbon contained in the said positive polarizable electrode provides the electric double layer capacitor in any one of 1-4 which has alkali activated carbon as a main component.

本発明によれば、高電圧を印加した状態で連続充電した場合であっても、容量維持率が高く、かつ、内部抵抗上昇率が低いという極めて耐久性に優れた電気二重層キャパシタを得ることができる。また、本発明の電気二重層キャパシタは、低温環境下での内部抵抗も低く、大電流充放電特性にも優れている。   According to the present invention, even when continuously charged with a high voltage applied, an electric double layer capacitor having a very high capacity maintenance rate and a low internal resistance increase rate can be obtained. Can do. In addition, the electric double layer capacitor of the present invention has low internal resistance in a low temperature environment, and is excellent in large current charge / discharge characteristics.

以下、本発明についてさらに詳しく説明する。
本発明に係る電気二重層キャパシタは、一対の集電体と、この一対の集電体の一方に設けられ、質量W+の活性炭を含んで構成された静電容量C+を有する正の分極性電極と、一対の集電体の他方に設けられ、質量W-の活性炭を含んで構成された静電容量C-を有する負の分極性電極と、これら正負の分極性電極間に介在するセパレータと、少なくとも正負の分極性電極およびセパレータに含浸する有機系電解液とを備え、正の分極性電極の静電容量C+と、負の分極性電極の静電容量C-とが、C-/C+=0.6〜1.0を満たし、かつ、正の分極性電極に含まれる活性炭の質量W+と、負の分極性電極に含まれる活性炭の質量W-とが、W-/W+=1.1〜2.0を満たす。
Hereinafter, the present invention will be described in more detail.
The electric double layer capacitor according to the present invention includes a pair of current collectors and a positive component having a capacitance C + provided on one of the pair of current collectors and including activated carbon having a mass W +. A polar polar electrode, a negative polarizable electrode provided on the other of the pair of current collectors and having a capacitance C configured to include activated carbon having a mass W , and interposed between the positive and negative polarizable electrodes A separator, at least a positive and negative polarizable electrode, and an organic electrolyte solution impregnated in the separator, wherein the positive polarizable electrode capacitance C + and the negative polarizable electrode capacitance C are C / C + = 0.6 to 1.0 and the mass W + of the activated carbon contained in the positive polarizable electrode and the mass W − of the activated carbon contained in the negative polarizable electrode are W −. / W + = 1.1 to 2.0 is satisfied.

本発明のキャパシタにおいて、正負の分極性電極の静電容量比C-/C+が0.6〜1.0の範囲を外れると、高電圧を印加した状態での連続充電後の静電容量維持率が低下したり、内部抵抗が上昇したりするなど、キャパシタの耐久性が不十分となる。好ましくはC-/C+=0.67〜0.97、さらに好ましくは0.70〜0.95である。
なお、正の分極性電極の静電容量C+と、負の分極性電極の静電容量C-とは、電気二重層キャパシタに、Ag/Ag+イオン参照極等の参照極を組み込み、一時間率に相当する電流値で定格電圧から0Vまで定電流放電を行った際の、正負ごとの放電曲線の傾きから算出する。
In the capacitor of the present invention, when the capacitance ratio C / C + of the positive and negative polarizable electrodes is out of the range of 0.6 to 1.0, the capacitance after continuous charging with a high voltage applied The durability of the capacitor becomes inadequate, for example, the maintenance ratio decreases or the internal resistance increases. Preferably it is C < - > / C <+> = 0.67-0.97, More preferably, it is 0.70-0.95.
The electrostatic capacity C + of the positive polarizable electrode and the electrostatic capacity C of the negative polarizable electrode are obtained by incorporating a reference electrode such as an Ag / Ag + ion reference electrode into the electric double layer capacitor. It is calculated from the slope of the discharge curve for each positive and negative when a constant current discharge is performed from the rated voltage to 0 V at a current value corresponding to the time rate.

また、本発明のキャパシタでは、正負の分極性電極に用いられる活性炭の質量比W-/W+が1.1〜2.0の範囲を外れても、十分な耐久性を有するキャパシタを得ることができない。好ましくはW-/W+=1.2〜1.9、さらに好ましくは1.3〜1.8である。
なお、正の分極性電極に含まれる活性炭質量W+と、負の分極性電極に含まれる活性炭質量W-とは、電気二重層キャパシタに含まれる、正負それぞれの分極性電極中に含まれる活性炭質量の総量を表し、集電体の両面に形成された最外層の分極性電極中の活性炭もこれに含まれる。
In addition, in the capacitor of the present invention, a capacitor having sufficient durability can be obtained even when the mass ratio W / W + of the activated carbon used for the positive and negative polarizable electrodes is out of the range of 1.1 to 2.0. I can't. Preferably it is W < - > / W <+> = 1.2-1.9, More preferably, it is 1.3-1.8.
The activated carbon mass W + contained in the positive polarizable electrode and the activated carbon mass W contained in the negative polarizable electrode are the activated carbon contained in the positive and negative polarizable electrodes contained in the electric double layer capacitor. This represents the total amount of mass and includes the activated carbon in the outermost polarizable electrode formed on both sides of the current collector.

[負の分極性電極に用いられる活性炭]
負の分極性電極の活性炭(以下、負極活性炭という)としては、電気二重層キャパシタに一般に用いられる活性炭を任意に選択して使用できるが、水蒸気賦活により得られ、かつMP法により求めたマイクロ孔の細孔半径分布のピークが4.0×10-10〜1.0×10-9m(4.0〜10Å)の範囲内にある活性炭を主成分とするものが好ましい。このピークが4.0×10-10m未満であると、大電流充放電特性が低下するとともに、低温下での充放電特性が悪くなる虞がある。一方、1.0×10-9mを超えると、活性炭の比表面積を大きく保つことが困難で、比表面積が小さくなって静電容量が低下する虞がある。
[Activated carbon used for negative polarizable electrodes]
As the activated carbon of the negative polarizable electrode (hereinafter referred to as negative activated carbon), activated carbon generally used for electric double layer capacitors can be arbitrarily selected and used, but the micropores obtained by steam activation and obtained by the MP method can be used. It is preferable that the main component is activated carbon having a pore radius distribution peak of 4.0 × 10 −10 to 1.0 × 10 −9 m (4.0 to 10 cm). When this peak is less than 4.0 × 10 −10 m, the large current charge / discharge characteristics may be deteriorated, and the charge / discharge characteristics at low temperatures may be deteriorated. On the other hand, if it exceeds 1.0 × 10 −9 m, it is difficult to keep the specific surface area of the activated carbon large, and there is a possibility that the specific surface area becomes small and the capacitance decreases.

特に、上記ピークが、4.5×10-10〜9.0×10-10m(4.5〜9.0Å)の範囲内であることが好ましく、5.0×10-10〜8.0×10-10m(5.0〜8.0Å)の範囲内であることがより好ましい。
なお、「主成分」とは、当該活性炭が、50質量%超含まれることを意味するが、上述の大電流充放電特性などを考慮すると、当該活性炭が60質量%以上、好ましくは80質量%以上含まれることが好ましく、さらには全て(100質量%)が当該活性炭であることが最適である。
In particular, the peak is preferably in the range of 4.5 × 10 −10 to 9.0 × 10 −10 m (4.5 to 9.0 cm), and 5.0 × 10 −10 to 8. More preferably, it is in the range of 0 × 10 −10 m (5.0 to 8.0 mm).
The “main component” means that the activated carbon is contained in an amount exceeding 50% by mass. However, in consideration of the above-described large current charge / discharge characteristics, the activated carbon is 60% by mass or more, preferably 80% by mass. It is preferable to be contained above, and it is optimal that all (100% by mass) is the activated carbon.

なお、MP(Micropore)法とは、具体的には、DE BOERの式(文献1)を用いて相対圧から吸着層の厚みを算出し、吸着層の厚みと沸点−195.8℃における窒素ガスの吸着量との相関図(t−プロット)を作成し、この相関図の各点での接線の傾きの変化量から区間毎の表面積を算出し、この表面積の変化量から細孔容積を求める方法である(文献2)。
文献1:J.C.P.BROEKHOFF,J.H.DE BOER,[J.CATALYSIS] 9,15(1967)
文献2:R.SH.MIKHAIL,S.BRUNAUER,E.E.BODOR,[JOURNAL OF COLLOID AND INTERFACE SCIENCE]26,45−53(1968)
The MP (Micropore) method specifically refers to the calculation of the thickness of the adsorption layer from the relative pressure using the DE BOER equation (Reference 1), and the thickness of the adsorption layer and the nitrogen at a boiling point of −195.8 ° C. Create a correlation diagram (t-plot) with the amount of gas adsorption, calculate the surface area of each section from the amount of change in the tangential slope at each point of this correlation diagram, and calculate the pore volume from the amount of change in this surface area. This is a method of obtaining (Reference 2).
Reference 1: J. C. P. BROEKHOFF, J.H. H. DE BOER, [J. CATALYSIS] 9, 15 (1967)
Reference 2: R.A. SH. MIKHAIL, S.M. BRUNAUER, E.I. E. BODOR, [JOURNAL OF COLORID AND INTERFACE SCIENCE] 26, 45-53 (1968)

負極活性炭の原料としては、特に限定されるものではないが、水蒸気賦活により得られ、かつMP法により求めたマイクロ孔の細孔半径分布を上記範囲内とし得るものが好ましい。このような活性炭原料の具体例としては、ヤシ殻、コーヒー豆、竹、木屑、石炭系ピッチ、石油系ピッチ、コークス、メソフェーズカーボン、フェノール樹脂、塩化ビニル樹脂等種々の原料を用いることができるが、ヤシ殻、フェノール樹脂等の難黒鉛化性カーボン由来のものが、分極性電極の調製に適しており、得られるキャパシタの耐久性が向上する。   Although it does not specifically limit as a raw material of negative electrode activated carbon, The thing obtained by water vapor | steam activation and the pore radius distribution of the micropore calculated | required by MP method in the said range is preferable. As specific examples of such activated carbon raw materials, various raw materials such as coconut shells, coffee beans, bamboo, wood chips, coal pitch, petroleum pitch, coke, mesophase carbon, phenol resin, vinyl chloride resin can be used. Those derived from non-graphitizable carbon such as coconut shell and phenol resin are suitable for preparing a polarizable electrode, and the durability of the obtained capacitor is improved.

また、本発明の負極活性炭は、BET比表面積1500〜2500m2/g、全細孔容積0.8〜1.5mL/g、分極性電極に用いる際の50%粒径3.0〜15.0μmのものが好適である。
BET比表面積が1500m2/g未満であると、十分な静電容量が得られない虞があり、2500m2/gを超えると、得られる分極性電極の密度が低下する虞がある。より好ましいBET比表面積の範囲は、1700〜2200m2/g、特に、1800〜2100m2/gである。
全細孔容積が0.8mL/g未満であると、十分な静電容量を得ることができない虞があり、1.5mL/gを超えると、メソ孔やマクロ孔が増大して得られる分極性電極の密度が低下する結果、容積あたりの静電容量が低減する虞がある。
分極性電極に用いる際の50%粒径が3.0μm未満であると、分極性電極の密度が低下する虞があり、15.0μmを超えると、電極抵抗が増大する虞がある。より好ましい50%粒径の範囲は、5.0〜13.0μm、特に、7.0〜11.0μmである。
The negative active carbon of the present invention has a BET specific surface area of 1500 to 2500 m 2 / g, a total pore volume of 0.8 to 1.5 mL / g, and a 50% particle size of 3.0 to 15 when used for a polarizable electrode. The thing of 0 micrometer is suitable.
If the BET specific surface area is less than 1500 m 2 / g, sufficient electrostatic capacity may not be obtained, and if it exceeds 2500 m 2 / g, the density of the polarizable electrode obtained may be reduced. A more preferable range of the BET specific surface area is 1700 to 2200 m 2 / g, particularly 1800 to 2100 m 2 / g.
If the total pore volume is less than 0.8 mL / g, sufficient electrostatic capacity may not be obtained. If the total pore volume exceeds 1.5 mL / g, mesopores and macropores are increased. As a result of the decrease in the density of the polar electrodes, the capacitance per volume may be reduced.
If the 50% particle size when used for a polarizable electrode is less than 3.0 μm, the density of the polarizable electrode may decrease, and if it exceeds 15.0 μm, the electrode resistance may increase. A more preferable range of the 50% particle size is 5.0 to 13.0 μm, particularly 7.0 to 11.0 μm.

[正の分極性電極に用いられる活性炭]
正の分極性電極の活性炭(以下、正極活性炭という)としては、電気二重層キャパシタに一般に用いられる活性炭を任意に選択して使用できるが、アルカリ賦活により得られる活性炭を主成分とするものが、静電容量密度が大きく、キャパシタの出力密度、エネルギー密度を高くできることから好ましい。
なお、この場合も「主成分」とは、当該活性炭が、50質量%超含まれることを意味するが、上述のキャパシタのエネルギー密度の向上などを考慮すると、当該活性炭が60質量%以上、好ましくは80質量%以上含まれることが好ましく、さらには全て(100質量%)が当該活性炭であることが最適である。
正極活性炭の原料としては、特に限定されるものではないが、アルカリ賦活により活性炭が得られるものが好ましく、例えば、石炭系ピッチ、石油系ピッチ、コークス、メソフェーズカーボン、フェノール樹脂、塩化ビニル樹脂等の種々の原料を用いることができる。
[Activated carbon used for positive polarizable electrodes]
As the activated carbon of the positive polarizable electrode (hereinafter referred to as positive electrode activated carbon), activated carbon generally used for electric double layer capacitors can be arbitrarily selected and used, but the main component is activated carbon obtained by alkali activation. This is preferable because the capacitance density is large and the output density and energy density of the capacitor can be increased.
In this case as well, the term “main component” means that the activated carbon is contained in an amount exceeding 50% by mass, but considering the improvement of the energy density of the above-mentioned capacitor, the activated carbon is preferably 60% by mass or more, preferably Is preferably contained in an amount of 80% by mass or more, and most preferably (100% by mass) is the activated carbon.
The raw material for the positive electrode activated carbon is not particularly limited, but those from which activated carbon can be obtained by alkali activation are preferable, such as coal pitch, petroleum pitch, coke, mesophase carbon, phenol resin, vinyl chloride resin, etc. Various raw materials can be used.

また、本発明の正極活性炭は、BET比表面積1800〜2500m2/g、全細孔容積0.8〜1.5mL/g、分極性電極に用いる際の50%粒径3.0〜15.0μmのものが好適である。
BET比表面積が1800m2/g未満であると、十分な静電容量が得られない虞があり、2500m2/gを超えると、得られる分極性電極の密度が低下する虞がある。より好ましいBET比表面積の範囲は、1900〜2400m2/g、特に2000〜2300m2/gである。
全細孔容積が0.8mL/g未満であると、十分な静電容量を得ることができない虞があり、1.5mL/gを超えると、メソ孔やマクロ孔が増大して得られる分極性電極の密度が低下する結果、容積あたりの静電容量が低減する虞がある。
分極性電極に用いる際の50%粒径が3.0μm未満であると、分極性電極の密度が低下する虞があり、15.0μmを超えると、電極抵抗が増大する虞がある。より好ましい50%粒径の範囲は、5.0〜13.0μm、特に7.0〜11.0μmである。
The positive electrode activated carbon of the present invention has a BET specific surface area of 1800-2500 m 2 / g, a total pore volume of 0.8-1.5 mL / g, and a 50% particle size of 3.0-15. The thing of 0 micrometer is suitable.
If the BET specific surface area is less than 1800 m 2 / g, sufficient electrostatic capacity may not be obtained, and if it exceeds 2500 m 2 / g, the density of the polarizable electrode obtained may be reduced. A more preferable range of the BET specific surface area is 1900 to 2400 m 2 / g, particularly 2000 to 2300 m 2 / g.
If the total pore volume is less than 0.8 mL / g, sufficient electrostatic capacity may not be obtained. If the total pore volume exceeds 1.5 mL / g, mesopores and macropores are increased. As a result of the decrease in the density of the polar electrodes, the capacitance per volume may be reduced.
If the 50% particle size when used for a polarizable electrode is less than 3.0 μm, the density of the polarizable electrode may decrease, and if it exceeds 15.0 μm, the electrode resistance may increase. A more preferable range of the 50% particle size is 5.0 to 13.0 μm, particularly 7.0 to 11.0 μm.

[分極性電極]
本発明の電気二重層キャパシタの分極性電極は、上述した活性炭とバインダとを混合分散した状態で、集電体の両面または片面に塗布などの方法によって形成される。この際、正負の分極性電極に用いる活性炭を選定し、さらに各分極性電極中の活性炭質量を調製することで、上述の(C-/C+)および(W-/W+)を適正な範囲に制御する。
分極性電極の電極密度は特に制限はないが、0.4〜0.6g/cm3が好ましく、0.45〜0.57g/cm3がより好ましい。電極密度が0.4g/cm3より小さいと、キャパシタのエネルギー密度が小さくなる虞があり、0.6g/cm3より大きいと、電解液の存在する空間が少なくなり、大電流充放電特性が低下する虞がある。なお、電極密度とは、分極性電極の乾燥時質量を、分極性電極の面積、厚みから算出した見かけ体積で割り返した数値である。
また、集電体上に形成された片面の分極性電極の厚みは、20〜200μmが好ましく、より好ましくは30〜150μm、さらに好ましくは40〜120μmである。
[Polarizable electrode]
The polarizable electrode of the electric double layer capacitor of the present invention is formed by a method such as coating on the both surfaces or one surface of the current collector in a state where the activated carbon and the binder described above are mixed and dispersed. At this time, the activated carbon used for the positive and negative polarizable electrodes is selected, and the mass of the activated carbon in each polarizable electrode is prepared, so that the above (C / C + ) and (W / W + ) are appropriately set. Control to range.
Electrode density of the polarizable electrode is not particularly limited, preferably 0.4~0.6g / cm 3, 0.45~0.57g / cm 3 is more preferable. If the electrode density is less than 0.4 g / cm 3 , the energy density of the capacitor may be reduced. If the electrode density is greater than 0.6 g / cm 3 , the space in which the electrolyte exists is reduced, resulting in large current charge / discharge characteristics. May decrease. The electrode density is a numerical value obtained by dividing the dry mass of the polarizable electrode by the apparent volume calculated from the area and thickness of the polarizable electrode.
The thickness of the single-sided polarizable electrode formed on the current collector is preferably 20 to 200 μm, more preferably 30 to 150 μm, and still more preferably 40 to 120 μm.

集電体としては、電気二重層キャパシタに一般に用いられるものを任意に選択して使用できるが、アルミニウム箔、特に表面をエッチング処理したアルミニウム箔を用いることが好ましい。また、負の集電体に関しては、上記に加えて、銅箔、ニッケル箔または表面が銅めっき膜もしくはニッケルめっき膜にて形成された金属箔を用いても構わない。
上記集電体を構成する箔の形状としては、一般的な箔状、孔が形成されたメッシュ状、立体的な網目状等の各種形状を適宜採用できる。また、集電体の厚みは、通常、10〜200μm程度であるが、集電体の導電性および強度等を考慮すると、15〜100μmが好ましく、20〜70μmがより好ましい。
As the current collector, those generally used for electric double layer capacitors can be arbitrarily selected and used, but it is preferable to use an aluminum foil, particularly an aluminum foil whose surface is subjected to etching treatment. Further, regarding the negative current collector, in addition to the above, a copper foil, a nickel foil, or a metal foil whose surface is formed of a copper plating film or a nickel plating film may be used.
As the shape of the foil constituting the current collector, various shapes such as a general foil shape, a mesh shape in which holes are formed, and a three-dimensional mesh shape can be appropriately employed. The thickness of the current collector is usually about 10 to 200 μm, but considering the conductivity and strength of the current collector, it is preferably 15 to 100 μm and more preferably 20 to 70 μm.

