JP2005196991A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005196991A
JP2005196991A JP2003435422A JP2003435422A JP2005196991A JP 2005196991 A JP2005196991 A JP 2005196991A JP 2003435422 A JP2003435422 A JP 2003435422A JP 2003435422 A JP2003435422 A JP 2003435422A JP 2005196991 A JP2005196991 A JP 2005196991A
Authority
JP
Japan
Prior art keywords
recess
thickness
side wall
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435422A
Other languages
Japanese (ja)
Other versions
JP4446735B2 (en
Inventor
Koyo Watari
亘  幸洋
Morihiko Okuda
守彦 奥田
Takeshi Usumi
羽隅  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003435422A priority Critical patent/JP4446735B2/en
Publication of JP2005196991A publication Critical patent/JP2005196991A/en
Application granted granted Critical
Publication of JP4446735B2 publication Critical patent/JP4446735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery suppressing increase in thickness of a battery caused by expansion of a power generating element and decreasing defective thickness. <P>SOLUTION: The nonaqueous electrolyte secondary battery 1 is equipped with the power generating element 2 having a positive plate 4 and a negative plate 3, a battery case 6 for housing the power generating element 2 together with an electrolyte from an opening part, and a case cover 7 closing the opening part of the battery case 6. A recessed part 11 is formed in the area of 25-60% of the side wall of the battery case 6, the length between the side wall outer surface and a facing wall outer surface of a recess non-forming part is made 0.87-0.95 times the length between the side wall outer surface and the facing wall outer surface of the recessed part non-forming part, and the length between the side wall inner surface and the facing wall inner surface of the recess forming part is made 0.95-1.05 times the thickness of a part to be arranged between the side wall and the facing wall of the power generating element in housing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正極及び負極を有する発電要素と、底及び該底を囲む側壁を有し、前記発電要素を収容する電池ケースと、該電池ケースの開口部を塞ぐケース蓋とを備えた非水電解質二次電池に関する。   The present invention provides a non-aqueous power generation element including a power generation element having a positive electrode and a negative electrode, a battery case having a bottom and a side wall surrounding the bottom, and housing the power generation element, and a case lid for closing the opening of the battery case. The present invention relates to an electrolyte secondary battery.

近年、携帯電話、ノート型パーソナルコンピュータ、ビデオカメラなどの携帯可能な電子機器の高性能化、小型軽量化が進んでおり、これら電子機器に使用する高エネルギー密度の二次電池として、非水電解液を用いたリチウムイオン電池の利用が拡大している。しかし、リチウムイオン電池などの非水電解質二次電池では、極板を含む発電要素の初期充電時の膨張が非常に大きく、発電要素の膨張によって電池ケースが変形し、電池の厚みが規定値を超えるという問題が生じている。   In recent years, portable electronic devices such as mobile phones, notebook personal computers, and video cameras have been improved in performance, size, and weight. Non-aqueous electrolysis is used as a secondary battery with high energy density used in these electronic devices. The use of lithium-ion batteries using liquids is expanding. However, in a non-aqueous electrolyte secondary battery such as a lithium ion battery, the power generation element including the electrode plate has a very large expansion during the initial charging, and the battery case is deformed by the expansion of the power generation element, and the thickness of the battery reaches a specified value. There is a problem of exceeding.

また、リチウムイオン電池においては、近年、高容量化のために、極板を高密度化している。極板を高密度化した場合、電解液の浸透性が低下するため、極板各部の反応が不均一になり、充電が進行している部分とあまり進行していない部分との膨張率の違いによる歪みが生じ易くなるという問題がある。また、極板の高密度化のために極板の柔軟性を高めているため、極板自体が歪みやすく、それにともなって発電要素が変形して、電池ケースの変形が更に生じやすくなるという問題がある。   Further, in the lithium ion battery, in recent years, the electrode plate has been densified in order to increase the capacity. When the electrode plate is densified, the electrolyte permeability decreases, so the reaction of each part of the electrode plate becomes uneven, and the difference in expansion coefficient between the part where charging is progressing and the part where it is not progressing so much There is a problem that distortion due to the above occurs easily. Further, since the flexibility of the electrode plate is increased to increase the density of the electrode plate, the electrode plate itself is easily distorted, and the power generation element is deformed accordingly, and the battery case is more likely to be deformed. There is.

一方、極板の膨張を、電池ケースに設けた凹部で抑える電池が提案されている(例えば、特許文献1参照)。特許文献1では、高温放置時に電池内でガスが発生した場合、凹部がスプリングバックすることによって、電池内容積が増加するため、電池内圧の上昇を抑え、電池の膨れを小さくできるとされている。
特開平11−31523号公報
On the other hand, a battery that suppresses expansion of the electrode plate with a recess provided in the battery case has been proposed (see, for example, Patent Document 1). In Patent Document 1, when gas is generated in a battery when left at a high temperature, the concave portion springs back to increase the internal volume of the battery, thereby suppressing an increase in the internal pressure of the battery and reducing the swelling of the battery. .
JP-A-11-31523

しかし、上述した特許文献1の電池ケースの場合、凹部によって中央部分などの局所的にしか発電要素が圧迫されておらず、極板の各部分で不均一に反応が進行して反応部と未反応部との膨張率の違いから発電要素が変形する可能性、又は、圧迫されていない部分で極板が折れ曲がって発電要素が変形する可能性がある。また、特許文献1の発電要素厚みに対する電池ケース凹部形成部分の内方厚さの比(0.84〜0.99)では、発電要素を電池ケースに挿入する際に、電池ケース内側の凹部との摩擦によって発電要素外装が損傷する可能性がある。   However, in the case of the battery case of Patent Document 1 described above, the power generation element is pressed only locally at the central portion or the like by the concave portion, and the reaction proceeds unevenly at each portion of the electrode plate, and the reaction portion and the unreacted portion are not. There is a possibility that the power generation element is deformed due to a difference in expansion coefficient with the reaction part, or that the power generation element is deformed due to bending of the electrode plate in the uncompressed part. Moreover, in ratio (0.84-0.99) of the inner thickness of the battery case recessed part formation part with respect to the power generation element thickness of patent document 1, when inserting a power generation element in a battery case, There is a possibility that the power generation element exterior may be damaged by the friction.

本発明は斯かる事情に鑑みてなされたものであり、発電要素の膨張による電池の厚さ増加を抑制し、厚さ不良を減少できる非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the nonaqueous electrolyte secondary battery which can suppress the thickness increase of the battery by expansion | swelling of an electric power generation element, and can reduce thickness defect.

また、本発明は、発電要素を電池ケースに容易に挿入することができる非水電解質二次電池を提供することを他の目的とする。   Another object of the present invention is to provide a nonaqueous electrolyte secondary battery in which a power generation element can be easily inserted into a battery case.

また、本発明は、発電要素を効率的に圧迫して、発電要素の膨張による電池厚さの増加を抑制できる非水電解質二次電池を提供することを他の目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte secondary battery that can efficiently compress the power generation element and suppress an increase in battery thickness due to expansion of the power generation element.

第1発明に係る非水電解質二次電池は、正極及び負極を有する発電要素と、底及び該底を囲む側壁を有し、前記発電要素を収容する電池ケースと、該電池ケースの開口部を塞ぐケース蓋とを備えた非水電解質二次電池において、前記電池ケースの側壁には、該側壁の25%以上、60%以下の面積に凹部が形成され、凹部形成部分の前記側壁外面及び該側壁の対壁外面間の長さは、凹部非形成部分の前記側壁外面及び前記対壁外面間の長さの0.87倍以上、0.95倍以下であり、凹部形成部分の前記側壁内面及び前記対壁内面間の長さは、発電要素の前記側壁及び前記対壁間に収容時に配置される部分の厚さの0.95倍以上、1.05倍以下であることを特徴とする。   A non-aqueous electrolyte secondary battery according to a first aspect of the present invention includes a power generation element having a positive electrode and a negative electrode, a bottom and a side wall surrounding the bottom, a battery case containing the power generation element, and an opening of the battery case. In the nonaqueous electrolyte secondary battery comprising a case lid for closing, a concave portion is formed in an area of 25% or more and 60% or less of the side wall of the battery case, and the side wall outer surface of the concave portion forming portion and the side wall The length between the outer wall surfaces of the side wall is 0.87 times or more and 0.95 times or less the length between the outer wall surface of the non-recessed portion and the outer surface of the wall. And the length between the inner surfaces of the opposite walls is 0.95 times or more and 1.05 times or less the thickness of the portion disposed when housed between the side wall and the opposite wall of the power generation element. .

第1発明においては、底及び該底を囲む側壁を有する電池ケースの側壁の25%以上、60%以下の面積に凹部を形成し、凹部形成部分の前記側壁外面及び該側壁の対壁外面間の長さ(外方厚さ)を、凹部非形成部分の前記側壁外面及び前記対壁外面間の長さ(外方厚さ)の0.87倍以上、0.95倍以下にし、凹部形成部分の前記側壁内面及び前記対壁内面間の長さ(内方厚さ)を、発電要素の前記側壁及び前記対壁間に収容時に配置される部分の厚さ(外方厚さ)の0.95倍以上、1.05倍以下にする。凹部が側壁の広範囲(25%以上、60%以下)に形成されているため、発電要素の広範囲が凹部によって圧迫され、極板間の隙間などが均等化され、充電時の反応が極板各部で均一に進行する。また、極板の膨張による発電要素の歪みが凹部によって抑制される。   In the first invention, a recess is formed in an area of 25% or more and 60% or less of a side wall of a battery case having a bottom and a side wall surrounding the bottom, and the space between the outer surface of the side wall of the recess forming portion and the outer surface of the side wall opposite to the side wall The length (outside thickness) is 0.87 times or more and 0.95 times or less of the length (outside thickness) between the outer surface of the side wall and the outer surface of the opposite wall of the non-recessed portion. The length between the inner surface of the side wall and the inner surface of the opposite wall (inward thickness) of the portion is equal to 0 of the thickness (outer thickness) of the portion disposed between the side wall and the opposite wall of the power generation element when housed. .95 times or more and 1.05 times or less. Since the recess is formed over a wide area (25% or more, 60% or less) of the side wall, the wide range of the power generation element is pressed by the recess, the gaps between the electrode plates are equalized, and the reaction during charging is performed on each part of the electrode plate The process proceeds uniformly. Moreover, the distortion of the power generation element due to the expansion of the electrode plate is suppressed by the recess.

第2発明に係る非水電解質二次電池は、第1発明において、前記凹部は、角部が円弧形の四角形状平面を電池ケース内側に突出させた形状であることを特徴とする。   The nonaqueous electrolyte secondary battery according to a second aspect of the present invention is characterized in that, in the first aspect, the concave portion has a shape in which a rectangular flat surface having an arcuate corner portion protrudes inward of the battery case.

第2発明においては、凹部を、角部が円弧形の四角形状平面が電池ケース内側に突出した形状に形成する。発電要素を電池ケースに挿入する際、凹部の前記角部と発電要素外装とが接触するが、角部を円弧形にして丸みをつけているため、接触は滑らかであり、発電要素を挿入しやすい。   In the second invention, the concave portion is formed in a shape in which a rectangular flat surface having arcuate corners protrudes inward of the battery case. When the power generation element is inserted into the battery case, the corner of the recess and the power generation element exterior come into contact with each other, but since the corners are rounded and rounded, the contact is smooth and the power generation element is inserted. It's easy to do.

第3発明に係る非水電解質二次電池は、第1又は第2発明において、前記電池ケースの開口部から凹部までの間隔は、電池ケースの開口部から底外面までの長さの0.14倍以上、0.29倍以下であることを特徴とする。   The nonaqueous electrolyte secondary battery according to a third aspect of the present invention is the first or second aspect, wherein the distance from the opening of the battery case to the recess is 0.14 of the length from the opening of the battery case to the bottom outer surface. It is characterized by being not less than twice and not more than 0.29 times.

第3発明においては、電池ケースの開口部から凹部までの間隔を、電池ケースの開口部から底外面までの長さの0.14倍以上、0.29倍以下にする。正極及び負極を扁平巻状に巻回した発電要素を電池ケースに収容した場合、外周直線部分と外周円形部分との境目付近の膨張が特に大きいが、開口部から凹部までの間隔を最適化することにより、膨張が大きい前記境目付近を凹部で圧迫し、膨張を効果的に抑制することが可能となる。   In the third invention, the distance from the opening of the battery case to the recess is set to be 0.14 times or more and 0.29 times or less of the length from the opening of the battery case to the bottom outer surface. When a power generation element in which a positive electrode and a negative electrode are wound in a flat winding shape is housed in a battery case, the expansion near the boundary between the outer peripheral linear portion and the outer peripheral circular portion is particularly large, but the interval from the opening to the recess is optimized. Accordingly, the vicinity of the boundary where the expansion is large can be pressed by the concave portion, and the expansion can be effectively suppressed.

第1発明によれば、電池ケースの側壁の25%以上、60%以下の面積に凹部を形成し、凹部形成部分の前記側壁外面及び該側壁の対壁外面間の長さを、凹部非形成部分の前記側壁外面及び前記対壁外面間の長さの0.87倍以上、0.95倍以下にし、凹部形成部分の前記側壁内面及び前記対壁内面間の長さを、発電要素の前記側壁及び前記対壁間に収容時に配置される部分の厚さの0.95倍以上、1.05倍以下にすることにより、発電要素の広範囲が凹部によって圧迫されるため、発電要素の膨張による電池の厚さ増加を抑制し、厚さ不良を減少できる。   According to the first invention, the recess is formed in an area of 25% or more and 60% or less of the side wall of the battery case, and the length between the outer surface of the side wall of the recess forming part and the outer surface of the side wall of the side wall is not formed. 0.87 times or more and 0.95 times or less of the length between the outer surface of the side wall and the outer surface of the wall of the portion, and the length between the inner surface of the side wall and the inner surface of the wall of the recess forming portion Due to the expansion of the power generation element, the wide range of the power generation element is compressed by the recess by 0.95 times or more and 1.05 times or less the thickness of the portion disposed during the housing between the side wall and the opposite wall. The increase in the thickness of the battery can be suppressed and the thickness defect can be reduced.

第2発明によれば、角部が円弧形の四角形状平面を電池ケース内側に突出させた形状に凹部を形成することにより、発電要素を電池ケースに容易に挿入することができる。   According to the second invention, the power generation element can be easily inserted into the battery case by forming the recess in a shape in which a rectangular flat surface having an arcuate corner is protruded to the inside of the battery case.

第3発明によれば、電池ケースの開口部から凹部までの間隔を、電池ケースの開口部から底外面までの長さの0.14倍以上、0.29倍以下にすることにより、発電要素を効率的に圧迫して、発電要素の膨張による電池厚さの増加を抑制できる。   According to the third aspect of the present invention, the distance from the opening of the battery case to the recess is 0.14 times or more and 0.29 times or less of the length from the opening of the battery case to the bottom outer surface. Can be efficiently pressed to suppress an increase in battery thickness due to expansion of the power generation element.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施例1)
図1は、本発明に係る角型の非水電解質二次電池の概略断面図である。非水電解質二次電池1は、銅集電体に負極合剤を塗布してなる負極板3、及びアルミ集電体に正極合剤を塗布してなる正極板4がセパレータ5を介して巻回された扁平巻状の電極群(発電要素)2と、非水電解液とをアルミ製の電池ケース6に収容してなるものである。電池ケース6は、底及び該底を囲む側壁を有し、開口部には安全弁8及び負極端子9を備えたケース蓋7がレーザー溶接によって取り付けられている。また、負極端子9は負極リード10を介して負極板3と接続され、正極板4は電池ケース6の内壁と接触して電気的に接続されている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Example 1)
FIG. 1 is a schematic cross-sectional view of a rectangular nonaqueous electrolyte secondary battery according to the present invention. The non-aqueous electrolyte secondary battery 1 includes a negative electrode plate 3 formed by applying a negative electrode mixture to a copper current collector, and a positive electrode plate 4 formed by applying a positive electrode mixture to an aluminum current collector through a separator 5. The rotated flat wound electrode group (power generation element) 2 and the nonaqueous electrolytic solution are accommodated in an aluminum battery case 6. The battery case 6 has a bottom and a side wall surrounding the bottom, and a case lid 7 provided with a safety valve 8 and a negative electrode terminal 9 is attached to the opening by laser welding. The negative electrode terminal 9 is connected to the negative electrode plate 3 via the negative electrode lead 10, and the positive electrode plate 4 is in contact with and electrically connected to the inner wall of the battery case 6.

正極ペーストは、正極活物質としてのリチウムコバルト複合酸化物LiCoO2 と、導電剤としてのアセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを重量比で91:3:6となるように混合し、これに溶媒であるN−メチル−2−ピロリドン(NMP)を適量加えて撹拌して得た。正極板4は、前記正極ペーストを、厚さ15μmのアルミ箔集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより作製した。 In the positive electrode paste, a lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed at a weight ratio of 91: 3: 6. Then, an appropriate amount of N-methyl-2-pyrrolidone (NMP) as a solvent was added thereto and stirred to obtain. The positive electrode plate 4 was prepared by uniformly applying the positive electrode paste to an aluminum foil current collector having a thickness of 15 μm and drying it, followed by compression molding with a roll press.

また、負極ペーストは、グラファイト(黒鉛)、およびバインダーとしてのポリフッ化ビニリデン(PVDF)を重量比で90:10とした負極合剤に、N−メチル−2−ピロリドン(NMP)を適量加えて得た。負極板3は、前記負極ペーストを、厚さ10μmの銅箔集電体の両面に塗布し、乾燥後、プレスして作製した。   The negative electrode paste was obtained by adding an appropriate amount of N-methyl-2-pyrrolidone (NMP) to a negative electrode mixture in which graphite (graphite) and polyvinylidene fluoride (PVDF) as a binder were 90:10 by weight. It was. The negative electrode plate 3 was prepared by applying the negative electrode paste on both surfaces of a 10 μm thick copper foil current collector, drying, and pressing.

セパレータ5には、ポリエチレン製微多孔膜を用いた。また、電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比が3:7の混合溶媒に、LiPF6 を1mol/l溶解させたものを用いた。 For the separator 5, a polyethylene microporous film was used. Further, as the electrolytic solution, a solution obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent having a volume ratio of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of 3: 7 was used.

図2は、非水電解質二次電池1の各部の寸法を示す図である。電池ケース6は、肉厚h=0.22mm、高さa=35mm、幅b=33mm、厚さ(外方厚さ)c=5.07mmである。また、電池ケースの4つの側面のうち広い方の2つの側面(以下、凹部形成側面)には、プレス加工によって凹部11が形成されている。凹部11は、電極群2を収容する前に形成されており、角部が円弧形の高さd=20mm、幅e=23mmの四角形状平面が電池ケース6内側に突出された形状である。また、角部の円弧部分の半径は1.5mmである。凹部11は面積j=e×d=4.6cm2 であり、凹部形成側面は面積k=a×b=11.6cm2 であり、凹部11の面積を凹部形成側面の面積で除した面積比率(=100×j/k)は40%である。 FIG. 2 is a diagram showing dimensions of each part of the nonaqueous electrolyte secondary battery 1. The battery case 6 has a thickness h = 0.22 mm, a height a = 35 mm, a width b = 33 mm, and a thickness (outer thickness) c = 0.07 mm. Moreover, the recessed part 11 is formed by the press work in two wider side surfaces (henceforth a recessed part formation side surface) among the four side surfaces of a battery case. The recess 11 is formed before the electrode group 2 is accommodated, and has a shape in which a rectangular flat surface with a corner having an arcuate height d = 20 mm and a width e = 23 mm protrudes to the inside of the battery case 6. . Moreover, the radius of the circular arc part of a corner | angular part is 1.5 mm. The recess 11 has an area j = e × d = 4.6 cm 2 , the recess formation side surface has an area k = a × b = 11.6 cm 2 , and an area ratio obtained by dividing the area of the recess 11 by the area of the recess formation side surface (= 100 × j / k) is 40%.

また、電極群2は、高さ32.0mm、幅32.5mm、厚さ(外方厚さ)4.14mmであり、放電容量は720mAhである。電池ケースの凹部形成部分の外方厚さ(以下、凹部外寸)fを電池ケース6の厚さcで除したケース厚さ比は0.91であり、電池ケースの凹部形成部分の内方厚さ(=f−2h:以下、凹部内寸)を電極群2の厚さで除した電極群厚さ比は1.01である。また、凹部11は、開口部から間隔g=8mmを空けた位置に形成されており、前記間隔gを電池ケースの高さaで除した長さ比(=g/a)は0.23である。   The electrode group 2 has a height of 32.0 mm, a width of 32.5 mm, a thickness (outer thickness) of 4.14 mm, and a discharge capacity of 720 mAh. The case thickness ratio obtained by dividing the outer thickness f (hereinafter referred to as the outer dimension of the recess) f by the thickness c of the battery case 6 is 0.91. The electrode group thickness ratio obtained by dividing the thickness (= f−2h: hereinafter, inner dimension of the recess) by the thickness of the electrode group 2 is 1.01. The recess 11 is formed at a position spaced from the opening by a gap g = 8 mm, and the length ratio (= g / a) obtained by dividing the gap g by the height a of the battery case is 0.23. is there.

(実施例2)
電極群厚さ比(=凹部内寸/電極群厚さ)が1.03、ケース厚さ比(=凹部外寸f/電池ケース厚さc)が0.93であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Example 2)
Example except that the electrode group thickness ratio (= inside recess dimension / electrode group thickness) is 1.03 and the case thickness ratio (= outside dimension f / battery case thickness c) is 0.93. A non-aqueous electrolyte secondary battery similar to 1 was obtained.

(実施例3)
電極群厚さ比が0.96、ケース厚さ比が0.87であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Example 3)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the electrode group thickness ratio was 0.96 and the case thickness ratio was 0.87.

(実施例4)
電極群厚さ比が1.05、ケース厚さ比が0.95であること以外は、実施例1と同様の非水電解質二次電池を得た。
Example 4
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the electrode group thickness ratio was 1.05 and the case thickness ratio was 0.95.

(実施例5)
開口部からの間隔gが10mm、長さ比(=開口部からの間隔g/電池ケースの高さa)が0.29であること以外は、実施例4と同様の非水電解質二次電池を得た。
(Example 5)
A nonaqueous electrolyte secondary battery similar to that of Example 4 except that the distance g from the opening is 10 mm and the length ratio (= the distance g from the opening / the height a of the battery case a) is 0.29. Got.

(実施例6)
開口部からの間隔gが5mm、長さ比が0.14であること以外は、実施例4と同様の非水電解質二次電池を得た。
(Example 6)
A nonaqueous electrolyte secondary battery similar to that of Example 4 was obtained except that the distance g from the opening was 5 mm and the length ratio was 0.14.

(実施例7)
開口部からの間隔gが12mm、長さ比が0.34であること以外は、実施例4と同様の非水電解質二次電池を得た。
(Example 7)
A nonaqueous electrolyte secondary battery similar to that of Example 4 was obtained except that the distance g from the opening was 12 mm and the length ratio was 0.34.

(実施例8)
開口部からの間隔gが4mm、長さ比が0.11であること以外は、実施例4と同様の非水電解質二次電池を得た。
(Example 8)
A nonaqueous electrolyte secondary battery similar to that of Example 4 was obtained except that the distance g from the opening was 4 mm and the length ratio was 0.11.

(実施例9)
凹部高さが25mm、凹部幅が25mm、凹部面積が6.3cm2 、面積比率(=凹部の面積/凹部形成側面の面積)が54%、開口部からの間隔gが5mm、長さ比(=開口部からの間隔g/電池ケースの高さa)が0.14であること以外は、実施例1と同様の非水電解質二次電池を得た。
Example 9
The height of the recess is 25 mm, the width of the recess is 25 mm, the area of the recess is 6.3 cm 2 , the area ratio (= area of the recess / area of the side surface where the recess is formed) is 54%, the distance g from the opening is 5 mm, and the length ratio ( = A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the distance g from the opening / the height a) of the battery case was 0.14.

(実施例10)
凹部高さが13mm、凹部面積が3.0cm2 、面積比率が26%であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Example 10)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the height of the recess was 13 mm, the area of the recess was 3.0 cm 2 , and the area ratio was 26%.

(実施例11)
凹部高さが20mm、凹部幅が15mm、凹部面積が3.0cm2 、面積比率が26%であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Example 11)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the recess height was 20 mm, the recess width was 15 mm, the recess area was 3.0 cm 2 , and the area ratio was 26%.

(実施例12)
電池ケース6の肉厚h=0.25mm、高さa=49mm、幅b=34mm、厚さ(外方厚さ)c=4.17mmであり、電極群2の高さが46mm、幅33.5mm、厚さ(外方厚さ)3.28mmであり、放電容量が830mAhであり、凹部高さが34mm、凹部面積が7.8cm2 、面積比率(=凹部の面積/凹部形成側面の面積)が47%、電極群厚さ比(=凹部内寸/電極群厚さ)が1.00、長さ比(=開口部からの間隔g/電池ケースの高さa)が0.16であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Example 12)
The thickness h of the battery case 6 is 0.25 mm, the height a is 49 mm, the width b is 34 mm, the thickness (outer thickness) is c = 4.17 mm, the height of the electrode group 2 is 46 mm, and the width 33 0.5 mm, thickness (outer thickness) 3.28 mm, discharge capacity 830 mAh, recess height 34 mm, recess area 7.8 cm 2 , area ratio (= area of recess / side surface of recess formation) Area) is 47%, electrode group thickness ratio (= inside of recess / electrode group thickness) is 1.00, and length ratio (= interval g from opening / height of battery case a) is 0.16. A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that.

(実施例13)
電極群厚さ比が1.03、ケース厚さ比(=凹部外寸f/電池ケース厚さc)が0.93であること以外は、実施例12と同様の非水電解質二次電池を得た。
(Example 13)
A nonaqueous electrolyte secondary battery similar to that of Example 12 was used except that the electrode group thickness ratio was 1.03 and the case thickness ratio (= recess outer dimension f / battery case thickness c) was 0.93. Obtained.

(実施例14)
電極群厚さ比が0.95、ケース厚さ比が0.87であること以外は、実施例12と同様の非水電解質二次電池を得た。
(Example 14)
A nonaqueous electrolyte secondary battery similar to that of Example 12 was obtained except that the electrode group thickness ratio was 0.95 and the case thickness ratio was 0.87.

(実施例15)
電極群厚さ比が1.05、ケース厚さ比が0.95であること以外は、実施例12と同様の非水電解質二次電池を得た。
(Example 15)
A nonaqueous electrolyte secondary battery similar to that of Example 12 was obtained except that the electrode group thickness ratio was 1.05 and the case thickness ratio was 0.95.

(実施例16)
凹部高さが39mm、凹部幅が25mm、凹部面積が9.8cm2 、面積比率(=凹部の面積/凹部形成側面の面積)が59%、開口部からの間隔gが5mm、長さ比(=開口部からの間隔g/電池ケースの高さa)が0.10であること以外は、実施例15と同様の非水電解質二次電池を得た。
(Example 16)
The recess height is 39 mm, the recess width is 25 mm, the recess area is 9.8 cm 2 , the area ratio (= the area of the recess / the area of the recess forming side surface) is 59%, the gap g from the opening is 5 mm, and the length ratio ( = A nonaqueous electrolyte secondary battery similar to that of Example 15 was obtained except that the distance g from the opening / the height a) of the battery case was 0.10.

(実施例17)
凹部高さが18mm、凹部面積が4.1cm2 、面積比率が25%であること以外は、実施例15と同様の非水電解質二次電池を得た。
(Example 17)
A nonaqueous electrolyte secondary battery similar to that of Example 15 was obtained except that the recess height was 18 mm, the recess area was 4.1 cm 2 , and the area ratio was 25%.

(実施例18)
凹部幅が13mm、凹部面積が4.4cm2 、面積比率が27%であること以外は、実施例15と同様の非水電解質二次電池を得た。
(Example 18)
A nonaqueous electrolyte secondary battery similar to that of Example 15 was obtained except that the recess width was 13 mm, the recess area was 4.4 cm 2 , and the area ratio was 27%.

(実施例19)
凹部11の角部を円弧形に形成していないこと以外は、実施例3と同様の非水電解質二次電池を得た。
(Example 19)
A nonaqueous electrolyte secondary battery similar to that of Example 3 was obtained except that the corners of the recesses 11 were not formed in an arc shape.

(実施例20)
凹部11の角部を円弧形に形成していないこと以外は、実施例14と同様の非水電解質二次電池を得た。
(Example 20)
A nonaqueous electrolyte secondary battery similar to that of Example 14 was obtained except that the corners of the recesses 11 were not formed in an arc shape.

(比較例1)
電極群厚さ比(=凹部内寸/電極群厚さ)が1.10、ケース厚さ比(=凹部外寸f/電池ケース厚さc)が0.99であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Comparative Example 1)
Example except that the electrode group thickness ratio (= inside recess dimension / electrode group thickness) is 1.10 and the case thickness ratio (= outside dimension f / battery case thickness c) is 0.99. A non-aqueous electrolyte secondary battery similar to 1 was obtained.

(比較例2)
電極群厚さ比が0.93、ケース厚さ比が0.86であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the electrode group thickness ratio was 0.93 and the case thickness ratio was 0.86.

(比較例3)
凹部高さが10mm、凹部面積が2.3cm2 、面積比率が20%であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the height of the recess was 10 mm, the area of the recess was 2.3 cm 2 , and the area ratio was 20%.

(比較例4)
凹部高さが20mm、凹部幅が14mm、凹部面積が2.8cm2 、面積比率が24%であること以外は、実施例1と同様の非水電解質二次電池を得た。
(Comparative Example 4)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the recess height was 20 mm, the recess width was 14 mm, the recess area was 2.8 cm 2 , and the area ratio was 24%.

(比較例5)
凹部11が形成されていないこと以外は、実施例1と同様の非水電解質二次電池を得た。
(Comparative Example 5)
A nonaqueous electrolyte secondary battery similar to that of Example 1 was obtained except that the recess 11 was not formed.

(比較例6)
電極群厚さ比(=凹部内寸/電極群厚さ)が1.10、ケース厚さ比(=凹部外寸f/電池ケース厚さc)が0.99であること以外は、実施例12と同様の非水電解質二次電池を得た。
(Comparative Example 6)
Example except that the electrode group thickness ratio (= inside recess dimension / electrode group thickness) is 1.10 and the case thickness ratio (= outside dimension f / battery case thickness c) is 0.99. The same nonaqueous electrolyte secondary battery as in No. 12 was obtained.

(比較例7)
電極群厚さ比が0.94、ケース厚さ比が0.86であること以外は、実施例12と同様の非水電解質二次電池を得た。
(Comparative Example 7)
A nonaqueous electrolyte secondary battery similar to that of Example 12 was obtained except that the electrode group thickness ratio was 0.94 and the case thickness ratio was 0.86.

(比較例8)
凹部高さが17mm、凹部面積が3.9cm2 、面積比率が23%であること以外は、実施例15と同様の非水電解質二次電池を得た。
(Comparative Example 8)
A nonaqueous electrolyte secondary battery similar to that of Example 15 was obtained except that the recess height was 17 mm, the recess area was 3.9 cm 2 , and the area ratio was 23%.

(比較例9)
凹部幅が11mm、凹部面積が3.7cm2 、面積比率が22%であること以外は、実施例15と同様の非水電解質二次電池を得た。
(Comparative Example 9)
A nonaqueous electrolyte secondary battery similar to that of Example 15 was obtained except that the recess width was 11 mm, the recess area was 3.7 cm 2 , and the area ratio was 22%.

(比較例10)
凹部11が形成されていないこと以外は、実施例12と同様の非水電解質二次電池を得た。
(Comparative Example 10)
A nonaqueous electrolyte secondary battery similar to that of Example 12 was obtained except that the recess 11 was not formed.

これらの各実施例および各比較例の非水電解質二次電池について、挿入工程の不良を評価した。また、各非水電解質二次電池の電池厚さの不良を評価した。評価結果を表1及び表2に示す。   The non-aqueous electrolyte secondary batteries of the respective examples and comparative examples were evaluated for poor insertion process. Moreover, the defect of the battery thickness of each nonaqueous electrolyte secondary battery was evaluated. The evaluation results are shown in Tables 1 and 2.

Figure 2005196991
Figure 2005196991

Figure 2005196991
Figure 2005196991

挿入工程の不良評価は、電極群2を電池ケース6に収容する際の電極群2外装の損傷の有無を調べた。試験数は、それぞれの実施例及び比較例に対して50×N(Nは任意の整数)個の電極群2を作製し、そのうちの一つにでも外装に損傷が認められた場合には、不良ありとした。   The defect evaluation of the insertion step was performed by examining whether or not the exterior of the electrode group 2 was damaged when the electrode group 2 was accommodated in the battery case 6. The number of tests is 50 × N (N is an arbitrary integer) electrode groups 2 for each of the examples and comparative examples, and even if one of them shows damage to the exterior, There was a defect.

電池厚さの不良評価は、室温25℃の雰囲気下において、充電電流720mA(表1の場合)又は830mA(表2の場合)、充電電圧4.20Vの定電流定電圧充電で電池容量の35%まで(表1の場合)又は50%まで(表2の場合)初期充電した際の電池厚みを測定し、測定した電池厚みが5.21mm以上(表1の場合)又は4.26mm以上(表2の場合)の場合は不良とした。試験数は、それぞれの実施例及び比較例に対して50×N(Nは任意の整数)個とし、平均値を求めて表1,2の「電池厚さ」とした。   The evaluation of the battery thickness failure was performed at a constant current / constant voltage charging with a charging current of 720 mA (in the case of Table 1) or 830 mA (in the case of Table 2) and a charging voltage of 4.20 V in an atmosphere at room temperature of 25 ° C. Up to 50% (in the case of Table 1) or 50% (in the case of Table 2), the battery thickness when initially charged was measured, and the measured battery thickness was 5.21 mm or more (in the case of Table 1) or 4.26 mm or more ( In the case of Table 2, it was determined to be defective. The number of tests was 50 × N (N is an arbitrary integer) for each of the examples and comparative examples, and the average value was obtained as “battery thickness” in Tables 1 and 2.

実施例1〜20及び比較例3〜5、8〜10より、面積比率(=凹部の面積/凹部形成側面の面積)が25%未満の比較例3〜5、8〜10において電池厚さに不良が生じているため、面積比率は25%以上にする必要がある。また、面積比率の上限は、電極群2と凹部11との接触面積によって決めることができる。図3は、一部が有効に機能していない凹部11の例を示す図である。図3の例では、凹部11の面積を図1よりも大きくしているが、凹部11の開口部側端部及び底側端部は電極群2と接触しておらず、有効に機能していない。凹部11を無駄なく有効に機能させるためには、図1に示すように、電極群2の外周直線部分と凹部11とを接触させることが好ましい。電極群2の外周直線部分は、全体の高さの中央の60%程度であるので、面積比率は60%以下とすることが好ましい。   From Examples 1 to 20 and Comparative Examples 3 to 5 and 8 to 10, the battery thickness in Comparative Examples 3 to 5 and 8 to 10 in which the area ratio (= area of the recess / area of the side surface where the recess is formed) is less than 25%. Since defects have occurred, the area ratio needs to be 25% or more. The upper limit of the area ratio can be determined by the contact area between the electrode group 2 and the recess 11. FIG. 3 is a diagram illustrating an example of the concave portion 11 in which a part does not function effectively. In the example of FIG. 3, the area of the recess 11 is larger than that of FIG. 1, but the opening side end and the bottom end of the recess 11 are not in contact with the electrode group 2 and function effectively. Absent. In order for the recess 11 to function effectively without waste, it is preferable to bring the outer peripheral straight portion of the electrode group 2 into contact with the recess 11 as shown in FIG. Since the outer peripheral straight line portion of the electrode group 2 is about 60% of the center of the entire height, the area ratio is preferably 60% or less.

また、面積比率が25%以上であっても、比較例2,7のように、電極群厚さ比(=凹部内寸/電極群厚さ)が0.95未満、かつ、ケース厚さ比(=凹部外寸f/電池ケース厚さc)が0.87未満の場合、挿入工程で不良が生じているため、電極群厚さ比は0.95以上、かつ、ケース厚さ比は0.87以上にする必要がある。さらに、面積比率が25%以上であっても、比較例1,6のように、電極群厚さ比が1.05より大きく、かつ、ケース厚さ比が0.95より大きい場合、電池厚さに不良が生じているため、電極群厚さ比は1.05以下、かつ、ケース厚さ比は0.95以下にする必要がある。   Further, even when the area ratio is 25% or more, as in Comparative Examples 2 and 7, the electrode group thickness ratio (= indented dimension / electrode group thickness) is less than 0.95 and the case thickness ratio When (= recess outer dimension f / battery case thickness c) is less than 0.87, a defect has occurred in the insertion process, so the electrode group thickness ratio is 0.95 or more and the case thickness ratio is 0. .87 or more is necessary. Further, even when the area ratio is 25% or more, as in Comparative Examples 1 and 6, when the electrode group thickness ratio is larger than 1.05 and the case thickness ratio is larger than 0.95, the battery thickness Therefore, it is necessary that the electrode group thickness ratio is 1.05 or less and the case thickness ratio is 0.95 or less.

また、凹部11は、角部が円弧形の四角形状平面を電池ケース6内側に突出させた形状であり、角部を円弧形にして丸みをつけることにより、角部が電極群2外装と滑らかに接触するため、電極群2の挿入を容易に行うことができる。角部の円弧部分の半径は、1.5mmに限定はされず、例えば1.0〜2.0mmの半径にするなど、任意のサイズにすることが可能である。   In addition, the recess 11 has a shape in which a rectangular flat surface having an arcuate corner is projected to the inside of the battery case 6, and the corner is arcuate and rounded so that the corner is the exterior of the electrode group 2. Therefore, the electrode group 2 can be easily inserted. The radius of the arc portion of the corner is not limited to 1.5 mm, and can be any size, for example, a radius of 1.0 to 2.0 mm.

また、実施例1〜8において、長さ比(=開口部からの間隔g/電池ケースの高さa)が0.14未満の実施例8及び0.29より大きい実施例7に若干であるが電池厚さに不良が生じているため、長さ比は0.14以上、0.29以下とすることが好ましい。電極群2の膨れは、電極群2の外周直線部分と外周円形部分との境目あたりが最も大きく、この境目は、上述したように、開口部からケース高さの20%前後に位置しており、長さ比を0.14以上、0.29以下とすることにより、前記境目の膨らみを凹部11で抑制し効率的に電極群2の膨張を抑制することができる。   In Examples 1 to 8, the length ratio (= g from the opening g / height a of the battery case a) is slightly lower in Example 8 than 0.14 and Example 7 larger than 0.29. However, since a defect occurs in the battery thickness, the length ratio is preferably 0.14 or more and 0.29 or less. The swollenness of the electrode group 2 is the largest at the boundary between the outer peripheral straight line portion and the outer peripheral circular portion of the electrode group 2, and this boundary is located about 20% of the case height from the opening as described above. By setting the length ratio to 0.14 or more and 0.29 or less, the bulge of the boundary can be suppressed by the recess 11 and the expansion of the electrode group 2 can be efficiently suppressed.

上述した条件の凹部11を電池ケース6に形成することにより、電極群2の広い範囲を圧迫しながら初期充電を行えるため、極板各部の反応が均一に進行し、しかも、電極群2の膨張も抑制できる。そのため、完成時の厚さ不良を大幅に低減することができる。また、電池ケース凹部内寸と電極群2厚みの比を適正化することにより、電極群2挿入工程の外装不良発生を防止することができる。また、凹部11の各角部を円弧形にして丸みをつけているため、電池ケース内面の凹部と電極群2外装との摩擦が減少し、電極群の挿入を容易に行うことができる。   By forming the concave portion 11 having the above-described conditions in the battery case 6, initial charging can be performed while pressing a wide range of the electrode group 2, so that the reaction of each part of the electrode plate proceeds uniformly and the expansion of the electrode group 2 Can also be suppressed. Therefore, the thickness defect at the time of completion can be reduced significantly. In addition, by optimizing the ratio between the inner dimensions of the battery case recess and the thickness of the electrode group 2, it is possible to prevent the occurrence of exterior defects in the electrode group 2 insertion step. Moreover, since each corner | angular part of the recessed part 11 is circularly rounded and rounded, the friction with the recessed part of battery case inner surface and the electrode group 2 exterior reduces, and insertion of an electrode group can be performed easily.

上述した実施の形態においては、電池ケース6の面積が広い方の2つの側面(凹部形成側面)に凹部11を形成したが、前記2つの側面の一方のみに凹部11を形成することも可能である。また、凹部形成側面に複数の凹部を設けることも可能である。さらに、凹部11の形成は、電極群2を挿入した後に行ってもよい。なお、上述した各実施例は縦巻きであるが、電極群2を90度回転させて電池ケース6に挿入した場合も同様の効果が得られる。   In the above-described embodiment, the concave portion 11 is formed on the two side surfaces (the concave portion forming side surfaces) having the larger area of the battery case 6, but the concave portion 11 can be formed only on one of the two side surfaces. is there. It is also possible to provide a plurality of recesses on the recess forming side surface. Further, the recess 11 may be formed after the electrode group 2 is inserted. In addition, although each Example mentioned above is vertical winding, the same effect is acquired also when the electrode group 2 is rotated 90 degree | times and inserted in the battery case 6. FIG.

本発明に係る角型の非水電解質二次電池の概略断面図である。It is a schematic sectional drawing of the square nonaqueous electrolyte secondary battery which concerns on this invention. 非水電解質二次電池の各部の寸法を示す図である。It is a figure which shows the dimension of each part of a nonaqueous electrolyte secondary battery. 一部が有効に機能していない凹部の例を示す図である。It is a figure which shows the example of the recessed part in which one part is not functioning effectively.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
3 負極板
4 正極板
5 セパレータ
6 電池ケース
7 ケース蓋
8 安全弁
9 負極端子
10 負極リード
11 凹部
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode plate 4 Positive electrode plate 5 Separator 6 Battery case 7 Case cover 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead 11 Recessed part

Claims (3)

正極及び負極を有する発電要素と、底及び該底を囲む側壁を有し、前記発電要素を収容する電池ケースと、該電池ケースの開口部を塞ぐケース蓋とを備えた非水電解質二次電池において、
前記電池ケースの側壁には、該側壁の25%以上、60%以下の面積に凹部が形成され、
凹部形成部分の前記側壁外面及び該側壁の対壁外面間の長さは、凹部非形成部分の前記側壁外面及び前記対壁外面間の長さの0.87倍以上、0.95倍以下であり、
凹部形成部分の前記側壁内面及び前記対壁内面間の長さは、発電要素の前記側壁及び前記対壁間に収容時に配置される部分の厚さの0.95倍以上、1.05倍以下であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a power generation element having a positive electrode and a negative electrode, a battery case having a bottom and a side wall surrounding the bottom, housing the power generation element, and a case lid for closing the opening of the battery case In
On the side wall of the battery case, a recess is formed in an area of 25% or more and 60% or less of the side wall,
The length between the outer surface of the side wall of the recess forming portion and the outer surface of the side wall of the side wall is 0.87 times or more and 0.95 times or less of the length between the outer surface of the side wall of the recess forming portion and the outer surface of the wall. Yes,
The length between the inner surface of the side wall and the inner surface of the opposite wall of the recess forming portion is 0.95 times or more and 1.05 times or less of the thickness of the portion disposed between the side wall and the opposite wall of the power generation element when housed. A nonaqueous electrolyte secondary battery.
前記凹部は、角部が円弧形の四角形状平面を電池ケース内側に突出させた形状であることを特徴とする請求項1記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the concave portion has a shape in which a rectangular flat surface having an arcuate corner portion protrudes inward of the battery case. 前記電池ケースの開口部から凹部までの間隔は、電池ケースの開口部から底外面までの長さの0.14倍以上、0.29倍以下であることを特徴とする請求項1又は2記載の非水電解質二次電池。   The distance from the opening of the battery case to the recess is 0.14 to 0.29 times the length from the opening of the battery case to the bottom outer surface. Non-aqueous electrolyte secondary battery.
JP2003435422A 2003-12-26 2003-12-26 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4446735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435422A JP4446735B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435422A JP4446735B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005196991A true JP2005196991A (en) 2005-07-21
JP4446735B2 JP4446735B2 (en) 2010-04-07

Family

ID=34815507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435422A Expired - Lifetime JP4446735B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4446735B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103295A (en) * 2005-10-07 2007-04-19 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
JP2007157560A (en) * 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2008251340A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Rectangular battery
JP2013118152A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Method of manufacturing battery
JP2013131403A (en) * 2011-12-21 2013-07-04 Toyota Industries Corp Case, module, and vehicle
WO2016153992A1 (en) * 2015-03-25 2016-09-29 Johnson Battery Technologies, Inc. Reinforced battery package with sealed anode chamber
US9583742B2 (en) 2011-05-25 2017-02-28 Gs Yuasa International Ltd. Method of manufacturing battery, and battery
JP2018085180A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Lithium ion secondary battery
WO2019003772A1 (en) * 2017-06-26 2019-01-03 パナソニックIpマネジメント株式会社 Power storage device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103295A (en) * 2005-10-07 2007-04-19 Gs Yuasa Corporation:Kk Non-aqueous electrolyte secondary battery
JP2007157560A (en) * 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008091252A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2008251340A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Rectangular battery
US9583742B2 (en) 2011-05-25 2017-02-28 Gs Yuasa International Ltd. Method of manufacturing battery, and battery
JP2013118152A (en) * 2011-12-05 2013-06-13 Toyota Motor Corp Method of manufacturing battery
JP2013131403A (en) * 2011-12-21 2013-07-04 Toyota Industries Corp Case, module, and vehicle
WO2016153992A1 (en) * 2015-03-25 2016-09-29 Johnson Battery Technologies, Inc. Reinforced battery package with sealed anode chamber
US11152644B2 (en) 2015-03-25 2021-10-19 Johnson Ip Holding, Llc Reinforced battery package with sealed anode chamber
JP2018085180A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Lithium ion secondary battery
WO2019003772A1 (en) * 2017-06-26 2019-01-03 パナソニックIpマネジメント株式会社 Power storage device
JPWO2019003772A1 (en) * 2017-06-26 2020-05-21 パナソニックIpマネジメント株式会社 Power storage device
JP6994674B2 (en) 2017-06-26 2022-01-14 パナソニックIpマネジメント株式会社 Power storage device

Also Published As

Publication number Publication date
JP4446735B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP2008130371A (en) Battery case, nonaqueous electrolyte secondary battery equipped with battery case, and manufacturing method of nonaqueous electrolyte secondary battery
JP3822445B2 (en) Electrochemical devices
JP2006164956A (en) Method of manufacturing secondary battery provided with flat and spiral electrode body
JP2001057179A (en) Secondary battery and case thereof
JP2006338992A (en) Square lithium ion battery
KR20120048666A (en) Flat nonaqueous secondary battery
JP2006310283A (en) Cylindrical lithium secondary battery and its manufacturing method
JP2007157560A (en) Nonaqueous electrolyte secondary battery
JP4446735B2 (en) Nonaqueous electrolyte secondary battery
JP2006278184A (en) Square battery and its manufacturing method
JP2005346965A (en) Battery and manufacturing method of battery
JP4361445B2 (en) Lithium secondary battery
JP4679104B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR100814562B1 (en) Secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2006278266A (en) Battery with flat wound electrode body and manufacturing method of battery
JP2003242936A (en) Battery
JP5030433B2 (en) Square battery
JP2000357535A (en) Rectangular lithium secondary battery
JP4334388B2 (en) Non-aqueous electrolyte battery
JP2021028888A (en) battery
JP2003217668A (en) Wound electrode body and nonaqueous electrolyte secondary battery
JP4436485B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2005243274A (en) Nonaqueous rectangular secondary battery
JP2014127375A (en) Square battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4446735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term