JP2007103622A - Plasma processing method and apparatus - Google Patents

Plasma processing method and apparatus Download PDF

Info

Publication number
JP2007103622A
JP2007103622A JP2005290777A JP2005290777A JP2007103622A JP 2007103622 A JP2007103622 A JP 2007103622A JP 2005290777 A JP2005290777 A JP 2005290777A JP 2005290777 A JP2005290777 A JP 2005290777A JP 2007103622 A JP2007103622 A JP 2007103622A
Authority
JP
Japan
Prior art keywords
plasma processing
time
processed
substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005290777A
Other languages
Japanese (ja)
Other versions
JP4550710B2 (en
Inventor
Yutaka Omoto
大本  豊
Masahiro Sumiya
誠浩 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005290777A priority Critical patent/JP4550710B2/en
Publication of JP2007103622A publication Critical patent/JP2007103622A/en
Application granted granted Critical
Publication of JP4550710B2 publication Critical patent/JP4550710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma etching processing method capable of reducing a work defect in the terminal edge of a large diameter wafer and raising production yield. <P>SOLUTION: The ratio of a bias voltage to be applied on a focus ring to the bias voltage to be applied on the wafer is temporally modulated in a time period when etching is easily stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体集積回路の加工に用いられるプラズマ処理方法、特にドライエッチング方法に関する。   The present invention relates to a plasma processing method used for processing a semiconductor integrated circuit, and more particularly to a dry etching method.

半導体集積回路は高密度化の要求に応じて微細化が進展し、構造的に垂直方向の空間の利用の要求が高まってきた。特に集積度の高いメモリーデバイスでは微細で深い穴形状が構造要素として必須であり、エッチング装置にはこの穴形状を高速で歩留まり高く加工することが要求されている。   Semiconductor integrated circuits have been miniaturized in response to the demand for higher density, and there has been a growing demand for structural use of vertical spaces. In particular, in a highly integrated memory device, a fine and deep hole shape is indispensable as a structural element, and an etching apparatus is required to process the hole shape at a high speed and with a high yield.

微細で深い穴を加工するに際しては、エッチング性のガスと堆積性のガスを組み合わせ、その流量比を精細にバランスさせて制御し、ボウイング形状あるいはテーパ形状と呼ばれる加工形状不良や加工マスク(フォトレジスト)の後退・変形による寸法精度劣化などを抑制しながらエッチング加工が行われていた。   When processing fine and deep holes, a combination of an etching gas and a deposition gas is used, and the flow rate ratio is precisely balanced to control the processing shape defect called a bowing shape or taper shape, or a processing mask (photoresist). Etching was performed while suppressing deterioration of dimensional accuracy due to retreat and deformation.

また、特許文献1には、試料を載置する試料台に印加する高周波バイアス電圧を時間変調する技術が開示されている。
特開平11−297679号公報
Patent Document 1 discloses a technique for time-modulating a high-frequency bias voltage applied to a sample stage on which a sample is placed.
JP 11-297679 A

しかしながら、上記ガス流量比制御による方法では、プラズマ密度の不均一などによってウエハに入射する反応性粒子のフラックスが変動し、加工途上でエッチングが停止してしまうという現象が発生し、多数の不良チップを発生させていた。   However, in the method based on the gas flow rate control described above, a phenomenon that the flux of reactive particles incident on the wafer fluctuates due to non-uniformity of the plasma density, etc., causing a phenomenon that etching stops in the course of processing, resulting in a large number of defective chips. Was generated.

上記の導入ガス比率の制御を主とした加工制御は、ウエハ全面に渡って入射粒子の最適な比率を維持することが困難で、特にウエハの最エッジ部では入射粒子の成分比率の変化が顕著であり、その比率が最適値範囲からずれ、エッチストップといわれるエッチング途中でエッチングが停止し底部まで孔が開口しない現象が発生し、最エッジ部の大多数のチップがデバイスとして導通不良欠陥となって製品歩留まりを大きく低下させていた。   In the processing control mainly for the control of the introduced gas ratio, it is difficult to maintain the optimum ratio of incident particles over the entire wafer surface. In particular, the change in the ratio of incident particle components is remarkable at the edge of the wafer. The ratio deviates from the optimum value range, and the phenomenon that etching stops during etching, which is called etch stop, does not open to the bottom, and the majority of the chips at the outermost edge become defective continuity defects as devices. The product yield was greatly reduced.

さらに、この傾向は最近用いられている300mm径の大口径ウエハでは顕著で、大口径ウエハ使用の大きなねらいであるコスト低減に対してそのメリットを十分に発揮できない原因となっていた。また、上記特許文献1に記載された高周波バイアス電圧を時間変調する技術も上記のウエハの最エッジ部でエッチングが停止するという問題点を解決することはできなかった。本発明は、これらの課題を解決することを目的としている。   Further, this tendency is conspicuous in a 300 mm diameter large diameter wafer that has been used recently, and this has been a cause of not being able to fully exhibit its merit for cost reduction, which is a major aim of using a large diameter wafer. In addition, the technique for time-modulating the high-frequency bias voltage described in Patent Document 1 cannot solve the problem that etching stops at the outermost edge portion of the wafer. The present invention aims to solve these problems.

本発明は、これらの課題を解決するために、フォーカスリングに印加されるバイアス電圧とウエハに印加するバイアス電圧の比率を、エッチストップが発生しやすい時間帯に時間変調を行う。   In order to solve these problems, the present invention performs time modulation on the ratio between the bias voltage applied to the focus ring and the bias voltage applied to the wafer in a time zone in which etch stop is likely to occur.

本発明によれば半導体集積装置の生産歩留まりを向上できる。   According to the present invention, the production yield of a semiconductor integrated device can be improved.

以下、本発明の代表的な実施の形態を、図面を用いて説明する。   Hereinafter, representative embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1であるUHF−ECR(Ultra High Frequency-Electron Cyclotron-Resonance)を用いたプラズマエッチング装置の概略断面図である。ここで、101は真空処理室で、石英窓102はUHF電磁界を真空処理室101内に通過させるために設けられ、電極103は石英窓102に対向して真空処理室101内に配置され、半導体集積装置が形成されるウエハ104を載置し、バイアス電圧を発生させるための高周波電源105が接続されている。アンテナ107は石英窓102に連結され、真空処理室101内にプラズマを発生させるための電磁界を、UHF電源110から導入する。ソレノイドコイル108は真空処理室101内に磁場を形成する。ガス分散板109はエッチングレシピにしたがってマスフローコントローラ111から供給されたガスを真空処理室内101に分散させ均一に導入する。   FIG. 1 is a schematic sectional view of a plasma etching apparatus using UHF-ECR (Ultra High Frequency Electron Cyclotron-Resonance) which is Embodiment 1 of the present invention. Here, reference numeral 101 denotes a vacuum processing chamber, the quartz window 102 is provided to pass the UHF electromagnetic field into the vacuum processing chamber 101, and the electrode 103 is disposed in the vacuum processing chamber 101 so as to face the quartz window 102, A wafer 104 on which a semiconductor integrated device is formed is placed, and a high frequency power source 105 for generating a bias voltage is connected. The antenna 107 is connected to the quartz window 102 and introduces an electromagnetic field for generating plasma in the vacuum processing chamber 101 from the UHF power source 110. The solenoid coil 108 forms a magnetic field in the vacuum processing chamber 101. The gas dispersion plate 109 disperses the gas supplied from the mass flow controller 111 according to the etching recipe into the vacuum processing chamber 101 and introduces it uniformly.

電極103のウエハ非載置部には絶縁リング123、導体リング122を介してシリコン製のフォーカスリング121が設置されている。導体リング122には真空処理室101外からインピーダンス調整回路124を介して高周波電源105が接続されている。   A focus ring 121 made of silicon is installed on the non-wafer mounting portion of the electrode 103 via an insulating ring 123 and a conductor ring 122. A high frequency power source 105 is connected to the conductor ring 122 from outside the vacuum processing chamber 101 via an impedance adjustment circuit 124.

ウエハ104は直径300mmのウエハで、最上層のシリコン酸化膜層の上に微細ホールパターンのマスクが形成されており、プラズマエッチング装置で所定のシーケンスにしたがって予め調整された微細孔加工用のレシピを用いてエッチングが行われる。   The wafer 104 is a wafer having a diameter of 300 mm, and a fine hole pattern mask is formed on the uppermost silicon oxide film layer. A recipe for fine hole processing, which is adjusted in advance by a plasma etching apparatus according to a predetermined sequence, is used. Etching is performed.

まず、本発明の方法を用いず、フォーカスリングとウエハのバイアス比率をエッチング処理中一定値で行った場合についてエッチング終了後検査を行ったところ、図2の左側に示すように、ウエハ内周部では正常に孔形状が加工されていたのに対し、ウエハ最外周部では図2の右側に示すように、途中でエッチングが停止し、非開口状態であった。このような加工不良の生じているチップ数は全チップの22%におよび、しかもそのほとんどはウエハ上の最外周に位置するチップであることがわかった。   First, when the bias ratio between the focus ring and the wafer was kept constant during the etching process without using the method of the present invention, an inspection after completion of etching was performed. As shown on the left side of FIG. In FIG. 2, the hole shape was processed normally, but as shown on the right side of FIG. It was found that the number of chips with such processing defects was 22% of all chips, and most of them were chips located on the outermost periphery on the wafer.

次に、本発明の方法を用いた場合について述べる。図3は、本発明の実施例2のエッチング方法を示す。
図3において、エッチングはフォーカスリングとウエハのバイアス比率を前記と同じ値で開始し、その後総エッチング時間の約1/3時間経過してから図3に示すようにインピーダンス調整回路124を用いてバイアス比率を、初期値を中心に約±20%ほど周期的に時間変調させた。変調の周期は0.5Hzで時間は総エッチング時間の1/3程度継続して行った。その後は、バイアス比率は初期値に戻して固定して最後まで処理を行った。この方法によって処理したウエハを検査したところ加工不良数は全体の3%に低減できていることがわかった。
Next, the case where the method of the present invention is used will be described. FIG. 3 shows an etching method according to the second embodiment of the present invention.
In FIG. 3, the etching starts with the bias ratio of the focus ring and the wafer at the same value as described above, and after about 1/3 of the total etching time has elapsed, the impedance is adjusted using the impedance adjustment circuit 124 as shown in FIG. The ratio was periodically time-modulated by about ± 20% around the initial value. The modulation period was 0.5 Hz, and the time was continuously about 1/3 of the total etching time. Thereafter, the bias ratio was returned to the initial value and fixed, and processing was performed to the end. Inspection of the wafer processed by this method revealed that the number of processing defects could be reduced to 3% of the total.

本発明の実施例2のエッチング方法により、上記改善効果が得られた原理について、図4を用いて説明する。インピーダンス調整回路を時間変調することによってフォーカスリングとウエハに印加されるバイアス電圧の比率が周期的に変化し、それに応じてそれぞれの上方のプラズマに形成されるシース(プラズマが固体壁と接する時に形成される不均一な電位分布と密度分布を持つ境界層)の幅が変化する。フォーカスリング/ウエハの電圧比が相対的に大きい場合は、シース形状は模式的に図4の左側の状態であり、逆に小さい場合は、図4の右側の状態のようになる。プラズマからシース界面に達したイオンはシース面に垂直に入射しようとするが、ウエハエッジ上方のシース面は、図4に示すように、ウエハ面に対して平行でないためウエハの法線に対してある入射角を有するようになる。   The principle by which the above improvement effect is obtained by the etching method of Example 2 of the present invention will be described with reference to FIG. The ratio of the bias voltage applied to the focus ring and the wafer changes periodically by time-modulating the impedance adjustment circuit, and the sheath formed in the plasma above each accordingly (formed when the plasma contacts the solid wall) The width of the boundary layer with non-uniform potential distribution and density distribution is changed. When the focus ring / wafer voltage ratio is relatively large, the sheath shape is typically the state on the left side of FIG. 4, and when it is small, the sheath shape is as shown on the right side of FIG. Ions that reach the sheath interface from the plasma try to enter the sheath surface perpendicularly, but the sheath surface above the wafer edge is not parallel to the wafer surface as shown in FIG. It has an incident angle.

このため、図5の説明図に示すように、ウエハ最エッジ部に入射するイオンはインピーダンス調整回路の変調によってその入射角が時間的に変調されることになる。エッチストップが発生しやすい、全体の1/3程度の深さまでエッチングが進行した時間帯には、ウエハ最エッジ部では入射粒子のアンバランスによって加速度的に側壁に付着する堆積物の量が増加する状況となるが、これに対し変調されて入射角が変化したイオンはこれらの堆積物に効率的にイオンエネルギーを与え、堆積物の孔底への輸送を促進することによってエッチストップを回避できたと考えられる。
したがって、本発明の効果は更にバイアス比率の変調開始時刻、変調幅を更に最適化することにより非開口不良率をさらに低減することが期待できる。
For this reason, as shown in the explanatory diagram of FIG. 5, the incident angle of ions incident on the wafer edge is temporally modulated by the modulation of the impedance adjustment circuit. During the time zone in which etching has progressed to a depth of about 1/3 of the whole, where the etch stop is likely to occur, the amount of deposits adhering to the sidewalls at an accelerated rate increases due to the imbalance of the incident particles at the edge of the wafer. In contrast, the ions that were modulated and the incident angle changed were able to efficiently give ion energy to these deposits, and promote the transport of the deposits to the hole bottom, thereby avoiding etch stop. Conceivable.
Therefore, the effect of the present invention can be expected to further reduce the non-aperture defect rate by further optimizing the modulation start time and modulation width of the bias ratio.

以上、本発明を用いることにより、大口径ウエハに微細で深い穴をエッチング加工する際に、最エッジ部に発生するエッチストップ現象を低減し、不良率を大幅に低減する効果を例示した。また、本発明はその作用原理により種々の孔の仕様(孔径、深さ)に応じて主として変調開始時間、変調継続時間、変調振幅を調整することにより、幅広く応用実施可能である。   As described above, by using the present invention, the etching stop phenomenon generated at the outermost edge portion when etching a fine and deep hole in a large-diameter wafer is reduced, and the effect of greatly reducing the defect rate is exemplified. Further, the present invention can be widely applied by adjusting mainly the modulation start time, modulation duration, and modulation amplitude in accordance with the specifications (hole diameter, depth) of various holes according to the principle of operation.

本発明の実施例1のプラズマ処理装置の断面図を示す図である。It is a figure which shows sectional drawing of the plasma processing apparatus of Example 1 of this invention. 加工不良形状を示す模式図である。It is a schematic diagram which shows a processing defect shape. 本発明の実施例2のエッチング方法におけるインピーダンス調整値の時間変調を説明する図である。It is a figure explaining the time modulation | alteration of the impedance adjustment value in the etching method of Example 2 of this invention. 本発明の効果発現原理を説明する補助図である。It is an auxiliary | assistant figure explaining the effect expression principle of this invention. 本発明の効果発現原理を説明する補助図である。It is an auxiliary | assistant figure explaining the effect expression principle of this invention.

符号の説明Explanation of symbols

101 真空処理室
102 石英窓
103 電極
104 ウエハ
105 高周波電源
107 アンテナ
108 ソレノイドコイル
109 ガス分散板
110 UHF電源
111 マスフローコントローラ
121 フォーカスリング
122 導体リング
123 絶縁リング
124 インピーダンス調整回路
101 Vacuum processing chamber 102 Quartz window 103 Electrode 104 Wafer 105 High frequency power supply 107 Antenna 108 Solenoid coil 109 Gas distribution plate 110 UHF power supply 111 Mass flow controller 121 Focus ring 122 Conductor ring 123 Insulation ring 124 Impedance adjustment circuit

Claims (8)

被処理基板のプラズマ処理中に、前記被処理基板と前記被処理基板周辺に設置された部材に印加される電圧の比率を時間変調することを特徴とするプラズマ処理方法。   A plasma processing method characterized in that, during plasma processing of a substrate to be processed, a ratio of a voltage applied to the substrate to be processed and a member installed around the substrate to be processed is time-modulated. 請求項1記載のプラズマ処理方法において、前記被処理基板に孔形状をエッチング加工することを特徴とするプラズマ処理方法。   2. The plasma processing method according to claim 1, wherein a hole shape is etched in the substrate to be processed. 請求項2記載のプラズマ処理方法において、前記プラズマ処理中のエッチング停止が発生しやすい時間帯に前記時間変調を行なうことを特徴とするプラズマ処理方法。   3. The plasma processing method according to claim 2, wherein the time modulation is performed in a time zone in which an etching stop is likely to occur during the plasma processing. 請求項3記載のプラズマ処理方法において、前記プラズマ処理中に前記時間変調を行なう時間帯が、総エッチング時間の1/3時間程度、経過後に開始され、総エッチング時間の1/3時間程度、継続することを特徴とするプラズマ処理方法。   4. The plasma processing method according to claim 3, wherein a time zone for performing the time modulation during the plasma processing is started after about 1/3 hours of the total etching time and continues for about 1/3 hours of the total etching time. And a plasma processing method. 被処理基板のプラズマ処理中に、前記被処理基板と前記被処理基板周辺に設置された部材に印加される電圧の比率を時間変調する時間変調手段を備えたことを特徴とするプラズマ処理装置。   A plasma processing apparatus comprising time modulation means for time-modulating a ratio of a voltage applied to the substrate to be processed and a member installed around the substrate to be processed during plasma processing of the substrate to be processed. 請求項5記載のプラズマ処理装置において、前記時間変調手段が、インピーダンス調整回路であることを特徴とするプラズマ処理装置。   6. The plasma processing apparatus according to claim 5, wherein the time modulation means is an impedance adjustment circuit. 請求項6記載のプラズマ処理装置において、前記インピーダンス調整回路が、前記被処理基板周辺に設置された部材内の導体リングと、前記非処理基板に高周波電力を供給する高周波電源とに接続されていることを特徴とするプラズマ処理装置。   7. The plasma processing apparatus according to claim 6, wherein the impedance adjustment circuit is connected to a conductor ring in a member installed around the substrate to be processed and a high-frequency power source that supplies high-frequency power to the non-processed substrate. A plasma processing apparatus. 請求項7記載のプラズマ処理装置において、前記インピーダンス調整回路が、前記プラズマ処理中のエッチング停止が発生しやすい時間帯に前記時間変調を行なうことを特徴とするプラズマ処理装置。   8. The plasma processing apparatus according to claim 7, wherein the impedance adjustment circuit performs the time modulation in a time zone in which an etching stop is likely to occur during the plasma processing.
JP2005290777A 2005-10-04 2005-10-04 Plasma processing method and apparatus Active JP4550710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290777A JP4550710B2 (en) 2005-10-04 2005-10-04 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290777A JP4550710B2 (en) 2005-10-04 2005-10-04 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2007103622A true JP2007103622A (en) 2007-04-19
JP4550710B2 JP4550710B2 (en) 2010-09-22

Family

ID=38030272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290777A Active JP4550710B2 (en) 2005-10-04 2005-10-04 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4550710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043318B1 (en) 2009-02-12 2011-06-21 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing method
JP2012523123A (en) * 2009-04-03 2012-09-27 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Improved etching and deposition profile control using plasma sheath engineering
JP2021177539A (en) * 2020-05-01 2021-11-11 東京エレクトロン株式会社 Etching device and etching method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196319A (en) * 1990-11-28 1992-07-16 Toshiba Corp Discharge treatment device
JPH08264515A (en) * 1994-04-20 1996-10-11 Tokyo Electron Ltd Plasma treatment device, processing device and etching device
JPH08316212A (en) * 1995-05-23 1996-11-29 Hitachi Ltd Plasma treatment method and plasma treatment device
JP2000173990A (en) * 1998-12-02 2000-06-23 Hitachi Ltd Dry etching device
JP2002141340A (en) * 2000-08-25 2002-05-17 Hitachi Ltd Plasma processor and plasma processing method
JP2003077904A (en) * 1996-03-01 2003-03-14 Hitachi Ltd Apparatus and method for plasma processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196319A (en) * 1990-11-28 1992-07-16 Toshiba Corp Discharge treatment device
JPH08264515A (en) * 1994-04-20 1996-10-11 Tokyo Electron Ltd Plasma treatment device, processing device and etching device
JPH08316212A (en) * 1995-05-23 1996-11-29 Hitachi Ltd Plasma treatment method and plasma treatment device
JP2003077904A (en) * 1996-03-01 2003-03-14 Hitachi Ltd Apparatus and method for plasma processing
JP2000173990A (en) * 1998-12-02 2000-06-23 Hitachi Ltd Dry etching device
JP2002141340A (en) * 2000-08-25 2002-05-17 Hitachi Ltd Plasma processor and plasma processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043318B1 (en) 2009-02-12 2011-06-21 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing method
JP2012523123A (en) * 2009-04-03 2012-09-27 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Improved etching and deposition profile control using plasma sheath engineering
JP2021177539A (en) * 2020-05-01 2021-11-11 東京エレクトロン株式会社 Etching device and etching method

Also Published As

Publication number Publication date
JP4550710B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US9496147B2 (en) Plasma processing apparatus and plasma processing method
US8809199B2 (en) Method of etching features in silicon nitride films
US8057603B2 (en) Method of cleaning substrate processing chamber, storage medium, and substrate processing chamber
TWI603368B (en) Plasma processing apparatus and plasma processing method
WO2020026802A1 (en) Control method and plasma processing device
JP2010186841A (en) Method of processing plasma
JP2008071981A (en) Method and apparatus for plasma treatment
US9245764B2 (en) Semiconductor device manufacturing method
TWI656558B (en) Cleaning method of plasma processing device and plasma processing device
JP2006302924A (en) Plasma treatment method and plasma treating apparatus
JP2015057854A (en) Plasma processing method
JP4550710B2 (en) Plasma processing method and apparatus
JP2002184766A (en) Apparatus and method for plasma processing
CN107452611B (en) Method and apparatus for plasma etching a workpiece
JP2016066801A (en) Plasma processing method
JP4588595B2 (en) Plasma processing apparatus and processing method
JP4800044B2 (en) Plasma processing apparatus and processing method
JP2015088696A (en) Plasma processing method
JP2004335637A (en) Etching method and etching device
JP2006080375A (en) Plasma processing method for manufacture of semiconductor integrated device
JP4324541B2 (en) Plasma processing equipment
JP2004165644A (en) Apparatus and method for plasma processing
JP2010153880A (en) Plasma processing apparatus
JP2006069857A (en) Plasma etching method and apparatus and resultant article
JP2006148179A (en) Reactive ion etching apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4550710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350