バインダとしては、公知の種々のバインダを使用することができ、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアミドイミド、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。中でも、分極性電極の塗工性、集電体への結着力、耐久末期の電極抵抗から、ポリフッ化ビニリデン、ポリアミドイミドが好ましい。
これらのバインダの添加量は、活性炭100質量部に対して、0.5〜20質量部、特に、1〜10質量部であることが好ましい。
As the binder, various known binders can be used. For example, polytetrafluoroethylene, polyvinylidene fluoride, polyamideimide, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, polyvinyl alcohol, polyacrylic acid, polyimide, and the like. These can be used alone or in combination of two or more. Among these, polyvinylidene fluoride and polyamideimide are preferable from the viewpoints of the applicability of the polarizable electrode, the binding force to the current collector, and the electrode resistance at the end of durability.
The added amount of these binders is preferably 0.5 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the activated carbon.

本発明の分極性電極には導電剤を添加することもできる。導電剤としては、分極性電極に導電性を付与できるものであれば特に限定はなく、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、カーボンナノチューブ等のナノカーボン材料、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、並びにアルミニウム,チタン,ニッケル等の金属ファイバおよび金属微粒子などが挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、カーボンブラックの一種であるケッチェンブラック、アセチレンブラックが好ましい。   A conductive agent can also be added to the polarizable electrode of the present invention. The conductive agent is not particularly limited as long as it can impart conductivity to the polarizable electrode. For example, nanocarbon materials such as carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, and carbon nanotube, natural carbon Examples thereof include graphite, artificial graphite, titanium oxide, ruthenium oxide, metal fibers such as aluminum, titanium, and nickel, and metal fine particles. One of these can be used alone, or two or more can be used in combination. Among these, ketjen black and acetylene black which are a kind of carbon black are preferable.

導電剤の平均粒径は、特に限定されるものではなく、通常、10nm〜10μm、好ましくは10〜100nm、より好ましくは20〜40nmであり、特に、活性炭の平均粒径の1/5000〜1/2、特に1/1000〜1/10であることが好ましい。
また、その添加量も、特に限定されるものではないが、静電容量および導電性付与効果等を考慮すると、活性炭100質量部に対して0.1〜20質量部、好ましくは0.5〜10質量部である。
なお、活性炭、バインダ、および必要に応じて添加される導電剤からなる分極性電極用組成物の調製法には、特に制限はなく、例えば、活性炭、導電剤およびバインダを、バインダが可溶の溶媒の存在下で混合して溶液状に調製する方法が挙げられる。
The average particle diameter of the conductive agent is not particularly limited, and is usually 10 nm to 10 μm, preferably 10 to 100 nm, more preferably 20 to 40 nm, and particularly 1/5000 to 1 of the average particle diameter of the activated carbon. / 2, particularly preferably 1/1000 to 1/10.
Also, the amount of addition is not particularly limited, but considering the capacitance, the effect of imparting conductivity, etc., 0.1 to 20 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of activated carbon. 10 parts by mass.
In addition, there is no restriction | limiting in particular in the preparation method of the composition for polarizable electrodes consisting of activated carbon, a binder, and the electrically conductive agent added as needed, For example, activated carbon, a conductive agent, and a binder are binder-soluble. The method of mixing in presence of a solvent and preparing in a solution form is mentioned.

[セパレータ]
本発明の電気二重層キャパシタのセパレータとしては、電気二重層キャパシタ用のセパレータとして一般に用いられているものが挙げられ、例えば、ガラス繊維、ポリオレフィン、ポリアミドイミド、ポリエステル、フッ素樹脂、セルロース系材料などから構成されるものが挙げられる。具体的には、ポリエチレン,ポリプロピレン等のポリオレフィン、ポリアミドイミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からなる多孔体フィルム;ポリオレフィン,ポリエステルの不織布;ガラス繊維シート;セルロース紙等を使用することができる。絶縁性の無機微粒子や無機フィラーを含むものを用いてもよい。なお、電解液中のイオン量が大きい場合は、セルロース系以外の材料からなるセパレータを用いることが好ましい。
[Separator]
Examples of the separator for the electric double layer capacitor of the present invention include those generally used as a separator for an electric double layer capacitor. For example, glass fiber, polyolefin, polyamideimide, polyester, fluororesin, cellulose-based material, etc. What is composed is mentioned. Specifically, a porous film made of polyolefin such as polyethylene or polypropylene, polyamideimide, polyvinylidene fluoride, polytetrafluoroethylene, or the like; a nonwoven fabric of polyolefin or polyester; a glass fiber sheet; cellulose paper or the like can be used. You may use the thing containing an insulating inorganic fine particle and an inorganic filler. In addition, when the amount of ions in the electrolytic solution is large, it is preferable to use a separator made of a material other than cellulose.

なお、本発明の電気二重層キャパシタは、正の分極性電極の空隙容積をV+、負の分極性電極の空隙容積をV-、セパレータの空隙容積をVsとした場合に、(V++V-)/Vsが、2.0〜4.0を満たすことが好ましく、2.5〜3.5を満たすことが好ましく、V-/V+が、1.0〜2.5を満たすことが好ましく、1.3〜2.0を満たすことがより好ましい。
空隙容積を上記の範囲に調節することで、高電圧印加時の耐久性、大電流充放電特性、およびサイクル特性などをより一層高めることができる。
Note that the electric double layer capacitor of the present invention has a positive polarizable electrode void volume of V + , a negative polarizable electrode void volume of V , and a separator void volume of V s (V + + V ) / V s preferably satisfies 2.0 to 4.0, preferably satisfies 2.5 to 3.5, and V / V + satisfies 1.0 to 2.5. It is more preferable that 1.3 to 2.0 is satisfied.
By adjusting the void volume to the above range, durability at the time of applying a high voltage, large current charge / discharge characteristics, cycle characteristics, and the like can be further enhanced.

[有機系電解液]
本発明の電気二重層キャパシタの有機系電解液は、一般式(1)で示されるイオン液体のみか、電解質(イオン液体でもよい)を非水系有機溶媒に溶解させたものからなる。
[Organic electrolyte]
The organic electrolytic solution of the electric double layer capacitor of the present invention consists of only the ionic liquid represented by the general formula (1) or a solution obtained by dissolving an electrolyte (or ionic liquid) in a non-aqueous organic solvent.

Figure 2007116101
〔式中、R1〜R4は互いに同一もしくは異種の炭素数1〜5のアルキル基、またはR′−O−(CH2n−で表されるアルコキシアルキル基(R′はメチル基またはエチル基を示し、nは1〜4の整数である。)を示し、これらR1、R2、R3およびR4のいずれか2個の基が、Xとともに環を形成していても構わない。ただし、R1〜R4の内少なくとも1つは前記アルコキシアルキル基である。Xは窒素原子またはリン原子を示し、Yは一価のアニオンを示す。〕
Figure 2007116101
[Wherein, R 1 to R 4 are the same or different alkyl groups having 1 to 5 carbon atoms, or an alkoxyalkyl group represented by R′—O— (CH 2 ) n — (R ′ is a methyl group or Represents an ethyl group, and n is an integer of 1 to 4 , and any two groups of R 1 , R 2 , R 3 and R 4 may form a ring together with X. Absent. However, at least one of R 1 to R 4 is the alkoxyalkyl group. X represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent anion. ]

ここで、炭素数1〜5のアルキル基としては、メチル基、エチル基、プロピル基、2−プロピル基、ブチル基、ペンチル基等が挙げられる。R′−O−(CH2n−で表されるアルコキシアルキル基としては、メトキシまたはエトキシメチル基、メトキシまたはエトキシエチル基、メトキシまたはエトキシプロピル基、メトキシまたはエトキシブチル基が挙げられる。
また、R1、R2、R3およびR4のいずれか2個の基が環を形成している化合物としては、Xに窒素原子を採用した場合には、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環等を有する4級アンモニウム塩、一方、Xにリン原子を採用した場合には、ペンタメチレンホスフィン(ホスホリナン)環等を有する4級ホスホニウム塩等が挙げられる。
好ましいカチオンとしては、ジエチル(2−メトキシエチル)メチルアンモニウムカチオン、N−(2−メトキシエチル)−N−メチルピロリジニウムカチオンが挙げられる。
Here, examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, a 2-propyl group, a butyl group, and a pentyl group. Examples of the alkoxyalkyl group represented by R′—O— (CH 2 ) n — include a methoxy or ethoxymethyl group, a methoxy or ethoxyethyl group, a methoxy or ethoxypropyl group, and a methoxy or ethoxybutyl group.
In addition, as a compound in which any two groups of R 1 , R 2 , R 3 and R 4 form a ring, when a nitrogen atom is employed for X, an aziridine ring, an azetidine ring, a pyrrolidine ring And quaternary ammonium salts having a piperidine ring, etc., on the other hand, when a phosphorus atom is employed for X, quaternary phosphonium salts having a pentamethylenephosphine (phosphorinane) ring and the like can be mentioned.
Preferred cations include diethyl (2-methoxyethyl) methylammonium cation and N- (2-methoxyethyl) -N-methylpyrrolidinium cation.

イオン液体を構成するアニオンとしては、特に限定されるものではなく、BF4 -、CF3BF3 -、C25BF3 -、PF6 -、AsF6 -、SbF6 -、AlCl4 -、HSO4 -、ClO4 -、CH3SO3 -、CF3SO3 -、CF3CO2 -、(CF3SO22-、Cl-、Br-、I-等のアニオンを用いることができる。
好ましいイオン液体としては、ジエチル(2−メトキシエチル)メチルアンモニウムテトラフルオロボレート、N−(2−メトキシエチル)−N−メチルピロリジニウムテトラフルオロボレート、ジエチル(2−メトキシエチル)メチルアンモニウムトリフルオロメチルトリフルオロボレート、N−(2−メトキシエチル)−N−メチルピロリジニウムトリフルオロメチルトリフルオロボレート、ジエチル(2−メトキシエチル)メチルアンモニウムペンタフルオロエチルトリフルオロボレート、N−(2−メトキシエチル)−N−メチルピロリジニウムトリフルオロメチルペンタフルオロエチルトリフルオロボレート等が挙げられる。なお、イオン液体は、1種単独でまたは2種以上混合して用いることができる。
The anion constituting the ionic liquid is not particularly limited, and BF 4 , CF 3 BF 3 , C 2 F 5 BF 3 , PF 6 , AsF 6 , SbF 6 , AlCl 4 , HSO 4 , ClO 4 , CH 3 SO 3 , CF 3 SO 3 , CF 3 CO 2 , (CF 3 SO 2 ) 2 N , Cl , Br , I − and the like are used. be able to.
Preferred ionic liquids include diethyl (2-methoxyethyl) methylammonium tetrafluoroborate, N- (2-methoxyethyl) -N-methylpyrrolidinium tetrafluoroborate, diethyl (2-methoxyethyl) methylammonium trifluoromethyl. Trifluoroborate, N- (2-methoxyethyl) -N-methylpyrrolidinium trifluoromethyl trifluoroborate, diethyl (2-methoxyethyl) methylammonium pentafluoroethyl trifluoroborate, N- (2-methoxyethyl) -N-methylpyrrolidinium trifluoromethylpentafluoroethyl trifluoroborate and the like. In addition, an ionic liquid can be used individually by 1 type or in mixture of 2 or more types.

非水系有機溶媒としては、電解質の溶解能を有し、分子径が小さく、電気二重層キャパシタの作動電圧範囲で安定なものであれば、特に限定はないが、誘電率が大きく、電気化学的安定範囲が広いものであるとともに、使用温度範囲が広く安全性に優れているものが好ましい。
具体的には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、アセトニトリル、スルホラン、メチルスルホラン、2,4−ジメチルスルホラン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチルジオキソランなどが挙げられ、これらの溶媒の中から1種を単独でまたは2種以上を混合して用いることができる。
The non-aqueous organic solvent is not particularly limited as long as it has the ability to dissolve an electrolyte, has a small molecular diameter, and is stable in the operating voltage range of the electric double layer capacitor. A wide stability range and a wide use temperature range and excellent safety are preferable.
Specifically, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, acetonitrile, sulfolane, methyl sulfolane, 2,4-dimethyl sulfolane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3- Examples thereof include dioxolane and 4-methyldioxolane. Among these solvents, one kind can be used alone, or two or more kinds can be mixed and used.

これらの中でも、特に、−20℃以下という極低温においても電解質塩の溶解性が高く、電気的性能に優れ、かつ、高温下での使用時に引火点が比較的高いという点から、プロピレンカーボネートを用いることが好ましい。
なお、本発明の電気二重層キャパシタに用いられる有機系電解液には、界面活性剤、分解抑制剤、脱水剤、ハロゲン除去剤、難燃剤等の一般的に有機系電解液に用いられる各種添加剤を配合することができる。これらの添加剤の配合量は、特に限定されるものではないが、有機系電解液に対し、通常、20質量%以下とされる。
Among these, in particular, propylene carbonate is used from the viewpoint that the solubility of the electrolyte salt is high even at an extremely low temperature of −20 ° C. or less, the electrical performance is excellent, and the flash point is relatively high when used at a high temperature. It is preferable to use it.
The organic electrolyte used in the electric double layer capacitor of the present invention includes various additives commonly used in organic electrolytes such as surfactants, decomposition inhibitors, dehydrating agents, halogen removers, and flame retardants. An agent can be blended. Although the compounding quantity of these additives is not specifically limited, Usually, it is 20 mass% or less with respect to organic electrolyte solution.

電解質としては、上記式(1)で示されるイオン液体、特開平11−54375号公報に記載されているようなその他のイオン液体、または通常電気二重層キャパシタ用の結晶性電解質として知られている各種電解質を使用することができるが、イオン液体の場合、耐電圧、溶媒への溶解性、イオン伝導度から上記式(1)のイオン液体が好適である。
この場合、上記式(1)で示されるイオン液体は、キャパシタの低温特性を考慮すると、融点が25℃以下であることが好ましい。なお、式(1)で示される好適なイオン液体は上述のとおりである。
また、結晶性電解質としては、テトラエチルアンモニウム、テトラブチルアンモニウム、トリエチルメチルアンモニウム等の四級アンモニウムのBF4塩、PF6塩、ClO4塩、CF3SO3塩、N(CF3SO22塩等が挙げられ、陽イオン径が陰イオン径よりも大きい塩が好ましい。
As the electrolyte, it is known as an ionic liquid represented by the above formula (1), other ionic liquids as described in JP-A-11-54375, or a crystalline electrolyte for an electric double layer capacitor. Various electrolytes can be used. In the case of an ionic liquid, the ionic liquid represented by the above formula (1) is preferable in terms of withstand voltage, solubility in a solvent, and ionic conductivity.
In this case, the ionic liquid represented by the above formula (1) preferably has a melting point of 25 ° C. or lower in consideration of the low temperature characteristics of the capacitor. In addition, the suitable ionic liquid shown by Formula (1) is as above-mentioned.
As the crystalline electrolyte, BF 4 salt, PF 6 salt, ClO 4 salt, CF 3 SO 3 salt, N (CF 3 SO 2 ) 2 of quaternary ammonium such as tetraethylammonium, tetrabutylammonium and triethylmethylammonium. A salt etc. are mentioned, The salt whose cation diameter is larger than an anion diameter is preferred.

本発明において、有機系電解液の電解質濃度は0.9〜1.8モル/Lが好ましく、1.0〜1.5モル/Lがより好ましく、1.1〜1.3モル/Lがより一層好ましい。電解質濃度が、0.9〜1.8モル/Lの範囲外であると、電解液のイオン伝導が小さくなり、大電流放電時、特に低温下での大電流放電時の直流抵抗が増大する場合がある。   In the present invention, the electrolyte concentration of the organic electrolyte is preferably 0.9 to 1.8 mol / L, more preferably 1.0 to 1.5 mol / L, and 1.1 to 1.3 mol / L. Even more preferred. When the electrolyte concentration is out of the range of 0.9 to 1.8 mol / L, the ionic conduction of the electrolytic solution decreases, and the direct current resistance increases during large current discharge, particularly during large current discharge at low temperatures. There is a case.

[電気二重層キャパシタ]
本発明の電気二重層キャパシタの構造および形態は、一対の集電体、正負の各分極性電極、これら電極間に介在するセパレータ、並びに少なくとも正負各分極性電極およびセパレータに含浸する有機系電解液を備えて構成されるものであれば、特に限定されるものではなく、図1に示されるようないわゆる積層型のキャパシタや、コイン型のキャパシタなど、公知の種々の構造を採用できる。
本発明の電気二重層キャパシタの実施の一形態を、図1,2を参照しつつ説明すると、電気二重層キャパシタ1は、外装容器10と、この外装容器10内に収納された電極群11と、少なくともこの電極群11に含浸する有機系電解液(図示省略)とを備えて構成されている。
なお、有機系電解液は少なくとも電極群に含浸していればよく、例えば、有機系電解液が、電極群がこれに浸る程度に外装容器内に満たされていてもよい。
[Electric double layer capacitor]
The structure and form of the electric double layer capacitor of the present invention includes a pair of current collectors, positive and negative polarizable electrodes, a separator interposed between these electrodes, and an organic electrolyte that impregnates at least the positive and negative polarizable electrodes and the separator. 1 is not particularly limited, and various known structures such as a so-called multilayer capacitor and a coin capacitor as shown in FIG. 1 can be adopted.
An embodiment of the electric double layer capacitor of the present invention will be described with reference to FIGS. 1 and 2. The electric double layer capacitor 1 includes an outer container 10 and an electrode group 11 housed in the outer container 10. In addition, at least the electrode group 11 is impregnated with an organic electrolyte solution (not shown).
The organic electrolytic solution only needs to be impregnated into at least the electrode group. For example, the organic electrolytic solution may be filled in the exterior container to such an extent that the electrode group is immersed therein.

電極群11は、図2に示されるように、正の分極性電極構造体11Aおよび負の分極性電極構造体11Bが、セパレータ11Cを介して複数枚積層されたものである。正の分極性電極構造体11Aは、正の集電体111の両面に正の分極性電極112が積層されて構成され、負の分極性電極構造体11Bは、負の集電体113の両面に負の分極性電極114が積層されて構成されている。
この場合、電極構造体の積層枚数は、多ければ多いほど内部抵抗が低減できて有利であるが、電極群体積に占める集電体とセパレータとの体積割合が増加し、体積出力密度が減少するので、所望の内部抵抗に合わせて積層数の上限を決定すればよい。正負の電極構造体の枚数は、同数でもよく、どちらかが1枚多くてもよいが、正負合計で5枚以上、好ましくは7枚以上、さらに好ましくは9枚以上である。電極群の最外層に位置する電極構造体は、同数であれば正負両極となり、どちらかが1枚多い場合は、多い方の電極構造体が最外層となる。
特に、本発明の電気二重層キャパシタでは、最外層の電極構造体が負の分極性電極、つまり負の電極構造体が1枚多くなるように積層することが、耐久性の面から好ましい。
As shown in FIG. 2, the electrode group 11 is formed by laminating a plurality of positive polarizable electrode structures 11A and negative polarizable electrode structures 11B via separators 11C. The positive polarizable electrode structure 11A is configured by laminating positive polarizable electrodes 112 on both surfaces of a positive current collector 111, and the negative polarizable electrode structure 11B is formed on both surfaces of a negative current collector 113. Further, a negative polarizable electrode 114 is laminated.
In this case, the larger the number of stacked electrode structures, the more advantageous is that the internal resistance can be reduced. However, the volume ratio between the current collector and the separator in the electrode group volume increases, and the volume output density decreases. Therefore, the upper limit of the number of layers may be determined according to the desired internal resistance. The number of positive and negative electrode structures may be the same, or one of them may be one, but the total number of positive and negative is 5 or more, preferably 7 or more, more preferably 9 or more. If the number of electrode structures located in the outermost layer of the electrode group is the same, both electrodes are positive and negative. When one of the electrode structures is larger, the larger electrode structure is the outermost layer.
In particular, in the electric double layer capacitor of the present invention, it is preferable from the viewpoint of durability that the outermost electrode structure is laminated so as to have a negative polarizable electrode, that is, one negative electrode structure.

また、電極群11を構成する正の分極性電極構造体11Aおよび負の分極性電極構造体11Bには、外装容器10の内部から外部へ延出する正の電流取出端子12Aおよび負の電流取出端子12Bがそれぞれ接合されている。これら電流取出端子12A,12Bは、外装容器10の外部へ引き出された状態で、外装容器10の封止部10Bにて外装容器10に固定されている。なお、正の分極性電極構造体11Aは、正の電流取出端子12Aによって並列に接続され、負の分極性電極構造体11B、負の電流取出端子12Bによって同じく並列に接続されている。このように、正負の分極性電極構造体11A,11Bを、それぞれ並列に接続した構造の方が、内部抵抗の低減という点から有利であるが、帯状の分極性電極構造体を、セパレータを介して捲回させた構造を採用しても構わない。また、予め小単位に積層された電極群を、所望の静電容量になるように、電極群単位を並列に接続することもできる。   Further, the positive polarizable electrode structure 11A and the negative polarizable electrode structure 11B constituting the electrode group 11 include a positive current extraction terminal 12A extending from the inside of the outer container 10 to the outside and a negative current extraction. Terminals 12B are joined to each other. These current extraction terminals 12 </ b> A and 12 </ b> B are fixed to the exterior container 10 by a sealing portion 10 </ b> B of the exterior container 10 in a state of being pulled out of the exterior container 10. The positive polarizable electrode structure 11A is connected in parallel by a positive current extraction terminal 12A, and is also connected in parallel by a negative polarizable electrode structure 11B and a negative current extraction terminal 12B. As described above, the structure in which the positive and negative polarizable electrode structures 11A and 11B are connected in parallel is more advantageous in terms of reducing the internal resistance. However, the band-shaped polarizable electrode structure is interposed via the separator. It is also possible to adopt a wound structure. Moreover, the electrode group units can be connected in parallel so that the electrode groups previously stacked in small units have a desired capacitance.

さらに、本実施形態においては、外装容器10には、その封止部10Bの下部近傍かつ2つの電流取出端子11A,11B間に容器10内外を連通する円形の開口部位10Aが形成されており、この開口部位10Aを容器10の内側から覆うように略円形の弁機構13が取り付けられている。
弁機構13は、略円形の板状樹脂弾性体のほぼ中心にニードルで孔13Aが形成されたもので、熱溶着により外装容器10に固着されている。孔13Aは、通常の状態では、樹脂弾性体の弾性により閉塞しているが、容器10の内圧が上昇すると、同じく樹脂弾性体の弾性により開き、容器10の内部に溜まったガス等を放出する。
Further, in the present embodiment, the outer container 10 is formed with a circular opening portion 10A in the vicinity of the lower portion of the sealing portion 10B and between the two current extraction terminals 11A and 11B, which communicates the inside and outside of the container 10; A substantially circular valve mechanism 13 is attached so as to cover the opening portion 10 </ b> A from the inside of the container 10.
The valve mechanism 13 has a hole 13 </ b> A formed by a needle at substantially the center of a substantially circular plate-shaped resin elastic body, and is fixed to the outer container 10 by thermal welding. In a normal state, the hole 13A is closed by the elasticity of the resin elastic body, but when the internal pressure of the container 10 increases, the hole 13A is also opened by the elasticity of the resin elastic body to release gas and the like accumulated in the container 10. .

以上説明した本発明の電気二重層キャパシタは、一つの電槽で区切られたセルの静電容量が100〜10000F、好ましくは150〜5000F、さらに好ましくは200〜2000Fの大容量キャパシタであり、電気自動車、電動工具等の大電流を必要とする大電流蓄電デバイスとして好適に使用することができる。また、本発明の電気二重層キャパシタに許容される上限電圧(定格電圧)は、2.7V以上、特に3.0V以上とすることが可能である。
なお、携帯電話、ノート型パソコンや携帯用端末等のメモリーバックアップ電源用途、携帯電話、携帯用音響機器等の電源、パソコン等の瞬時停電対策用電源、太陽光発電、風力発電等と組み合わせることによるロードレベリング電源等の種々の小電流用キャパシタとして用いることももちろん可能である。
The electric double layer capacitor of the present invention described above is a large-capacitance capacitor having a capacitance of 100 to 10000F, preferably 150 to 5000F, more preferably 200 to 2000F. It can be suitably used as a large current storage device that requires a large current, such as an automobile or a power tool. Further, the upper limit voltage (rated voltage) allowed for the electric double layer capacitor of the present invention can be set to 2.7 V or more, particularly 3.0 V or more.
In addition, memory backup power supply for mobile phones, notebook computers, portable terminals, etc., power supplies for mobile phones, portable audio equipment, etc., power supplies for instantaneous power failure such as personal computers, solar power generation, wind power generation, etc. Of course, it can also be used as various small current capacitors such as a load leveling power source.

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
(1)正の電極構造体の作製
活性炭マックスソーブMSP20(関西熱化学(株)製、BET比表面積:2300m2/g、細孔容積:1.07ml/g、50%粒径:9.5μm)と、導電剤(HS−100、電気化学工業(株)製)と、バインダであるPVDF(アルドリッチ社製、重量平均分子量:534,000)とを85:8:7の質量組成になるように、塗工溶媒であるN−メチルピロリドン(以下NMP)中で混合し、正の分極性電極用塗工液を調製した。
得られた塗工液を、正の集電体111であるエッチドアルミ箔(30CB、日本蓄電器工業(株)製)の両面に塗工した後、ロールプレスで圧延し、さらにNMPを乾燥除去して正の分極性電極112を形成し、正の分極性電極構造体11Aを得た。この電極構造体11Aにおける分極性電極112のみかけ面積は130cm2、電極密度は0.54g/cm3、集電体の片面に形成された分極性電極の厚みは65μmであった。
なお、BET比表面積および細孔容積は、窒素ガス吸着法により算出した値であり、50%粒径は、日機装(株)製レーザー回折式粒度分布測定装置マイクロトラックHRAを用いて測定した値である。
[Example 1]
(1) Production of positive electrode structure Activated carbon maxsorb MSP20 (manufactured by Kansai Thermochemical Co., Ltd., BET specific surface area: 2300 m 2 / g, pore volume: 1.07 ml / g, 50% particle size: 9.5 μm ), A conductive agent (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.), and PVDF (Aldrich, weight average molecular weight: 534,000) as a binder so as to have a mass composition of 85: 8: 7. The mixture was mixed in N-methylpyrrolidone (hereinafter, NMP) as a coating solvent to prepare a positive polarizable electrode coating solution.
After coating the obtained coating solution on both sides of etched aluminum foil (30CB, manufactured by Nippon Electric Power Industry Co., Ltd.), which is a positive current collector 111, it is rolled with a roll press, and NMP is further removed by drying. Thus, a positive polarizable electrode 112 was formed, and a positive polarizable electrode structure 11A was obtained. The apparent area of the polarizable electrode 112 in this electrode structure 11A was 130 cm 2 , the electrode density was 0.54 g / cm 3 , and the thickness of the polarizable electrode formed on one surface of the current collector was 65 μm.
The BET specific surface area and the pore volume are values calculated by a nitrogen gas adsorption method, and the 50% particle size is a value measured using a laser diffraction particle size distribution measuring device Microtrac HRA manufactured by Nikkiso Co., Ltd. is there.

(2)負の電極構造体の作製
活性炭LPY039(日本エンバイロケミカルズ(株)製、MP法におけるピーク細孔半径:4.1×10-10m、比表面積:1900m2/g、細孔容積:0.90ml/g、50%:粒径10.3μm)と、導電剤(HS−100、電気化学工業(株)製)と、バインダであるPVDF(アルドリッチ社製、重量平均分子量:534,000)とを85:7:8の質量組成になるように、塗工溶媒であるN−メチルピロリドン(以下NMP)中で混合し、負の分極性電極用塗工液を調製した。
得られた塗工液を、負の集電体113であるエッチドアルミ箔(30CB、日本蓄電器工業(株)製)の両面に塗工した後、ロールプレスで圧延し、さらにNMPを乾燥除去して負の分極性電極114を形成し、負の分極性電極構造体11Bを得た。この電極構造体11Bにおける分極性電極114のみかけ面積は130cm2、電極密度は0.50g/cm3、集電体の片面に形成された分極性電極の厚みは75μmであった。
なお、ピーク細孔半径は、上記BET測定結果に基づいてMP法により算出した値である。
(2) Production of negative electrode structure Activated carbon LPY039 (manufactured by Nippon Environmental Chemicals Co., Ltd., peak pore radius in MP method: 4.1 × 10 −10 m, specific surface area: 1900 m 2 / g, pore volume: 0.90 ml / g, 50%: particle size 10.3 μm), conductive agent (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) and binder PVDF (manufactured by Aldrich, weight average molecular weight: 534,000) ) Was mixed in N-methylpyrrolidone (hereinafter referred to as NMP) as a coating solvent so as to have a mass composition of 85: 7: 8 to prepare a negative polarizable electrode coating solution.
After coating the obtained coating liquid on both sides of etched aluminum foil (30CB, manufactured by Nippon Electric Power Industry Co., Ltd.), which is a negative current collector 113, it is rolled with a roll press, and NMP is further removed by drying. Thus, a negative polarizable electrode 114 was formed, and a negative polarizable electrode structure 11B was obtained. In this electrode structure 11B, the apparent area of the polarizable electrode 114 was 130 cm 2 , the electrode density was 0.50 g / cm 3 , and the thickness of the polarizable electrode formed on one side of the current collector was 75 μm.
The peak pore radius is a value calculated by the MP method based on the BET measurement result.

(3)電気二重層キャパシタの作製
正の分極性電極構造体11A 9枚と、負の分極性電極構造体11B 10枚とを、セパレータ11C(NI040A、日本板硝子(株)製、空隙率79.0%、厚さ40μm)を介して交互に積層し(セパレータ枚数は最外層を含めて20枚)、正負ごとにまとめてアルミ製の電流取出し端子12A,12Bと溶接して電極群11を得た。
次に電極群11をアルミラミネート(大日本印刷(株)製、外層:6−ナイロン/厚25μm、ガス遮断層:軟質アルミニウム/厚40μm、内層:ポリプロピレン+変性ポリプロピレン/30+15μm)からなる弁13のついた外装容器10に挿入し、有機系電解液38mlを注入して含浸させた後、外装容器10を封止部10Bにて熱融着して図1に示される電気二重層キャパシタ1を得た。有機系電解液としては、電解質であるジエチル(2−メトキシエチル)メチルアンモニウムテトラフルオロボレート(イオン液体、DEME−BF4)を、電解液溶媒である炭酸プロピレン(以下PC)に1.3モル/Lになるように溶解させたものを使用した。また、電解液の含浸は、25℃、10kPa以下の減圧下で12時間以上静置する条件で行った。
(3) Production of Electric Double Layer Capacitor Nine pieces of positive polarizable electrode structures 11A and ten pieces of negative polarizable electrode structures 11B were combined with separator 11C (NI040A, manufactured by Nippon Sheet Glass Co., Ltd., porosity 79.). 0%, 40 μm in thickness) alternately stacked (20 separators including the outermost layer) and welded together with aluminum current extraction terminals 12A and 12B for each positive and negative to obtain electrode group 11 It was.
Next, the electrode group 11 is made of an aluminum laminate (Dai Nippon Printing Co., Ltd., outer layer: 6-nylon / thickness 25 μm, gas barrier layer: soft aluminum / thickness 40 μm, inner layer: polypropylene + modified polypropylene / 30 + 15 μm). After inserting into the attached outer container 10 and injecting and impregnating 38 ml of the organic electrolyte, the outer container 10 is heat-sealed at the sealing portion 10B to obtain the electric double layer capacitor 1 shown in FIG. It was. As the organic electrolyte, diethyl (2-methoxyethyl) methylammonium tetrafluoroborate (ionic liquid, DEME-BF 4 ) as an electrolyte was added to propylene carbonate (hereinafter referred to as PC) as an electrolyte solvent at 1.3 mol / What was dissolved so that it might become L was used. Further, the impregnation with the electrolytic solution was performed under the condition of standing still for 12 hours or more under a reduced pressure of 25 ° C. and 10 kPa or less.

[実施例2]
集電体の片面に形成された負の分極性電極の厚みを85μmにし、有機系電解液を39ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Example 2]
An electric double layer capacitor was obtained in the same manner as in Example 1 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 85 μm and 39 ml of the organic electrolyte was injected.

[実施例3]
集電体の片面に形成された負の分極性電極の厚みを90μmにし、有機系電解液を41ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Example 3]
An electric double layer capacitor was obtained in the same manner as in Example 1 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 90 μm and 41 ml of the organic electrolyte was injected.

[実施例4]
集電体の片面に形成された負の分極性電極の厚みを100μmにし、有機系電解液を42ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Example 4]
An electric double layer capacitor was obtained in the same manner as in Example 1 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 100 μm and 42 ml of the organic electrolyte was injected.

[実施例5]
集電体の片面に形成された正の分極性電極の厚みを60μmにし、同じく負の分極性電極の厚みを105μmにし、有機系電解液を43ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Example 5]
Except that the thickness of the positive polarizable electrode formed on one surface of the current collector was 60 μm, the thickness of the negative polarizable electrode was 105 μm, and 43 ml of the organic electrolyte was injected, the same as in Example 1. An electric double layer capacitor was obtained.

[実施例6]
集電体の片面に形成された負の分極性電極の厚みを110μmにし、有機系電解液を44ml注入した以外は、実施例5と同様にして電気二重層キャパシタを得た。
[Example 6]
An electric double layer capacitor was obtained in the same manner as in Example 5 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 110 μm and 44 ml of the organic electrolyte was injected.

[実施例7]
集電体の片面に形成された負の分極性電極の厚みを113μmにした以外は、実施例5と同様にして電気二重層キャパシタを得た。
[Example 7]
An electric double layer capacitor was obtained in the same manner as in Example 5 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 113 μm.

[実施例8]
負の分極性電極の活性炭として、活性炭RP25(クラレコール、クラレケミカル(株)製、MP法におけるピーク細孔半径:4.7×10-10m、BET比表面積:2500m2/g、細孔容積:1.30ml/g、50%粒径:7.5μm)を用い、集電体の片面に形成された負の分極性電極の厚みを80μmにし、DEME−BF4濃度1.1モル/LのPC溶液を40ml注入した以外は、実施例5と同様にして電気二重層キャパシタを得た。負の分極性電極の電極密度は0.52g/cm3であった。
[Example 8]
As activated carbon of the negative polarizable electrode, activated carbon RP25 (Kuraray Coal, Kuraray Chemical Co., Ltd., peak pore radius in MP method: 4.7 × 10 −10 m, BET specific surface area: 2500 m 2 / g, pore Volume: 1.30 ml / g, 50% particle size: 7.5 μm), the thickness of the negative polarizable electrode formed on one side of the current collector is 80 μm, and the DEME-BF 4 concentration is 1.1 mol / An electric double layer capacitor was obtained in the same manner as in Example 5 except that 40 ml of the L PC solution was injected. The electrode density of the negative polarizable electrode was 0.52 g / cm 3 .

[実施例9]
負の分極性電極の活性炭として、活性炭YP20(クラレコール、クラレケミカル(株)製、MP法におけるピーク細孔半径:4.3×10-10m、BET比表面積:2100m2/g、細孔容積:1.06ml/g、50%粒径:5.5μm)を用い、集電体の片面に形成された負の分極性電極の厚みを100μmにし、DEME−BF4濃度1.1モル/LのPC溶液を45ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。負の分極性電極の電極密度は0.50g/cm3であった。
[Example 9]
As activated carbon of the negative polarizable electrode, activated carbon YP20 (Kuraray Coal, manufactured by Kuraray Chemical Co., Ltd., peak pore radius in MP method: 4.3 × 10 −10 m, BET specific surface area: 2100 m 2 / g, pore Volume: 1.06 ml / g, 50% particle size: 5.5 μm), the thickness of the negative polarizable electrode formed on one side of the current collector is 100 μm, and the DEME-BF 4 concentration is 1.1 mol / An electric double layer capacitor was obtained in the same manner as in Example 1 except that 45 ml of the L PC solution was injected. The electrode density of the negative polarizable electrode was 0.50 g / cm 3 .

[実施例10]
正負の分極性電極の活性炭として活性炭YP20を用い、集電体の片面に形成された正の分極性電極の厚みを70μmに、同じく負の分極性電極の厚みを85μmにし、DEME−BF4濃度1.1モル/LのPC溶液を44ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。正負の分極性電極の電極密度は0.50g/cm3であった。
[Example 10]
Using activated carbon YP20 as the activated carbon of the positive and negative polarizable electrodes, the thickness of the positive polarizable electrode formed on one side of the current collector is 70 μm, the thickness of the negative polarizable electrode is 85 μm, and the DEME-BF 4 concentration An electric double layer capacitor was obtained in the same manner as in Example 1 except that 44 ml of 1.1 mol / L PC solution was injected. The electrode density of the positive and negative polarizable electrodes was 0.50 g / cm 3 .

[実施例11]
正負の分極性電極のバインダとしてポリアミドイミド(バイロマックス、東洋紡績(株)製、固形分濃度:20%、溶剤:NMP、溶液粘度:46.5dPa・s)を用い、セパレータとしてポリエステル不織布(空隙率62.0%、厚さ35μm)を用い、有機系電解液としてN−(2−メトキシエチル)−N−メチルピロリジニウムテトラフルオロボレート(イオン液体、PROME−BF4)濃度0.9モル/LのPC溶液を用い、この電解液を43ml注入した以外は、実施例4と同様にして電気二重層キャパシタを得た。
[Example 11]
Polyamideimide (Vilomax, manufactured by Toyobo Co., Ltd., solid content concentration: 20%, solvent: NMP, solution viscosity: 46.5 dPa · s) is used as a binder for positive and negative polarizable electrodes, and polyester nonwoven fabric (void) as a separator. 62.0%, thickness 35 μm), and N- (2-methoxyethyl) -N-methylpyrrolidinium tetrafluoroborate (ionic liquid, PROME-BF 4 ) concentration of 0.9 mol as an organic electrolyte. An electric double layer capacitor was obtained in the same manner as in Example 4 except that 43 ml of this electrolytic solution was injected using a / L PC solution.

[実施例12]
セパレータとしてセパレータNI040Aを用い、有機系電解液としてPROME−BF4濃度1.5モル/LのPC溶液を用いた以外は、実施例11と同様にして電気二重層キャパシタを得た。
[Example 12]
An electric double layer capacitor was obtained in the same manner as in Example 11 except that the separator NI040A was used as the separator and the PC solution having a PROME-BF 4 concentration of 1.5 mol / L was used as the organic electrolyte.

[実施例13]
集電体の片面に形成された正の分極性電極の厚みを110μm、同じく負の分極性電極の厚みを170μmとし、正の電極構造体5枚および負の電極構造体6枚を、セパレータNI040Aを介して交互に積層し(セパレータ枚数は最外層を含めて12枚)、DEME−BF4濃度1.1モル/LのPC溶液を38ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。分極性電極の電極密度は、正0.54g/cm3、負0.50g/cm3であった。
[Example 13]
The positive polarizable electrode formed on one side of the current collector has a thickness of 110 μm, and the negative polarizable electrode has a thickness of 170 μm. Five positive electrode structures and six negative electrode structures are separated by a separator NI040A. (12 separators including the outermost layer), and the same as in Example 1 except that 38 ml of the DEME-BF 4 concentration 1.1 mol / L PC solution was injected. A multilayer capacitor was obtained. The electrode density of the polarizable electrode was positive 0.54 g / cm 3 and negative 0.50 g / cm 3 .

[実施例14]
有機系電解液としてDEME−BF4濃度1.1モル/LのPC溶液を用いた以外は、実施例4と同様にして電気二重層キャパシタを得た。
[Example 14]
An electric double layer capacitor was obtained in the same manner as in Example 4 except that a PC solution having a DEME-BF 4 concentration of 1.1 mol / L was used as the organic electrolyte.

[実施例15]
集電体の片面に形成された正の分極性電極の厚みを45μmに、同じく負の分極性電極の厚みを70μmにし、正の電極構造体13枚と負の電極構造体14枚を、セパレータNI040Aを介して交互に積層し(セパレータ枚数は最外層を含めて28枚)、有機系電解液としてDEME−BF4濃度1.1モル/LのPC溶液を用い、この電解液を47ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。分極性電極の電極密度は、正0.54g/cm3、負0.50g/cm3であった。
[Example 15]
The thickness of the positive polarizable electrode formed on one side of the current collector is 45 μm, the thickness of the negative polarizable electrode is also 70 μm, and 13 positive electrode structures and 14 negative electrode structures are separated into separators. Layered alternately through NI040A (28 separators including the outermost layer), and a PC solution having a DEME-BF 4 concentration of 1.1 mol / L was used as the organic electrolyte, and 47 ml of this electrolyte was injected. Except for the above, an electric double layer capacitor was obtained in the same manner as in Example 1. The electrode density of the polarizable electrode was positive 0.54 g / cm 3 and negative 0.50 g / cm 3 .

[実施例16]
セパレータNI040Aを2枚介して正負の電極構造体を交互に積層し、有機系電解液として、テトラエチルアンモニウムテトラフルオロボレート(以下TEA−BF4)濃度1.2モル/LのPC溶液を用い、この電解液を52ml注入した以外は、実施例4と同様にして電気二重層キャパシタを得た。
[Example 16]
Positive and negative electrode structures are alternately stacked through two separators NI040A, and a PC solution having a tetraethylammonium tetrafluoroborate (hereinafter TEA-BF 4 ) concentration of 1.2 mol / L is used as an organic electrolyte. An electric double layer capacitor was obtained in the same manner as in Example 4 except that 52 ml of the electrolyte was injected.

[実施例17]
セパレータとしてポリアミドイミド多孔体フィルム(空隙率65.0%、厚さ40μm)を用い、有機系電解液としてTEA−BF4濃度1.2モル/LのPC溶液を用い、この電解液を41ml注入した以外は、実施例4と同様にして電気二重層キャパシタを得た。
[Example 17]
A polyamide-imide porous film (porosity 65.0%, thickness 40 μm) is used as a separator, a TEA-BF 4 concentration 1.2 mol / L PC solution is used as an organic electrolyte, and 41 ml of this electrolyte is injected. An electric double layer capacitor was obtained in the same manner as in Example 4 except that.

[実施例18]
正の電極構造体17枚と負の電極構造体18枚を、セパレータNI040Aを介して交互に積層し(セパレータ枚数は最外層を含めて36枚)、有機系電解液としてPROME−BF4濃度1.1モル/LのPC溶液を用い、この電解液を78ml注入した以外は、実施例4と同様にして電気二重層キャパシタを得た。
[Example 18]
17 positive electrode structures and 18 negative electrode structures are alternately stacked via separators NI040A (the number of separators is 36 including the outermost layer), and PROME-BF 4 concentration is 1 as an organic electrolyte. An electric double layer capacitor was obtained in the same manner as in Example 4 except that 78 ml of this electrolytic solution was injected using a 1 mol / L PC solution.

[実施例19]
分極性電極の見かけ面積を33cm2にし、有機系電解液を20ml注入した以外は、実施例18と同様にして電気二重層キャパシタを得た。
[Example 19]
An electric double layer capacitor was obtained in the same manner as in Example 18 except that the apparent area of the polarizable electrode was 33 cm 2 and 20 ml of the organic electrolyte was injected.

[比較例1]
集電体の片面に形成された負の分極性電極の厚みを65μmにし、有機系電解液を36ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Comparative Example 1]
An electric double layer capacitor was obtained in the same manner as in Example 1 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 65 μm and 36 ml of the organic electrolyte was injected.

[比較例2]
集電体の片面に形成された負の分極性電極の厚みを130μmにし、有機系電解液を49ml注入した以外は、実施例1と同様にして電気二重層キャパシタを得た。
[Comparative Example 2]
An electric double layer capacitor was obtained in the same manner as in Example 1 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 130 μm and 49 ml of the organic electrolyte was injected.

[比較例3]
集電体の片面に形成された負の分極性電極の厚みを60μmにし、有機系電解液を36ml注入した以外は、実施例10と同様にして電気二重層キャパシタを得た。
[Comparative Example 3]
An electric double layer capacitor was obtained in the same manner as in Example 10 except that the thickness of the negative polarizable electrode formed on one side of the current collector was 60 μm and 36 ml of the organic electrolyte was injected.

[比較例4]
集電体の片面に形成された正の分極性電極の厚みを65μmに、同じく負の分極性電極の厚みを100μmにし、有機系電解液を43ml注入した以外は、実施例10と同様にして電気二重層キャパシタを得た。
[Comparative Example 4]
Except that the thickness of the positive polarizable electrode formed on one side of the current collector was 65 μm, the thickness of the negative polarizable electrode was 100 μm, and 43 ml of the organic electrolyte was injected, the same as in Example 10. An electric double layer capacitor was obtained.

上記各実施例および比較例の電気二重層キャパシタの構成について表1にまとめて示す。
なお、表1において、正負の分極性電極の静電容量C+、C-は電気二重層キャパシタに、Ag/Ag+イオン参照極等の参照極を組み込み、一時間率に相当する電流値で定格電圧から0Vまで定電流放電を行った際の、正負ごとの放電曲線から算出した。セパレータの空隙容積Vsおよび正負の分極性電極の空隙容積V+、V-は、各実施例および比較例で用いたものと同じセパレータおよび正負分極性電極に、電気二重層キャパシタの作製時の条件と同じ条件で電解液を十分に含浸させた後、含浸した電解液の質量と、電解液の比重とから求めた。セパレータの空隙率は、セパレータの見かけ体積と空隙容積Vsとから求めた。キャパシタの全空孔体積Vpは、セパレータ、および正負の分極性電極の空隙容積の和(Vs+V++V-)である。
Table 1 summarizes the configurations of the electric double layer capacitors of the above examples and comparative examples.
In Table 1, the capacitances C + and C of the positive and negative polarizable electrodes are current values corresponding to an hour rate when a reference electrode such as an Ag / Ag + ion reference electrode is incorporated in the electric double layer capacitor. It calculated from the discharge curve for every positive / negative at the time of performing a constant current discharge from a rated voltage to 0V. The gap volume V s of the separator and the gap volumes V + and V of the positive and negative polarizable electrodes are the same as those used in each of the examples and comparative examples. After sufficiently impregnating the electrolytic solution under the same conditions as the conditions, it was determined from the mass of the impregnated electrolytic solution and the specific gravity of the electrolytic solution. The porosity of the separator was determined from the apparent volume and the void volume V s of the separator. The total void volume V p of the capacitor is the sum of the void volumes of the separator and the positive and negative polarizable electrodes (V s + V + + V ).

Figure 2007116101
Figure 2007116101

上記各実施例および比較例で得られた各キャパシタについて、下記試験を行った。結果を表2に示す。
[初期特性]
製造後の静電容量および内部抵抗(25℃、−30℃)を測定した。
一時間率の電流値で3.0Vまで定電流充電を行い、そのまま30分間、定電圧充電を行い、続いて、一時間率の電流値で3.0Vから0Vまで定電流放電した時の全放電エネルギー量から静電容量を算出した。
内部抵抗は、一時間率の電流値で3.0Vまで定電流充電を行い、そのまま30分間、定電圧充電を行い、次に3.0Vから1/30時間率の電流値で定電流放電させた放電カーブの、放電後5〜10秒の間の近似直線と0秒Y軸との交点から直流抵抗を求めた。低温時の内部抵抗を測定する場合は、キャパシタを−30℃の恒温槽で6時間放置した後、同様にして測定した。
The following tests were conducted on the capacitors obtained in the above Examples and Comparative Examples. The results are shown in Table 2.
[Initial characteristics]
Capacitance and internal resistance (25 ° C., −30 ° C.) after production were measured.
Charge at a constant current to 3.0V at a current value of 1 hour rate, charge at a constant voltage for 30 minutes as it is, and then perform the constant current discharge from 3.0V to 0V at a current value of 1 hour rate. The capacitance was calculated from the amount of discharge energy.
The internal resistance is a constant current charge up to 3.0V at a current value of 1 hour rate, and a constant voltage charge is performed for 30 minutes as it is, and then a constant current is discharged from 3.0V at a current value of 1/30 hour rate. The DC resistance was determined from the intersection of the approximate curve between 5 to 10 seconds after discharge and the 0-second Y-axis of the discharge curve. When measuring the internal resistance at low temperature, the capacitor was allowed to stand in a thermostatic bath at −30 ° C. for 6 hours and then measured in the same manner.

[耐久性試験]
温度70℃の恒温槽中で、設定電圧3.0V、保持時間1000時間の定電圧充電を行い、耐久性試験後の静電容量と内部抵抗(25℃)を、上記と同様の方法で測定し、初期値と比較した。
[大電流サイクル試験]
実施例4,11,12,14,16および17で得られた各キャパシタについて、耐久性試験として、25℃環境下、下限電圧1.5V、上限電圧3.0V、40Aの充放電電流値、定電圧、休止無しで10000サイクルの大電流サイクル試験を行った。耐久性試験前後の静電容量を比較した。
なお、静電容量および内部抵抗の測定時や、耐久性試験時には、キャパシタの積層方向に0.1MPaの応力を加えて試験を行った。
[Durability test]
Perform constant-voltage charging with a set voltage of 3.0 V and a holding time of 1000 hours in a thermostatic chamber at a temperature of 70 ° C., and measure the capacitance and internal resistance (25 ° C.) after the durability test in the same manner as described above. And compared with the initial value.
[Large current cycle test]
For each capacitor obtained in Examples 4, 11, 12, 14, 16 and 17, as a durability test, under a 25 ° C. environment, a lower limit voltage of 1.5 V, an upper limit voltage of 3.0 V, a charge / discharge current value of 40 A, A large current cycle test of 10,000 cycles without constant voltage and no pause was performed. The capacitance before and after the durability test was compared.
During the measurement of the capacitance and internal resistance, and during the durability test, the test was performed by applying a stress of 0.1 MPa in the capacitor stacking direction.

Figure 2007116101
*キャパシタの定格電圧:3V
Figure 2007116101
* Capacitor rated voltage: 3V

表2に示されるように各実施例で得られた電気二重層キャパシタは、各比較例の電気二重層キャパシタに比べ、連続充電後の静電容量維持率が高く、かつ、内部抵抗の増加率が低く、3.0Vという高電圧下で連続充電しても耐久性に優れていることがわかる。また、40Aサイクル充放電試験の結果から、大電流充放電時のサイクル特性にも優れていることがわかる。   As shown in Table 2, the electric double layer capacitors obtained in each example had a higher capacitance maintenance ratio after continuous charging than the electric double layer capacitors of each comparative example, and the rate of increase in internal resistance. It can be seen that even when continuously charged at a high voltage of 3.0 V, the durability is excellent. Moreover, it turns out that it is excellent also in the cycling characteristics at the time of large current charging / discharging from the result of a 40A cycle charging / discharging test.

本発明の一実施形態に係る電気二重層キャパシタを示す一部切り欠き斜視図である。It is a partially cutaway perspective view showing an electric double layer capacitor according to an embodiment of the present invention. 上記実施形態における電極群を示す一部拡大断面図である。It is a partially expanded sectional view which shows the electrode group in the said embodiment.

符号の説明Explanation of symbols

1 電気二重層キャパシタ
10 外装容器
11 電極群
11A 正の電極構造体
11B 負の電極構造体
11C セパレータ
111 正の集電体(一対の集電体)
112 正の分極性電極
113 負の集電体(一対の集電体)
114 負の分極性電極
DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 10 Exterior container 11 Electrode group 11A Positive electrode structure 11B Negative electrode structure 11C Separator 111 Positive current collector (a pair of current collectors)
112 Positive polarizable electrode 113 Negative current collector (a pair of current collectors)
114 Negative polarizable electrode

Claims (5)

一対の集電体と、この一対の集電体の一方に設けられ、質量W+の活性炭を含んで構成された静電容量C+を有する正の分極性電極と、前記一対の集電体の他方に設けられ、質量W-の活性炭を含んで構成された静電容量C-を有する負の分極性電極と、これら正負の分極性電極間に介在するセパレータと、少なくとも前記正負の分極性電極およびセパレータに含浸する有機系電解液とを備え、
前記正の分極性電極の静電容量C+と、前記負の分極性電極の静電容量C-とが、C-/C+=0.6〜1.0を満たし、かつ、
前記正の分極性電極に含まれる活性炭の質量W+と、前記負の分極性電極に含まれる活性炭の質量W-とが、W-/W+=1.1〜2.0を満たすことを特徴とする電気二重層キャパシタ。
A pair of current collectors, a positive polarizable electrode provided on one of the pair of current collectors and having a capacitance C + configured to include activated carbon having a mass W + , and the pair of current collectors , A negative polarizable electrode having a capacitance C configured to include activated carbon having a mass W , a separator interposed between the positive and negative polarizable electrodes, and at least the positive and negative polarizability An electrode and an organic electrolyte solution impregnated in the separator,
The capacitance C + of the positive polarizable electrode and the capacitance C of the negative polarizable electrode satisfy C / C + = 0.6 to 1.0, and
The mass W + of the activated carbon contained in the positive polarizable electrode and the mass W − of the activated carbon contained in the negative polarizable electrode satisfy W / W + = 1.1 to 2.0. An electric double layer capacitor characterized.
前記有機系電解液が、少なくとも式(1)で示されるイオン液体を含む請求項1記載の電気二重層キャパシタ。
Figure 2007116101
〔式中、R1〜R4は互いに同一もしくは異種の炭素数1〜5のアルキル基、またはR′−O−(CH2n−で表されるアルコキシアルキル基(R′はメチル基またはエチル基を示し、nは1〜4の整数である。)を示し、これらR1、R2、R3およびR4のいずれか2個の基が、Xとともに環を形成していても構わない。ただし、R1〜R4の内少なくとも1つは前記アルコキシアルキル基である。Xは窒素原子またはリン原子を示し、Yは一価のアニオンを示す。〕
The electric double layer capacitor according to claim 1, wherein the organic electrolytic solution contains at least an ionic liquid represented by the formula (1).
Figure 2007116101
[Wherein, R 1 to R 4 are the same or different alkyl groups having 1 to 5 carbon atoms, or an alkoxyalkyl group represented by R′—O— (CH 2 ) n — (R ′ is a methyl group or Represents an ethyl group, and n is an integer of 1 to 4 , and any two groups of R 1 , R 2 , R 3 and R 4 may form a ring together with X. Absent. However, at least one of R 1 to R 4 is the alkoxyalkyl group. X represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent anion. ]
前記有機系電解液が、非水系有機溶媒を含む請求項1または2記載の電気二重層キャパシタ。   The electric double layer capacitor according to claim 1, wherein the organic electrolytic solution contains a non-aqueous organic solvent. 前記負の分極性電極に含まれる活性炭が、MP法により求めたマイクロ孔の細孔半径分布のピークが4.0×10-10〜1.0×10-9mの範囲内の水蒸気賦活活性炭を主成分とする請求項1〜3のいずれか1項記載の電気二重層キャパシタ。 The activated carbon contained in the negative polarizable electrode is a steam activated activated carbon having a pore radius distribution peak of micropores determined by the MP method in the range of 4.0 × 10 −10 to 1.0 × 10 −9 m. The electric double layer capacitor according to claim 1, comprising: 前記正の分極性電極に含まれる活性炭が、アルカリ賦活活性炭を主成分とする請求項1〜4のいずれか1項記載の電気二重層キャパシタ。   The electric double layer capacitor according to any one of claims 1 to 4, wherein the activated carbon contained in the positive polarizable electrode contains alkali activated carbon as a main component.
JP2006237158A 2005-09-26 2006-09-01 Electric double layer capacitor Expired - Fee Related JP4952900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237158A JP4952900B2 (en) 2005-09-26 2006-09-01 Electric double layer capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005277461 2005-09-26
JP2005277461 2005-09-26
JP2006237158A JP4952900B2 (en) 2005-09-26 2006-09-01 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2007116101A true JP2007116101A (en) 2007-05-10
JP4952900B2 JP4952900B2 (en) 2012-06-13

Family

ID=38097976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237158A Expired - Fee Related JP4952900B2 (en) 2005-09-26 2006-09-01 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4952900B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530114A (en) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア Porous carbon with high volumetric capacity for double layer capacitors
JP2014022425A (en) * 2012-07-13 2014-02-03 Panasonic Corp Capacitor
WO2015005294A1 (en) * 2013-07-12 2015-01-15 Jmエナジー株式会社 Power storage device
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
CN112042029A (en) * 2018-04-19 2020-12-04 Jm能源株式会社 Lithium ion secondary battery, lithium ion capacitor, and methods for producing these
CN114613605A (en) * 2020-12-04 2022-06-10 山东圣泉新能源科技有限公司 Capacitor pole piece, preparation method thereof and super capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric doule-layer capacitor
WO2004019356A1 (en) * 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. Electric double-layer capacitor
JP2005044821A (en) * 2003-07-22 2005-02-17 Meidensha Corp Electric double layer capacitor
WO2005027159A1 (en) * 2003-09-11 2005-03-24 Matsushita Electric Industrial Co., Ltd. Production method for electric double-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203614A (en) * 1985-03-07 1986-09-09 松下電器産業株式会社 Electric doule-layer capacitor
WO2004019356A1 (en) * 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. Electric double-layer capacitor
JP2005044821A (en) * 2003-07-22 2005-02-17 Meidensha Corp Electric double layer capacitor
WO2005027159A1 (en) * 2003-09-11 2005-03-24 Matsushita Electric Industrial Co., Ltd. Production method for electric double-layer capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530114A (en) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア Porous carbon with high volumetric capacity for double layer capacitors
JP2014022425A (en) * 2012-07-13 2014-02-03 Panasonic Corp Capacitor
WO2015005294A1 (en) * 2013-07-12 2015-01-15 Jmエナジー株式会社 Power storage device
JPWO2015005294A1 (en) * 2013-07-12 2017-03-02 Jmエナジー株式会社 Power storage device
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
CN112042029A (en) * 2018-04-19 2020-12-04 Jm能源株式会社 Lithium ion secondary battery, lithium ion capacitor, and methods for producing these
CN114613605A (en) * 2020-12-04 2022-06-10 山东圣泉新能源科技有限公司 Capacitor pole piece, preparation method thereof and super capacitor

Also Published As

Publication number Publication date
JP4952900B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US7283349B2 (en) Electric double layer capacitor
KR102320546B1 (en) Electrode, electric double-layer capacitor using same, and electrode manufacturing method
JP4959259B2 (en) Electric double layer capacitor
US7268995B2 (en) Electric double layer capacitor
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
JPWO2005096333A1 (en) Organic electrolyte capacitor using mesopore carbon material for negative electrode
JP2006286924A (en) Lithium ion capacitor
KR102495794B1 (en) Electrode configuration for an ultracapacitor
JP4952900B2 (en) Electric double layer capacitor
JP5243794B2 (en) Electrolyte solution for double layer capacitor and double layer capacitor containing the electrolyte solution
KR20180138563A (en) Non-aqueous electrolyte for ultracapacitors
JP6375593B2 (en) Electrode, electric double layer capacitor using the electrode, and method for manufacturing electrode
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
KR102553196B1 (en) Electrode Assembly for Ultra Capacitors
JP5035510B2 (en) Electric double layer capacitor
WO2010098116A1 (en) Electric double layer capacitor
JP2011097118A5 (en)
KR101647759B1 (en) Electrical double layer capacitor having high withstand voltage property
KR101671301B1 (en) High voltage electric double layer capacitor
US20170011860A1 (en) Capacitor and method for charging and discharging same
WO2015093289A1 (en) Lithium ion capacitor
JP2007201389A (en) Nonaqueous capacitor and method for manufacturing the same
JP6848877B2 (en) Electrodes, capacitors using the electrodes, and methods for manufacturing electrodes
JP2015204437A (en) lithium ion capacitor
KR100663832B1 (en) Hybrid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4952900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees