JP2007103795A - Carbonaceous material for manufacturing activated carbon - Google Patents

Carbonaceous material for manufacturing activated carbon Download PDF

Info

Publication number
JP2007103795A
JP2007103795A JP2005293870A JP2005293870A JP2007103795A JP 2007103795 A JP2007103795 A JP 2007103795A JP 2005293870 A JP2005293870 A JP 2005293870A JP 2005293870 A JP2005293870 A JP 2005293870A JP 2007103795 A JP2007103795 A JP 2007103795A
Authority
JP
Japan
Prior art keywords
activated carbon
coke
double layer
electric double
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005293870A
Other languages
Japanese (ja)
Other versions
JP4615416B2 (en
Inventor
Ryoichi Tajima
良一 田嶋
Takashi Maeda
崇志 前田
Takeshi Fujino
健 藤野
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Eneos Corp
Original Assignee
Honda Motor Co Ltd
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Japan Energy Corp filed Critical Honda Motor Co Ltd
Priority to JP2005293870A priority Critical patent/JP4615416B2/en
Publication of JP2007103795A publication Critical patent/JP2007103795A/en
Application granted granted Critical
Publication of JP4615416B2 publication Critical patent/JP4615416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous material and a low temperature sintered carbon powder which can preferably used as a manufacturing material of an activated carbon for an electric double layer capacitor. <P>SOLUTION: A calcium compound is mixed with cokes which are obtained by heat-treating petroleum heavy oil or coal heavy oil, and a carbonaceous material which is prepared so that the calcium content of the mixture is 100 wtppm to 10,000 wtppm, or a low temperature sintered carbon powder which is obtained by sintering and pulverizing the carbonaceous material is used as a manufacturing material of an activated carbon for an electric double layer capacitor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタの電極材料である活性炭の製造原料として用いるのに好適な炭素質物および低温焼成炭素粉末ならびに電気二重層キャパシタ電極材料用活性炭および該活性炭を用いた電気二重層キャパシタに関する。   The present invention relates to a carbonaceous material suitable for use as a raw material for producing activated carbon, which is an electrode material of an electric double layer capacitor, a low-temperature calcined carbon powder, activated carbon for an electric double layer capacitor electrode material, and an electric double layer capacitor using the activated carbon. .

近年、ハイブリット電気自動車など比較的大型の装置の補助電源として、ニッケル水素二次電池やリチウムイオン二次電池などの電気化学電池に代わり、電気二重層キャパシタが開発されている。   In recent years, an electric double layer capacitor has been developed as an auxiliary power source for a relatively large device such as a hybrid electric vehicle, instead of an electrochemical cell such as a nickel metal hydride secondary battery or a lithium ion secondary battery.

電気二重層キャパシタは、分極性電極と電解質界面とに生じる電気二重層を利用した蓄電装置であり、電気化学電池とは異なり電極反応を伴わないため、通常の電気化学電池に比べて高出力、かつ繰り返し寿命に優れた蓄電装置を形成することができる。   An electric double layer capacitor is a power storage device that uses an electric double layer generated between a polarizable electrode and an electrolyte interface, and unlike an electrochemical cell, it does not involve an electrode reaction, so it has a higher output than a normal electrochemical cell, In addition, a power storage device with excellent repeated life can be formed.

該電気二重層キャパシタの分極性電極材料として、表面上に直径10〜30Å程度の細孔を有する活性炭が用いられる。活性炭の原料である炭素質物は、電気化学電池の正極活物質として使用されるコバルトやニッケルなどの遷移金属とは異なり、資源的に豊富である。このため、高出力、かつ繰り返し寿命に優れることに加えて、コストメリットに優れた大型の蓄電装置を形成することが可能となる。   As the polarizable electrode material of the electric double layer capacitor, activated carbon having pores with a diameter of about 10 to 30 mm on the surface is used. The carbonaceous material that is the raw material of activated carbon is abundant in resources, unlike transition metals such as cobalt and nickel used as the positive electrode active material of electrochemical cells. For this reason, it is possible to form a large-sized power storage device that is excellent in cost merit in addition to being excellent in high output and repeated life.

しかしながら、電気二重層キャパシタは、電気化学電池に比べて蓄えられる電気量が少なく、用途が限定されているのが現状である。したがって、電気二重層キャパシタの静電容量を向上させるための検討が、製造原料である炭素質物の種類、活性炭の製造法、あるいは分極性電極の製造法など、種々の観点からなされている。   However, the electrical double layer capacitor has a small amount of electricity stored compared to an electrochemical cell, and its use is limited at present. Therefore, studies for improving the capacitance of the electric double layer capacitor have been made from various viewpoints such as the type of carbonaceous material as a production raw material, the production method of activated carbon, or the production method of a polarizable electrode.

活性炭原料となる炭素質物として、ヤシ殻、木粉、石炭、樹脂などの炭化物、あるいはコークス、エチレンボトムの残渣などが知られている。特に、石炭系および/または石油
系のコークスは、炭素含有量が高くかつ金属含有量が少ないため、静電容量に優れた活性炭を製造することが可能である。さらに、該コークスの原料となる重質油は、資源的にも豊富であり、コストメリットに優れた活性炭を製造することが可能となる。
Known carbonaceous materials used as activated carbon raw materials include carbides such as coconut shells, wood powder, coal, and resins, or coke and ethylene bottom residues. In particular, since coal-based and / or petroleum-based coke has a high carbon content and a low metal content, it is possible to produce activated carbon having an excellent electrostatic capacity. Furthermore, the heavy oil used as the raw material for the coke is abundant in terms of resources, and it becomes possible to produce activated carbon with excellent cost merit.

しかしながら、現状では、コークスを原料とする活性炭から作製された電気二重層キャパシタの静電容量は、他の炭素質物から作製された電気二重層キャパシタの静電容量に比べて、劣位にある。この理由は、コークスの表面構造、コークス中の炭化水素の構造、不純物など複数のパラメーターに起因するものと推定されている。したがって、静電容量向上のために、各パラメーターの解析およびその改良が検討されている。   However, at present, the capacitance of an electric double layer capacitor manufactured from activated carbon using coke as a raw material is inferior to the capacitance of electric double layer capacitors manufactured from other carbonaceous materials. This reason is presumed to be caused by a plurality of parameters such as the surface structure of coke, the structure of hydrocarbons in coke, and impurities. Therefore, in order to improve the capacitance, analysis of each parameter and improvement thereof are being studied.

さらに、コークスは不純物として、硫黄元素、無機硫黄化合物あるいは有機硫黄化合物などを含有しており、コークス中の硫黄含有量は、0.2〜0.5重量%程度である。コークス
中の硫黄元素または無機あるいは有機硫黄化合物などを構成する硫黄は、活性炭製造工程において製造装置の金属と反応して硫化物を生成し製造装置の劣化を促進する、また該硫化物の混入により中間製品の金属含有量が増加する、などの悪影響を及ぼすことが判明している。しかしながら、上記の硫黄はコークスの原料である重質油に由来するために、コークスの工業的製法の観点から、硫黄含有量の低減は極めて困難である。したがって、該硫黄に起因する問題点の対策は、未だ採られていなかった。
Furthermore, coke contains elemental sulfur, an inorganic sulfur compound, or an organic sulfur compound as impurities, and the sulfur content in the coke is about 0.2 to 0.5% by weight. Sulfur, which constitutes elemental sulfur or inorganic or organic sulfur compounds in coke, reacts with the metal of the production equipment in the activated carbon production process to generate sulfides and promotes deterioration of the production equipment. It has been found that adverse effects such as an increase in the metal content of intermediate products. However, since the above sulfur is derived from heavy oil that is a raw material of coke, it is extremely difficult to reduce the sulfur content from the viewpoint of the industrial production method of coke. Therefore, no countermeasures have been taken for the problems caused by the sulfur.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、コークスを原料とすることにより、その不純物である硫黄に起因する問題点が抑制された活性炭製造用炭素質物および低温焼成炭素粉末ならびに電気二重層キャパシタ電極材料用活性炭および該活性炭からなる静電容量の大きい電気二重層キャパシタを提供することを課題とする。   The present invention has been made in view of the above-described problems of the prior art, and by using coke as a raw material, carbonaceous materials for producing activated carbon and low-temperature calcined carbon in which problems caused by sulfur as impurities are suppressed. It is an object of the present invention to provide a powder and activated carbon for an electrode material for an electric double layer capacitor and an electric double layer capacitor having a large capacitance made of the activated carbon.

本発明者らは、コークスを不活性雰囲気下あるいは減圧下で焼成(以下、炭化という)する過程において発生する揮発分について種々検討した。その結果、驚くべきことに、コークスにカルシウム化合物を添加混合することにより、該揮発分中の硫黄含有量が減少することを見出した。なお、揮発分中の硫黄含有量が減少する理由は、以下の通りと推定している。すなわち、コークスを700〜800℃程度の温度にて炭化する過程において、コークス中の硫黄元素または無機あるいは有機硫黄化合物は、蒸発するかまたはコークス中の水素原子あるいは酸素原子と反応して硫化水素あるいは二酸化硫黄を生成する。これに対し、コークスにカルシウム化合物を添加混合して100℃以上に加熱した場合、カルシウム化合
物から酸化カルシウムが生成する。該酸化カルシウムは、上記の硫黄などまたは副生した硫化水素や二酸化硫黄などと反応して、硫化カルシウムを生成する。生成した硫化カルシウムは、上記の炭化温度では安定であり、その結果、酸化カルシウムと反応したコークス中の硫黄などは、炭化過程中も固体としてコークス中に残存する。したがって、コークスの炭化過程で発生する揮発分の硫黄含有量が減少するものと考えられる。
The present inventors have made various studies on the volatile matter generated in the process of firing coke in an inert atmosphere or under reduced pressure (hereinafter referred to as carbonization). As a result, it has been surprisingly found that the sulfur content in the volatile matter is reduced by adding and mixing a calcium compound to coke. The reason why the sulfur content in the volatile matter is reduced is estimated as follows. That is, in the process of carbonizing coke at a temperature of about 700 to 800 ° C., elemental sulfur or inorganic or organic sulfur compound in coke evaporates or reacts with hydrogen atom or oxygen atom in coke to react with hydrogen sulfide or oxygen. Produces sulfur dioxide. On the other hand, when a calcium compound is added to and mixed with coke and heated to 100 ° C. or higher, calcium oxide is generated from the calcium compound. The calcium oxide reacts with the above sulfur or by-produced hydrogen sulfide or sulfur dioxide to generate calcium sulfide. The generated calcium sulfide is stable at the above carbonization temperature, and as a result, sulfur and the like in the coke reacted with calcium oxide remain in the coke as a solid during the carbonization process. Therefore, it is considered that the sulfur content of volatile matter generated during the carbonization process of coke is reduced.

本発明者らは、10トン規模のコークスの炭化において、カルシウム化合物を添加混合したコークスから発生する揮発分中の硫黄含有量を測定し、無添加の場合のそれと比べた結果、カルシウム化合物を添加混合したコークスから発生する揮発分中の硫黄含有量が減少することを確認した。また、カルシウム化合物を添加混合したコークスの炭化後、焼成炉を点検した結果、通常、焼成炉の胴体内部に散見される表面の黒変がなかったこと、さらに、炭化後のコークス(以下、低温焼成炭素という)を定量分析した結果、無添加の場合のそれと比べて、低温焼成炭素中の鉄含有量が減少することを確認した。すなわち、本発明者らは、上記の結果より、カルシウム化合物のコークスへの添加混合が、コークス中の不純物である硫黄に起因する問題点の抑制に有効であることを見出した。   The present inventors measured the sulfur content in the volatile matter generated from coke added with calcium compound in carbonization of 10-ton scale coke, and compared it with the case where no calcium compound was added. It was confirmed that the sulfur content in the volatile matter generated from the mixed coke decreased. In addition, after carbonization of coke added with calcium compound and carbonized, the firing furnace was inspected, and as a result, there was no blackening of the surface usually found inside the body of the firing furnace. As a result of quantitative analysis of the calcined carbon), it was confirmed that the iron content in the low-temperature calcined carbon was reduced as compared with the case of no addition. That is, the present inventors have found from the above results that addition and mixing of a calcium compound to coke is effective in suppressing problems caused by sulfur which is an impurity in coke.

本発明者らは、さらに、カルシウム化合物を添加混合したコークスから得た低温焼成炭素を微粉砕し(以下、低温焼成炭素粉末という)、賦活などの処理を施して活性炭を製造した。そして、該活性炭から電気二重層キャパシタ用の電極を作製して静電容量を測定した結果、その静電容量値が、カルシウム化合物無添加のコークスから製造した活性炭を用いた電極に比べて大きいことを確認した。本結果から、不純物である硫黄に起因する問題点が抑制された活性炭製造用炭素質物、該炭素質物からなる低温焼成炭素粉末および活性炭ならびに該活性炭からなる静電容量の大きい電気二重層キャパシタを見出し、本発明を完成するに至った。   The present inventors further produced activated carbon by pulverizing low-temperature calcined carbon obtained from coke to which a calcium compound was added and mixed (hereinafter referred to as low-temperature calcined carbon powder), and performing treatment such as activation. And as a result of producing an electrode for an electric double layer capacitor from the activated carbon and measuring the capacitance, the capacitance value is larger than that of an electrode using activated carbon produced from coke added with no calcium compound. It was confirmed. From these results, a carbonaceous material for producing activated carbon in which problems due to impurities such as sulfur are suppressed, a low-temperature calcined carbon powder comprising the carbonaceous material and activated carbon, and an electric double layer capacitor comprising the activated carbon having a large capacitance are found. The present invention has been completed.

すなわち、本発明の第1の発明によれば、電気二重層キャパシタの電極材料として用いられる活性炭の製造原料であって、石油系重質油および/または石炭系重質油を熱処理し
て得られたコークスに、カルシウム化合物を添加混合し、該混合物中のカルシウム含有量が100重量ppm以上10,000重量ppm以下となるように調製された活性炭製造用炭素質物が提
供される。
That is, according to the first invention of the present invention, it is a raw material for producing activated carbon used as an electrode material of an electric double layer capacitor, and is obtained by heat-treating petroleum heavy oil and / or coal heavy oil. A carbonaceous material for producing activated carbon prepared by adding a calcium compound to coke and adding and mixing the calcium compound in the mixture to be 100 ppm by weight or more and 10,000 ppm by weight or less is provided.

また、本発明の第2の発明によれば、第1の発明により得られた活性炭製造用炭素質物を不活性雰囲気下あるいは減圧下にて焼成および微粉砕処理することにより、真密度を1.40g/cm3以上1.85 g/cm3以下、かつ平均粒径を1μm以上30μm以下とした活性炭製造用低温焼成炭素粉末が提供される。 Further, according to the second invention of the present invention, the carbonaceous material for producing activated carbon obtained by the first invention is fired and pulverized in an inert atmosphere or under reduced pressure to obtain a true density of 1.40 g. / cm 3 or more 1.85 g / cm 3 or less, and activated carbon for producing low-temperature fired carbon powder the average particle diameter is 1μm or 30μm or less is provided.

さらに、本発明の第3の発明によれば、第2の発明により得られた活性炭製造用低温焼成炭素粉末に賦活処理してなる電気二重層キャパシタ電極材料用活性炭が提供される。
また、本発明の第4の発明によれば、第3の発明により得られた活性炭を電極材料として用いてなる電気二重層キャパシタが提供される。
Furthermore, according to the 3rd invention of this invention, the activated carbon for electric double layer capacitor electrode materials formed by activating the low-temperature-fired carbon powder for activated carbon manufacture obtained by the 2nd invention is provided.
Moreover, according to the 4th invention of this invention, the electric double layer capacitor which uses the activated carbon obtained by the 3rd invention as an electrode material is provided.

本発明の活性炭製造用炭素質物、該炭素質物からなる低温焼成炭素粉末および活性炭を用いることにより、製造装置の劣化が抑制され、かつ従来のコークスを原料とする活性炭では達成し得なかった静電容量の大きい電気二重層キャパシタを提供することが可能となる。   By using the carbonaceous material for the production of activated carbon of the present invention, the low-temperature calcined carbon powder comprising the carbonaceous material, and activated carbon, the deterioration of the production apparatus is suppressed, and electrostatic that cannot be achieved with activated carbon using conventional coke as a raw material. An electric double layer capacitor having a large capacity can be provided.

(活性炭製造用炭素質物)
本発明の炭素質物の原料として用いられるコークスは、石油系重質油および/または石
炭系重質油を熱処理して得られる炭素含有量90重量%以上、かつ硫黄含有量0.5重量%以下
のコークスである。
(Carbonaceous material for activated carbon production)
The coke used as a raw material for the carbonaceous material of the present invention is a coke having a carbon content of 90% by weight or more and a sulfur content of 0.5% by weight or less obtained by heat treating petroleum heavy oil and / or coal heavy oil. It is.

通常、コークスは、石油系重質油および/または石炭系重質油を、圧力2.0Mpa以下、温
度400〜600℃にて3時間以上熱処理することによって得られる。工業的には、該熱処理に
ディレードコーカーを用い、1バッチ数千トン程度の量を製造する。ディレードコーカー
から切り出したコークスは、大きさが不特定であるのでロールクラッシャーなどで破砕し、数十cmの塊にする。
Coke is usually obtained by heat-treating petroleum heavy oil and / or coal heavy oil at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more. Industrially, a delayed coker is used for the heat treatment, and an amount of about several thousand tons per batch is produced. The coke cut out from the delayed coker has an unspecified size, so it is crushed with a roll crusher or the like to make a mass of several tens of centimeters.

さらに、得られたコークス塊を必要に応じて粒径2mm以下に粗粉砕する。該粗粉砕に使
用する粉砕機は、特に限定されないが、衝撃またはせん断型で中程度の粒度が得られる粉砕機が好ましく、ハンマーミル、アトリションミル、カッターミル、ピンミルなどを例示することができる。
Further, the obtained coke mass is coarsely pulverized to a particle size of 2 mm or less as necessary. The pulverizer used for the coarse pulverization is not particularly limited, but a pulverizer capable of obtaining a medium particle size with an impact or shear type is preferable, and examples thereof include a hammer mill, an attrition mill, a cutter mill, and a pin mill. .

本発明のコークスに添加混合するカルシウム化合物としては、水素化物、ハロゲン化物、酸化物、硫化物、窒化物、珪素化物、リン化合物、有機化合物など全てのカルシウム化合物が好適に使用できる。さらに、化学的安定性、水溶性、化合物を構成する他元素の物性または含有量、経済性などを考慮すると、水酸化カルシウム、炭酸カルシウム、塩化カルシウムおよびこれらの混合物が特に好ましく使用される。   As the calcium compound added to and mixed with the coke of the present invention, all calcium compounds such as hydrides, halides, oxides, sulfides, nitrides, silicides, phosphorus compounds, and organic compounds can be suitably used. Furthermore, calcium hydroxide, calcium carbonate, calcium chloride and a mixture thereof are particularly preferably used in consideration of chemical stability, water solubility, physical properties or contents of other elements constituting the compound, economy, and the like.

カルシウム化合物とコークスとの混合方法は、特に限定されないが、例えば、粒径2mm
以下に粗粉砕されたコークスとカルシウム化合物とを、スクリューミキサーなどの連続混合操作が可能な混合機で混合することが好ましい。さらに、カルシウム化合物を予め水溶液または水への懸濁液としてから、所定の添加速度でコークスと混合することが、混合の均一性の観点から特に好ましい。
The mixing method of the calcium compound and coke is not particularly limited.
The coarsely pulverized coke and calcium compound are preferably mixed in a mixer capable of continuous mixing operation such as a screw mixer. Furthermore, it is particularly preferable from the viewpoint of mixing uniformity that the calcium compound is previously formed into an aqueous solution or a suspension in water and then mixed with coke at a predetermined addition rate.

次いで、カルシウム化合物を添加混合したコークスを乾燥する。乾燥後、混合物中のカルシウム含有量を測定するが、コークス中のカルシウム含有量は、100重量ppm以上10,000重量ppm以下であり、好ましくは200重量ppm以上1,000重量ppm以下である。カルシウム含
有量が100重量ppm未満では十分な添加効果が得られず、一方、10,000重量ppmを超えると
硫黄含有量に対してカルシウムが過剰となり好ましくない。上記のようにして、本発明の活性炭製造用炭素質物を得る。
Next, the coke mixed with the calcium compound is dried. After drying, the calcium content in the mixture is measured. The calcium content in the coke is from 100 ppm to 10,000 ppm, preferably from 200 ppm to 1,000 ppm. If the calcium content is less than 100 ppm by weight, a sufficient addition effect cannot be obtained. On the other hand, if it exceeds 10,000 ppm by weight, calcium is excessive with respect to the sulfur content, which is not preferable. As described above, the carbonaceous material for producing activated carbon of the present invention is obtained.

(活性炭製造用低温焼成炭素粉末)
次いで、上記で得た活性炭製造用炭素質物を炭化する。炭化を行う焼成炉は、雰囲気の
調整が可能であり、最高使用温度が900℃以上のものであればよく、特に限定されないが
、電熱式あるいは火炎式のバッチ型焼成炉またはロータリーキルンなどを例示することができる。炭化中の不活性雰囲気としては、活性炭製造用炭素質物と反応しない気体であればよく、窒素、希ガスなどを例示し得るが、経済性などの観点から、窒素が特に好ましい。また、減圧下に炭化を行う場合、真空ポンプにより焼成炉胴体内の圧力を絶対圧で60mmHg以下に減圧することが好ましい。得られた低温焼成炭素の真密度は、1.40g/cm3以上1.85g/cm3以下であり、好ましくは1.50g/cm3以上1.75g/cm3以下である。低温焼成炭素の真密度が1.40g/cm3未満では賦活による細孔形成に必要な炭素結晶の形成が不十分であり、一
方、1.85g/cm3を超えると炭素結晶の大きさが過大になり細孔形成が困難となるので好ま
しくない。炭化条件は、低温焼成炭素の真密度が1.40g/cm3以上1.85g/cm3以下となればよく、特に限定するものではないが、好ましくは、炭化温度が500℃以上900℃以下、炭化時間が10分以上30時間以下である。
(Low-temperature calcined carbon powder for activated carbon production)
Next, the carbonaceous material for producing activated carbon obtained above is carbonized. The firing furnace for performing carbonization is capable of adjusting the atmosphere as long as the maximum use temperature is 900 ° C. or higher, and is not particularly limited, but examples thereof include an electrothermal or flame type batch-type firing furnace or a rotary kiln. be able to. The inert atmosphere during carbonization may be any gas that does not react with the carbonaceous material for producing activated carbon, and examples thereof include nitrogen and rare gases. Nitrogen is particularly preferable from the viewpoint of economy and the like. Further, when carbonization is performed under reduced pressure, it is preferable to reduce the pressure in the firing furnace body to 60 mmHg or less in absolute pressure by a vacuum pump. True density of the resulting low-temperature fired carbon, 1.40 g / cm 3 or more 1.85 g / cm 3 or less, preferably 1.50 g / cm 3 or more 1.75 g / cm 3 or less. If the true density of low-temperature calcined carbon is less than 1.40 g / cm 3 , the formation of carbon crystals necessary for pore formation by activation is insufficient, while if it exceeds 1.85 g / cm 3 , the size of the carbon crystal becomes excessive. This is not preferable because the formation of pores becomes difficult. Carbonization conditions may if the true density of the low-temperature fired carbon and 1.40 g / cm 3 or more 1.85 g / cm 3 or less, is not particularly limited, preferably, carbonization temperature 500 ° C. or higher 900 ° C. or less, carbonized The time is 10 minutes to 30 hours.

次いで、上記で得られた低温焼成炭素を微粉砕する。微粉砕機は、得られる低温焼成炭素粉末の平均粒径が1μm以上30μm以下となるように微粉砕できるものであればよく、特
に限定されないが、衝撃型で超微粉砕が可能な粉砕機が好ましく、ジェットミル、クロスフローミル、ターボミルなどを例示することができる。微粉砕後の平均粒径は、1μm以上30μm以下である。平均粒径が1μm未満では賦活工程での歩留まりが減少し、一方、30μmを超えると膜厚の一定した電極形成が困難となるので好ましくない。さらに、微粉砕時に副生する粒径1μm未満の微粉は、気流分級機などで除去することが特に好ましい。上記のようにして、本発明の活性炭製造用低温焼成炭素粉末を得る。
Next, the low-temperature calcined carbon obtained above is pulverized. The pulverizer is not particularly limited as long as it can be pulverized so that the average particle size of the obtained low-temperature calcined carbon powder is 1 μm or more and 30 μm or less. Preferably, a jet mill, a cross flow mill, a turbo mill, etc. can be illustrated. The average particle size after pulverization is 1 μm or more and 30 μm or less. If the average particle size is less than 1 μm, the yield in the activation process decreases, whereas if it exceeds 30 μm, it is difficult to form an electrode having a constant film thickness, which is not preferable. Furthermore, it is particularly preferable to remove fine powder having a particle size of less than 1 μm, which is produced as a by-product during pulverization, with an air classifier or the like. As described above, the low-temperature calcined carbon powder for producing activated carbon of the present invention is obtained.

(活性炭)
次いで、上記で得た活性炭製造用低温焼成炭素粉末を賦活する。賦活法は、特に限定されないが、ガス賦活、薬品賦活などが例示できる。賦活法としては、適切な比表面積、細孔径を有する細孔の形成の観点から、アルカリ金属の水酸化物を用いたアルカリ賦活が好ましい。特に、水酸化カリウムを用いたアルカリ賦活が好ましい。
(Activated carbon)
Next, the low-temperature calcined carbon powder for producing activated carbon obtained above is activated. The activation method is not particularly limited, and examples thereof include gas activation and chemical activation. As the activation method, alkali activation using an alkali metal hydroxide is preferable from the viewpoint of forming pores having an appropriate specific surface area and pore diameter. In particular, alkali activation using potassium hydroxide is preferable.

活性炭製造用低温焼成炭素粉末とアルカリ金属の水酸化物との混合割合は、混合物中におけるアルカリ金属の水酸化物の含有量が30重量%以上85重量%以下であることが好ましい。アルカリ金属の水酸化物の含有量が30重量%未満では均一な賦活が困難となり、一方、85重量%を超えるとアルカリ金属の水酸化物が過剰となり賦活装置の劣化を促進するので好ましくない。   The mixing ratio of the low-temperature calcined carbon powder for producing activated carbon and the alkali metal hydroxide is preferably such that the content of the alkali metal hydroxide in the mixture is 30 wt% or more and 85 wt% or less. If the content of the alkali metal hydroxide is less than 30% by weight, uniform activation becomes difficult. On the other hand, if it exceeds 85% by weight, the alkali metal hydroxide becomes excessive and the deterioration of the activation device is promoted.

上記混合物の賦活温度は、600℃以上900℃以下であることが好ましい。賦活温度が600
℃未満では均一な賦活が困難となり、一方、900℃を超えるとアルカリ金属が賦活装置内
部に堆積し賦活装置の劣化を促進するので好ましくない。賦活時間は、1時間以上100時間以下が好ましい。1時間未満では、均一な賦活が困難となり、100時間を超えると、賦活装置の劣化が促進されるので好ましくない。また、賦活後の活性炭製造用低温焼成炭素粉末を数回、酸洗または水洗する。該酸洗または水洗後、乾燥を行う。
The activation temperature of the mixture is preferably 600 ° C. or higher and 900 ° C. or lower. Activation temperature is 600
If the temperature is less than 0 ° C., uniform activation becomes difficult. On the other hand, if the temperature exceeds 900 ° C., alkali metal accumulates inside the activation device and promotes deterioration of the activation device. The activation time is preferably 1 hour or more and 100 hours or less. If it is less than 1 hour, uniform activation becomes difficult, and if it exceeds 100 hours, deterioration of the activation device is promoted, which is not preferable. Further, the activated low-temperature calcined carbon powder for producing activated carbon is pickled or washed with water several times. After the pickling or washing with water, drying is performed.

上記のようにして、本発明の活性炭を得る。該活性炭は、電気二重層キャパシタの電極材料として好適に使用することができる。
(電気二重層キャパシタ)
上記で得た活性炭を用いる電極および電気二重層キャパシタの作製法は、公知の方法でよい。
As described above, the activated carbon of the present invention is obtained. The activated carbon can be suitably used as an electrode material for electric double layer capacitors.
(Electric double layer capacitor)
A known method may be used for producing the electrode and the electric double layer capacitor using the activated carbon obtained above.

すなわち、上記の乾燥した活性炭、導電材およびバインダーをよく混合し、該混合物の所定量をアルミ箔上に圧着して電極を作製する。その際、導電材としては、アセチレンブラックやケッチェンブラックなどを、バインダーとしては、フッ素系合成ゴムやポリテト
ラフルオロエチレン(PTFE)粉末などを例示することができる。このようにして作製された2つの電極を、ガラスフィルターなどを介して対向させ、電解液を含浸させる。電解液としては、ホウフッ化トリエチルメチルアンモニウムを含むプロピレンカーボネートなどを例示することができる。上記の電極/ガラスフィルター/電極からなる構造物をポリプロピレンなどの絶縁板で固定し、全体を密封する。
That is, the above-mentioned dried activated carbon, conductive material and binder are mixed well, and a predetermined amount of the mixture is pressure-bonded onto an aluminum foil to produce an electrode. At that time, examples of the conductive material include acetylene black and ketjen black, and examples of the binder include fluorine-based synthetic rubber and polytetrafluoroethylene (PTFE) powder. The two electrodes thus produced are opposed to each other through a glass filter or the like, and impregnated with an electrolytic solution. Examples of the electrolytic solution include propylene carbonate containing triethylmethylammonium borofluoride. The structure consisting of the above electrode / glass filter / electrode is fixed with an insulating plate such as polypropylene, and the whole is sealed.

上記のようして、本発明の電極および電気二重層キャパシタを作製することができる。
上記で得られた電気二重層キャパシタの静電容量を測定する方法は、公知の方法でよく、以下のような例示ができる。すなわち、電気二重層キャパシタをポテンショスタットおよびガルバノスタットの両方の機能を有する電源に接続する。定電流の充電と定電圧の充電とを行った後、定電流の放電を行う。放電時間と放電電圧とを記録し、得られた数値から、活性炭の静電容量を算出する。
As described above, the electrode and electric double layer capacitor of the present invention can be produced.
The method for measuring the electrostatic capacitance of the electric double layer capacitor obtained above may be a known method, and can be exemplified as follows. That is, the electric double layer capacitor is connected to a power supply having both functions of a potentiostat and a galvanostat. After charging with a constant current and charging with a constant voltage, discharging with a constant current is performed. The discharge time and discharge voltage are recorded, and the capacitance of the activated carbon is calculated from the obtained values.

コークス中および揮発分中の硫黄含有量ならびにコークス中のカルシウム含有量の測定法は、以下の通りである。すなわち、コークス試料約4gを150℃にて1時間乾燥し、メノー乳鉢で砕き、60meshの篩で分級した後、篩下を採取した。   The method for measuring the sulfur content in coke and volatile matter and the calcium content in coke is as follows. That is, about 4 g of a coke sample was dried at 150 ° C. for 1 hour, crushed in a menor mortar, classified with a 60 mesh sieve, and then collected under the sieve.

コークス中の硫黄含有量は、堀場製作所製EMIA520型硫黄分析装置を用い、採取物の燃
焼生成物から赤外吸収法により測定した。また、揮発分の硫黄含有量は、次のようにして測定した。すなわち、炭化を行う焼成炉の排気口に、ガラス製の気体捕集器を取り付け、液体窒素で排ガスを冷却することにより、排ガス中の高沸点成分を捕集した。該捕集物をそのまま、上記採取物と同様にして赤外吸収法により測定し、捕集物の硫黄含有量を求めた。該捕集物の硫黄含有量を揮発分中の硫黄含有量とした。
The sulfur content in the coke was measured by an infrared absorption method from the combustion product of the collected material using an EMIA520 type sulfur analyzer manufactured by Horiba. Moreover, the sulfur content of volatile matter was measured as follows. That is, a high-boiling component in the exhaust gas was collected by attaching a glass gas collector to the exhaust port of the firing furnace that performs carbonization and cooling the exhaust gas with liquid nitrogen. The collected material was measured as it was by the infrared absorption method in the same manner as the collected material, and the sulfur content of the collected material was determined. The sulfur content of the collected product was taken as the sulfur content in the volatile matter.

また、コークス中のカルシウム含有量は、採取物を濃硫酸で灰化し、残存した酸化物からICPを用いて測定を行った。
通常、炭化中に、コークスから発生する硫黄または硫化水素などと、焼成炉胴体の鉄とが反応して生成する硫化鉄は、低温焼成炭素に取り込まれる。このため、炭化によって低温焼成炭素中の鉄含有量は増大することとなる。したがって、低温焼成炭素中の鉄含有量を、装置劣化の尺度とした。また、低温焼成炭素中の鉄含有量の測定法は、以下の通りである。すなわち、試料約4gを150℃にて1時間乾燥し、メノー乳鉢で砕き、60meshの篩で分級した後、篩下を採取した。鉄含有量は、採取物を濃硫酸で灰化し、残存した酸化物からICPを用いて測定を行った。
The calcium content in the coke was measured using ICP from the remaining oxide after ashing the collected material with concentrated sulfuric acid.
Usually, during carbonization, sulfur sulfide or hydrogen sulfide generated from coke and iron sulfide produced by reaction of iron in the furnace body are taken into the low-temperature calcined carbon. For this reason, the iron content in the low-temperature calcined carbon is increased by carbonization. Therefore, the iron content in the low-temperature calcined carbon was taken as a measure of device deterioration. Moreover, the measuring method of iron content in low-temperature calcination carbon is as follows. That is, about 4 g of a sample was dried at 150 ° C. for 1 hour, crushed with a menor mortar, classified with a 60 mesh sieve, and then collected under the sieve. The iron content was measured using ICP from the remaining oxide after ashing the collected material with concentrated sulfuric acid.

さらに、低温焼成炭素の真密度の測定法は、以下の通りである。すなわち、JIS K 2151-1993に記載の真比重試験方法にしたがって、試料の真比重値を求めた。また、測定温度
から蒸留水の密度を求め、試料の真比重値と蒸留水の密度との積を試料の真密度とした。
Furthermore, the method for measuring the true density of the low-temperature calcined carbon is as follows. That is, the true specific gravity value of the sample was determined according to the true specific gravity test method described in JIS K 2151-1993. Moreover, the density of distilled water was calculated | required from measurement temperature, and the product of the true specific gravity value of a sample and the density of distilled water was made into the true density of a sample.

また、低温焼成炭素粉末の平均粒径の測定法は、以下の通りである。すなわち、試料約1gを、界面活性剤を含む水に分散させ、日機装製マイクロトラックFRA粒度分布計にて該
分散液の粒度分布を測定することにより試料の平均粒径を算出した。
Moreover, the measuring method of the average particle diameter of low-temperature-fired carbon powder is as follows. That is, about 1 g of a sample was dispersed in water containing a surfactant, and the average particle size of the sample was calculated by measuring the particle size distribution of the dispersion with a Nikkiso Microtrac FRA particle size distribution meter.

常圧蒸留残渣油と流動接触分解残渣油とを重量比50:50で混合した混合油を内容積20m3のベンチリアクターに仕込み、圧力約0.5Mpa、約500℃にて40時間保持することによりコ
ークス塊10tonを得た。
By mixing a mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at a weight ratio of 50:50 into a bench reactor with an internal volume of 20 m 3 and holding at a pressure of about 0.5 Mpa and about 500 ° C. for 40 hours Coke lump 10ton was obtained.

得られたコークス塊をロールクラッシャーで直径10cm以下に破砕し、さらに、SUS304製、ハンマー直径500mmのハンマーミルにて、粒径2mm以上の粒子が0.1重量%以下となるように粗粉砕した。粗粉砕されたコークスの一部を採取し、硫黄含有量を測定した。硫黄含有
量は、0.28重量%であった。
The obtained coke mass was crushed to a diameter of 10 cm or less with a roll crusher, and further coarsely pulverized with a hammer mill made of SUS304 and a hammer diameter of 500 mm so that particles having a particle diameter of 2 mm or more were 0.1 wt% or less. A portion of the coarsely pulverized coke was sampled and the sulfur content was measured. The sulfur content was 0.28% by weight.

水酸化カルシウム5kgおよび水45kgをポリプロピレン製容器(内容積70L)に仕込み、攪拌機にて十分に懸濁させた。
粗粉砕されたコークスを100kg/hr、水酸化カルシウムと水との懸濁液を0.5kg/hrの送り速度にて、円錐型スクリューミキサー(内容積200L)に流し込み、両者を十分に攪拌混合した。このようにして混合物約10tonを製造した。
5 kg of calcium hydroxide and 45 kg of water were charged into a polypropylene container (internal volume 70 L) and sufficiently suspended with a stirrer.
The coarsely pulverized coke was poured into a conical screw mixer (internal volume 200 L) at a feed rate of 100 kg / hr and calcium hydroxide and water at a feed rate of 0.5 kg / hr, and both were sufficiently stirred and mixed. . In this way, about 10 tons of the mixture was produced.

上記の混合物の水分含有量が0.2%未満になるまで乾燥を行った。乾燥後のコークスと水酸化カルシウムとの混合物を一部採取し、カルシウムおよび鉄の含有量を測定した。その結果、カルシウム含有量は337重量ppm、鉄含有量は29重量ppmであった。   Drying was performed until the water content of the above mixture was less than 0.2%. A part of the mixture of coke and calcium hydroxide after drying was sampled, and the contents of calcium and iron were measured. As a result, the calcium content was 337 ppm by weight and the iron content was 29 ppm by weight.

上記で得たカルシウム化合物を添加混合したコークス約10tonを、ロータリーキルン(加熱方式LPG炎、胴体材質SUS304、胴体内径40cm、加熱帯240cm)にて、胴体出口温度720℃、窒素流量20L/min、搬送速度30kg/hrの条件下にて炭化した。炭化終了後、胴体内部を観察したところ、表面に変色などの異常は認められなかった。また、揮発分中の硫黄含有量、真密度および鉄含有量を測定した。その結果、揮発分中の硫黄含有量は0.91重量%、真密度は1.53g/cm3、鉄含有量は41重量ppmであった。 About 10 tons of coke mixed with the calcium compound obtained above, in a rotary kiln (heating system LPG flame, fuselage material SUS304, fuselage inner diameter 40 cm, heating zone 240 cm), fuselage outlet temperature 720 ° C, nitrogen flow rate 20 L / min, transport Carbonized under conditions of a speed of 30 kg / hr. When the inside of the fuselage was observed after the carbonization, no abnormalities such as discoloration were found on the surface. Further, the sulfur content, true density and iron content in the volatile matter were measured. As a result, the sulfur content in the volatile matter was 0.91% by weight, the true density was 1.53 g / cm 3 , and the iron content was 41 ppm by weight.

次いで、上記の低温焼成炭素約10tonをジェットミル(ノズル径2mm)にて微粉砕し、微粉砕機に直結した気流分級機(缶体外径1m、缶体高さ2m)により、粒径1μm未満の微粉が0.1重量%未満となるように微粉砕物を分級した。微粉砕および分級と並行して、低温焼成炭素粉末の平均粒径が11μmとなるようにジェットミルのジェット圧を調整した。得られた
低温焼成炭素粉末の一部を採取し、平均粒径の測定を行った。平均粒径11μm、粒径1μm
未満の微粉が0.1重量%未満である低温焼成炭素粉末約9tonが得られた。
Next, about 10 tons of the above low-temperature calcined carbon is finely pulverized by a jet mill (nozzle diameter 2 mm), and the particle size is less than 1 μm by an air classifier (can outer diameter 1 m, can height 2 m) directly connected to the fine pulverizer. The finely pulverized product was classified so that the fine powder was less than 0.1% by weight. In parallel with the fine pulverization and classification, the jet mill jet pressure was adjusted so that the average particle size of the low-temperature calcined carbon powder was 11 μm. A part of the obtained low-temperature calcined carbon powder was sampled and the average particle size was measured. Average particle size 11μm, particle size 1μm
About 9 tons of low-temperature calcined carbon powder with less than 0.1% by weight of fine powder was obtained.

次いで、上記で得られた低温焼成炭素粉末80kgと、粉末状の水酸化カリウム145kgとを
遊星型混合機(内容積5m3、3軸)に仕込み、窒素雰囲気下にて、水酸化カリウムの粉末が
目視で確認されなくなるまで十分に攪拌混合した。このようにして、低温焼成炭素粉末と水酸化カリウムとの混合物約200kgを得た。
Next, 80 kg of the low-temperature calcined carbon powder obtained above and 145 kg of powdered potassium hydroxide were charged into a planetary mixer (internal volume 5 m 3 , triaxial), and the powder of potassium hydroxide under a nitrogen atmosphere The mixture was sufficiently stirred and mixed until no more visible. In this way, about 200 kg of a mixture of low-temperature calcined carbon powder and potassium hydroxide was obtained.

上記の低温焼成炭素粉末と水酸化カリウムとの混合物約200kgを、外熱式の連続焼成炉(容器材質ニッケル、容器サイズ120cm×120cm、仕込み高さ40cm)にて、加熱帯温度750℃、窒素流量2500L/min、炉内滞留時間7時間の条件下にて賦活を行った。   About 200 kg of a mixture of the above-mentioned low-temperature calcined carbon powder and potassium hydroxide was heated in an external heating type continuous calciner (container material nickel, container size 120 cm x 120 cm, preparation height 40 cm), heating zone temperature 750 ° C, nitrogen Activation was performed under the conditions of a flow rate of 2500 L / min and a residence time in the furnace of 7 hours.

上記で得た活性炭を、水洗水のpHが7以下になるまで水洗を行った。水洗後の活性炭を
乾燥し、活性炭約60kgを得た。
上記で得た活性炭約100gを、100℃にて20時間減圧乾燥した。乾燥した活性炭0.8g、ア
セチレンブラック0.1gと粉末状のPTFE0.1gとをメノー乳鉢に仕込み、30分間よく混合した。該混合物をアルミ箔上に載せ、ロール間距離が調節可能な2本の金属ロール(ロール径5cm、ロール長12cm)の間を数回通過させて、混合物をアルミ箔(厚さ0.3mm)上に圧着し、金型で円形に打ち抜いた。得られた電極(アルミ箔を除く)は、重量24.5mg、表面積4.9cm2、厚さ50μmであった。
The activated carbon obtained above was washed with water until the pH of the washing water became 7 or less. The activated carbon after washing with water was dried to obtain about 60 kg of activated carbon.
About 100 g of the activated carbon obtained above was dried under reduced pressure at 100 ° C. for 20 hours. 0.8 g of dried activated carbon, 0.1 g of acetylene black and 0.1 g of powdered PTFE were charged into a menor mortar and mixed well for 30 minutes. The mixture is placed on an aluminum foil and passed several times between two metal rolls (roll diameter 5 cm, roll length 12 cm) whose distance between the rolls is adjustable, and the mixture is placed on the aluminum foil (thickness 0.3 mm). And then punched into a circle with a mold. The obtained electrode (excluding the aluminum foil) had a weight of 24.5 mg, a surface area of 4.9 cm 2 and a thickness of 50 μm.

次いで、上記で得た電極2枚を円形のガラスフィルター(面積7cm2、厚さ0.2mm)を介し
て対向させ、減圧下にて電解液(1mol/Lのホウフッ化トリエチルメチルアンモニウムを含
有するプロピレンカーボネート溶液)中に浸漬した。アルゴン雰囲気下において、電極/ガラスフィルター/電極の構造物を2枚のポリプロピレン製板で挟み、固定した。該固定物
を密封し、電気二重層キャパシタとした。
Next, the two electrodes obtained above were opposed to each other through a circular glass filter (area 7 cm 2 , thickness 0.2 mm), and the electrolyte solution (propylene containing 1 mol / L triethylmethylammonium borofluoride) under reduced pressure. Soaked in a carbonate solution). In an argon atmosphere, the electrode / glass filter / electrode structure was sandwiched between two polypropylene plates and fixed. The fixed object was sealed to obtain an electric double layer capacitor.

上記で得た電気二重層キャパシタの電極を、ポテンショスタットおよびガルバノスタットの両方の機能を有する電源に接続し、充電を行った。充電条件は、電流密度0.2mA/cm2
、カットオフ電圧2.8Vにて定電流充電後、さらに定電圧にて1時間の充電とした。充電終
了後、放電を行った。放電条件は、電流密度0.2mA/cm2、カットオフ電圧0Vとした。放電
におけるクーロン量と電圧とのデータから、活性炭の静電容量の算出を行った。その結果、活性炭の静電容量は、37F/cm3であった。
Charging was performed by connecting the electrode of the electric double layer capacitor obtained above to a power source having both functions of a potentiostat and a galvanostat. Charging conditions are current density 0.2mA / cm 2
After constant current charging at a cut-off voltage of 2.8 V, charging was continued for 1 hour at a constant voltage. After charging was completed, discharging was performed. The discharge conditions were a current density of 0.2 mA / cm 2 and a cut-off voltage of 0V. The capacitance of the activated carbon was calculated from the data of the coulomb amount and voltage in the discharge. As a result, the capacitance of the activated carbon was 37 F / cm 3 .

炭酸カルシウム6kgおよび水54kgをポリプロピレン製容器(内容積150L)に仕込み、攪拌
機で混合しながら二酸化炭素を流速3L/minにて吹き込み、炭酸カルシウムを溶解させて、炭酸カルシウムと水との懸濁液を製造した。
Charge 6 kg of calcium carbonate and 54 kg of water into a polypropylene container (internal volume 150 L), blow in carbon dioxide at a flow rate of 3 L / min while mixing with a stirrer, dissolve calcium carbonate, and suspension of calcium carbonate and water Manufactured.

実施例1の粗粉砕されたコークスを100kg/hr、炭酸カルシウムと水との懸濁液を0.6kg/hrの送り速度にて、円錐型スクリューミキサー(内容積200L)に流し込み、両者を十分に攪拌混合した。このようにして混合物約10tonを製造した。   Pour the coarsely pulverized coke of Example 1 into a conical screw mixer (internal volume 200 L) at a feed rate of 100 kg / hr and calcium carbonate and water at 0.6 kg / hr. Stir and mix. In this way, about 10 tons of the mixture was produced.

上記で得た混合物につき、実施例1と全く同様の処理を行った。その結果、乾燥後のコークスと炭酸カルシウムとの混合物中のカルシウム含有量は307重量ppm、鉄含有量は29重量ppmであった。炭化終了後、胴体内部を観察したところ、変色などの異常は認められな
かった。また、揮発分中の硫黄含有量は1.01重量%、コークスと炭酸カルシウムとの混合物から得た低温焼成炭素の真密度は1.53g/cm3、鉄含有量は50重量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパシタの静電容量は、38F/cm3であった。
The mixture obtained above was treated in exactly the same way as in Example 1. As a result, the calcium content in the mixture of coke and calcium carbonate after drying was 307 ppm by weight, and the iron content was 29 ppm by weight. When the inside of the fuselage was observed after the completion of carbonization, no abnormality such as discoloration was observed. Further, the sulfur content in the volatile matter was 1.01% by weight, the true density of the low-temperature calcined carbon obtained from the mixture of coke and calcium carbonate was 1.53 g / cm 3 , and the iron content was 50 ppm by weight. Furthermore, the capacitance of the electric double layer capacitor produced with activated carbon obtained from the low-temperature calcined carbon was 38 F / cm 3 .

塩化カルシウム6kgおよび水14kgをポリプロピレン製容器(内容積45L)に仕込み、攪拌機にて混合して塩化カルシウムを完全に溶解させ、塩化カルシウムの水溶液を製造した。
実施例1の粗粉砕されたコークスを100kg/hr、塩化カルシウムの水溶液を0.20kg/hrの
送り速度で、円錐型スクリューミキサー(内容積200L)に流し込み、両者を十分に攪拌混合した。このようにして混合物約10tonを製造した。
6 kg of calcium chloride and 14 kg of water were charged into a polypropylene container (inner volume 45 L), and mixed with a stirrer to completely dissolve calcium chloride, thereby producing an aqueous solution of calcium chloride.
The coarsely pulverized coke of Example 1 was poured into a conical screw mixer (internal volume 200 L) at a feed rate of 100 kg / hr and calcium chloride aqueous solution at 0.20 kg / hr, and both were sufficiently stirred and mixed. In this way, about 10 tons of the mixture was produced.

上記で得た混合物につき、実施例1と全く同様の処理を行った。その結果、乾燥後のコークスと塩化カルシウムとの混合物中のカルシウム含有量は284重量ppm、鉄含有量は29重量ppmであった。炭化終了後、胴体内部を観察したところ、変色などの異常は認められな
かった。また、揮発分中の硫黄含有量は0.97重量%、コークスと塩化カルシウムとの混合物から得た低温焼成炭素の真密度は1.52g/cm3、鉄含有量は46重量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパシタの静電容量は、35F/cm3であった。
The mixture obtained above was treated in exactly the same way as in Example 1. As a result, the calcium content in the mixture of coke and calcium chloride after drying was 284 ppm by weight, and the iron content was 29 ppm by weight. When the inside of the fuselage was observed after the completion of carbonization, no abnormality such as discoloration was observed. Further, the sulfur content in the volatile matter was 0.97% by weight, the true density of the low-temperature calcined carbon obtained from the mixture of coke and calcium chloride was 1.52 g / cm 3 , and the iron content was 46 ppm by weight. Furthermore, the capacitance of the electric double layer capacitor produced with activated carbon obtained from the low-temperature calcined carbon was 35 F / cm 3 .

実施例1において、カルシウム化合物を添加混合したコークスの炭化におけるロータリーキルンの胴体出口温度を720℃から800℃に変更したこと以外は、実施例1と全く同様に処理することにより活性炭を製造した。   In Example 1, activated carbon was produced by the same treatment as in Example 1 except that the temperature at the trunk outlet of the rotary kiln was changed from 720 ° C. to 800 ° C. in carbonization of coke to which a calcium compound was added and mixed.

その結果、乾燥後のコークスと水酸化カルシウムとの混合物中のカルシウム含有量は320重量ppm、鉄含有量は44重量ppmであった。炭化終了後、胴体内部を観察したところ、変
色などの異常は認められなかった。また、揮発分中の硫黄含有量は0.97重量%、コークスと水酸化カルシウムとの混合物から得た低温焼成炭素の真密度は1.75g/cm3、鉄含有量は61重量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパシタの静電容量は、36F/cm3であった。
As a result, the calcium content in the mixture of coke and calcium hydroxide after drying was 320 ppm by weight, and the iron content was 44 ppm by weight. When the inside of the fuselage was observed after the completion of carbonization, no abnormality such as discoloration was observed. Further, the sulfur content in the volatile matter was 0.97% by weight, the true density of the low-temperature calcined carbon obtained from the mixture of coke and calcium hydroxide was 1.75 g / cm 3 , and the iron content was 61 ppm by weight. Furthermore, the electrostatic capacitance of the electric double layer capacitor manufactured by the activated carbon obtained from low temperature baked carbon was 36F / cm 3.

実施例2において、カルシウム化合物を添加混合したコークスの炭化におけるロータリーキルンの胴体出口温度を720℃から800℃に変更したこと以外は、実施例2と全く同様に処理することにより活性炭を製造した。   In Example 2, activated carbon was produced by treating in the same manner as in Example 2 except that the temperature at the trunk outlet of the rotary kiln in carbonization of coke to which a calcium compound was added and mixed was changed from 720 ° C to 800 ° C.

その結果、乾燥後のコークスと炭酸カルシウムとの混合物中のカルシウム含有量は298
重量ppm、鉄含有量は44重量ppmであった。炭化終了後、胴体内部を観察したところ、変色などの異常は認められなかった。また、揮発分中の硫黄含有量は1.03重量%、コークスと炭酸カルシウムとの混合物から得た低温焼成炭素の真密度は1.75g/cm3、鉄含有量は68重
量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパ
シタの静電容量は、35F/cm3であった。
As a result, the calcium content in the mixture of coke and calcium carbonate after drying was 298.
The weight ppm and the iron content were 44 ppm by weight. When the inside of the fuselage was observed after the completion of carbonization, no abnormality such as discoloration was observed. The sulfur content in the volatile matter was 1.03% by weight, the true density of the low-temperature calcined carbon obtained from the mixture of coke and calcium carbonate was 1.75 g / cm 3 , and the iron content was 68 ppm by weight. Furthermore, the electrostatic capacitance of the electric double layer capacitor manufactured by the activated carbon obtained from low temperature baked carbon was 35F / cm 3.

実施例3において、カルシウム化合物を添加混合したコークスの炭化におけるロータリーキルンの胴体出口温度を720℃から800℃に変更したこと以外は、実施例3と全く同様に処理することにより活性炭を製造した。   In Example 3, activated carbon was produced by the same treatment as in Example 3 except that the temperature at the trunk outlet of the rotary kiln was changed from 720 ° C to 800 ° C in carbonization of coke to which a calcium compound was added and mixed.

その結果、乾燥後のコークスと塩化カルシウムとの混合物中のカルシウム含有量は259
重量ppm、鉄含有量は44重量ppmであった。炭化終了後、胴体内部を観察したところ、変色などの異常は認められなかった。また、揮発分中の硫黄含有量は1.04重量%、コークスと塩化カルシウムとの混合物から得た低温焼成炭素の真密度は1.74g/cm3、鉄含有量は69重
量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパ
シタの静電容量は、33F/cm3であった。
[比較例1]
常圧蒸留残渣油と流動接触分解残渣油とを重量比50:50で混合した混合油を内容積20m3のベンチリアクターに仕込み、圧力約0.5Mpa、約500℃にて40時間保持することによりコ
ークス塊10tonを得た。
As a result, the calcium content in the mixture of coke and calcium chloride after drying was 259.
The weight ppm and the iron content were 44 ppm by weight. When the inside of the fuselage was observed after the completion of carbonization, no abnormality such as discoloration was observed. Further, the sulfur content in the volatile matter was 1.04% by weight, the true density of the low-temperature calcined carbon obtained from the mixture of coke and calcium chloride was 1.74 g / cm 3 , and the iron content was 69 ppm by weight. Furthermore, the capacitance of the electric double layer capacitor produced with activated carbon obtained from the low-temperature calcined carbon was 33 F / cm 3 .
[Comparative Example 1]
By mixing a mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at a weight ratio of 50:50 into a bench reactor with an internal volume of 20 m 3 and holding at a pressure of about 0.5 Mpa and about 500 ° C. for 40 hours Coke lump 10ton was obtained.

得られたコークス塊をロールクラッシャーで直径10cm以下に破砕し、さらに、SUS304製、ハンマー直径500mmのハンマーミルにて、粒径2mm以上の粒子が0.1重量%以下となるように粗粉砕した。粗粉砕されたコークスの一部を採取し、硫黄含有量を測定した。硫黄含有量は0.31重量%であった。   The obtained coke mass was crushed to a diameter of 10 cm or less with a roll crusher, and further coarsely pulverized with a hammer mill made of SUS304 and a hammer diameter of 500 mm so that particles having a particle diameter of 2 mm or more were 0.1 wt% or less. A portion of the coarsely pulverized coke was sampled and the sulfur content was measured. The sulfur content was 0.31% by weight.

粗粉砕されたコークスにカルシウム化合物を混合せずに、水分含有量が0.2%未満になるまで乾燥を行った。その他、実施例1と全く同様の処理を行うことにより活性炭を製造した。   The coarsely pulverized coke was not mixed with a calcium compound and dried until the water content was less than 0.2%. In addition, the activated carbon was manufactured by performing the completely same process as Example 1. FIG.

乾燥後のコークスのカルシウム含有量は58重量ppm、鉄含有量は27重量ppmであった。炭化終了後、胴体内部を観察したところ、胴体表面に黒色の斑点が散見された。また、揮発分中の硫黄含有量は1.76重量%、低温焼成炭素の真密度は1.54g/cm3、鉄含有量は125重量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパシ
タの静電容量は、15F/cm3であった。
[比較例2]
比較例1の粗粉砕され、かつカルシウム化合物が混合されていないコークスを、水分含有量が0.2%未満になるまで乾燥を行った。その他、実施例4と全く同様の処理を行うことにより活性炭を製造した。
The dried coke had a calcium content of 58 ppm by weight and an iron content of 27 ppm by weight. When the inside of the fuselage was observed after the carbonization, black spots were scattered on the surface of the fuselage. The sulfur content in the volatile matter was 1.76% by weight, the true density of the low-temperature calcined carbon was 1.54 g / cm 3 , and the iron content was 125 ppm by weight. Furthermore, the capacitance of the electric double layer capacitor produced with activated carbon obtained from the low-temperature calcined carbon was 15 F / cm 3 .
[Comparative Example 2]
The coke that was coarsely pulverized and was not mixed with the calcium compound of Comparative Example 1 was dried until the water content was less than 0.2%. In addition, activated carbon was manufactured by carrying out the same treatment as in Example 4.

乾燥後のコークスのカルシウム含有量は58重量ppm、鉄含有量は27重量ppmであった。炭化終了後、胴体内部を観察したところ、胴体表面に黒色の斑点が散見された。また、揮発
分中の硫黄含有量は1.76重量%、低温焼成炭素の真密度は1.76g/cm3、鉄含有量は154重量ppmであった。さらに、該低温焼成炭素から得た活性炭にて作製した電気二重層キャパシ
タの静電容量は、11F/cm3であった。
The dried coke had a calcium content of 58 ppm by weight and an iron content of 27 ppm by weight. When the inside of the fuselage was observed after the carbonization, black spots were scattered on the surface of the fuselage. Further, the sulfur content in the volatile matter was 1.76% by weight, the true density of the low-temperature calcined carbon was 1.76 g / cm 3 , and the iron content was 154 ppm by weight. Furthermore, the electrostatic capacitance of the electric double layer capacitor manufactured by the activated carbon obtained from low temperature baked carbon was 11F / cm 3.

Figure 2007103795
Figure 2007103795

本発明の活性炭製造用炭素質物および該炭素質物からなる低温焼成炭素粉末は、原料コークス中の不純物である硫黄に起因する問題点を抑制し、活性炭製造装置の寿命およびそれから得られる活性炭にて作製する電気二重層キャパシタの静電容量が向上するので、電気二重層キャパシタ用活性炭の製造原料として好適に用いることができる。   The carbonaceous material for activated carbon production of the present invention and the low-temperature calcined carbon powder made of the carbonaceous material suppress the problems caused by sulfur as an impurity in the raw material coke, and are produced with the life of the activated carbon production apparatus and the activated carbon obtained therefrom. Since the capacitance of the electric double layer capacitor is improved, it can be suitably used as a raw material for producing activated carbon for electric double layer capacitors.

Claims (4)

電気二重層キャパシタの電極材料として用いられる活性炭の製造原料であって、石油系重質油および/または石炭系重質油を熱処理して得られたコークスに、カルシウム化合物
を添加混合し、該混合物中のカルシウム含有量が100重量ppm以上10,000重量ppm以下とな
るように調製されたことを特徴とする活性炭製造用炭素質物。
A raw material for producing activated carbon used as an electrode material for an electric double layer capacitor, wherein a calcium compound is added to and mixed with coke obtained by heat treating petroleum heavy oil and / or coal heavy oil, and the mixture A carbonaceous material for producing activated carbon, characterized in that the calcium content therein is adjusted to 100 ppm to 10,000 ppm by weight.
請求項1に記載の活性炭製造用炭素質物を、不活性雰囲気下あるいは減圧下にて焼成および微粉砕処理することにより、真密度を1.40g/cm3以上1.85g/cm3以下、かつ平均粒径を1μm以上30μm以下としたことを特徴とする活性炭製造用低温焼成炭素粉末。 The activated carbon manufacturing carbonaceous material according to claim 1, by calcination and pulverization treatment at or reduced pressure under an inert atmosphere, true density 1.40 g / cm 3 or more 1.85 g / cm 3 or less, and the average particle A low-temperature calcined carbon powder for producing activated carbon, characterized in that the diameter is 1 μm or more and 30 μm or less. 請求項2に記載の活性炭製造用低温焼成炭素粉末に、賦活処理して得られることを特徴とする電気二重層キャパシタ電極材料用活性炭。   An activated carbon for an electric double layer capacitor electrode material obtained by activating the low-temperature calcined carbon powder for producing activated carbon according to claim 2. 請求項3に記載の活性炭を電極材料として用いることを特徴とする電気二重層キャパシタ。   4. An electric double layer capacitor using the activated carbon according to claim 3 as an electrode material.
JP2005293870A 2005-10-06 2005-10-06 Carbonaceous material for activated carbon production Expired - Fee Related JP4615416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293870A JP4615416B2 (en) 2005-10-06 2005-10-06 Carbonaceous material for activated carbon production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293870A JP4615416B2 (en) 2005-10-06 2005-10-06 Carbonaceous material for activated carbon production

Publications (2)

Publication Number Publication Date
JP2007103795A true JP2007103795A (en) 2007-04-19
JP4615416B2 JP4615416B2 (en) 2011-01-19

Family

ID=38030421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293870A Expired - Fee Related JP4615416B2 (en) 2005-10-06 2005-10-06 Carbonaceous material for activated carbon production

Country Status (1)

Country Link
JP (1) JP4615416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218250A1 (en) * 2019-04-26 2020-10-29 株式会社クラレ Carbonaceous material for battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378514A (en) * 1986-09-22 1988-04-08 旭硝子株式会社 New type electric double-layer capacitor
JPH0316908A (en) * 1989-06-15 1991-01-24 Takeda Chem Ind Ltd Active carbon for highly treating clean water
JP2004002105A (en) * 2002-05-31 2004-01-08 Kuraray Co Ltd Active carbon sheet, its manufacturing method, and polarizable electrode and electrical double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378514A (en) * 1986-09-22 1988-04-08 旭硝子株式会社 New type electric double-layer capacitor
JPH0316908A (en) * 1989-06-15 1991-01-24 Takeda Chem Ind Ltd Active carbon for highly treating clean water
JP2004002105A (en) * 2002-05-31 2004-01-08 Kuraray Co Ltd Active carbon sheet, its manufacturing method, and polarizable electrode and electrical double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218250A1 (en) * 2019-04-26 2020-10-29 株式会社クラレ Carbonaceous material for battery

Also Published As

Publication number Publication date
JP4615416B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
KR101710729B1 (en) Titanium oxide-based compound for electrode and lithium secondary battery using the same
US9806339B2 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
CN108054366B (en) Lithium ion battery cathode material and preparation method thereof
AU2017220569B2 (en) Methods of making graphene materials
JP7429760B2 (en) Method for purification of crude carbon nanotubes
CN107148692B (en) Conductive composition for electrode, electrode using same, and lithium ion secondary battery
KR102027716B1 (en) Carbonaceous material for sodium ion secondary battery negative electrode and sodium ion secondary battery using same
Wang et al. A facile route for PbO@ C nanocomposites: An electrode candidate for lead-acid batteries with enhanced capacitance
JP2002367613A (en) Lead storage battery
JP6113902B1 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
WO2009104681A1 (en) Lithium secondary battery anode substance and method for manufacturing
JP2011029197A (en) Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP4615416B2 (en) Carbonaceous material for activated carbon production
KR20150021046A (en) Method for Producing Carbonaceous Material for Negative Electrodes of Nonaqueous Electrolyte Secondary Batteries
JP6254732B1 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN110061197A (en) A kind of coal base battery negative electrode material and its preparation method and application
JP2000228193A (en) Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP4624830B2 (en) Carbonaceous materials for electrode materials
JP4721038B2 (en) Negative electrode carbon material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
Li et al. Unlocking High‐Performance Supercapacitor Behavior and Sustained Chemical Stability of 2D Metallic CrSe2 by Optimal Electrolyte Selection
JP7384829B2 (en) Silicon fine particles and their manufacturing method
CN110268562B (en) Method for producing negative electrode material for lithium ion secondary battery
JP2017204340A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
JP2022040599A (en) Negative-electrode active material for lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees