JP2007103295A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007103295A
JP2007103295A JP2005294943A JP2005294943A JP2007103295A JP 2007103295 A JP2007103295 A JP 2007103295A JP 2005294943 A JP2005294943 A JP 2005294943A JP 2005294943 A JP2005294943 A JP 2005294943A JP 2007103295 A JP2007103295 A JP 2007103295A
Authority
JP
Japan
Prior art keywords
electrode group
thickness
electrolyte secondary
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294943A
Other languages
Japanese (ja)
Other versions
JP5261869B2 (en
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2005294943A priority Critical patent/JP5261869B2/en
Publication of JP2007103295A publication Critical patent/JP2007103295A/en
Application granted granted Critical
Publication of JP5261869B2 publication Critical patent/JP5261869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the service life performance of a battery, by suppressing non-uniform and accelerative deterioration caused by stress generated repeatedly in the short-axis direction of the surface, where a laminated structure of an electrode group is exposed during charging and discharging, in a non-aqueous electrolyte secondary battery provided with elliptical electrode groups. <P>SOLUTION: In the non-aqueous electrolyte secondary battery, in which positive electrodes, negative electrodes, and separators are wound and made as the elliptical electrode groups, and in which the electrodes and current collectors are mutually connected and fixed at a plurality of places of the surface where the laminated structure of the electrode groups is exposed and sealed into a metallic outer package, when the thickness of the center and the thickness of the boundary part between a flat part and a curve part in the short-axis direction of the surface, where the laminated structure of the electrode groups is exposed are made as T1 and T2, respectively, and the inner width of the center of the long side in the opening part of the outer package is set as T3, the relations 0≤(T2-T1)/T2<0.05, 0.9×T3<T1≤T3, and 0.9×T3<T2≤T3 are satisfied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電気自動車やバックアップ電源等に用いる非水二次電解質電池に関する。   The present invention relates to a non-aqueous secondary electrolyte battery used for an electric vehicle, a backup power source and the like.

電子機器の急激な小型軽量化に伴い、その電源である電池に対して小型で軽量かつ高エネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれており、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開発が要望されている。   With the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Development is desired.

これらの要求を満たす二次電池として、非水電解質を使用した二次電池が実用化されている。この電池は、従来の水溶性電解液を使用した電池の数倍のエネルギー密度を有している。その例として、非水電解質二次電池の正極にリチウム含有層状コバルト酸化物(以下Co系化合物)、リチウム含有層状ニッケル酸化物(以下Ni系化合物)又はスピネル型リチウムマンガン複合酸化物(以下Mn系化合物)を用い、負極にリチウムが吸蔵・放出可能な炭素材料などを用いた長寿命な非水電解質二次電池が実用化されている。   As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has been put into practical use. This battery has an energy density several times that of a battery using a conventional water-soluble electrolyte. For example, a lithium-containing layered cobalt oxide (hereinafter referred to as a Co-based compound), a lithium-containing layered nickel oxide (hereinafter referred to as a Ni-based compound) or a spinel-type lithium manganese composite oxide (hereinafter referred to as a Mn-based) is used as a positive electrode of a nonaqueous electrolyte secondary battery. A long-life nonaqueous electrolyte secondary battery using a compound) and a carbon material capable of inserting and extracting lithium in the negative electrode has been put into practical use.

電気自動車等に用いる非水電解質二次電池の開発においては、高容量化と長寿命化、特に長寿命化が重要な開発課題となっている。この背景には、電気自動車の装置寿命が長く電池にも装置寿命と同等の寿命が求められること、従来の内燃型エンジンを用いた自動車に対するコストアップをなるべく抑える必要があること、などがあげられる。   In the development of non-aqueous electrolyte secondary batteries for use in electric vehicles and the like, high capacity and long life, in particular, long life are important development issues. This is due to the fact that the device life of an electric vehicle is long and that the battery is required to have a life equivalent to the device life, and that it is necessary to suppress the cost increase for a vehicle using a conventional internal combustion engine as much as possible. .

非水電解質二次電池の長寿命化をはかるには、活物質や電解液、セパレーターなど電極群を構成する部材の改良が特に重要であるが、その他に電池構造の改良も重要である。現在までに報告されている電池構造の改良例としては、特許文献1に示されるように電極群と電池ケースの横断面積比を規定したものや、特許文献2に示されるようにラミネートフィルムを外装体とした電池において電極群の中央部と端部の厚み比を規定したものなどが提案されている。   In order to extend the life of the non-aqueous electrolyte secondary battery, improvement of members constituting the electrode group such as an active material, an electrolytic solution, and a separator is particularly important, but improvement of the battery structure is also important. Examples of battery structure improvements that have been reported so far include those in which the cross-sectional area ratio between the electrode group and the battery case is defined as shown in Patent Document 1, or the laminate film is packaged as shown in Patent Document 2. A battery that has a body and a thickness ratio between the center and end of the electrode group has been proposed.

特開平11−224693号公報JP-A-11-224693 特開2004−006408号公報JP 2004-006408 A

特許文献1や特許文献2で開示された非水電解質二次電池では、長円形に捲回した電極群の積層構造が露出している面の短軸方向の厚みを最適化して、電解液の浸透性の低下やポリマー電解質の抵抗上昇などが起こらぬように工夫することでサイクル寿命性能を向上させることを主旨としている。しかし、これらの発明においては、充放電時に発生する電極群の膨張や、それによって発生する極板のストレス、特に、積層構造が露出している面の長円形電極群の短軸方向に発生するストレスを緩和させる手段を考慮していない問題があった。   In the nonaqueous electrolyte secondary batteries disclosed in Patent Document 1 and Patent Document 2, the thickness of the minor axis direction of the surface where the laminated structure of the electrode group wound in an oval shape is optimized is optimized, and the electrolyte solution The main purpose is to improve cycle life performance by devising so as not to cause a decrease in permeability and an increase in resistance of the polymer electrolyte. However, in these inventions, the expansion of the electrode group that occurs during charging and discharging, and the stress of the electrode plate that is generated thereby, particularly the short axis direction of the oval electrode group on the surface where the laminated structure is exposed. There was a problem that did not consider the means to relieve stress.

また、容量が5Ah以上の中・大形非水電解質二次電池では、大電流を取り出す場合の電圧低下をできる限り少なくする必要があるため、電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定している。このような集電構造とした場合、充放電時に発生する電極群の膨張や、それによって発生する極板のストレスによって、集電体に接続固定された部分において、電極のしわや変形、さらには電極箔のちぎれや内部短絡が起こる可能性がある。   In addition, in a medium / large non-aqueous electrolyte secondary battery having a capacity of 5 Ah or more, it is necessary to minimize the voltage drop when a large current is taken out. The electrodes and the current collector are connected and fixed at the locations. When such a current collection structure is used, wrinkles and deformation of the electrode in the portion connected and fixed to the current collector due to the expansion of the electrode group generated during charging and discharging, and the stress of the electrode plate generated thereby, There is a possibility of electrode foil tearing or internal short circuit.

我々の最新の検討結果によると、電極群を長円筒形とした従来の電池においては、電極群の積層構造が露出している面の短軸方向の厚みは均一でなく、中央部と端部で異なっており、このような電極群を金属製の堅牢な外装体に挿入した場合には、充放電時の電極群の膨張収縮と外装体の圧迫により発生するストレスが、厚みの大きな一部分に集中することがわかった。   According to our latest study results, in the conventional battery in which the electrode group is a long cylindrical shape, the thickness in the minor axis direction of the surface where the laminated structure of the electrode group is exposed is not uniform, and the central part and the end part When such an electrode group is inserted into a metal robust exterior body, the stress generated by the expansion and contraction of the electrode group during charging and discharging and the compression of the exterior body is part of a large thickness. I found out to concentrate.

そして、ストレスが集中した電極部位において、活物質層の剥離やセパレーター孔の閉塞、あるいは電解液の酸化などの劣化反応が加速的に進行してしまい、電池全体あるいは組電池全体の寿命を低下させることがわかった。   And in the electrode part where the stress is concentrated, the degradation reaction such as the peeling of the active material layer, the clogging of the separator hole, or the oxidation of the electrolytic solution progresses at an accelerated rate, thereby reducing the life of the entire battery or the entire assembled battery. I understood it.

また、容量が5Ah以上の中・大形非水電解質二次電池では、大電流を取り出す場合の電圧低下をできる限り少なくする必要があるため、電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定している。このような集電構造とした場合、充放電時に発生するの電極群の膨張収縮と外装体の圧迫に、電極のしわや変形、さらには電極箔のちぎれや内部短絡が発生し、この現象も電池の寿命性能を低下させることがわかった。   In addition, in a medium / large non-aqueous electrolyte secondary battery having a capacity of 5 Ah or more, it is necessary to minimize the voltage drop when a large current is taken out. The electrodes and the current collector are connected and fixed at the locations. In such a current collecting structure, wrinkles and deformation of the electrode, tearing of the electrode foil, and internal short circuit occur due to expansion and contraction of the electrode group and compression of the exterior body that occur during charging and discharging. It has been found that the battery life performance is reduced.

本発明の目的は、リチウムを吸蔵放出可能なリチウム複合酸化物を活物質とする正極と、リチウムを吸蔵放出可能な炭素材を活物質とする負極、およびセパレーターを捲回して長円形の電極群とし、該電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定して金属製の外装体に封入した非水電解質二次電池において、充放電時に電極群の積層構造が露出している面の短軸方向に繰り返し発生するストレスに起因する不均一かつ加速的な劣化を抑制して、非水電解質二次電池の寿命性能を向上させることである。   An object of the present invention is to provide a positive electrode using a lithium composite oxide capable of occluding and releasing lithium as an active material, a negative electrode using a carbon material capable of occluding and releasing lithium as an active material, and an oval electrode group by winding a separator. In the nonaqueous electrolyte secondary battery in which the electrode and the current collector are connected and fixed at a plurality of locations on the surface where the laminated structure of the electrode group is exposed and sealed in a metal outer package, the electrode group is charged and discharged This is to improve the life performance of the non-aqueous electrolyte secondary battery by suppressing non-uniform and accelerated deterioration caused by stress repeatedly generated in the minor axis direction of the surface where the laminated structure is exposed.

請求項1の発明は、正極と負極とセパレーターとを捲回して長円形の電極群とし、前記電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定して金属製の外装体に封入した非水電解液二次電池において、前記電極群の積層構造が露出している面の短軸方向の、中央部の厚みをT1、扁平部と曲線部の境界部の厚みをT2とし、外装体の開口部の長辺中央部の内寸幅をT3とした時、0≦(T2−T1)/T2<0.05、0.9×T3<T1≦T3および0.9×T3<T2≦T3の関係を満たすことを特徴とする。   In the first aspect of the invention, the positive electrode, the negative electrode, and the separator are wound to form an oval electrode group, and the electrode and the current collector are connected and fixed at a plurality of locations on the surface where the laminated structure of the electrode group is exposed. In a non-aqueous electrolyte secondary battery enclosed in a metal outer casing, the thickness of the central portion in the minor axis direction of the surface where the laminated structure of the electrode group is exposed is T1, and the boundary between the flat portion and the curved portion When the thickness of the part is T2 and the inner dimension width of the central part of the long side of the opening of the exterior body is T3, 0 ≦ (T2−T1) / T2 <0.05, 0.9 × T3 <T1 ≦ T3 And 0.9 × T3 <T2 ≦ T3.

本発明によれば、電極群の積層構造が露出している面の短軸方向において、中央部の厚みと、扁平部と曲線部の境界部の厚みとを均一とし、かつ、外装体の内寸厚みと電極群の短軸方向の厚みとの比率を最適化することで、充放電にともなう電極郡内での不均一かつ加速的な劣化反応の進行を抑制できるため、非水電解質二次電池の寿命性能が向上する。   According to the present invention, in the minor axis direction of the surface where the laminated structure of the electrode group is exposed, the thickness of the central portion and the thickness of the boundary portion between the flat portion and the curved portion are made uniform, and the inside of the exterior body By optimizing the ratio between the dimension thickness and the thickness of the minor axis direction of the electrode group, it is possible to suppress the progress of non-uniform and accelerated deterioration reaction within the electrode group due to charge / discharge, so that the non-aqueous electrolyte secondary Battery life performance is improved.

以下、本発明を詳細に説明するが、本発明が以下の実施の形態に限定されないことはいうまでもない。   Hereinafter, the present invention will be described in detail, but it goes without saying that the present invention is not limited to the following embodiments.

本発明は、正極と負極とセパレーターとを捲回して長円形の電極群とし、前記電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定して金属製の外装体に封入した非水電解質二次電池において、前記電極群の積層構造が露出している面の短軸方向の、中央部の厚みをT1、扁平部と曲線部の境界部の厚みをT2とし、外装体の開口部の長辺中央部の内寸幅をT3とした時、0≦(T2−T1)/T2<0.05、0.9×T3<T1≦T3および0.9×T3<T2≦T3の関係を満たすことを特徴とするものである。   In the present invention, a positive electrode, a negative electrode, and a separator are wound to form an oval electrode group, and the electrode and the current collector are connected and fixed at a plurality of locations on the surface where the laminated structure of the electrode group is exposed. In the non-aqueous electrolyte secondary battery enclosed in the outer package, the thickness of the central portion in the minor axis direction of the surface where the laminated structure of the electrode group is exposed is T1, and the thickness of the boundary portion between the flat portion and the curved portion is When T2 is set and T3 is the inner dimension width of the central portion of the long side of the opening of the exterior body, 0 ≦ (T2−T1) / T2 <0.05, 0.9 × T3 <T1 ≦ T3 and 0.9 XT3 <T2 ≦ T3 is satisfied.

このような特徴を有する非水電解質二次電池は、充放電の繰り返しによる不均一かつ加速的な劣化反応が起こりにくくなり、電池の寿命性能が向上するため、電気自動車、人工衛星、バックアップ電源など各種大型装置の電源として活用できる。   Non-aqueous electrolyte secondary batteries with such characteristics are less likely to cause non-uniform and accelerated deterioration reactions due to repeated charge and discharge, and improve battery life performance, such as electric vehicles, artificial satellites, backup power supplies, etc. It can be used as a power source for various large devices.

ここで、長円形電極群の積層構造が露出している面の短軸方向における厚みは、電池の仕様書やカタログ等で指定される使用電圧範囲内で測定される厚みとする。また、厚みの測定方法は定圧測定として測定圧は(1±0.1)×10Paとする。(1±0.1)×10Paで測定すれば、外装体内に挿入した場合と同等の厚みを定量できる。 Here, the thickness in the minor axis direction of the surface where the laminated structure of the oval electrode group is exposed is a thickness measured within the working voltage range specified in the battery specification, catalog, or the like. The thickness is measured at a constant pressure, and the measurement pressure is (1 ± 0.1) × 10 5 Pa. If it is measured at (1 ± 0.1) × 10 5 Pa, it is possible to quantify the same thickness as when inserted into the exterior body.

本発明の非水電解質二次電池に用いる長円形電極群の構成を図1に示す。図1において、記号1は電極群、2は正極、3は負極、4はセパレータ、5は正極板の合剤層未塗布部、6は負極板の合剤層未塗布部である。図1に示したように、長円形電極群1は、正極2と負極3とがセパレーター4を介して長円形状に捲回されたものであり、極板の端縁の合剤層未塗布部5、6を他方の極板の端縁部より突出させるように長円渦巻状に巻回したものである。   FIG. 1 shows a configuration of an oval electrode group used in the nonaqueous electrolyte secondary battery of the present invention. In FIG. 1, symbol 1 is an electrode group, 2 is a positive electrode, 3 is a negative electrode, 4 is a separator, 5 is an uncoated portion of the positive electrode plate, and 6 is an uncoated portion of the negative electrode plate. As shown in FIG. 1, the oval electrode group 1 includes a positive electrode 2 and a negative electrode 3 wound in an oval shape via a separator 4, and a mixture layer not applied to the edge of the electrode plate The portions 5 and 6 are wound in an elliptical spiral shape so as to protrude from the edge of the other electrode plate.

本発明の非水電解質二次電池は、この電極群を電池容器に収納し、電極群に非水電解液を含浸して構成されている。この非水電解質二次電池に用いられる負極、セパレーターおよび電解液などは、特に従来用いられてきたものと異なるところなく、通常用いられているものが使用できる。   The nonaqueous electrolyte secondary battery of the present invention is configured by housing this electrode group in a battery container and impregnating the electrode group with a nonaqueous electrolyte. The negative electrode, separator, electrolyte solution, and the like used for the nonaqueous electrolyte secondary battery are not particularly different from those conventionally used, and commonly used ones can be used.

図2は長円形電極群の外観を示す図で、図2において記号1は電極群、7は巻芯、8は固定用テープ、9は電極群の捲回軸、10は電極群の捲回軸に平行な曲面、11は電極群の捲回軸に垂直な上部平面、12は電極群の捲回軸に垂直な下部平面である。巻芯5には例えばポリエチレンテレフタレート製のパイプが用いられ、長円形電極群1の外周部は固定用テープ8で固定される。電極群1は、曲面10、上部平面11および下部平面12で囲まれている。そして、「電極群の積層構造が露出している面」とは、上部平面11および下部平面12のことである。   2 is an external view of the oval electrode group. In FIG. 2, symbol 1 is an electrode group, 7 is a winding core, 8 is a fixing tape, 9 is a winding axis of the electrode group, and 10 is a winding of the electrode group. A curved surface parallel to the axis, 11 is an upper plane perpendicular to the winding axis of the electrode group, and 12 is a lower plane perpendicular to the winding axis of the electrode group. For example, a pipe made of polyethylene terephthalate is used for the winding core 5, and the outer peripheral portion of the oval electrode group 1 is fixed by a fixing tape 8. The electrode group 1 is surrounded by a curved surface 10, an upper plane 11 and a lower plane 12. The “surface on which the laminated structure of the electrode group is exposed” refers to the upper plane 11 and the lower plane 12.

この電極群では、上部平面11の複数箇所で正極板と正極集電体とが接続固定され、下部平面12の複数箇所で負極板と負極集電体とが接続固定され、金属製の外装体に封入されている。なお、上部平面11と下部平面12の極性は逆にすることもできる。   In this electrode group, the positive electrode plate and the positive electrode current collector are connected and fixed at a plurality of locations on the upper plane 11, and the negative electrode plate and the negative electrode current collector are connected and fixed at a plurality of locations on the lower plane 12. Is enclosed. Note that the polarities of the upper plane 11 and the lower plane 12 can be reversed.

図3は長円形電極群の積層構造が露出している面(ここでは図2の上部平面11とする。下部平面12とした場合も同様である。)の平面図で、図3において記号7は巻芯、13は長円形電極群の扁平部、14は長円形電極群の曲線部、T1は中央部の厚み、T2は扁平部と曲線部の境界部の厚みを示す。図3に示すように、長円形電極群の中央部とは、長円形電極群の積層構造が露出している面における短軸部であり、中央部の厚みT1は短軸の長さに相当する。また、扁平部と曲線部の境界部の厚みT2とは、扁平部の端で測定した厚みである。   FIG. 3 is a plan view of the surface where the laminated structure of the oval electrode group is exposed (here, the upper plane 11 in FIG. 2 and the lower plane 12 is the same), and in FIG. Is the winding core, 13 is the flat part of the oval electrode group, 14 is the curved part of the oval electrode group, T1 is the thickness of the center part, and T2 is the thickness of the boundary part of the flat part and the curved part. As shown in FIG. 3, the center part of the oval electrode group is a short axis part on the surface where the laminated structure of the oval electrode group is exposed, and the thickness T1 of the center part corresponds to the length of the short axis. To do. The thickness T2 at the boundary between the flat part and the curved part is a thickness measured at the end of the flat part.

すなわち、長円形電極群の扁平部13では電極が最多層積層されており、曲線部14では、端に近い位置ほど積層数は少なくなっている。したがって、T1は電極が最多層積層された中央部の厚みであり、T2は電極が最多層積層された端部の厚みである。   That is, in the flat portion 13 of the oval electrode group, the electrodes are laminated in the most multilayered manner, and in the curved portion 14, the number of laminated layers is smaller as the position is closer to the end. Therefore, T1 is the thickness of the central portion where the electrodes are laminated in the most multilayer, and T2 is the thickness of the end portion where the electrodes are laminated in the most multilayer.

長円形の捲回式電極群では、曲線部で電極厚みのスプリングバックが起こりやすいことや、外装体に挿入する際に捲回機の捲回軸を抜き取った後に最内周部にできたわずかな空間が移動して端部に集中することなどが原因で、通常は扁平部と曲線部の境界部の厚みT2が電極群の最大厚みとなる。逆に、通常は中央部の厚みT1が最小厚みとなる。   In the oval wound electrode group, spring back of the electrode thickness is likely to occur at the curved portion, and the innermost circumference after removing the winding shaft of the winding machine when inserting it into the exterior body. The thickness T2 of the boundary portion between the flat portion and the curved portion is usually the maximum thickness of the electrode group due to the fact that the space moves and concentrates on the end portion. Conversely, the thickness T1 at the center is usually the minimum thickness.

したがって、中央部と、扁平部と曲線部の境界部の二点の厚みを測定し、その厚みの比率を最適化された規定値内、つまり、電極群の中央部の厚みT1と、電極群の扁平部と曲線部の境界部の厚みT2とが0≦(T2−T1)/T2<0.05の関係を満たすようにすればよい。   Therefore, the thickness of two points of the central part and the boundary part between the flat part and the curved part is measured, and the ratio of the thickness is within the optimized specified value, that is, the thickness T1 of the central part of the electrode group, and the electrode group And the thickness T2 of the boundary portion between the curved portions may satisfy the relationship of 0 ≦ (T2−T1) / T2 <0.05.

そのためには、捲回後の電極群が膨れてしまわないように電極とセパレーターに強いテンションをかけて捲回することや、捲回後の電極群の中央に大きな空間が生じてしまわぬように捲回機の巻き芯の厚みを薄くすること、捲回後の湾曲部のスプリングバックを低減するために活物質層の可撓性を高めること、または、電極群の曲線部の合剤層を一部除去してしまうこと、あるいは、金属製の外装体に挿入する前に厚みが均一となるように電極群をプレスする処理や、集電体を電極群の外側に配置して圧迫するなどの手段が有効である。   To that end, do not swell the electrode group after winding by applying a strong tension to the electrode and the separator, or do not create a large space in the center of the electrode group after winding. To reduce the thickness of the winding core of the winding machine, to increase the flexibility of the active material layer in order to reduce the spring back of the curved portion after winding, or to add a mixture layer of the curved portion of the electrode group Partial removal or processing to press the electrode group so that the thickness is uniform before inserting it into the metal exterior body, or placing the current collector outside the electrode group and pressing it Is effective.

さらに本発明においては、金属製外装体の開口部の長辺中央部の内寸幅をT3とした時、T3とT1およびT2とは、0.9×T3<T1≦T3ならびに0.9×T3<T2≦T3の関係を満たす必要がある。なお、T3は、金属製の外装体に応力がかからない状態で測定した値であり、外装体の開口部の長辺中央部の内寸幅を代表値とすることにする。   Furthermore, in the present invention, T3, T1, and T2 are 0.9 × T3 <T1 ≦ T3 and 0.9 ×, where T3 is the inner dimension width of the central portion of the long side of the opening of the metal exterior body. It is necessary to satisfy the relationship of T3 <T2 ≦ T3. T3 is a value measured in a state where no stress is applied to the metal exterior body, and the inner dimension width at the center of the long side of the opening of the exterior body is a representative value.

本発明の非水電解質二次電池は、長円形電極群を角形外装体に収納し、蓋を取りつけて封入したものである。本発明の非水電解質二次電池の角形外装体の外観を図4に示す。図4に示すように、角形外装体の開口部はA、B、C、Dで囲まれた長方形で、この長方形の長辺ADの内寸側の中央部xと、長辺BCの内寸側の中央部yとの距離が「外装体の開口部の長辺中央部の内寸幅」であり、図4ではaに相当する。   The nonaqueous electrolyte secondary battery of the present invention is a battery in which an ellipsoidal electrode group is housed in a rectangular outer package, and a lid is attached and sealed. FIG. 4 shows the external appearance of the rectangular outer package of the nonaqueous electrolyte secondary battery of the present invention. As shown in FIG. 4, the opening of the rectangular exterior body is a rectangle surrounded by A, B, C, and D, and a central portion x on the inner dimension side of the long side AD of the rectangle and an inner dimension of the long side BC. The distance from the central portion y on the side is “inner width of the central portion of the long side of the opening of the exterior body”, which corresponds to a in FIG.

電極群の厚みが外装体の内寸より大きいということは、電池が膨れているということであり、このような電池は機器への組み込みや組電池の設計が不可能であるため好ましくない。逆に、電極群の厚みが外装体の内寸厚みよりも著しく小さい場合には、電池のエネルギー密度が低下するほか、外装体が電極群を保持する能力が低下するため、電池に振動が加わった際に集電体が破断する恐れが生じる確率も高まる。したがって、中央部の厚みと端部の厚みは、上限と下限の範囲内にある最適値をとることが好ましい。この関係を満たすには、電極群の厚みに適合した内寸厚みの外装体を設計すればよい。   The fact that the thickness of the electrode group is larger than the inner dimension of the outer package means that the battery is swollen, and such a battery is not preferable because it cannot be incorporated into a device or an assembled battery can be designed. On the contrary, when the thickness of the electrode group is significantly smaller than the inner dimension thickness of the outer package, the energy density of the battery is lowered, and the ability of the outer package to hold the electrode group is lowered. In such a case, the probability that the current collector may break when it is broken increases. Therefore, it is preferable that the thickness of the central portion and the thickness of the end portion take optimum values within the upper and lower limits. In order to satisfy this relationship, an exterior body having an internal thickness that matches the thickness of the electrode group may be designed.

すなわち、本発明の非水電解液二次電池に用いる正極材料としては、リチウムを吸蔵・放出可能なマンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウムを吸蔵放出可能なリチウム複合酸化物や、性能改善のために上記の各種複合酸化物の遷移金属部分を他の遷移金属や軽金属などで部分的に置換したリチウム複合酸化物、などが挙げられる。 That is, as a positive electrode material used for the non-aqueous electrolyte secondary battery of the present invention, lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), and lithium nickelate (LiNiO 2 ) capable of inserting and extracting lithium. Lithium composite oxides that can occlude and release lithium, and lithium composite oxides in which the transition metal part of the above composite oxides is partially replaced with other transition metals or light metals to improve performance, etc. Is mentioned.

また、負極材料としては、リチウムを吸蔵・放出可能な天然グラファイト、人造グラファイト、コークス類、難黒鉛化性炭素、低温焼成易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭などの炭素材料が挙げられる。   In addition, as negative electrode materials, carbon materials such as natural graphite, artificial graphite, coke, non-graphitizable carbon, low-temperature calcinable graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon, etc., capable of inserting and extracting lithium Is mentioned.

本発明の非水電解液二次電池に用いるセパレーターとしては、ポリエチレンやポリプロピレン等のポリオレフィン樹脂を主成分とする微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。   As the separator used in the non-aqueous electrolyte secondary battery of the present invention, a microporous membrane mainly composed of a polyolefin resin such as polyethylene or polypropylene is used, and a plurality of microporous materials having different materials, weight average molecular weights and porosity are used. Those obtained by laminating films, or those containing a suitable amount of various plasticizers, antioxidants, flame retardants and the like in these microporous films may be used.

本発明の非水電解液二次電池に用いる電解液の有機溶媒に特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。   There are no particular restrictions on the organic solvent of the electrolyte used in the nonaqueous electrolyte secondary battery of the present invention. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons. , Esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc., among which ethers, ketones, esters, lactones, halogenated hydrocarbons , Carbonates and sulfolane compounds are preferred.

これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。   Examples of these are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane. Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include trimethyl acid, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited thereto.

好ましくはカーボネート類およびエステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ビニレンカーボネートのうち1種または2種以上した混合物の有機溶媒である。   Preferred are carbonates and esters. Most preferably, the organic solvent is a mixture of one or more of ethylene carbonate, propylene carbonate, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, and vinylene carbonate.

また、本発明の非水電解液二次電池に用いる電解質塩としては、特に制限はないが、LiClO、LiBF、LiAsF、LiCFSO、LiPF、LiN(CFSO、LiN(CSO、LiI、LiAlCl、LiBOB等およびそれらの混合物が挙げられる。好ましくは、LiBF、LiPFのうち1種または2種以上を混合したリチウム塩がよい。 As the electrolyte salt used in the nonaqueous secondary battery of the present invention is not particularly limited, LiClO 4, LiBF 4, LiAsF 6, LiCF 3 SO 3, LiPF 6, LiN (CF 3 SO 2) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 , LiBOB and the like, and mixtures thereof. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a current collector, a terminal, an insulating plate, a battery case, and the like. However, these components may be used as they are.

以下に、本発明の実施例を、比較例とあわせて説明する。   Examples of the present invention will be described below together with comparative examples.

[実施例1〜9]
[実施例1]
正極板は、LiCoOの粉体を87重量%、導電助剤であるアセチレンブラックを5重量%、結着剤であるポリフッ化ビニリデンを8重量%混合し、これに含水量50ppm以下のN−メチル−2−ピロリドン(以下「NMP」と略す)を加えてペースト状としたスラリーを、幅110mmのアルミニウム箔の両面に塗布、乾燥して作製した。
[Examples 1 to 9]
[Example 1]
The positive electrode plate was mixed with 87% by weight of LiCoO 2 powder, 5% by weight of acetylene black as a conductive auxiliary agent, and 8% by weight of polyvinylidene fluoride as a binder, and N- with a water content of 50 ppm or less. A slurry in which methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) was added to form a paste was applied to both sides of an aluminum foil having a width of 110 mm and dried.

負極板は、人造グラファイトの粉体を90重量%、結着剤であるポリフッ化ビニリデンを10重量%と混合し、これにNMPを加えてペースト状としたスラリーを幅110mmの銅箔の両面に塗布、乾燥して作製した。   For the negative electrode plate, 90% by weight of artificial graphite powder and 10% by weight of polyvinylidene fluoride as a binder were mixed, and NMP was added to this to form a paste slurry on both sides of a 110 mm wide copper foil. It was prepared by coating and drying.

図1に示すように、正・負極板の長辺部には幅8mmの未塗布部を残しており、この未塗布部で集電体と接続する構造となっている。正・負極板の乾燥は0.01torr以下の真空下150℃で12時間以上おこない、その後室温まで冷却した後にロールプレスをおこなった。   As shown in FIG. 1, an uncoated portion having a width of 8 mm is left on the long side portion of the positive and negative electrode plates, and the uncoated portion is connected to the current collector. The positive and negative electrode plates were dried at 150 ° C. for 12 hours or more under a vacuum of 0.01 torr or less, and then cooled to room temperature and then rolled.

次に、正・負極板を、幅110mmのポリエチレン製セパレーターを介して、厚さ4mmの金属製巻芯を中心として、6.0×10−2N/cmの張力をかけながら長円形状に35回捲回して、長円形電極群を構成した。その後、積層構造が露出している面で電極と集電体を接続固定して、電極群と集電体の一式を、高さ120mm、幅100mmの長円形のアルミニウム合金製外装体に挿入した。この外装体の開口部の長辺中央部の内寸幅T3は10.7mmである。最後に、電解液(1M−LiPF/EC+EMC(vol比30:70)を注入し、レーザー溶接にて外装体と蓋とを封口溶接した。これを実施例1の非水電解質二次電池とした。 Next, the positive and negative electrode plates are formed into an oval shape while applying a tension of 6.0 × 10 −2 N / cm around a metal core having a thickness of 4 mm through a polyethylene separator having a width of 110 mm. The oval electrode group was formed by winding 35 times. Thereafter, the electrode and the current collector were connected and fixed on the surface where the laminated structure was exposed, and the set of the electrode group and the current collector was inserted into an oval aluminum alloy exterior body having a height of 120 mm and a width of 100 mm. . The inner dimension width T3 of the central part of the long side of the opening of the exterior body is 10.7 mm. Finally, an electrolytic solution (1M-LiPF 6 / EC + EMC (vol ratio 30:70) was injected, and the exterior body and the lid were sealed and welded by laser welding, which was used for the nonaqueous electrolyte secondary battery of Example 1. did.

[実施例2]
捲回時の張力を6.5×10−2N/cmとしたこと以外は実施例1と同じ条件で、実施例2の非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery of Example 2 was produced under the same conditions as Example 1 except that the tension during winding was 6.5 × 10 −2 N / cm.

[実施例3]
金属製巻芯の厚みを3.2mmとしたこと以外は実施例1と同じ条件で、実施例3の非水電解質二次電池を作製した。
[Example 3]
A nonaqueous electrolyte secondary battery of Example 3 was produced under the same conditions as Example 1 except that the thickness of the metal core was 3.2 mm.

[実施例4]
金属製巻芯の厚みを2.0mmとしたこと以外は実施例1と同じ条件で、実施例4の非水電解質二次電池を作製した。
[Example 4]
A nonaqueous electrolyte secondary battery of Example 4 was produced under the same conditions as Example 1 except that the thickness of the metal core was 2.0 mm.

[実施例5]
電極群の曲線部に位置する正・負極板において、最外周から3巻き分は内周側の合剤層がないこと以外は実施例1と同じ条件で、実施例5の非水電解質二次電池を作製した。ここで「電極群の曲線部」とは、図3の14で示す極板が曲がっている部分をさす。この電極群は、正負極板を捲回する前に、該当部分の合剤層を剥離しておくことによって作製することができる。
[Example 5]
In the positive and negative electrode plates located in the curved portion of the electrode group, the nonaqueous electrolyte secondary of Example 5 is used under the same conditions as in Example 1 except that there is no mixture layer on the inner periphery side for 3 turns from the outermost periphery. A battery was produced. Here, the “curved portion of the electrode group” refers to a portion where the electrode plate indicated by 14 in FIG. 3 is bent. This electrode group can be produced by peeling the mixture layer of the relevant part before winding the positive and negative electrode plates.

[実施例6]
電極群の曲線部に位置する正負極板において、最外周から5巻き分は内周側の合剤層がないこと以外は実施例1と同じ条件で、実施例6の非水電解質二次電池を作製した。
[Example 6]
In the positive and negative electrode plates located in the curved portion of the electrode group, the non-aqueous electrolyte secondary battery of Example 6 is the same as Example 1 except that there is no mixture layer on the inner periphery side for 5 turns from the outermost periphery. Was made.

[実施例7]
実施例1と同じ条件で捲回した後の電極群を、平滑な1cm厚のSUS板ではさみ、1×10Paの圧力で1秒間圧迫して10秒間解放する操作を10回繰り返してから固定用テープを取り付けて外装体に挿入し、実施例7の非水電解質二次電池を作製した。
[Example 7]
The electrode group after being wound under the same conditions as in Example 1 was sandwiched with a smooth 1 cm-thick SUS plate, pressed for 1 second at a pressure of 1 × 10 5 Pa, and released for 10 seconds, and then repeated 10 times. A fixing tape was attached and inserted into the outer package, and a nonaqueous electrolyte secondary battery of Example 7 was produced.

[実施例8]
外装体の開口部の長辺中央部の内寸幅T3を10.8mmとしたこと以外は実施例1と同じ条件で、実施例8の非水電解質二次電池を作製した。
[Example 8]
A nonaqueous electrolyte secondary battery of Example 8 was produced under the same conditions as Example 1 except that the inner dimension width T3 of the central part of the long side of the opening of the outer package was 10.8 mm.

[実施例9]
外装体の開口部の長辺中央部の内寸幅T3を10.5mmとしたこと以外は実施例1と同じ条件で、実施例10の非水電解質二次電池を作製した。
[Example 9]
A nonaqueous electrolyte secondary battery of Example 10 was produced under the same conditions as Example 1 except that the inner dimension width T3 of the central portion of the long side of the opening of the exterior body was 10.5 mm.

以上の実施例1〜実施例9の電池においては、表1に示すとおり、外装体の開口部の長辺中央部の内寸幅T3とT1およびT2との比率が、0.9×T3<T1≦T3ならびに0.9×T3<T2≦T3を満たすようにした。なお、実施例1〜9に使用した電極の長さはいずれも同一とし、いずれの電極群を捲回する際も捲回軸の幅は同一とした。   In the batteries of Examples 1 to 9 described above, as shown in Table 1, the ratio between the inner dimension widths T3 and T1 and T2 at the center of the long side of the opening of the exterior body is 0.9 × T3 < T1 ≦ T3 and 0.9 × T3 <T2 ≦ T3 were satisfied. In addition, all the length of the electrode used for Examples 1-9 was made the same, and the width | variety of the winding axis | shaft was made the same when winding any electrode group.

[初期放電容量測定]
以上の電池について、25℃環境下で、1時間率の定電流で4.1Vまで充電してから4.1Vの定電圧で充電時間の合計が3時間となるまで充電した後に、1時間率の電流で3.0Vまで放電する充放電を3回繰り返し、3回目の放電容量を初期放電容量と定めた。試験数は1種類の電池につき各30個とした。
[Initial discharge capacity measurement]
About the above battery, in a 25 degreeC environment, after charging to 4.1V by the constant current of 1 hour rate, after charging until the total of charging time becomes 3 hours by the constant voltage of 4.1V, 1 hour rate The charge / discharge for discharging to 3.0 V at a current of 3 was repeated three times, and the third discharge capacity was determined as the initial discharge capacity. The number of tests was 30 for each type of battery.

[厚み測定]
次に、初期放電容量確認後の各試験電池を開回路電圧が4.1Vとなるまで充電してから解体し、電極群の中央部の厚みT1と、扁平部と曲線部の境界部の厚みT2を測定した。また、別の電池を開回路電圧が3.0Vになるまで放電してから解体し、電極群の中央部の厚みT1と、扁平部と曲線部の境界部の厚みT2を測定した。
[Thickness measurement]
Next, each test battery after confirming the initial discharge capacity is charged until the open circuit voltage reaches 4.1 V, and then disassembled, and the thickness T1 of the center portion of the electrode group and the thickness of the boundary portion between the flat portion and the curved portion. T2 was measured. Another battery was discharged until the open circuit voltage reached 3.0 V and then disassembled, and the thickness T1 at the center of the electrode group and the thickness T2 at the boundary between the flat portion and the curved portion were measured.

[充放電サイクル試験]
以上のように作製した実施例1〜9の電池について、初期放電容量測定と同じ充放電条件で500回充放電した後の放電容量を求め、これを初期の放電容量で除して容量保持率を算定した。電池の試験数は各種類について10個とした。
[Charge / discharge cycle test]
About the battery of Examples 1-9 produced as mentioned above, the discharge capacity after charging / discharging 500 times on the same charging / discharging conditions as initial discharge capacity measurement was calculated | required, this was divided | segmented by the initial discharge capacity, and capacity retention Was calculated. The number of battery tests was 10 for each type.

[落下試験]
充放電サイクル試験をおこなった電池とは別に、実施例の電池および比較例の電池のそれぞれについて、初期放電容量測定後に、開回路電圧が3.0Vとなるまで放電したのち、正負極端子がある蓋面を上に、外装体の底面を下にして、1mの高さからコンクリートブロック上に落下させる操作を10回繰り返し、試験前後での内部抵抗の変化を測定した。落下試験前後での1kHz抵抗値が3%以上異なる場合を抵抗変化ありと定義した。なお、電池の試験数は各種類について20個とした。
[Drop test]
Separately from the batteries subjected to the charge / discharge cycle test, each of the battery of the example and the battery of the comparative example has positive and negative terminals after discharging until the open circuit voltage becomes 3.0 V after the initial discharge capacity measurement. The operation of dropping onto a concrete block from a height of 1 m with the lid surface up and the bottom surface of the exterior body down was repeated 10 times, and the change in internal resistance before and after the test was measured. When the 1 kHz resistance value before and after the drop test differs by 3% or more, it was defined that there was a resistance change. The number of battery tests was 20 for each type.

実施例1〜9の電池についての厚み測定結果を表1に示す。なお、表1における「充」は「充電時厚み」、「放」は「放電時厚み」を示す。   Table 1 shows the thickness measurement results for the batteries of Examples 1-9. In Table 1, “charge” indicates “thickness during charging”, and “release” indicates “thickness during discharge”.

Figure 2007103295
表1に示されるように、以上の工程で作製した実施例1〜9の電池は、0≦(T2−T1)/T2<0.05、0.9×T3<T1≦T3、0.9×T3<T2≦T3のすべての関係を満たしていることがわかる。
Figure 2007103295
As shown in Table 1, the batteries of Examples 1 to 9 manufactured through the above steps were 0 ≦ (T2−T1) / T2 <0.05, 0.9 × T3 <T1 ≦ T3, 0.9. It can be seen that all the relationships of × T3 <T2 ≦ T3 are satisfied.

実施例1〜9の電池についての初期放電容量、容量保持率および落下試験結果を表2にまとめた。なお、表2において、初期放電容量は測定したセル30個の平均値を示し、容量保持率は測定したセル10個の平均値を示す。   Table 2 summarizes the initial discharge capacity, capacity retention, and drop test results for the batteries of Examples 1-9. In Table 2, the initial discharge capacity indicates the average value of 30 measured cells, and the capacity retention rate indicates the average value of 10 measured cells.

Figure 2007103295
[比較例1〜9]
[比較例1]
捲回時の張力を5.0×10−2N/cmとしたこと以外は実施例1と同じ条件で、比較例1の非水電解質二次電池を作製した。
Figure 2007103295
[Comparative Examples 1 to 9]
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced under the same conditions as in Example 1 except that the tension during winding was 5.0 × 10 −2 N / cm.

[比較例2]
捲回時の張力を5.5×10−2N/cmとしたこと以外は実施例1と同じ条件で、比較例2の非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced under the same conditions as Example 1 except that the tension during winding was 5.5 × 10 −2 N / cm.

[比較例3]
金属製巻芯の厚みを8.0mmとしたこと以外は実施例1と同じ条件で、比較例3の非水電解質二次電池を作製した。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced under the same conditions as Example 1 except that the thickness of the metal core was 8.0 mm.

[比較例4]
実施例1で用いたのと同じ電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を10.3mmとしたこと以外は実施例1と同様にして、比較例4の非水電解質二次電池を作製した。
[Comparative Example 4]
In the same manner as in Example 1, except that the same electrode group as used in Example 1 was used, and the inner dimension width T3 of the central part of the long side of the opening of the exterior body was 10.3 mm, Comparative Example 4 A non-aqueous electrolyte secondary battery was produced.

[比較例5]
実施例1で用いたのと同じ電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を11.0mmとしたこと以外は実施例1と同様にして、比較例5の非水電解質二次電池を作製した。
[Comparative Example 5]
In the same manner as in Example 1, except that the same electrode group as used in Example 1 was used, and the inner dimension width T3 of the long side central portion of the opening of the exterior body was set to 11.0 mm, Comparative Example 5 A non-aqueous electrolyte secondary battery was produced.

[比較例6]
実施例1で用いたのと同じ電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を12.0mmとしたこと以外は実施例1と同様にして、比較例6の非水電解質二次電池を作製した。
[Comparative Example 6]
In the same manner as in Example 1, except that the same electrode group as used in Example 1 was used, and the inner dimension width T3 at the center of the long side of the opening of the exterior body was set to 12.0 mm, Comparative Example 6 A non-aqueous electrolyte secondary battery was produced.

[比較例7]
実施例4で用いたのと同じ、金属製巻芯の厚みを2.0mmとした電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を10.3mmとしたこと以外は実施例1と同様にして、比較例7の非水電解質二次電池を作製した。
[Comparative Example 7]
Using the same electrode group with a metal core thickness of 2.0 mm as used in Example 4, except that the inner dimension width T3 at the center of the long side of the opening of the exterior body was 10.3 mm Produced the nonaqueous electrolyte secondary battery of Comparative Example 7 in the same manner as in Example 1.

[比較例8]
実施例4で用いたのと同じ、金属製巻芯の厚みを2.0mmとした電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を10.0mmとしたこと以外は実施例1と同様にして、比較例8の非水電解質二次電池を作製した。
[Comparative Example 8]
Using the same electrode group in which the thickness of the metal core is 2.0 mm as used in Example 4, and the inner dimension width T3 at the center of the long side of the opening of the exterior body is 10.0 mm Produced a nonaqueous electrolyte secondary battery of Comparative Example 8 in the same manner as in Example 1.

[比較例9]
実施例4で用いたのと同じ、金属製巻芯の厚みを2.0mmとした電極群を用い、外装体の開口部の長辺中央部の内寸幅T3を12.0mmとしたこと以外は実施例1と同様にして、比較例9の非水電解質二次電池を作製した。
[Comparative Example 9]
Other than using the same electrode group in which the thickness of the metal core is 2.0 mm as used in Example 4, and the inner dimension width T3 at the center of the long side of the opening of the exterior body is 12.0 mm Produced a nonaqueous electrolyte secondary battery of Comparative Example 9 in the same manner as in Example 1.

なお、比較例1〜9に使用した電極の長さは、実施例1〜9に使用した電極の長さといずれも同一とし、いずれの電極群を捲回する際も捲回軸の幅は同一とした。   The lengths of the electrodes used in Comparative Examples 1 to 9 are the same as the lengths of the electrodes used in Examples 1 to 9, and the width of the winding shaft is the same when winding any electrode group. It was.

[特性測定]
比較例1〜9の非水電解質二次電池について、実施例1〜9の場合と同じ条件で、初期放電容量および電池厚みを測定し、充放電サイクル試験と落下試験をおこなった。初期放電容量の試験数は1種類の電池につき各30個とし、充放電サイクル試験の試験数は各種類について10個とし、落下試験の試験数は各種類について20個とした。
[Characteristic measurement]
For the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 9, the initial discharge capacity and the battery thickness were measured under the same conditions as in Examples 1 to 9, and a charge / discharge cycle test and a drop test were performed. The number of tests for the initial discharge capacity was 30 for each type of battery, the number of tests for the charge / discharge cycle test was 10 for each type, and the number of tests for the drop test was 20 for each type.

比較例1〜9の電池についての厚み測定結果を表3に示す。なお、表3における「充」は「充電時厚み」、「放」は「放電時厚み」を示す。   Table 3 shows the thickness measurement results for the batteries of Comparative Examples 1 to 9. In Table 3, “charge” indicates “thickness during charging”, and “release” indicates “thickness during discharge”.

Figure 2007103295
表3に示されるように、以上の工程で作製した比較例1〜9の電池は、0≦(T2−T1)/T2<0.05、0.9×T3<T1≦T3、0.9×T3<T2≦Tの関係のうち、いずれかを満たしていないことがわかる。
Figure 2007103295
As shown in Table 3, the batteries of Comparative Examples 1 to 9 produced through the above steps are 0 ≦ (T2−T1) / T2 <0.05, 0.9 × T3 <T1 ≦ T3, 0.9. It can be seen that any one of the relationships of × T3 <T2 ≦ T is not satisfied.

比較例1〜9の電池についての初期放電容量、容量保持率および落下試験結果を表4にまとめた。なお、表4において、初期放電容量は測定したセル30個の平均値を示し、容量保持率は測定したセル10個の平均値を示す。また、落下試験では、試験前後での1kHz抵抗値が3%以上異なる場合を抵抗変化ありと定義した。   Table 4 summarizes the initial discharge capacity, capacity retention, and drop test results for the batteries of Comparative Examples 1-9. In Table 4, the initial discharge capacity indicates the average value of 30 measured cells, and the capacity retention rate indicates the average value of 10 measured cells. Moreover, in the drop test, the case where the 1 kHz resistance value before and after the test differs by 3% or more was defined as having resistance change.

Figure 2007103295
表1〜表4に示す結果より、リチウムを吸蔵放出可能なリチウム複合酸化物を活物質とする正極と、リチウムを吸蔵放出可能な炭素材を活物質とする負極、およびセパレーターを捲回して長円形の電極群とし、前記電極群は積層構造が露出している面の複数箇所で電極と集電体とが接続固定されて金属製の外装体に封入されており、前記電極群の中央部の厚みT1と、前記電極群の端部の厚みT2とが0≦(T2−T1)/T2<0.05の関係を満たし、かつ、外装体の開口部の長辺中央部の内寸幅をT3とした時、T3とT1およびT2とが0.9×T3<T1≦T3ならびに0.9×T3<T2≦T3を満たすことを特徴とする非水電解液二次電池は、充放電サイクル後の容量保持率に優れることが明らかになった。
Figure 2007103295
From the results shown in Tables 1 to 4, a positive electrode using a lithium composite oxide capable of occluding and releasing lithium as an active material, a negative electrode using a carbon material capable of occluding and releasing lithium as an active material, and a separator are wound long. The electrode group is a circular electrode group, and the electrode group and the current collector are connected and fixed at a plurality of positions on the surface where the laminated structure is exposed, and is enclosed in a metal exterior body. The thickness T1 of the electrode group and the thickness T2 of the end portion of the electrode group satisfy the relationship of 0 ≦ (T2−T1) / T2 <0.05, and the inner width of the central portion of the long side of the opening of the exterior body When T3 is T3, T3, T1 and T2 satisfy 0.9 × T3 <T1 ≦ T3 and 0.9 × T3 <T2 ≦ T3. It was found that the capacity retention after cycling was excellent.

表1〜表4において、落下試験時の抵抗変化が起きた電池は、0.9×T3<T1もしくは0.9×T3<T2の関係を満たしていないため、外装体による電極群の保持が不十分であり、衝撃を加えた際の電極の巻きずれや電極群位置のずれが起こりやすいため、抵抗変化を起こしたものと考えられる。   In Tables 1 to 4, since the battery in which the resistance change occurred during the drop test does not satisfy the relationship of 0.9 × T3 <T1 or 0.9 × T3 <T2, the electrode group is not retained by the outer package. It is considered that the change in resistance is caused because the electrode is not sufficiently wound and the displacement of the electrode and the position of the electrode group are likely to occur when an impact is applied.

長円形電極群の構成を示す図。The figure which shows the structure of an oval electrode group. 長円形電極群の外観を示す図。The figure which shows the external appearance of an ellipse electrode group. 長円形電極群の積層構造が露出している面の平面図。The top view of the surface where the laminated structure of an oval electrode group is exposed. 本発明の非水電解質二次電池の外装体の外観を示す図。The figure which shows the external appearance of the exterior body of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 長円筒形電極群
2 正極
3 負極
4 セパレータ
9 電極群の捲回軸
11 電極群の捲回軸に垂直な上部平面
12 電極群の捲回軸に垂直な下部平面
13 長円形電極群の扁平部
14 長円形電極群の曲線部
T1 中央部の厚み
T2 端部の厚み
DESCRIPTION OF SYMBOLS 1 Long cylindrical electrode group 2 Positive electrode 3 Negative electrode 4 Separator 9 Electrode group winding axis 11 Upper plane perpendicular to electrode group winding axis 12 Lower plane perpendicular to electrode group winding axis 13 Flattened oval electrode group Part 14 Curved part of ellipsoidal electrode group T1 Center part thickness T2 End part thickness

Claims (1)

正極と負極とセパレーターとを捲回して長円形の電極群とし、前記電極群の積層構造が露出している面の複数箇所で電極と集電体とを接続固定して金属製の外装体に封入した非水電解質二次電池において、前記電極群の積層構造が露出している面の短軸方向の、中央部の厚みをT1、扁平部と曲線部の境界部の厚みをT2とし、外装体の開口部の長辺中央部の内寸幅をT3とした時、0≦(T2−T1)/T2<0.05、0.9×T3<T1≦T3および0.9×T3<T2≦T3の関係を満たすことを特徴とする非水電解質二次電池。 A positive electrode, a negative electrode, and a separator are wound to form an oval electrode group, and the electrode and the current collector are connected and fixed at a plurality of locations on the surface where the laminated structure of the electrode group is exposed to form a metal exterior body. In the encapsulated nonaqueous electrolyte secondary battery, the thickness of the central portion in the minor axis direction of the surface where the laminated structure of the electrode group is exposed is T1, and the thickness of the boundary portion between the flat portion and the curved portion is T2. When the inner dimension width of the central part of the long side of the body opening is T3, 0 ≦ (T2−T1) / T2 <0.05, 0.9 × T3 <T1 ≦ T3 and 0.9 × T3 <T2 A non-aqueous electrolyte secondary battery characterized by satisfying the relationship of ≦ T3.
JP2005294943A 2005-10-07 2005-10-07 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5261869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294943A JP5261869B2 (en) 2005-10-07 2005-10-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294943A JP5261869B2 (en) 2005-10-07 2005-10-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007103295A true JP2007103295A (en) 2007-04-19
JP5261869B2 JP5261869B2 (en) 2013-08-14

Family

ID=38030027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294943A Expired - Fee Related JP5261869B2 (en) 2005-10-07 2005-10-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5261869B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082157A (en) * 2012-10-18 2014-05-08 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
CN105375054A (en) * 2014-08-18 2016-03-02 株式会社杰士汤浅国际 Energy storage device
JP2016105415A (en) * 2016-02-04 2016-06-09 日立オートモティブシステムズ株式会社 Square lithium ion battery
CN112204791A (en) * 2018-09-21 2021-01-08 株式会社东芝 Battery and battery pack
CN112567555A (en) * 2018-08-09 2021-03-26 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
WO2021065128A1 (en) * 2019-09-30 2021-04-08 三洋電機株式会社 Method for producing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106536A (en) * 1996-09-26 1998-04-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH10189026A (en) * 1996-12-24 1998-07-21 Sanyo Electric Co Ltd Spiral electrode assembly for secondary battery
JPH11176478A (en) * 1997-12-15 1999-07-02 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2001189167A (en) * 1999-10-22 2001-07-10 Sony Corp Non-aqueous electrolyte secondary cell
JP2004047332A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Design method of square secondary battery
JP2004259485A (en) * 2003-02-24 2004-09-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005149763A (en) * 2003-11-11 2005-06-09 Toshiba Corp Rectangular nonaqueous electrolyte secondary battery
JP2005196991A (en) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106536A (en) * 1996-09-26 1998-04-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH10189026A (en) * 1996-12-24 1998-07-21 Sanyo Electric Co Ltd Spiral electrode assembly for secondary battery
JPH11176478A (en) * 1997-12-15 1999-07-02 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2001189167A (en) * 1999-10-22 2001-07-10 Sony Corp Non-aqueous electrolyte secondary cell
JP2004047332A (en) * 2002-07-12 2004-02-12 Toyota Motor Corp Design method of square secondary battery
JP2004259485A (en) * 2003-02-24 2004-09-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005149763A (en) * 2003-11-11 2005-06-09 Toshiba Corp Rectangular nonaqueous electrolyte secondary battery
JP2005196991A (en) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082157A (en) * 2012-10-18 2014-05-08 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
CN105375054A (en) * 2014-08-18 2016-03-02 株式会社杰士汤浅国际 Energy storage device
JP2016042433A (en) * 2014-08-18 2016-03-31 株式会社Gsユアサ Power storage device
US10991969B2 (en) 2014-08-18 2021-04-27 Gs Yuasa International Ltd. Energy storage device
JP2016105415A (en) * 2016-02-04 2016-06-09 日立オートモティブシステムズ株式会社 Square lithium ion battery
CN112567555A (en) * 2018-08-09 2021-03-26 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
CN112567555B (en) * 2018-08-09 2024-04-09 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
CN112204791A (en) * 2018-09-21 2021-01-08 株式会社东芝 Battery and battery pack
WO2021065128A1 (en) * 2019-09-30 2021-04-08 三洋電機株式会社 Method for producing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN114450835A (en) * 2019-09-30 2022-05-06 三洋电机株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5261869B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5260838B2 (en) Non-aqueous secondary battery
JP5499758B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5157062B2 (en) Nonaqueous electrolyte secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
CN112204791A (en) Battery and battery pack
JP5261869B2 (en) Nonaqueous electrolyte secondary battery
JP6877094B2 (en) Non-aqueous electrolyte batteries, battery modules and vehicles
JP2011070932A (en) Lithium secondary battery
JP2005093078A (en) Nonaqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2003059462A (en) Nonaqueous secondary battery
JP2004259675A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP2014013778A (en) Nonaqueous electrolyte secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP2005093077A (en) Nonaqueous electrolyte secondary battery
JP2005209530A (en) Non-aqueous electrolyte secondary battery
WO2018135011A1 (en) Wound-type battery
JP3663087B2 (en) Thin battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees