JP2007091556A - Continuous production apparatus for carbon-based thin film - Google Patents

Continuous production apparatus for carbon-based thin film Download PDF

Info

Publication number
JP2007091556A
JP2007091556A JP2005285962A JP2005285962A JP2007091556A JP 2007091556 A JP2007091556 A JP 2007091556A JP 2005285962 A JP2005285962 A JP 2005285962A JP 2005285962 A JP2005285962 A JP 2005285962A JP 2007091556 A JP2007091556 A JP 2007091556A
Authority
JP
Japan
Prior art keywords
gas
carbon
thin film
substrate
based thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285962A
Other languages
Japanese (ja)
Inventor
Momoyo Sawai
百世 澤井
Yoshio Fujimoto
良男 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005285962A priority Critical patent/JP2007091556A/en
Publication of JP2007091556A publication Critical patent/JP2007091556A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous production apparatus for a carbon-based thin film which is capable of producing a highly uniform carbon-based thin film, is free from the intrusion of gaseous impurity components or particles into a reactor and is free from the attachment of tar components byproduced from an unreacted raw material gas, and further, is easily controllable for the temperature distribution and of the substrate/gas and the gas flow in the vicinity of the substrate. <P>SOLUTION: This continuous production apparatus of the carbon-based thin film is equipped with a caterpillar-like belt conveyer (1), a substrate (4) fed on the conveyer from the upper side of one end of the conveyer, a substrate preheating zone (9) disposed above the conveyer from the mid part lengthwise across to another end circular arc part of the conveyer, a CVD heating zone (12) disposed under the conveyer from the other end across to the mid part lengthwise of the conveyer, a flow-in port (2) of a sealing gas disposed under side of the other end of the conveyer for inhibiting gas flow-in from the preheating zone to the CVD heating zone and a flow-in port (3) of the raw material gas for feeding the raw material gas to the CVD heating zone by way of a carrier gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、化学気相蒸着法によるカーボン系薄膜の連続製造装置に関するものである。   The present invention relates to an apparatus for continuously producing a carbon-based thin film by chemical vapor deposition.

化学気相蒸着法(以下CVD法という)によるカーボンナノチューブのようなカーボン系薄膜の形成方法は、不活性ガス雰囲気で反応管内に基板を設置し、反応管内に原料ガスを送り込み、基板上に設けられた触媒微粒子を核として基板表面にカーボン系薄膜を形成する方法である。CVD法は、熱を利用する熱CVD法、プラズマを利用するプラズマCVD法、光エネルギーを利用する光CVD法に分けられる。また、CVD装置は、カーボン系薄膜を減圧状態で形成する減圧CVD装置と、大気圧で行う常圧CVD装置に分けられる。   A method of forming a carbon-based thin film such as a carbon nanotube by chemical vapor deposition (hereinafter referred to as CVD) is to place a substrate in a reaction tube in an inert gas atmosphere, feed a raw material gas into the reaction tube, and provide it on the substrate In this method, a carbon-based thin film is formed on the surface of the substrate using the catalyst fine particles as nuclei. The CVD method is classified into a thermal CVD method using heat, a plasma CVD method using plasma, and a photo CVD method using light energy. Further, the CVD apparatus is classified into a low pressure CVD apparatus that forms a carbon-based thin film in a reduced pressure state and an atmospheric pressure CVD apparatus that performs at atmospheric pressure.

CVD装置としては、反応器に1枚または複数枚の基板を一度に供給してカーボン系薄膜を形成するバッチ式のものが一般的である。この装置では、一度反応を行うと、その都度、反応器内の基板やガスの置換が必要であるため、操作時間が長くかかる上に、多量のキャリアガスおよび原料ガスを必要とし、一度に大量の基板を供給することは困難であった。このため、基板をベルトコンベア等の搬送手段により連続的に反応器内に供給し、カーボン系薄膜を生成させる連続式のCVD装置が開発されている(特許文献1参照)。
特開2000−77340号公報
As a CVD apparatus, a batch type apparatus in which one or a plurality of substrates are supplied to a reactor at a time to form a carbon-based thin film is generally used. In this apparatus, once the reaction is performed, it is necessary to replace the substrate and gas in the reactor each time. Therefore, the operation time is long, and a large amount of carrier gas and source gas are required. It was difficult to supply the substrate. For this reason, a continuous CVD apparatus has been developed in which a substrate is continuously supplied into a reactor by a conveying means such as a belt conveyor to generate a carbon-based thin film (see Patent Document 1).
JP 2000-77340 A

しかしながら、反応器内に基板を連続的に供給して常圧でカーボン系薄膜を生成させる常圧CVD装置においては、反応器内雰囲気とその外気との間のシールが不充分であると、反応器内に不純物ガス成分やパーティクルが混入し、基板表面におけるカーボン系薄膜の生成が不均一になり、パーティクルが基板に付着する等のため、製品の歩留まりが低いという問題があった。また、未反応の原料ガスから生じたタール分が基板に付着するという問題があった。その上、従来のCVD装置では、バッチ式、連続式を問わず、反応器内において原料ガスの供給または加熱の際に基板近傍での基板・ガスの温度分布およびガス流れの制御が困難で、温度分布およびガス流れにむらができ易く、これが基板に成長するカーボン系薄膜の均一性低下の要因となっていた。   However, in an atmospheric pressure CVD apparatus that continuously supplies a substrate into the reactor to produce a carbon-based thin film at atmospheric pressure, if the seal between the atmosphere in the reactor and the outside air is insufficient, the reaction Impurity gas components and particles are mixed in the chamber, the generation of the carbon-based thin film on the substrate surface becomes non-uniform, and the particles adhere to the substrate, resulting in a low product yield. In addition, there is a problem that tar generated from the unreacted source gas adheres to the substrate. In addition, the conventional CVD apparatus is difficult to control the temperature distribution and gas flow of the substrate and gas in the vicinity of the substrate when supplying or heating the source gas in the reactor, regardless of whether it is a batch type or a continuous type. The temperature distribution and the gas flow are likely to be uneven, and this has been a factor in reducing the uniformity of the carbon-based thin film grown on the substrate.

本発明は、上記諸問題に鑑み、反応器内へ不純物ガス成分やパーティクルが混入する恐れがなく、未反応の原料ガスから副生したタール成分が付着せず、さらに、基板近傍での基板・ガスの温度分布およびガス流れの制御がし易くて均―性の高いカーボン系薄膜の生成が可能であるカーボン系薄膜の連続製造装置を提供することを課題とする。   In view of the above-mentioned problems, the present invention has no risk of mixing impurity gas components and particles into the reactor, does not attach tar components by-produced from unreacted source gas, and further It is an object of the present invention to provide an apparatus for continuously producing a carbon-based thin film that is easy to control the gas temperature distribution and gas flow and that can produce a highly uniform carbon-based thin film.

請求項1に係る発明は、キャタピラ状のベルトコンベヤと、コンベヤの一端上側からコンベヤ上に供給される基板と、コンベヤの上側に長さ中央部から他端円弧部に亘って設けられた基板予熱ゾーンと、コンベヤの下側にその他端部から長さ中央部に亘って設けられたCVD加熱ゾーンと、コンベヤの他端下側に設けられ、かつ予熱ゾーンからCVD加熱ゾーンへのガス流入を防ぐシールガスの流入口と、CVD加熱ゾーンへ原料ガスをキャリアガスによって供給する原料ガス流入口とを具備したカーボン系薄膜の連続製造装置である。   The invention according to claim 1 is a caterpillar belt conveyor, a substrate fed from one upper side of the conveyor onto the conveyor, and a substrate preheating provided on the upper side of the conveyor from the central portion to the other arc portion. A zone, a CVD heating zone provided on the lower side of the conveyor from the other end to the center of the length, and a gas flow from the preheating zone to the CVD heating zone provided on the lower side of the other end of the conveyor. It is an apparatus for continuously producing a carbon-based thin film having a seal gas inlet and a source gas inlet for supplying a source gas to a CVD heating zone by a carrier gas.

好ましくは、基板はパレット上に固定されていて、パレットと共にコンベヤ上に供給される。基板には触媒が担持されることもある。   Preferably, the substrate is fixed on a pallet and supplied on a conveyor together with the pallet. A catalyst may be supported on the substrate.

請求項2に係る発明は、CVD加熱ゾーンの下流にタール除去手段が設けられている請求項1記載のカーボン系薄膜の連続製造装置である。   The invention according to claim 2 is the continuous production apparatus for a carbon-based thin film according to claim 1, wherein a tar removing means is provided downstream of the CVD heating zone.

請求項3に係る発明は、タール除去手段が、タールを付着させる冷却水管と、カーボン系薄膜付きの基板を加熱する内部ヒータとからなる請求項2記載のカーボン系薄膜の連続製造装置である。   The invention according to claim 3 is the continuous production apparatus for carbon-based thin film according to claim 2, wherein the tar removing means comprises a cooling water pipe for adhering tar and an internal heater for heating the substrate with the carbon-based thin film.

なお、本明細書においては、図1の右方向を一端方向とし、左方向を他端方向とする。   In this specification, the right direction in FIG. 1 is one end direction, and the left direction is the other end direction.

請求項1の発明によるカーボン系薄膜の連続製造装置は、コンベヤの上側に長さ中央部から他端部に亘って設けられた基板予熱ゾーンと、コンベヤの下側にその他端部から長さ中央部に亘って設けられたCVD加熱ゾーンとを備え、これらのゾーンにおいてコンベヤの必要な部分だけを加熱するので、コンベヤ全体を加熱する装置に比べ省エネルギーが達成でき、製品のコストを削減することができる。   The continuous production apparatus for a carbon-based thin film according to the invention of claim 1 includes a substrate preheating zone provided on the upper side of the conveyor from the central portion to the other end, and a central portion of the length from the other end to the lower side of the conveyor. It is possible to achieve energy savings and reduce the cost of the product compared to a device that heats the entire conveyor because only the necessary parts of the conveyor are heated in these zones. it can.

また、この装置はコンベヤの他端下側にシールガスの流入口を備えるので、シールガスを予熱ゾーンへ流入させることによって、予熱ゾーンで予熱されたガスが同ゾーンからCVD加熱ゾーンへ流入するのを防ぐことができ、これにより予熱ガスに含まれる不純物ガス成分やバーティクルがCVD加熱ゾーンに混入するのを確実に防ぐことができ、製品の歩留まりを向上することができる。   In addition, since this apparatus is provided with a sealing gas inlet under the other end of the conveyor, the gas preheated in the preheating zone flows into the CVD heating zone by flowing the sealing gas into the preheating zone. As a result, it is possible to reliably prevent the impurity gas components and verticles contained in the preheating gas from entering the CVD heating zone, thereby improving the product yield.

加えて、請求項1のカーボン系薄膜の連続製造装置によれば、触媒付きの基板を基板予熱ゾーンおよびCVD加熱ゾーンを移動させることで、生成面積の制限がなくなり、均一で且つ大面積でカーボン系薄膜を生成することができる。   In addition, according to the apparatus for continuously producing a carbon-based thin film according to claim 1, by moving the substrate with the catalyst between the substrate preheating zone and the CVD heating zone, the generation area is not limited, and the carbon is uniform and has a large area. A system thin film can be produced.

請求項2の発明によるカーボン系薄膜の連続製造装置は、CVD加熱ゾーンの下流にタール除去手段を備えるので、副生したタール成分が基板上のカーボン系薄膜に付着せず、均一かつ高純度のカーボン系薄膜を得ることができる。   The continuous production apparatus for a carbon-based thin film according to the invention of claim 2 includes a tar removing means downstream of the CVD heating zone, so that the by-produced tar component does not adhere to the carbon-based thin film on the substrate, and is uniform and highly pure. A carbon-based thin film can be obtained.

請求項3の発明によるカーボン系薄膜の連続製造装置では、タール除去手段は、冷却水管と内部ヒータからなるので、タールは冷却水管に付着させられる上に、内部ヒータでカーボン系薄膜付きの基板が加熱されてタールの除去効率が一層向上させられる。   In the continuous production apparatus for a carbon-based thin film according to the invention of claim 3, since the tar removing means comprises a cooling water pipe and an internal heater, the tar is attached to the cooling water pipe, and the substrate with the carbon-based thin film is formed by the internal heater. The tar removal efficiency is further improved by heating.

つぎに、本発明を具体的に説明するために、カーボンナノチューブの製造について本発明の実施形態を示す。   Next, in order to explain the present invention specifically, an embodiment of the present invention is shown for the production of carbon nanotubes.

実施例1
図1において、キャタピラ状のベルトコンベヤ(1) の一端上側からコンベヤのベルト上に石英製またはセラミック製の複数のパレット(5) が連続的に搬入され、固定される。パレット(5) 上には、触媒(図示省略)を担持したシリコン製の基板(4) が固定されている。ベルトコンベヤ(1) のベルトの内側には内側隔壁(22)が設けられている。触媒は鉄、ニッケル、コバルトまたはこれらの合金であってよい。
Example 1
In FIG. 1, a plurality of pallets (5) made of quartz or ceramic are continuously carried and fixed onto the belt of the conveyor from one end upper side of the caterpillar belt conveyor (1). A silicon substrate (4) carrying a catalyst (not shown) is fixed on the pallet (5). An inner partition wall (22) is provided inside the belt of the belt conveyor (1). The catalyst may be iron, nickel, cobalt or an alloy thereof.

ベルトコンベヤ(1) の一端上側に設けられた基板搬入部には、これに隣接して上側隔壁(10)に立上がり状に上部給気路が設けられ、同給気路からシールガスが吹き込まれて大気の流入を防いでいる。   An upper air supply passage is provided on the upper partition wall (10) so as to rise adjacent to the substrate carry-in portion provided on one upper side of the belt conveyor (1), and seal gas is blown from the air supply passage. To prevent the inflow of air.

ベルトコンベヤ(1) の上側には、長さ中央部から他端円弧部に亘って予熱ゾーン(9) が設けられている。予熱ゾーン(9) には上側隔壁(10)が配設されている。これは、ベルトコンベヤ(1) の上側にてその長さ略中央部から他端に至る水平部(10a)と、その他端に連なりかつベルトコンベヤ(1) の他端円弧部の外側に下方傾斜状に設けられた傾斜部(10b)とからなる。予熱ゾーン(9) には、上側隔壁(10)の外側にてベルトコンベヤ(1) の長さ方向に並ぶ3基の上側ヒータ(6) (7) (8) が設けられている。   A preheating zone (9) is provided on the upper side of the belt conveyor (1) from the central portion of the length to the arc portion of the other end. An upper partition wall (10) is disposed in the preheating zone (9). This is because the upper part of the belt conveyor (1) has a horizontal part (10a) that extends from the center to the other end of the belt conveyor and the other end and is inclined downward to the outside of the other end arc part of the belt conveyor (1). And an inclined portion (10b) provided in a shape. The preheating zone (9) is provided with three upper heaters (6), (7), (8) arranged outside the upper partition wall (10) in the longitudinal direction of the belt conveyor (1).

ベルトコンベヤ(1) の下側には、他端部から長さ中央部に亘ってCVD加熱ゾーン(12)が設けられている。CVD加熱ゾーン(12)には下側隔壁(11)が設けられている。これは、ベルトコンベヤ(1) の下にて水平に配設され、その一端部はCVD加熱ゾーン(12)の一端部よりさらに一端方向へ伸び、他端部はコンベヤの他端部よりさらに他端方向へ伸びる。CVD加熱ゾーン(12)には、下側隔壁(11)の外側すなわち下側にてベルトコンベヤ(1) の長さ方向に並ぶ3基の下側ヒータ(15)(13)(14)が設けられている。   A CVD heating zone (12) is provided under the belt conveyor (1) from the other end to the center of the length. A lower partition wall (11) is provided in the CVD heating zone (12). This is arranged horizontally under the belt conveyor (1), one end of which extends further in one direction from one end of the CVD heating zone (12), and the other end is further from the other end of the conveyor. Extends toward the edge. The CVD heater zone (12) is provided with three lower heaters (15) (13) (14) arranged in the length direction of the belt conveyor (1) outside the lower partition wall (11), that is, below. It has been.

ベルトコンベヤ(1) の他端下側には、予熱ゾーン(9) からCVD加熱ゾーン(12)へのガス流入を防ぐシールガスの流入口(2) が設けられている。シールガス流入口(2) は、上側隔壁(10)の傾斜部(10b) の下端から他端方向に延びる水平壁(16)と、その下に水平に設けられた仕切壁(17)とからなる。仕切壁(17)は、水平壁(16)の下でかつ下側隔壁(11)の上に位置し、CVD加熱ゾーン(12)の長さ中央部まで延び、複数の通気孔を有する。上側隔壁(10)と内側隔壁(22)の間の空間はシールガス通路であり、その他端はシールガス流入口(2) に連絡している。   Below the other end of the belt conveyor (1), there is provided a sealing gas inlet (2) for preventing gas inflow from the preheating zone (9) to the CVD heating zone (12). The seal gas inlet (2) is composed of a horizontal wall (16) extending in the other end direction from the lower end of the inclined portion (10b) of the upper partition wall (10), and a partition wall (17) horizontally provided therebelow. Become. The partition wall (17) is located below the horizontal wall (16) and above the lower partition wall (11), extends to the center of the length of the CVD heating zone (12), and has a plurality of vent holes. The space between the upper partition wall (10) and the inner partition wall (22) is a seal gas passage, and the other end communicates with the seal gas inlet (2).

シールガス流入口(2) の下には、CVD加熱ゾーン(12)へ原料ガスをキャリアガスによって供給する原料ガス流入口(3) が設けられている。原料ガス流入口(3) は、仕切壁(17)と下側隔壁(11)からなり、幅100mm×高さ5mmの開口を有する偏平状のものである。下側隔壁(11)と内側隔壁(22)の間の空間は原料ガス通路であり、その他端は原料ガス流入口(3) に連絡している。   Below the seal gas inlet (2), there is provided a source gas inlet (3) for supplying the source gas to the CVD heating zone (12) by a carrier gas. The raw material gas inlet (3) has a flat shape having an opening with a width of 100 mm and a height of 5 mm, which includes a partition wall (17) and a lower partition wall (11). The space between the lower partition wall (11) and the inner partition wall (22) is a raw material gas passage, and the other end communicates with the raw material gas inlet (3).

CVD加熱ゾーン(12)の後段、すなわちベルトコンベヤ(1) の下側一端寄りにはタール除去手段(18)が設けられている。タール除去手段(18)は、下側隔壁(11)の上に配設された冷却水管(19)と内部ヒータ(20)からなる。内部ヒータ(20)は、ベルトコンベヤ(1) のベルトおよび内側隔壁(22)の下側部を介して冷却水管(19)に対向するように、ベルトコンベヤ(1) の内部に配設されている。タール除去手段(18)のさらに後段には、冷却ゾーン(21)が設けられている。   A tar removing means (18) is provided at the rear stage of the CVD heating zone (12), that is, near the lower end of the belt conveyor (1). The tar removing means (18) includes a cooling water pipe (19) and an internal heater (20) disposed on the lower partition wall (11). The internal heater (20) is disposed inside the belt conveyor (1) so as to face the cooling water pipe (19) through the belt and the lower side of the inner partition wall (22) of the belt conveyor (1). Yes. A cooling zone (21) is provided further downstream of the tar removing means (18).

冷却ゾーン(21)のさらに後段には、基板排出部が設けられている。基板排出部にも、これに隣接して下側隔壁(11)に垂下状に下部給気路が設けられ、同給気路からシールガスが吹き込まれて大気の流入を防いでいる。   A substrate discharge section is provided further downstream of the cooling zone (21). Also in the substrate discharge section, a lower air supply path is provided in a hanging manner in the lower partition wall (11) adjacent to this, and seal gas is blown from the air supply path to prevent the inflow of air.

上記構成のカーボン系薄膜の連続製造装置において、複数の基板(4) 付きパレット(5) がベルトコンベヤ(1) の一端上側からコンベヤのベルト上に連続的に供給され、固定される。次いでパレット(5) は予熱ゾーン(9) へ送られ、ここで予熱され、ベルトコンベヤ(1) の他端円弧部を通過してCVD加熱ゾーン(12)に入る。予熱ゾーン(9) には、流入口(2) からシールガス通路へシールガス(ヘリウムガス、アルゴンガスなどの不活性ガス)が送り込まれる。これによって、予熱ゾーン(9) で予熱されたガスが同ゾーン(9) からCVD加熱ゾーン(12)へ流入するのを防ぐことができ、予熱ガスに含まれる不純物ガス成分やバーティクルがCVD加熱ゾーンに混入するのを確実に防ぐことができる。   In the carbon-based thin film continuous manufacturing apparatus having the above-described configuration, a plurality of pallets (5) with substrates (4) are continuously supplied and fixed on the conveyor belt from the upper end of the belt conveyor (1). The pallet (5) is then sent to a preheating zone (9) where it is preheated and passes through the other end arc of the belt conveyor (1) to enter the CVD heating zone (12). Seal gas (inert gas such as helium gas or argon gas) is fed into the preheating zone (9) from the inlet (2) to the seal gas passage. As a result, the gas preheated in the preheating zone (9) can be prevented from flowing into the CVD heating zone (12) from the zone (9), and impurity gas components and verticles contained in the preheating gas can be prevented from flowing into the CVD heating zone. Can be surely prevented.

CVD加熱ゾーン(12)には、原料ガス流入口(3) から原料ガス通路へカーボンナノチューブ形成用の原料ガスとしてのアセチレンガスとキャリアガス(ヘリウムガス、アルゴンガスなどの不活性ガス)のガス混合物が送り込まれる。これによって、基板(4) 表面に触媒微粒子を核としてカーボンナノチューブ(23)が生成し、徐々に成長する。   In the CVD heating zone (12), a gas mixture of acetylene gas and carrier gas (inert gas such as helium gas and argon gas) as a raw material gas for forming carbon nanotubes from the raw material gas inlet (3) to the raw material gas passage Is sent. As a result, carbon nanotubes (23) are generated on the surface of the substrate (4) using the catalyst fine particles as nuclei and gradually grow.

カーボンナノチューブ(23)付きの基板(4) は、次いでタール除去手段(18)へ送られる。カーボンナノチューブの生成に伴ってCVD加熱ゾーン(12)の下流で未反応原料ガスからタールが副生するが、タールはカーボンナノチューブに付着しないようにタール除去手段(18)において冷却水を通す冷却水管(19)に付着させられる。タールは250℃以下の温度で付着性を示すので、内部ヒータ(20)で基板(4) を300℃以上に加熱する。これによって、タールの除去効率が向上し、タールのカーボンナノチューブへの付着が確実に防止される。カーボンナノチューブは基板(4) 表面すなわち下面に形成されているので、その下方に配された冷却水管(19)に付着したタールがカーボンナノチューブに滴り落ちることはない。カーボンナノチューブ(23)付きの基板(4) は次いで冷却ゾーン(21)へ送られてここで冷却された後、装置外へ搬出される。   The substrate (4) with the carbon nanotubes (23) is then sent to the tar removing means (18). As the carbon nanotubes are produced, tar is by-produced from the unreacted source gas downstream of the CVD heating zone (12), but the cooling water pipe through which the cooling water is passed in the tar removing means (18) so that the tar does not adhere to the carbon nanotubes. Attached to (19). Since tar exhibits adhesion at a temperature of 250 ° C. or lower, the substrate (4) is heated to 300 ° C. or higher by the internal heater (20). This improves the tar removal efficiency and reliably prevents tar from adhering to the carbon nanotubes. Since the carbon nanotubes are formed on the surface of the substrate (4), that is, the lower surface, tar attached to the cooling water pipe (19) disposed below the carbon nanotubes does not drip onto the carbon nanotubes. The substrate (4) with the carbon nanotubes (23) is then sent to the cooling zone (21) where it is cooled and then carried out of the apparatus.

実施例2
図2において、この実施例では、CVD加熱ゾーン(12)へ原料ガスをキャリアガスによって供給する原料ガス流入口(3) は、先端に上向きにノズル(3a)を有し、その上端と基板(4) の間隔は1mm以下となされている。この隙間にシールガス流入口(2) から吹き込まれたシールガスが流通する。
Example 2
In FIG. 2, in this embodiment, a raw material gas inlet (3) for supplying a raw material gas to the CVD heating zone (12) by a carrier gas has a nozzle (3a) upward at the tip, and an upper end and a substrate ( The interval of 4) is 1 mm or less. Seal gas blown from the seal gas inlet (2) flows through this gap.

この構造では、キャリアガスと原料ガスの混合ガスをノズル(3a)から直接基板(4) に供給することができ、これにより、ガス拡散を防いで原料ガスを基板(4) に万遍なく供給することができる。また、ノズル(3a)と基板(4) の間にシールガスを流すことにより、ノズル(3a)の上流と下流で圧力差を生じさせることができ、これによりガスの逆流を防ぐことができる。このようにガスの逆流を防ぐことにより、基板(4) 表面に形成される膜の厚さを均一化することができる。また、シールガス、および、原料ガスとキャリアガスの混合ガスの供給量および/または濃度を適時制御することにより、所望の均一な厚さの膜が形成できる。   In this structure, a mixed gas of carrier gas and source gas can be supplied directly from the nozzle (3a) to the substrate (4), thereby preventing gas diffusion and supplying the source gas evenly to the substrate (4). can do. Further, by flowing a seal gas between the nozzle (3a) and the substrate (4), a pressure difference can be generated between the upstream and downstream of the nozzle (3a), thereby preventing the backflow of gas. Thus, by preventing the backflow of gas, the thickness of the film formed on the surface of the substrate (4) can be made uniform. Further, a film having a desired uniform thickness can be formed by appropriately controlling the supply amount and / or concentration of the sealing gas and the mixed gas of the source gas and the carrier gas.

実施例1のカーボン系薄膜連続製造装置を示す垂直縦断面図である。It is a vertical longitudinal cross-sectional view which shows the carbon type thin film continuous manufacturing apparatus of Example 1. FIG. 実施例2のカーボン系薄膜連続製造装置を示す垂直縦断面図である。It is a vertical longitudinal cross-sectional view which shows the carbon type thin film continuous manufacturing apparatus of Example 2. FIG.

符号の説明Explanation of symbols

(1) :キャタピラ状のベルトコンベヤ
(2) :シールガス流入口
(3) :原料ガス流入口
(3a):ノズル
(4) :基板
(5) :パレット
(6) (7) (8) :上側ヒータ
(9) :予熱ゾーン
(10):上側隔壁
(11):下側隔壁
(12):CVD加熱ゾーン
(13)(14)(15):下側ヒータ
(16):水平壁
(17):仕切壁
(18):タール除去手段
(19):冷却水管
(20):内部ヒータ
(21):冷却ゾーン
(22):内側隔壁
(23):カーボンナノチューブ
(1): Caterpillar belt conveyor
(2): Seal gas inlet
(3): Raw material gas inlet
(3a): Nozzle
(4): Board
(5): Pallet
(6) (7) (8): Upper heater
(9): Preheating zone
(10): Upper partition
(11): Lower partition
(12): CVD heating zone
(13) (14) (15): Lower heater
(16): Horizontal wall
(17): Partition wall
(18): Tar removal means
(19): Cooling water pipe
(20): Internal heater
(21): Cooling zone
(22): Inner bulkhead
(23): Carbon nanotube

Claims (3)

キャタピラ状のベルトコンベヤと、コンベヤの一端上側からコンベヤ上に供給される基板と、コンベヤの上側に長さ中央部から他端円弧部に亘って設けられた基板予熱ゾーンと、コンベヤの下側にその他端部から長さ中央部に亘って設けられたCVD加熱ゾーンと、コンベヤの他端下側に設けられ、かつ予熱ゾーンからCVD加熱ゾーンへのガス流入を防ぐシールガスの流入口と、CVD加熱ゾーンへ原料ガスをキャリアガスによって供給する原料ガス流入口とを具備したカーボン系薄膜の連続製造装置。   A caterpillar belt conveyor, a substrate fed onto the conveyor from one upper side of the conveyor, a substrate preheating zone provided on the upper side of the conveyor from the center of the length to the arc at the other end, and below the conveyor A CVD heating zone provided from the other end to the center of the length, a sealing gas inlet provided below the other end of the conveyor and preventing gas from flowing from the preheating zone to the CVD heating zone, and CVD An apparatus for continuously producing a carbon-based thin film comprising a raw material gas inlet for supplying a raw material gas to a heating zone by a carrier gas. CVD加熱ゾーンの下流にタール除去手段が設けられている請求項1記載のカーボン系薄膜の連続製造装置。   The continuous production apparatus for a carbon-based thin film according to claim 1, wherein a tar removing means is provided downstream of the CVD heating zone. タール除去手段が、タールを付着させる冷却水管と、カーボン系薄膜付きの基板を加熱する内部ヒータとからなる請求項2記載のカーボン系薄膜の連続製造装置。
The continuous production apparatus for a carbon-based thin film according to claim 2, wherein the tar removing means comprises a cooling water pipe for adhering tar and an internal heater for heating the substrate with the carbon-based thin film.
JP2005285962A 2005-09-30 2005-09-30 Continuous production apparatus for carbon-based thin film Pending JP2007091556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285962A JP2007091556A (en) 2005-09-30 2005-09-30 Continuous production apparatus for carbon-based thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285962A JP2007091556A (en) 2005-09-30 2005-09-30 Continuous production apparatus for carbon-based thin film

Publications (1)

Publication Number Publication Date
JP2007091556A true JP2007091556A (en) 2007-04-12

Family

ID=37977686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285962A Pending JP2007091556A (en) 2005-09-30 2005-09-30 Continuous production apparatus for carbon-based thin film

Country Status (1)

Country Link
JP (1) JP2007091556A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128349A1 (en) 2008-04-16 2009-10-22 日本ゼオン株式会社 Equipment and method for producing orientated carbon nano-tube aggregates
JP2010189196A (en) * 2009-02-16 2010-09-02 Nippon Zeon Co Ltd Production apparatus and production method for carbon nanotube oriented aggregate
KR20110116028A (en) 2009-02-10 2011-10-24 니폰 제온 가부시키가이샤 Apparatus for producing oriented carbon nanotube aggregate
JP2011219316A (en) * 2010-04-09 2011-11-04 Nippon Zeon Co Ltd Apparatus for producing carbon nanotube aligned aggregate
KR20110122828A (en) * 2009-02-27 2011-11-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Low temperature cnt growth using gas-preheat method
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
WO2014157154A1 (en) * 2013-03-29 2014-10-02 信越化学工業株式会社 Method and apparatus for producing silicon oxide
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
JP2015071501A (en) * 2013-10-02 2015-04-16 日立造船株式会社 Cvd apparatus for carbon nanotubes
US9227171B2 (en) 2009-07-01 2016-01-05 Zeon Corporation Device for manufacturing aligned carbon nanotube assembly
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291674A (en) * 1994-04-25 1995-11-07 Fujikura Ltd Production of carbon-coated optical fiber and cvd reaction tube
JPH0963971A (en) * 1995-08-30 1997-03-07 Nec Kyushu Ltd Normal pressure cvd device
JP2001234341A (en) * 2000-01-26 2001-08-31 Cheol Jin Lee Thermochemical vapor phase deposition system and method for synthesizing carbon nanotube using the same
JP2003238125A (en) * 2002-02-13 2003-08-27 Toray Ind Inc Method and apparatus for continuously manufacturing carbon nanotube
JP2005067916A (en) * 2003-08-28 2005-03-17 Hitachi Zosen Corp Carbon nanotube manufacturing method and apparatus
JP2007092152A (en) * 2005-09-30 2007-04-12 Hitachi Zosen Corp Continuous heat cvd apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291674A (en) * 1994-04-25 1995-11-07 Fujikura Ltd Production of carbon-coated optical fiber and cvd reaction tube
JPH0963971A (en) * 1995-08-30 1997-03-07 Nec Kyushu Ltd Normal pressure cvd device
JP2001234341A (en) * 2000-01-26 2001-08-31 Cheol Jin Lee Thermochemical vapor phase deposition system and method for synthesizing carbon nanotube using the same
JP2003238125A (en) * 2002-02-13 2003-08-27 Toray Ind Inc Method and apparatus for continuously manufacturing carbon nanotube
JP2005067916A (en) * 2003-08-28 2005-03-17 Hitachi Zosen Corp Carbon nanotube manufacturing method and apparatus
JP2007092152A (en) * 2005-09-30 2007-04-12 Hitachi Zosen Corp Continuous heat cvd apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9573812B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9574300B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US7897209B2 (en) 2008-04-16 2011-03-01 Zeon Corporation Apparatus and method for producing aligned carbon-nanotube aggregates
WO2009128349A1 (en) 2008-04-16 2009-10-22 日本ゼオン株式会社 Equipment and method for producing orientated carbon nano-tube aggregates
KR20110116028A (en) 2009-02-10 2011-10-24 니폰 제온 가부시키가이샤 Apparatus for producing oriented carbon nanotube aggregate
US9598285B2 (en) 2009-02-10 2017-03-21 Zeon Corporation Apparatus for producing aligned carbon nanotube aggregates
JP2010189196A (en) * 2009-02-16 2010-09-02 Nippon Zeon Co Ltd Production apparatus and production method for carbon nanotube oriented aggregate
KR20110122828A (en) * 2009-02-27 2011-11-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Low temperature cnt growth using gas-preheat method
KR101703340B1 (en) * 2009-02-27 2017-02-06 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Low temperature cnt growth using gas-preheat method
JP2012519141A (en) * 2009-02-27 2012-08-23 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Low temperature CNT growth using gas preheating method
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
US9227171B2 (en) 2009-07-01 2016-01-05 Zeon Corporation Device for manufacturing aligned carbon nanotube assembly
US9682863B2 (en) 2009-07-01 2017-06-20 Zeon Corporation Method for producing aligned carbon nanotube assembly
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
JP2011219316A (en) * 2010-04-09 2011-11-04 Nippon Zeon Co Ltd Apparatus for producing carbon nanotube aligned aggregate
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
WO2014157154A1 (en) * 2013-03-29 2014-10-02 信越化学工業株式会社 Method and apparatus for producing silicon oxide
JP2015071501A (en) * 2013-10-02 2015-04-16 日立造船株式会社 Cvd apparatus for carbon nanotubes

Similar Documents

Publication Publication Date Title
JP2007091556A (en) Continuous production apparatus for carbon-based thin film
TWI385274B (en) Vapor-phase growth apparatus and vapor-phase growth method
US20110073039A1 (en) Semiconductor deposition system and method
JP5923553B2 (en) Large volume delivery method for producing gallium trichloride
KR101785440B1 (en) Plasma reactor for the synthesis of nanopowders and materials processing
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JP4832046B2 (en) Continuous thermal CVD equipment
JP2006319301A (en) Catalyst chemical vapor deposition equipment
TW201343957A (en) Gas treatment apparatus with surrounding spray curtains
KR20070107782A (en) Chemical vapor deposition reactor having multiple inlets
CN102576667A (en) Hollow cathode showerhead
US20230083267A1 (en) Production method of carbon nanotube assembly
JP2010232624A (en) Vapor phase growth apparatus for group-iii nitride semiconductor
CN109804110B (en) Apparatus and method for applying a carbon layer
JP6987215B2 (en) Injection assembly for epitaxial deposition process
JP2007317770A (en) Vapor phase growth device
CN107641796B (en) Processing equipment and chemical vapor deposition process
KR20010088419A (en) Chemical vapor deposition apparatus and chemical vapor diposition process
CN103320770A (en) Gas spraying head and vapor phase deposition reaction cavity
JP2003081620A (en) Method and apparatus for producing carbon fiber by vapor phase process
JP2013171972A (en) Vapor phase growth apparatus and vapor phase growth method
JP4961817B2 (en) Epitaxial growth equipment
JP3047969B2 (en) Gas expansion rectifier
JP2004027452A (en) Method for producing vapor-phase carbon fiber and apparatus therefor
JP4827237B2 (en) Epitaxial growth apparatus and nozzle product removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524