JP2007085848A - Fast neutron reactor - Google Patents

Fast neutron reactor Download PDF

Info

Publication number
JP2007085848A
JP2007085848A JP2005274128A JP2005274128A JP2007085848A JP 2007085848 A JP2007085848 A JP 2007085848A JP 2005274128 A JP2005274128 A JP 2005274128A JP 2005274128 A JP2005274128 A JP 2005274128A JP 2007085848 A JP2007085848 A JP 2007085848A
Authority
JP
Japan
Prior art keywords
reflector
driving device
reactor
main body
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005274128A
Other languages
Japanese (ja)
Other versions
JP4825478B2 (en
Inventor
Hisato Matsumiya
宮 壽 人 松
Kenji Katsuki
月 健 治 香
Hiroshi Takahashi
橋 博 高
Tatsuma Kato
藤 竜 馬 加
Mineo Sekiguchi
口 峰 生 関
Shigeo Kasai
井 重 夫 笠
Toshiyuki Suzuki
木 俊 幸 鈴
Akio Takahashi
橋 明 雄 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005274128A priority Critical patent/JP4825478B2/en
Publication of JP2007085848A publication Critical patent/JP2007085848A/en
Application granted granted Critical
Publication of JP4825478B2 publication Critical patent/JP4825478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fast neutron reactor which controls burnup of core fuels by a reflector and which has a reflector moving device having a simple structure and being capable of reducing maintenance frequency. <P>SOLUTION: The high speed reflector moving device of the reflector is composed of a moving member 53 connected to the reflector 3 and a linear moving device stator 51 for driving the moving member 53. A superslow reflector moving device is composed of a wall surface electromagnet 57 which is attracted to surface of a base 55 used as a running face of a reflector moving device body 56 by electromagnetic attraction force and holds the reflector moving device body 56 by frictional force, a connecting electromagnet 58 which connects the moving element to which the reflector 3 is connected to the reflector moving device body, an inertia body 60 which is provided in vertically movable manner, an electromagnetic repulsive coil 59 which generates a momentary vertical electromagnetic repulsive force to/from the inertia body 60, and a spring element 61 which connects the electromagnetic repulsive coil 59 and the inertia body 60. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ナトリウム冷却高速炉に係り、特に、炉心外周に設けた反射体によって炉心燃料の燃焼を制御するようにした高速炉に関する。   The present invention relates to a sodium-cooled fast reactor, and more particularly to a fast reactor in which the combustion of core fuel is controlled by a reflector provided on the outer periphery of the core.

制御棒に代えて反射体を炉心外周に設け、この反射体によって炉心燃料の燃焼を制御するようにした高速炉が提案されている。この種の高速炉の一例が特許文献1に示されている。   A fast reactor has been proposed in which a reflector is provided on the outer periphery of the core in place of the control rod, and the combustion of the core fuel is controlled by this reflector. An example of this type of fast reactor is shown in Patent Document 1.

図8は、上記制御棒に代えて反射体を炉心外周に設けた高速炉の概略構成を示す縦断面図であり、原子炉容器1の内部に設けられた炉心支持板6上に炉心2が支持されており、この炉心2の外周には炉心2と同心状に環状の反射体3が配置され、この反射体3の外周には中性子遮蔽体4が同じく同心状に配置されている。   FIG. 8 is a longitudinal sectional view showing a schematic configuration of a fast reactor in which a reflector is provided on the outer periphery of the core in place of the control rod, and the core 2 is mounted on the core support plate 6 provided in the reactor vessel 1. An annular reflector 3 is arranged concentrically with the core 2 on the outer periphery of the core 2, and a neutron shield 4 is also arranged concentrically on the outer periphery of the reflector 3.

上記中性子遮蔽体4の上方には、ナトリウムからなる一次冷却材5を図8中矢印実線で示したように強制循環させる電磁ポンプ7が設けられており、一次冷却材5が炉心2によって加熱された後に中間熱交換器8に送られる。中間熱交換器8の二次側には、図中破線矢印で示したように二次冷却材入口10を介して二次冷却材が流入しており、この二次冷却材と一次冷却材5との間で熱交換が行われ、熱を受け取った二次冷却材は、二次冷却材出口11から流出して別系統(図示せず)に熱を輸送する。また、原子炉停止中における崩壊熱は、原子炉容器1内に設けられた崩壊熱除去伝熱管9によって除去される。   Above the neutron shield 4 is provided an electromagnetic pump 7 for forcibly circulating the primary coolant 5 made of sodium as indicated by the solid line in FIG. 8, and the primary coolant 5 is heated by the core 2. After that, it is sent to the intermediate heat exchanger 8. The secondary coolant flows into the secondary side of the intermediate heat exchanger 8 through the secondary coolant inlet 10 as indicated by the broken line arrows in the figure. This secondary coolant and the primary coolant 5 The secondary coolant that has received heat and flows out of the secondary coolant outlet 11 is transported to another system (not shown). Further, the decay heat while the reactor is stopped is removed by the decay heat removal heat transfer tube 9 provided in the reactor vessel 1.

炉心2の外周に配置された反射体3は、炉心2から放射された中性子を反射して炉心2側に戻すことによって中性子の漏洩を防止し、反射体3に包囲された部分の炉心2における燃焼を促進する。一方、周囲に反射体3がない部分の炉心2においては核***によって発生した中性子が炉心2の外へ拡散し、燃焼が促進されることはない。   The reflector 3 arranged on the outer periphery of the core 2 reflects the neutrons radiated from the core 2 and returns them to the core 2 side to prevent neutron leakage, and in the portion of the core 2 surrounded by the reflector 3 Promotes combustion. On the other hand, in the core 2 where there is no reflector 3 around, neutrons generated by fission are diffused out of the core 2 and combustion is not promoted.

この従来の高速炉は反射体3を駆動するための反射体駆動装置を備えており、この反射体駆動装置は反射体3を高速で移動させる高速反射体駆動装置Aと、反射体3を超微速で徐々に移動させる超微速反射体駆動装置Bとから構成されており、これらの反射体駆動装置A、Bによって反射体3が機械的に駆動される。   This conventional fast reactor is provided with a reflector driving device for driving the reflector 3, and this reflector driving device has a high-speed reflector driving device A that moves the reflector 3 at a high speed and a reflector 3 that is super-high. The reflector 3 is composed of a super slow reflector driving device B that is gradually moved at a slow speed, and the reflector 3 is mechanically driven by the reflector driving devices A and B.

超微速反射体駆動装置Bは、下端に反射体3を保持した長尺で且つ大径の円管13と、この円管13の上端が固着されたボールナット14と、このボールナット14を昇降自在に収納するケーシング15と、このケーシング15の外周に設けたフランジ状の取付台16とを備えている。さらに、ボールナット14のネジ穴にはボールネジ17が螺嵌されており、このボールネジ17の上端部は、ケーシング15の上端から垂直方向外方に回転自在に突出して上部減速機18に接続されている。さらに、上部減速機18は、カップリング19を介して、駆動モータ21に連結された下部減速機20に連結されている。   The super slow reflector driving device B includes a long and large-diameter circular tube 13 holding the reflector 3 at the lower end, a ball nut 14 to which the upper end of the circular tube 13 is fixed, and the ball nut 14. A casing 15 that can be moved up and down is provided, and a flange-like mounting base 16 provided on the outer periphery of the casing 15. Further, a ball screw 17 is screwed into the screw hole of the ball nut 14, and an upper end portion of the ball screw 17 protrudes from the upper end of the casing 15 so as to be rotatable outward in the vertical direction and is connected to the upper speed reducer 18. Yes. Further, the upper speed reducer 18 is connected to a lower speed reducer 20 connected to a drive motor 21 via a coupling 19.

一方、高速反射体駆動装置Aは、原子炉容器1の上端上方に打設された上部スラブ12上に略等間隔で周設された複数の油圧シリンダ22を備えており、これらの油圧シリンダ22は油管23を介して油圧装置24に接続されている。また、複数の油圧シリンダ22は、超微速反射体駆動装置Bの取付台16を下方から支持している。   On the other hand, the high-speed reflector driving device A includes a plurality of hydraulic cylinders 22 that are circumferentially arranged at substantially equal intervals on the upper slab 12 that is placed above the upper end of the nuclear reactor vessel 1. Is connected to a hydraulic device 24 through an oil pipe 23. Further, the plurality of hydraulic cylinders 22 support the mounting base 16 of the super slow reflector driving device B from below.

そして、原子炉起動時においては、高速反射体駆動装置Aの油圧シリンダ22を駆動して超微速反射体駆動装置Bの取付台16を例えば1m/日の高速で上昇させ、円管13の下端に保持された反射体3を停止位置から起動位置まで上昇させる。一方、原子炉停止時においては起動時とは逆に反射体3を起動位置から停止位置まで高速で降下させる。   At the time of starting up the nuclear reactor, the hydraulic cylinder 22 of the high-speed reflector driving device A is driven to raise the mount 16 of the super-slow reflector driving device B at a high speed of 1 m / day, for example. The reflector 3 held at the lower end is raised from the stop position to the start position. On the other hand, when the reactor is stopped, the reflector 3 is lowered from the start position to the stop position at high speed, contrary to the start time.

また、原子炉通常運転中においては、超微速反射体駆動装置Bのボールネジ17を回転させてボールナット14を例えば2m/30年の超微速で上昇させ、円管13の下端に保持された反射体3を運転開始当初の起動位置から炉心2の原子燃料の最終燃焼位置まで徐々に上昇させる。ここで、反射体3の初期の起動位置から最終燃焼位置までの垂直距離を2m程度に設定しておけば、30年間で炉心2の原子燃料の全体を燃焼させることによってその間の燃料交換が不要となる。   Further, during normal operation of the reactor, the ball screw 17 of the super slow reflector driving device B is rotated to raise the ball nut 14 at a super slow speed of 2 m / 30 years, for example, and held at the lower end of the circular tube 13. The reflector 3 is gradually raised from the starting position at the start of operation to the final combustion position of the nuclear fuel in the core 2. Here, if the vertical distance from the initial starting position of the reflector 3 to the final combustion position is set to about 2 m, the entire nuclear fuel in the core 2 is burned in 30 years, so that no fuel change is required between them. It becomes.

ところが、上述した従来の高速炉では、反射体3を駆動するために炉外に設置される反射体駆動装置A、Bの構造が複雑であり、製造コストの増加をもたらすという問題があった。   However, the conventional fast reactor described above has a problem in that the structure of the reflector driving devices A and B installed outside the furnace for driving the reflector 3 is complicated, resulting in an increase in manufacturing cost.

上記課題を解決するための一つの手段が特許文献2或いは特許文献3に示されている。図9及び図10は上記特許文献2に記載された高速炉の縦断面図であり、図9は原子炉停止中の状態を示し、図10は原子炉通常運転中の状態を示している。   One means for solving the above problem is disclosed in Patent Document 2 or Patent Document 3. 9 and 10 are longitudinal sectional views of the fast reactor described in Patent Document 2, FIG. 9 shows a state in which the reactor is stopped, and FIG. 10 shows a state in which the reactor is in normal operation.

図9に示したようにこの高速炉は、炉心2の外周を取り囲む筒状の炉心バレル30を備え、この炉心バレル30の外周を取り囲むように筒状の隔壁31が設けられており、この筒状の隔壁31と炉心バレル30との間に環状断面の冷却材流路36が形成されている。そして、上記環状断面の冷却材流路36内に環状の反射体3が上下動可能に設けられている。この反射体3はその下部にダンパ32を有している。筒状の隔壁31は、原子炉の半径方向に配設された支持部材34を介して炉心バレル30を支持しており、支持部材34には流入孔35が穿設されており、この流入孔35を介して冷却材流路36内に一次冷却材5が下方から流入する。隔壁31の外側には、この隔壁31を取り囲むようにして中性子遮蔽体4が設けられており、この中性子遮蔽体4の上方には冷却材5を強制循環させる電磁ポンプ7が設けられている。また、原子炉容器1の外側を覆うようにしてガードベッセル(図示せず)が設けられている。   As shown in FIG. 9, the fast reactor includes a cylindrical core barrel 30 that surrounds the outer periphery of the core 2, and a cylindrical partition wall 31 is provided so as to surround the outer periphery of the core barrel 30. A coolant passage 36 having an annular cross section is formed between the cylindrical partition wall 31 and the core barrel 30. An annular reflector 3 is provided in the coolant passage 36 having the annular cross section so as to be movable up and down. The reflector 3 has a damper 32 at its lower part. The cylindrical partition wall 31 supports the core barrel 30 via a support member 34 disposed in the radial direction of the reactor, and an inflow hole 35 is formed in the support member 34. The primary coolant 5 flows into the coolant flow path 36 from below through 35. A neutron shield 4 is provided outside the partition 31 so as to surround the partition 31, and an electromagnetic pump 7 for forcibly circulating the coolant 5 is provided above the neutron shield 4. A guard vessel (not shown) is provided so as to cover the outside of the reactor vessel 1.

さらに、この従来の高速炉は、炉心バレル30の外壁面30aに電磁吸引力によって吸着された反射体駆動装置40を備えており、原子炉通常運転中においては図10に示したようにこの反射体駆動装置40の下部に反射体3が接触した状態となっている。図11は反射体駆動装置40を含む反射体駆動機構部を示した縦断面図であり、反射体駆動装置40は強磁性体からなるヨーク44にコイル43を巻装して構成された保持用電磁石41を備え、この保持用電磁石41の電磁吸引力(閉ループ磁束M1による吸引力)によって炉心バレル30の外壁面30aに吸着されている。また、反射体駆動装置40は強磁性体からなるヨーク49にコイル48を巻装して構成された連結用電磁石47を備え、この連結用電磁石47の電磁吸引力(閉ループ磁束M2による吸引力)によって下部に反射体3を保持している。さらに、反射体駆動装置40は非磁性体からなる取付部材46によって保持された電磁反発コイル42を備えており、また、反射体3の上部にはこの電磁反発コイル42に対向するようにして導電板45が固着されている。   Further, this conventional fast reactor is provided with a reflector driving device 40 adsorbed to the outer wall surface 30a of the core barrel 30 by an electromagnetic attractive force, and this reflection as shown in FIG. The reflector 3 is in contact with the lower part of the body driving device 40. FIG. 11 is a longitudinal sectional view showing a reflector driving mechanism including the reflector driving device 40. The reflector driving device 40 is a holding device configured by winding a coil 43 around a yoke 44 made of a ferromagnetic material. An electromagnet 41 is provided and is attracted to the outer wall surface 30a of the core barrel 30 by the electromagnetic attraction force (attraction force by the closed loop magnetic flux M1) of the holding electromagnet 41. The reflector driving device 40 includes a coupling electromagnet 47 formed by winding a coil 48 around a yoke 49 made of a ferromagnetic material. The electromagnetic attraction force of the coupling electromagnet 47 (attraction force by the closed loop magnetic flux M2). Thus, the reflector 3 is held at the bottom. Further, the reflector driving device 40 is provided with an electromagnetic repulsion coil 42 held by a mounting member 46 made of a nonmagnetic material, and the reflector 3 is electrically conductive so as to face the electromagnetic repulsion coil 42. The plate 45 is fixed.

そして、上記構成よりなる従来の高速炉の起動時においては、電磁ポンプ7によって原子炉容器1内の一次冷却材5が強制循環され、図10中実線矢印で示したように、一次冷却材5は支持部材34の流入孔35を介して炉心バレル30と隔壁31との間に形成された冷却材流路36内に上方に向かって流入する。すると、原子炉停止中には停止位置まで降下していた反射体3は、冷却材流路36内に流入した一次冷却材5の流体圧によって上方に高速で移動される。上昇した反射体3は、反射体駆動装置40の下部に突き当たることによって停止し、さらに、連結用電磁石47の電磁吸引力(閉ループ磁束M2による吸引力)によって反射体駆動装置40の下部に保持される。   When the conventional fast reactor having the above-described configuration is started, the primary coolant 5 in the reactor vessel 1 is forcibly circulated by the electromagnetic pump 7, and as shown by the solid line arrow in FIG. Flows upward into a coolant channel 36 formed between the core barrel 30 and the partition wall 31 through an inflow hole 35 of the support member 34. Then, the reflector 3 that has been lowered to the stop position while the reactor is stopped is moved upward at high speed by the fluid pressure of the primary coolant 5 that has flowed into the coolant channel 36. The raised reflector 3 stops when it hits the lower part of the reflector driving device 40, and is further held by the electromagnetic attraction force of the coupling electromagnet 47 (attraction force by the closed loop magnetic flux M2) at the lower part of the reflector driving device 40. The

また、原子炉の通常運転中において、反射体駆動装置40の下部に反射体3を保持した状態の下で電磁反発コイル42に瞬間的に電流が流されると、反射体駆動装置40と反射体3の導電板45との間で互いに逆向きの電磁反発力が発生し、反射体3の質量による慣性力に起因して反射体駆動装置40を上方に付勢する力が発生する。この上方への付勢力が保持用電磁石41と炉心バレル30との間の静止摩擦力よりも大きくなるようにすることによって、反射体駆動装置40を炉心バレル30に沿って上昇させることができる。このときの反射体駆動装置40の運動エネルギーは主として動摩擦力によって次第に失われ、反射体駆動装置40は元の位置から僅かに上昇した位置において静止する。   Further, during a normal operation of the nuclear reactor, when a current is instantaneously passed through the electromagnetic repulsion coil 42 with the reflector 3 held under the reflector driver 40, the reflector driver 40 and the reflector Electromagnetic repulsive forces that are opposite to each other are generated between the three conductive plates 45, and a force that biases the reflector driving device 40 upward is generated due to the inertial force due to the mass of the reflector 3. By making the upward biasing force larger than the static frictional force between the holding electromagnet 41 and the core barrel 30, the reflector driving device 40 can be raised along the core barrel 30. The kinetic energy of the reflector driving device 40 at this time is gradually lost mainly by the dynamic friction force, and the reflector driving device 40 stops at a position slightly raised from the original position.

一方、反射体3は、電磁反発力によって反射体駆動装置40の下部から一瞬だけ切り離されて僅かに降下し、その後、冷却材5の流体圧及び連結用電磁石47の電磁吸引力によって上昇して再び反射体駆動装置40の下部に接合される。このとき、反射体駆動装置40は元の位置から僅かに上昇しているので、反射体3も同様に元の位置から僅かに上昇する。そして、電磁反発コイル42への通電を繰り返し行うことによって、反射体駆動装置40と共に反射体3を運転開始当初の起動位置から最終燃焼位置まで超微速にて移動させることができる。   On the other hand, the reflector 3 is separated from the lower part of the reflector driving device 40 by an electromagnetic repulsive force for a moment and is slightly lowered, and then rises by the fluid pressure of the coolant 5 and the electromagnetic attractive force of the coupling electromagnet 47. Again, it is joined to the lower part of the reflector driving device 40. At this time, since the reflector driving device 40 is slightly raised from the original position, the reflector 3 is also slightly raised from the original position. Then, by repeatedly energizing the electromagnetic repulsion coil 42, the reflector 3 together with the reflector driving device 40 can be moved from the starting position at the start of operation to the final combustion position at an extremely low speed.

また、原子炉を停止する際には、電磁ポンプ7を停止することによって一次冷却材5の流れが止まり、一次冷却材5の流体圧による上方への付勢力がなくなるので、連結用電磁石47の通電を遮断することによって反射体3は図9に示した停止位置まで降下する。ここで、反射体3の下部に設けられたダンパ32によって着地の際の衝撃力が吸収される。また、一旦停止した原子炉を再起動する際には、上述したように電磁ポンプ7を駆動し、一次冷却材5の流体圧によって反射体3を反射体駆動装置4の位置まで上昇させる。   Further, when the nuclear reactor is stopped, the flow of the primary coolant 5 is stopped by stopping the electromagnetic pump 7 and the upward biasing force due to the fluid pressure of the primary coolant 5 is eliminated. When the energization is cut off, the reflector 3 is lowered to the stop position shown in FIG. Here, the impact force at the time of landing is absorbed by the damper 32 provided in the lower part of the reflector 3. Further, when restarting the reactor once stopped, the electromagnetic pump 7 is driven as described above, and the reflector 3 is raised to the position of the reflector driving device 4 by the fluid pressure of the primary coolant 5.

以上述べたように、この特許文献2(特開平8−15473号公報)等に示された高速炉は、電磁反発コイル42による電磁反発力及び反射体3の慣性力を利用して反射体駆動装置4と共に反射体3を上昇駆動することによって、反射体3を駆動するための複雑な装置を設置する必要がなくなっている。
特開平6−59069号公報 特開平8−15473号公報 特開平10−160880号公報
As described above, the fast reactor disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 8-15473) or the like uses a magnetic repulsion force by the electromagnetic repulsion coil 42 and an inertial force of the reflector 3 to drive the reflector. By driving the reflector 3 together with the device 4, it is not necessary to install a complicated device for driving the reflector 3.
JP-A-6-59069 JP-A-8-15473 Japanese Patent Laid-Open No. 10-160880

ところで、上記従来の高速炉においては、起動時の反射体の上昇は流体力を用いて行い、定格時でも或る程度の流体力により反射体の負荷重量を軽減している。このため、反射体側への流量は、反射体重量に依存し、電磁ポンプの要求条件ともなる。また、出力を小さくした場合、一般的に原子炉容器はあまり小さくならないが、熱効率を下げないために流量は低下分だけ下げることになる。このため流速が低下し、流体力を稼ぐことが困難となる。これは、本来原子炉流量は炉心の冷却と熱輸送に用いられるため反射体側への流量に対する要求条件は、原子炉設計に対する自由度を小さくし、コストアップする傾向にあり、特に小型化を進めるほど不利になるという課題があった。   By the way, in the above-mentioned conventional fast reactor, the reflector is raised at the start-up using the fluid force, and the load weight of the reflector is reduced by a certain amount of fluid force even at the rated time. For this reason, the flow rate to the reflector side depends on the weight of the reflector and is also a requirement for the electromagnetic pump. In addition, when the output is reduced, the reactor vessel is generally not so small, but the flow rate is reduced by a decrease in order not to reduce the thermal efficiency. For this reason, the flow velocity decreases and it becomes difficult to earn fluid force. This is because the reactor flow rate is originally used for core cooling and heat transport, so the requirements for the flow rate to the reflector side tend to reduce the degree of freedom in designing the reactor and increase the cost. There was a problem of becoming disadvantageous.

そこで、本発明は、反射体によって炉心燃料の燃焼を制御する高速炉であって、燃焼補償用の超微速度駆動には電磁反発衝撃駆動を用いて、起動時、停止時には流体力を期待せずに、従来のボールネジ油圧装置より構造が簡素で、メンテナンス頻度が低減できる可能性のある駆動装置を有する高速炉を提供することを目的とする。   Therefore, the present invention is a fast reactor that controls the combustion of core fuel by a reflector, and uses an electromagnetic repulsive impact drive for ultra-low speed drive for combustion compensation, and expects fluid force at startup and stop. In addition, an object of the present invention is to provide a fast reactor having a driving device that has a simpler structure than a conventional ball screw hydraulic device and can reduce the frequency of maintenance.

本発明は、核燃料が装荷される炉心からの中性子を反射し炉心内へ戻す反射体を有し、前記反射体を原子炉起動時と停止時に原子炉を起動させる位置と停止させる位置とにそれぞれ高速で移動させる高速反射体駆動装置と、原子炉通常運転時に、前記反射体を前記起動位置から前記炉心燃料の燃焼最終位置まで超微速で徐々に移動させる超微速反射体駆動装置とを設けた高速炉において、前記高速反射体駆動装置が、前記反射体に連結された可動子と前記可動子を駆動するリニア駆動装置固定子により構成されるとともに、超微速反射体駆動装置が、反射体駆動装置本体の走行面となるベースの表面に電磁吸引力によって吸着され、前記反射体駆動装置本体を摩擦力で保持する壁面電磁石と、反射体が連結された可動子を前記反射体駆動装置本体に連結する連結用電磁石と、上下駆動可能に設けられた慣性体と、前記慣性体との間に瞬間的な電磁反発力を垂直方向に発生させる電磁反発コイルと、前記電磁反発コイルと前記慣性体を連結するバネ要素とを具備することを特徴とする。   The present invention has a reflector that reflects neutrons from a core loaded with nuclear fuel and returns the neutrons into the core, and the reflector is respectively at a position for starting the reactor and a position for stopping the reactor when the reactor is stopped. A high-speed reflector driving device that moves at high speed, and an ultra-low-speed reflector driving device that gradually moves the reflector from the starting position to the final combustion position of the core fuel at a super-fast speed during normal operation of the reactor. In the provided fast reactor, the high-speed reflector driving device is composed of a mover connected to the reflector and a linear drive stator that drives the mover, and an ultra-low-speed reflector driving device, A reflector that is attached to the surface of the base, which is the running surface of the reflector drive device main body, is attracted by electromagnetic attraction force and holds the reflector drive device main body with frictional force, and a movable element connected to the reflector is driven by the reflector. apparatus A coupling electromagnet coupled to the body, an inertial body provided so as to be vertically movable, an electromagnetic repulsion coil for generating an instantaneous electromagnetic repulsion force vertically between the inertial body, the electromagnetic repulsion coil, and the And a spring element connecting the inertial bodies.

本発明は、炉心燃料の燃焼を制御する反射体を、原子炉起動時と停止時に、原子炉を起動させる位置と停止させる位置とにそれぞれ高速で移動させる高速反射体駆動装置と、原子炉通常運転時に、上記反射体を前記起動位置から前記炉心燃料の燃焼最終位置まで超微速で徐々に移動させる超微速反射体駆動装置を設け、上記高速反射体駆動装置としてリニアモータによるリニア駆動を採用し、超微速反射体駆動装置としては電磁反発衝撃駆動装置を採用したので、ギア、モータ等の駆動部がなく構造が簡単でかつメンテナンス頻度を低減することができる等の効果を奏する。   The present invention relates to a high-speed reflector driving device that moves a reflector for controlling the combustion of core fuel at a high speed to a position at which the reactor is started and a position to be stopped at the time of starting and stopping the reactor, During operation, an ultra-low speed reflector drive device that gradually moves the reflector from the starting position to the final combustion position of the core fuel at an ultra-low speed is provided, and linear drive by a linear motor is used as the high-speed reflector drive device. Since the electromagnetic repulsion impact driving device is adopted as the ultra-low speed reflector driving device, there are no driving parts such as gears and motors, and the structure is simple and the maintenance frequency can be reduced.

以下、本発明による高速炉の実施の形態について、図1乃至図7を参照して説明する。なお図1乃至図7中、共通する部分には同一符号を付している。   Embodiments of the fast reactor according to the present invention will be described below with reference to FIGS. In FIG. 1 to FIG. 7, common parts are denoted by the same reference numerals.

図1は、本発明における第1の実施の形態による高速炉の要部構成を示す図であり、図1に示したように、炉心支持板6で支持された炉心2が原子炉容器1の内部に収納されており、この炉心2の外周には炉心2と同心状に環状の反射体3が配置され、この反射体3の外周には中性子遮蔽体4が同じく同心状に配置されている。   FIG. 1 is a diagram showing a main configuration of a fast reactor according to a first embodiment of the present invention. As shown in FIG. 1, a core 2 supported by a core support plate 6 is a reactor vessel 1. An annular reflector 3 is disposed concentrically with the core 2 on the outer periphery of the core 2, and a neutron shield 4 is also concentrically disposed on the outer periphery of the reflector 3. .

上記高速炉は、原子炉容器1の上端に設置された上部スラブ12上に設けられ、反射体3を駆動するための反射体駆動装置を備えており、この反射体駆動装置は反射体3を高速で移動させる高速反射体駆動装置Aと、反射体3を超微速で徐々に移動させる超微速反射体駆動装置Bとから構成されており、これらの反射体駆動装置A、Bによって反射体3が機械的に駆動されるように構成されている。   The fast reactor is provided on an upper slab 12 installed at the upper end of the nuclear reactor vessel 1 and includes a reflector driving device for driving the reflector 3. The reflector driving device includes the reflector 3. It is composed of a high-speed reflector driving device A that moves at high speed and an ultra-low-speed reflector driving device B that gradually moves the reflector 3 at an ultra-low speed, and is reflected by these reflector driving devices A and B. The body 3 is configured to be mechanically driven.

図2は反射体駆動機構部を示した縦断面図であり、原子炉容器1の上端に設置された上部スラブ12上には、対抗式電磁石50を有する複数のリニアモータ駆動装置の固定子51が周方向に略等間隔で周設されており、これらの駆動装置における固定子51の電磁石50と対向する面には永久磁石52を設けた可動子53が垂直方向上下に駆動されるように配設され、この可動子53に反射体3を保持する反射体駆動軸54が連結されている。そして、上記固定子51に設けられた対抗式電磁石50および永久磁石52を設けた可動子53により高速反射体駆動装置Aが構成されている。   FIG. 2 is a longitudinal sectional view showing the reflector drive mechanism, and a stator 51 of a plurality of linear motor drive devices having opposing electromagnets 50 on the upper slab 12 installed at the upper end of the reactor vessel 1. Are arranged at substantially equal intervals in the circumferential direction, and a movable element 53 provided with a permanent magnet 52 on the surface facing the electromagnet 50 of the stator 51 in these driving devices is driven vertically up and down. A reflector driving shaft 54 that holds the reflector 3 is connected to the movable element 53. The high-speed reflector driving device A is configured by the counter electromagnet 50 and the movable element 53 provided with the permanent magnet 52 provided on the stator 51.

一方、上記固定子51の内周側には上記固定子51と同心状のベース55が立設されており、そのベース55と上記固定子51との間隙内に反射体駆動装置本体56が配設されている。この反射体駆動装置本体56は、その反射体駆動装置本体56に備えられた壁面電磁石57の電磁吸引力によってベース55の表面55aに吸着されている。また、反射体駆動装置56は連結用電磁石58を備え、この連結用電磁石58の電磁吸引力によって反射体駆動装置本体56の下部に反射体駆動軸54が保持されている。さらに、反射体駆動装置本体56には上昇用電磁反発コイル59が内蔵されており、また、反射体駆動装置本体56の内部には上昇用慣性体60が設けられている。さらに上記反射体駆動装置本体56には、上昇用電磁反発コイル59に上昇用慣性体60を近接密着連結する上昇用バネ要素61が内蔵されている。そして、上記反射体駆動装置本体56、上昇用慣性体60、上昇用電磁反発コイル59、連結用電磁石58等により超微速反射体駆動装置が構成されている。   On the other hand, a base 55 concentric with the stator 51 is erected on the inner peripheral side of the stator 51, and the reflector driving device main body 56 is arranged in the gap between the base 55 and the stator 51. It is installed. The reflector driving device main body 56 is attracted to the surface 55 a of the base 55 by the electromagnetic attractive force of the wall surface electromagnet 57 provided in the reflector driving device main body 56. The reflector driving device 56 includes a coupling electromagnet 58, and the reflector driving shaft 54 is held below the reflector driving device main body 56 by the electromagnetic attraction force of the coupling electromagnet 58. Further, a raising electromagnetic repulsion coil 59 is built in the reflector driving device main body 56, and a lifting inertia body 60 is provided inside the reflecting member driving device main body 56. Further, the reflector driving device main body 56 incorporates a lifting spring element 61 that connects the lifting inertia body 60 in close proximity to the lifting electromagnetic repulsion coil 59. The reflector driving device main body 56, the lifting inertia body 60, the lifting electromagnetic repulsion coil 59, the connecting electromagnet 58, and the like constitute an ultra-slow reflector driving device.

そこで、原子炉の通常運転中において、反射体駆動装置本体56の上昇用電磁反発コイル59に瞬間的に電流が流されると、反射体駆動装置本体56と上昇用慣性体60の間で互いに逆向きの電磁反発力が発生し、上昇用慣性体60の質量による慣性力に起因して反射体駆動装置本体56を上方に付勢する力が発生する。この上方への付勢力が反射体駆動装置本体56の壁面電磁石57とベース表面55aとの間の静止摩擦力よりも大きくなるようにすることによって、反射体駆動装置本体56をベース表面55aに沿って上昇させることができる。このときの反射体駆動装置本体56の運動エネルギーは主として動摩擦力によって次第に失われ、反射体駆動装置本体56は元の位置から僅かに上昇した位置において静止する。   Therefore, during the normal operation of the nuclear reactor, when a current is instantaneously passed through the raising electromagnetic repulsion coil 59 of the reflector driving device main body 56, the reflector driving device main body 56 and the raising inertia body 60 are opposite to each other. An electromagnetic repulsive force in the direction is generated, and a force for urging the reflector driving device main body 56 upward is generated due to the inertial force due to the mass of the lifting inertial body 60. By making the upward biasing force larger than the static frictional force between the wall surface electromagnet 57 of the reflector driving device main body 56 and the base surface 55a, the reflector driving device main body 56 is moved along the base surface 55a. Can be raised. At this time, the kinetic energy of the reflector driving device main body 56 is gradually lost mainly by the dynamic frictional force, and the reflector driving device main body 56 stops at a position slightly raised from the original position.

一方、上昇用慣性体60は、電磁反発力によって反射体駆動装置本体56の下部から一瞬だけ切り離されて僅かに降下し、その後、上昇用バネ要素61の吸着力によって上昇して再び反射体駆動装置本体56の上昇用電磁反発コイル59に近接密着する。このとき、反射体駆動装置本体56は元の位置から僅かに上昇しているので、可動子53及び反射体3も同様に元の位置から僅かに上昇する。そして、上昇用電磁反発コイル59への通電を繰り返し行うことによって、反射体駆動装置本体56と共に反射体3を運転開始当初の起動位置から最終燃焼位置まで超微速にて移動させることができる。   On the other hand, the lifting inertia body 60 is separated from the lower portion of the reflector driving device main body 56 for a moment by the electromagnetic repulsive force and slightly lowered, and then rises by the attracting force of the lifting spring element 61 to drive the reflector again. The device main body 56 is brought into close contact with the raising electromagnetic repulsion coil 59. At this time, since the reflector drive device main body 56 is slightly raised from the original position, the movable element 53 and the reflector 3 are also slightly raised from the original position. Then, by repeatedly energizing the raising electromagnetic repulsion coil 59, the reflector 3 together with the reflector driving device main body 56 can be moved from the starting position at the start of operation to the final combustion position at an extremely low speed.

また、原子炉を停止する際には、可動子53と反射体駆動装置本体56とを連結している駆動軸連結用電磁石58の通電を遮断することで反射体3は自然落下する。或いは固定子51の対抗式電磁石50の通電を遮断することでも反射体は自然に落下する。   Further, when the reactor is stopped, the reflector 3 naturally falls by cutting off the energization of the drive shaft coupling electromagnet 58 that couples the mover 53 and the reflector driving device main body 56. Alternatively, the reflector naturally falls by cutting off the energization of the counter electromagnet 50 of the stator 51.

一方、再起動時には、急激な炉出力の上昇の可能性をより小さくする観点から、反射体3をリニア駆動で駆動する前に初期停止位置から反射体駆動装置本体56を少し下げる必要がある。このため、反射体駆動装置本体56は下降用電磁反発コイル62を備えており、また、反射体駆動装置本体56の内部には、下降用慣性体63、及び下降用電磁反発コイル62と下降用慣性体63を近接密着連結する下降用バネ要素64を内蔵している。   On the other hand, at the time of restarting, it is necessary to slightly lower the reflector driving device main body 56 from the initial stop position before driving the reflector 3 by linear drive from the viewpoint of reducing the possibility of a rapid increase in the furnace power. For this reason, the reflector driving device main body 56 is provided with a lowering electromagnetic repulsion coil 62, and in the reflector driving device main body 56, a lowering inertial body 63, a lowering electromagnetic repulsion coil 62 and a lowering electromagnetic repulsion coil 62 are provided. A descent spring element 64 for connecting the inertial body 63 in close contact is incorporated.

そこで、原子炉の通常運転中において、反射体駆動装置本体56の下降用電磁反発コイル62に瞬間的に電流が流されると、反射体駆動装置本体56と下降用慣性体63の間で互いに逆向きの電磁反発力が発生し、下降用慣性体63の質量による慣性力に起因して反射体駆動装置本体56を下方に付勢する力が発生する。この下方への付勢力が壁面電磁石57とベース表面55aとの間の静止摩擦力よりも大きくなるようにすることによって、反射体駆動装置本体56をベース表面55aに沿って下降させることができる。このときの反射体駆動装置本体56の運動エネルギーは主として動摩擦力によって次第に失われ、反射体駆動装置本体56は元の位置から僅かに下降した位置において静止する。   Therefore, during the normal operation of the nuclear reactor, when a current is instantaneously passed through the descending electromagnetic repulsion coil 62 of the reflector driving device main body 56, the reflector driving device main body 56 and the descending inertia body 63 are opposite to each other. An electromagnetic repulsive force in the direction is generated, and a force for urging the reflector driving device main body 56 downward is generated due to the inertial force due to the mass of the descending inertial body 63. By making the downward urging force larger than the static frictional force between the wall electromagnet 57 and the base surface 55a, the reflector driving device main body 56 can be lowered along the base surface 55a. At this time, the kinetic energy of the reflector driving device main body 56 is gradually lost mainly by the dynamic friction force, and the reflector driving device main body 56 stops at a position slightly lowered from the original position.

一方、下降用慣性体63は、電磁反発力によって反射体駆動装置本体56の下部から一瞬だけ切り離されて僅かに上昇し、その後、下降用バネ要素64の作用によって下降して再び反射体駆動装置本体56の下降用電磁反発コイル62に近接密着する。このとき、反射体駆動装置本体56は元の位置から僅かに下降している。このようにして、下降用電磁反発コイル62への通電を繰り返し行うことによって、反射体駆動装置本体56を当初の停止位置から再起動位置まで移動させることができる。   On the other hand, the lowering inertia member 63 is separated from the lower portion of the reflector driving device main body 56 for a moment by electromagnetic repulsive force and slightly rises, and then descends by the action of the lowering spring element 64 and is again reflected. The main body 56 is in close contact with the descending electromagnetic repulsion coil 62. At this time, the reflector drive device main body 56 is slightly lowered from the original position. In this way, by repeatedly energizing the descending electromagnetic repulsion coil 62, the reflector drive device main body 56 can be moved from the initial stop position to the restart position.

原子炉起動時においては、高速反射体駆動装置Aのリニア駆動装置固定子51の対抗式電磁石50により可動子53を駆動して反射体駆動軸54と反射体3を例えば1m/日の高速で上昇させ、反射体3を停止位置から起動位置まで上昇させる。一方、原子炉停止時においては起動時とは逆に反射体3を起動位置から停止位置まで高速で降下させる。   When the reactor is started, the movable element 53 is driven by the counter electromagnet 50 of the linear drive stator 51 of the high-speed reflector drive apparatus A so that the reflector drive shaft 54 and the reflector 3 are moved at a high speed of 1 m / day, for example. The reflector 3 is raised from the stop position to the start position. On the other hand, when the reactor is stopped, the reflector 3 is lowered from the start position to the stop position at high speed, contrary to the start time.

また、原子炉通常運転中においては、反射体駆動装置本体56の下端位置まで可動子53をリニア駆動装置固定子51により駆動させ、反射体3と連結した駆動軸54を反射体駆動装置本体56に駆動軸連結用電磁石58の電磁吸引力によって連結させ、反射体駆動装置56を用いて、例えば2m/30年の超微速で上昇させ、反射体3を運転開始当初の起動位置から炉心2の原子燃料の最終燃焼位置まで徐々に上昇させる。ここで、反射体3の初期の起動位置から最終燃焼位置までの垂直距離を2m程度に設定すれば、30年間で炉心2の原子燃料の全体を燃焼させることができその間の燃料交換が不要となる。   Further, during the normal operation of the reactor, the movable element 53 is driven by the linear driving apparatus stator 51 to the lower end position of the reflector driving apparatus main body 56, and the drive shaft 54 connected to the reflector 3 is connected to the reflector driving apparatus main body 56. Are connected to each other by the electromagnetic attraction force of the drive shaft coupling electromagnet 58 and are raised at an ultra-low speed of, for example, 2 m / 30 years using the reflector driving device 56, and the reflector 3 is moved from the starting position at the start of operation to the core 2. The nuclear fuel is gradually raised to the final combustion position. Here, if the vertical distance from the initial starting position of the reflector 3 to the final combustion position is set to about 2 m, the entire nuclear fuel in the core 2 can be burned in 30 years, and no fuel change is required during that period. Become.

図3は、本発明における第2の実施の形態の要部構成を示す図であり、第1の実施の形態と同様に、反射体3を駆動するための反射体駆動装置を備えている。そして、この反射体駆動装置は反射体3を高速で移動させる高速反射体駆動装置Aと、反射体3を超微速で徐々に移動させる超微速反射体駆動装置Bとから構成されており、これらの反射体駆動装置A、Bによって反射体3が機械的に駆動される。   FIG. 3 is a diagram illustrating a configuration of a main part of the second embodiment of the present invention, and includes a reflector driving device for driving the reflector 3 as in the first embodiment. The reflector driving device is composed of a high-speed reflector driving device A that moves the reflector 3 at a high speed and an ultra-low-speed reflector driving device B that gradually moves the reflector 3 at an ultra-low speed. The reflector 3 is mechanically driven by the reflector driving devices A and B.

高速反射体駆動装置Aは、原子炉容器1の上端上方に設置された上部スラブ12上に周方向に略等間隔で立設され、対抗式電磁石50を有する複数のリニアモータ駆動装置のカウンターウエイト用固定子65を備えている。このカウンターウエイト用固定子65は径方向に互いに離間した一対から構成されており、上記内外のカウンターウエイト用固定子65間には、上記対抗式電磁石50と対向する面に永久磁石52を有するカウンターウエイト可動子66が上下方向に移動可能に配設されている。上記カウンターウエイト可動子66は反射体重量を9割程度保証し得るように構成されている。このカウンターウエイト可動子66には、滑車67によりガイドされるようにしたワイヤ68の一端が連結され、そのワイヤ68の他端が、反射体3に連結された反射体駆動軸54を反射体駆動装置本体56に接続するフランジ69に連結されている。また、上部スラブ12上には万一反射体駆動軸54とカウンターウエイト可動子66の接続が切れた場合の対応として落下衝撃用ダンパ70が設置されている。   The high-speed reflector driving device A is erected on the upper slab 12 installed above the upper end of the reactor vessel 1 at substantially equal intervals in the circumferential direction, and has counterweights for a plurality of linear motor driving devices having opposing electromagnets 50. A stator 65 is provided. The counterweight stator 65 is composed of a pair spaced radially from each other, and a counter having a permanent magnet 52 on the surface facing the counter electromagnet 50 between the inner and outer counterweight stators 65. A weight movable element 66 is disposed so as to be movable in the vertical direction. The counterweight movable element 66 is configured to guarantee a reflector weight of about 90%. One end of a wire 68 guided by a pulley 67 is connected to the counterweight movable element 66, and the other end of the wire 68 drives a reflector driving shaft 54 connected to the reflector 3 to reflector. A flange 69 connected to the apparatus main body 56 is connected. Further, a drop impact damper 70 is installed on the upper slab 12 as a countermeasure when the connection between the reflector drive shaft 54 and the counterweight movable element 66 is broken.

反射体駆動装置本体56は、走行面となるベースの表面55aに電磁吸引力によって吸着され摩擦力で保持される壁面電磁石57と、反射体3と連結した駆動軸54を電磁吸引力によって結合する駆動軸連結用電磁石58を有している。   The reflector driving device main body 56 couples, by an electromagnetic attraction force, a wall surface electromagnet 57 that is attracted to the base surface 55a serving as a running surface by an electromagnetic attraction force and held by a frictional force, and a drive shaft 54 connected to the reflector 3. A drive shaft coupling electromagnet 58 is provided.

しかして、原子炉起動時においては、高速反射体駆動装置Aのリニア駆動装置固定子65の対抗式電磁石50によりカウンターウエイト可動子66を駆動して、ワイヤー68を介して、フランジ69、反射体駆動軸54と反射体3を例えば1m/日の高速で上昇させ、反射体3を停止位置から起動位置まで上昇させる。一方、原子炉停止時においては起動時とは逆に反射体3を起動位置から停止位置まで高速で降下させる。   Thus, when the reactor is started, the counterweight movable element 66 is driven by the counter electromagnet 50 of the linear drive stator 65 of the high-speed reflector drive apparatus A, and the flange 69 and the reflector are connected via the wire 68. The drive shaft 54 and the reflector 3 are raised at a high speed of 1 m / day, for example, and the reflector 3 is raised from the stop position to the start position. On the other hand, when the reactor is stopped, the reflector 3 is lowered from the start position to the stop position at high speed, contrary to the start time.

また、原子炉通常運転中においては、反射体駆動装置本体56の下端位置までフランジ69をリニア駆動装置固定子65により駆動させ、駆動軸連結用電磁石58を用いて反射体3に連結した駆動軸54を電磁吸引力によって反射体駆動装置本体56に連結させ、反射体駆動装置本体56を用いて、例えば2m/30年の超微速で上昇させ、反射体3を運転開始当初の起動位置から炉心2の原子燃料の最終燃焼位置まで徐々に上昇させる。 ここで、反射体3の初期の起動位置から最終燃焼位置までの垂直距離を2m程度に設定すれば、30年間で炉心2の原子燃料の全体を燃焼させることによってその間の燃料交換が不要となる。本駆動方式によって、第1の実施の形態に対して、リニアの要求駆動力は、起動時、定格時とも大幅に小さくできるため、反射体重量増加に容易に対応ができ、さらにリニア駆動装置の冷却が容易となる。   Further, during normal operation of the reactor, the drive shaft connected to the reflector 3 using the drive shaft connecting electromagnet 58 is driven by the linear drive device stator 65 to the lower end position of the reflector drive device main body 56. 54 is connected to the reflector driving device main body 56 by electromagnetic attraction force, and the reflector driving device main body 56 is used to raise the reflector 3 at an extremely low speed of, for example, 2 m / 30 years. The reactor 2 is gradually raised to the final combustion position of nuclear fuel. Here, if the vertical distance from the initial starting position of the reflector 3 to the final combustion position is set to about 2 m, the entire nuclear fuel in the core 2 is burned in 30 years, so that no fuel change is required between them. . With this driving method, the linear required driving force can be greatly reduced at the time of start-up and at the time of rating compared to the first embodiment, so that it is possible to easily cope with an increase in the weight of the reflector. Cooling is easy.

図4は、本発明における第3の実施の形態の要部構成を示す図であり、第2の実施の形態に対して、反射体駆動装置本体56を垂直上下に駆動するリニア駆動装置固定子71を設けるとともに、反射体駆動装置本体56に永久磁石72が設けられている。しかして、反射体駆動装置本体56を上記リニア駆動装置固定子71及び永久磁石72により速やかに上下に駆動することができ、停止後の待機位置移動などの時間を短縮することができる。   FIG. 4 is a diagram showing the configuration of the main part of the third embodiment of the present invention, and a linear driving device stator that drives the reflector driving device body 56 vertically up and down with respect to the second embodiment. 71, and a permanent magnet 72 is provided on the reflector driving device main body 56. Thus, the reflector driving device main body 56 can be quickly driven up and down by the linear driving device stator 71 and the permanent magnet 72, and the waiting time movement after the stop can be shortened.

図5は、第4の実施の形態の要部構成を示す図であり、図3に示す実施の形態に対してカウンターウエイト66の永久磁石52の近傍にメンテナンス時に使用する電磁石73が設けられている。しかして、上記電磁石73を設けることにより、永久磁石52の吸着力を小さくし、取扱いを容易にすることができる。実際の運用時にはメンテンナンス用電磁石73との接続ケーブルを取り外し、可動する部位に関してはできるだけケーブル等の抵抗が生ずる箇所を削減する。   FIG. 5 is a diagram showing the configuration of the main part of the fourth embodiment. In contrast to the embodiment shown in FIG. 3, an electromagnet 73 used for maintenance is provided near the permanent magnet 52 of the counterweight 66. Yes. Thus, by providing the electromagnet 73, the attractive force of the permanent magnet 52 can be reduced and the handling can be facilitated. At the time of actual operation, the connection cable with the maintenance electromagnet 73 is removed, and the number of places where resistance such as a cable is generated is reduced as much as possible.

図6は、第5の実施の形態の要部構成を示す図であり、図4に示す実施の形態に対して反射体駆動装置本体56の内部に、前記高速反射体駆動装置における反射体駆動軸54に接続されたフランジ69が、上記反射体駆動装置本体56と接続後に高速反射体駆動装置のリニア駆動により上昇しないように作用する負荷質量74を設け、リニア駆動に万一設計揚程以上の出力が生じた場合に、反射体駆動装置本体56がストッパーとして働き、反射体駆動装置本体56の待機位置以上は上記フランジ69が上がらないようにしてある。   FIG. 6 is a diagram showing a main configuration of the fifth embodiment. In the reflector driving device main body 56, the reflector driving in the high-speed reflector driving device is performed in the embodiment shown in FIG. A load mass 74 is provided so that the flange 69 connected to the shaft 54 does not rise by the linear drive of the high-speed reflector drive device after being connected to the reflector drive device main body 56. When an output is generated, the reflector driving device main body 56 functions as a stopper so that the flange 69 does not rise above the standby position of the reflector driving device main body 56.

図7は、第6の実施の形態の要部構成を示す図であり、図5の実施の形態に対して反射体駆動装置本体56の上部に負荷質量のあるストッパー75を設け、リニア駆動が万一設計揚程以上の出力が生じた場合に、ストッパー75として働き、反射体駆動装置本体56の待機位置以上は上がらないようにする。ストッパー75には壁面吸着電磁石76とリニア駆動の固定子71を用いて上下駆動するための永久磁石77が設けられており、そのリニア駆動により上記ストッパー75の位置設定を行うことができる。   FIG. 7 is a diagram showing the configuration of the main part of the sixth embodiment. In contrast to the embodiment of FIG. 5, a stopper 75 having a load mass is provided on the upper part of the reflector driving device main body 56, and linear driving is performed. In the unlikely event that an output exceeding the design lift occurs, it acts as a stopper 75 so that it does not rise beyond the standby position of the reflector drive device main body 56. The stopper 75 is provided with a permanent magnet 77 for driving up and down using a wall attracting electromagnet 76 and a linearly driven stator 71, and the position of the stopper 75 can be set by the linear driving.

本発明の第1の実施の形態を示す概要図。1 is a schematic diagram showing a first embodiment of the present invention. 本発明の反射体駆動装置の断面図。Sectional drawing of the reflector drive device of this invention. 本発明の第2の実施の形態を示す概要図。The schematic diagram which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す概要図。The schematic diagram which shows the 3rd Embodiment of this invention. 本発明の第4の実施の形態を示す概要図。The schematic diagram which shows the 4th Embodiment of this invention. 本発明の第5の実施の形態を示す概要図。The schematic diagram which shows the 5th Embodiment of this invention. 本発明第6の実施の形態を示す概要図。The schematic diagram which shows the 6th Embodiment of this invention. 従来の駆動装置を備えた高速炉を示す縦断面図。The longitudinal cross-sectional view which shows the fast reactor provided with the conventional drive device. 電磁力を利用して駆動される反射体を備えた従来の高速炉の停止状態を示す縦断面図。The longitudinal cross-sectional view which shows the stop state of the conventional fast reactor provided with the reflector driven using electromagnetic force. 電磁力を利用して駆動される反射体を備えた従来の高速炉の運転状態を示す縦断面図。The longitudinal cross-sectional view which shows the operating state of the conventional fast reactor provided with the reflector driven using an electromagnetic force. 従来の高速炉の反射体駆動機構部の縦断面図。The longitudinal cross-sectional view of the reflector drive mechanism part of the conventional fast reactor.

符号の説明Explanation of symbols

1 原子炉容器
2 炉心
3 反射体
50 リニア駆動装置固定子対抗式電磁石
51 リニア駆動装置固定子
52 永久磁石
53 可動子
54 反射体駆動軸
55 ベース
56 反射体駆動装置本体
57 壁面電磁石
58 駆動軸連結用電磁石
59 上昇用電磁反発コイル
60 上昇用慣性体
61 上昇用ばね要素
62 下降用電磁反発コイル
63 下降用慣性体
64 下降用ばね要素
65 カウンターウエイト型固定子
66 カウンターウエイト型可動子
69 フランジ
70 カウンターウエイト落下衝撃緩和用ダンパ
71 反射体駆動装置本体用リニア駆動固定子
72 永久磁石
73 メンテンナンス用電磁石
74 負荷質量
75 ストッパー
76 ストッパー用壁面電磁石
77 ストッパー用永久磁石
DESCRIPTION OF SYMBOLS 1 Reactor vessel 2 Core 3 Reflector 50 Linear drive stator opposing electromagnet 51 Linear drive stator 52 Permanent magnet 53 Movable element 54 Reflector drive shaft 55 Base 56 Reflector drive device main body 57 Wall surface electromagnet 58 Drive shaft connection Electromagnet 59 Lifting electromagnetic repulsion coil 60 Lifting inertial body 61 Lifting spring element 62 Lowering electromagnetic repulsion coil 63 Lowering inertial body 64 Lowering spring element 65 Counterweight type stator 66 Counterweight type movable element 69 Flange 70 Counter Weight drop impact reduction damper 71 Reflector drive unit main body linear drive stator 72 Permanent magnet 73 Maintenance electromagnet 74 Load mass 75 Stopper 76 Stopper wall electromagnet 77 Stopper permanent magnet

Claims (7)

核燃料が装荷される炉心からの中性子を反射し炉心内へ戻す反射体を有し、前記反射体を原子炉起動時と停止時に原子炉を起動させる位置と停止させる位置とにそれぞれ高速で移動させる高速反射体駆動装置と、原子炉通常運転時に、前記反射体を前記起動位置から前記炉心燃料の燃焼最終位置まで超微速で徐々に移動させる超微速反射体駆動装置とを設けた高速炉において、
前記高速反射体駆動装置が、前記反射体に連結された可動子と前記可動子を駆動するリニア駆動装置固定子により構成されるとともに、超微速反射体駆動装置が、反射体駆動装置本体の走行面となるベースの表面に電磁吸引力によって吸着され、前記反射体駆動装置本体を摩擦力で保持する壁面電磁石と、反射体が連結された可動子を前記反射体駆動装置本体に連結する連結用電磁石と、上下駆動可能に設けられた慣性体と、前記慣性体との間に瞬間的な電磁反発力を垂直方向に発生させる電磁反発コイルと、前記電磁反発コイルと前記慣性体を連結するバネ要素とを具備することを特徴とする高速炉。
It has a reflector that reflects neutrons from the reactor core loaded with nuclear fuel and returns it to the reactor core, and moves the reflector to a position at which the reactor is started and a position at which the reactor is stopped when the reactor is started and stopped. A fast reactor provided with a high-speed reflector driving device and a super-slow reflector driving device that gradually moves the reflector from the starting position to the final combustion position of the core fuel at a super-fast speed during normal reactor operation In
The high-speed reflector driving device includes a mover connected to the reflector and a linear drive device stator that drives the mover, and the ultra-slow reflector driving device includes a reflector driving device main body. A wall electromagnet that is attracted to the surface of the base serving as a running surface by electromagnetic attraction and holds the reflector driving device main body with frictional force, and a connection that connects the movable element connected to the reflector to the reflector driving device main body. An electromagnet for use, an inertial body provided so as to be vertically driven, an electromagnetic repulsion coil that generates an instantaneous electromagnetic repulsion force in a vertical direction between the inertial body, and the electromagnetic repulsion coil and the inertial body are connected to each other A fast reactor comprising a spring element.
前記高速反射体駆動装置が、反射体を保持する反射体駆動軸が連結され、永久磁石が設けられた可動子と、原子炉起動時と停止時に前記可動子を高速で垂直に昇降自在に駆動する固定子電磁石型リニア装置とを具備することを特徴とする請求項1記載の高速炉。   The high-speed reflector driving device is connected to a reflector driving shaft for holding a reflector, and is provided with a mover provided with a permanent magnet, and the mover can be vertically moved at high speed when the reactor is started and stopped. The fast reactor according to claim 1, further comprising a stator electromagnet linear device. 前記高速反射体駆動装置が、前記反射体を保持する反射体駆動軸を上記ベースの表面に沿って移動する反射体駆動装置本体に接続するフランジと、そのフランジに接続されたワイヤの他端に連結されたカウンターウエイトと、上記カウンターウエイトに設けられ、そのカウンターウエイトを可動子としてリニア駆動するための永久磁石と、原子炉起動時と停止時に、前記永久磁石をもつ前記カウンターウエイトを高速で垂直に駆動する固定子電磁石型リニア装置とを具備することを特徴とする請求項1記載の高速炉。   The high-speed reflector driving device has a flange connected to a reflector driving device main body that moves the reflector driving shaft holding the reflector along the surface of the base, and the other end of the wire connected to the flange. A counter weight connected to the counter weight, a permanent magnet for linearly driving the counter weight as a mover, and a vertical movement of the counter weight having the permanent magnet at high speed when the reactor is started and stopped. The fast reactor according to claim 1, further comprising: a stator electromagnet type linear device that is driven by the motor. 前記反射体駆動装置本体に電磁石を内蔵して可動子とし、その周りに固定子としてリニア駆動装置を具備することを特徴とする請求項1乃至3のいずれかに記載の高速炉。   The fast reactor according to any one of claims 1 to 3, wherein an electromagnet is built in the reflector driving device body to form a movable element, and a linear driving device is provided around the movable element. 前記高速反射体駆動装置における可動子またはカウンターウエイトに、移動用永久磁石の他に設置時及びメンテナンス時に使用する電磁石を内蔵したことを特徴とする請求項1乃至4のいずれかに記載の高速炉。   The fast reactor according to any one of claims 1 to 4, wherein the mover or counterweight in the high-speed reflector driving device incorporates an electromagnet used for installation and maintenance in addition to the moving permanent magnet. . 前記反射体駆動装置本体に、前記高速反射体駆動装置における可動子が前記反射体駆動装置本体と接続後にリニア駆動により上昇しないように作用する負荷重量を設けたことを特徴とする請求項1乃至5のいずれかに記載の高速炉。   The load body which acts so that the needle | mover in the said high-speed reflector drive device may not rise by linear drive after connecting with the said reflector drive device body was provided in the said reflector drive device body. The fast reactor according to any one of 5. 前記反射体駆動装置本体の上部に永久磁石を有する負荷重量が大きいストッパーを配設するとともに、そのストッパー周囲に反射体駆動装置本体より上方の所定位置に移動するための固定子電磁石リニア駆動装置とを設けたことを特徴とする請求項1乃至5のいずれかに記載の高速炉。   A stator electromagnet linear drive device for disposing a large load weight stopper having a permanent magnet at the upper portion of the reflector drive device main body, and for moving to a predetermined position above the reflector drive device main body around the stopper; The fast reactor according to any one of claims 1 to 5, wherein
JP2005274128A 2005-09-21 2005-09-21 Fast reactor Expired - Fee Related JP4825478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274128A JP4825478B2 (en) 2005-09-21 2005-09-21 Fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274128A JP4825478B2 (en) 2005-09-21 2005-09-21 Fast reactor

Publications (2)

Publication Number Publication Date
JP2007085848A true JP2007085848A (en) 2007-04-05
JP4825478B2 JP4825478B2 (en) 2011-11-30

Family

ID=37972974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274128A Expired - Fee Related JP4825478B2 (en) 2005-09-21 2005-09-21 Fast reactor

Country Status (1)

Country Link
JP (1) JP4825478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013094196A1 (en) * 2011-12-20 2015-04-27 日本ネイチャーセル株式会社 Small nuclear power generation system
CN106409347A (en) * 2016-10-31 2017-02-15 中国核动力研究设计院 Friction locking type magnetic lifter and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452593A (en) * 1990-06-21 1992-02-20 Toshiba Corp Driving apparatus for reflecting body of nuclear reactor
JPH0659069A (en) * 1992-08-10 1994-03-04 Toshiba Corp Fast reactor
JPH0815473A (en) * 1994-07-05 1996-01-19 Toshiba Corp Driving device of reflector of fast reactor
JPH10160880A (en) * 1996-12-02 1998-06-19 Toshiba Corp Fast reactor
JPH10206580A (en) * 1997-01-27 1998-08-07 Toshiba Corp Fast reactor
JP2000019283A (en) * 1998-06-30 2000-01-21 Toshiba Corp Fast reactor
JP2001281378A (en) * 2000-03-31 2001-10-10 Chubu Electric Power Co Inc Micromovement device and reactor equipped with this device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452593A (en) * 1990-06-21 1992-02-20 Toshiba Corp Driving apparatus for reflecting body of nuclear reactor
JPH0659069A (en) * 1992-08-10 1994-03-04 Toshiba Corp Fast reactor
JPH0815473A (en) * 1994-07-05 1996-01-19 Toshiba Corp Driving device of reflector of fast reactor
JPH10160880A (en) * 1996-12-02 1998-06-19 Toshiba Corp Fast reactor
JPH10206580A (en) * 1997-01-27 1998-08-07 Toshiba Corp Fast reactor
JP2000019283A (en) * 1998-06-30 2000-01-21 Toshiba Corp Fast reactor
JP2001281378A (en) * 2000-03-31 2001-10-10 Chubu Electric Power Co Inc Micromovement device and reactor equipped with this device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013094196A1 (en) * 2011-12-20 2015-04-27 日本ネイチャーセル株式会社 Small nuclear power generation system
CN106409347A (en) * 2016-10-31 2017-02-15 中国核动力研究设计院 Friction locking type magnetic lifter and control method thereof

Also Published As

Publication number Publication date
JP4825478B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
RU2578172C2 (en) Control rod drive mechanism
KR101934128B1 (en) Nuclear reactor internal electric control rod drive mechanism assembly
CN103250211B (en) nuclear reactor internal hydraulic control rod drive mechanism assembly
CN102471028A (en) Elevator machine with external rotor and motor within traction sheave
CN115917669A (en) Inertial energy coasting for electromagnetic pump
JP4825478B2 (en) Fast reactor
CN104269192A (en) Rod drop control actuator suitable for liquid metal cooling reactor
CN106531235A (en) Compact type reactive control mechanism for in-situ movement
JP4825763B2 (en) Reflector-controlled fast reactor
JP3190276B2 (en) Fast reactor
JP2007240527A (en) Reactivity control equipment and fast reactor
JP3264633B2 (en) Fast reactor
JP2000019283A (en) Fast reactor
JP7399044B2 (en) Control rod drives and reactors
JPH0815473A (en) Driving device of reflector of fast reactor
JP3126505B2 (en) Fast reactor
Kim et al. Reactor shutdown mechanism by top-mounted hydraulic system
JP4006500B2 (en) Flow response type reactor shutdown drive element and reactor structure
JP5275274B2 (en) Electromagnetic pump system and compensation power supply
CN111326266B (en) Control rod driving mechanism based on square barrel type linear induction motor
CN111431373B (en) Control rod driving mechanism based on polygonal linear reluctance motor
Narabayashi et al. Development of internal CRD for next generation BWR
JP2001281378A (en) Micromovement device and reactor equipped with this device
JP4707217B2 (en) Boiling water reactor
JP3888476B2 (en) Hydrodynamic reactivity control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees