JP2007085013A - Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure - Google Patents

Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure Download PDF

Info

Publication number
JP2007085013A
JP2007085013A JP2005271666A JP2005271666A JP2007085013A JP 2007085013 A JP2007085013 A JP 2007085013A JP 2005271666 A JP2005271666 A JP 2005271666A JP 2005271666 A JP2005271666 A JP 2005271666A JP 2007085013 A JP2007085013 A JP 2007085013A
Authority
JP
Japan
Prior art keywords
floor slab
concrete
waterproofing
resin composition
radical curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271666A
Other languages
Japanese (ja)
Inventor
Toshihiro Ando
敏弘 安東
Shunji Ito
俊司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005271666A priority Critical patent/JP2007085013A/en
Publication of JP2007085013A publication Critical patent/JP2007085013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superior floor slab waterproofing system capable of preventing the deterioration in a concrete floor slab over a long period. <P>SOLUTION: This invention proposes a combination of applying a heating application type asphalt coating film waterproofing material by spraying quartz sand on a surface of applying an impregnation type waterproofing material to the concrete floor slab. That is, this invention is a concrete floor slab waterproofing construction method characterized by constructing a heating application type asphalt waterproofing material by spraying the quartz sand on an acrylic radical-curing liquid resin composition for forming a waterproofing layer integrated with the floor slab by hardening after being impregnated into concrete. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は道路橋の鉄筋コンクリート床版の損傷、劣化を防ぐ目的で採用されているコンクリート床版防水に関するものである。 The present invention relates to a concrete slab waterproofing employed for the purpose of preventing damage and deterioration of a reinforced concrete slab of a road bridge.

道路橋の鉄筋コンクリート床版は他のコンクリート構造物と比較して部材厚が薄く且つ直接交通荷重を絶え間なく受ける等非常に厳しい条件下に晒されている。近年、実際の交通を再現する耐久性能評価試験装置が考案され、様々な条件下での劣化メカニズムが明らかになって来た。その中で、湿潤状態にある床版は乾燥状態と比較しその疲労寿命が1/100まで短くなる事が指摘されおり(非特許文献1参照)、水の存在がコンクリート床版の劣化を著しく促進することが明らかとなってきた。重要な社会資本の一つである道路橋は、損傷に伴う補修や打ち替えはそれに掛かる費用のみでなく、社会に与える影響が大きいため、損傷を防ぐための維持・管理手法即ち予防保全手法が注目されているなか、様々なコンクリート床版の防水手法が検討されている。
「移動荷重を受ける道路RC床版の疲労強度と水の影響について」コンクリート工学年次論文集9−2(1982)
Reinforced concrete slabs of road bridges are exposed to extremely strict conditions such as being thinner than other concrete structures and being constantly subject to direct traffic loads. In recent years, a durability performance evaluation test device that reproduces actual traffic has been devised, and the deterioration mechanism under various conditions has become clear. Among them, it has been pointed out that a floor slab in a wet state has a fatigue life shortened to 1/100 compared to a dry state (see Non-Patent Document 1), and the presence of water significantly deteriorates the concrete slab. It has become clear to promote. Road bridges, one of the important social capitals, are not only costly for repairs and replacements due to damage, but also have a great impact on society, so there are maintenance and management methods to prevent damage, that is, preventive maintenance methods. Various attentions are being paid to waterproofing concrete floor slabs.
"Fatigue strength and water effects of road RC floor slabs subjected to moving loads" Concrete Engineering Annual Papers 9-2 (1982)

一般的にコンクリート床版防水に用いられている防水材はシート防水材、舗装系防水材、塗膜系防水材に分類できる。シート系防水層としては、合成繊維不織布に特殊アスファルトを含浸させて成型した1.5〜4mm厚み程度のアスファルト系の防水シートを床版に加熱溶融しながら床版に接着したり、またはプライマーや接着剤等で貼り付けるものがある。舗装系防水材としては、硬質アスファルトに骨材と石粉を混ぜた物がある。
又、塗膜系防水層としては、合成ゴム塗膜系防水層、アスファルト塗膜系防水層、エポキシ樹脂塗膜系防水層がある。
In general, waterproofing materials used for waterproofing concrete slabs can be classified into sheet waterproofing materials, pavement waterproofing materials, and paint film waterproofing materials. As the sheet-based waterproof layer, an asphalt-based waterproof sheet having a thickness of about 1.5 to 4 mm formed by impregnating a synthetic fiber nonwoven fabric with special asphalt is bonded to the floor slab while being heated and melted on the floor slab, or a primer, Some of them are attached with an adhesive. As a pavement waterproofing material, there is a mixture of hard asphalt and aggregate and stone powder.
Further, examples of the coating-type waterproof layer include a synthetic rubber coating-type waterproof layer, an asphalt coating-type waterproof layer, and an epoxy resin coating-type waterproof layer.

シート系防水層はアスファルト系の柔らかい材料を用いているため、床版にクラックが生じた場合のクラック追従性に優れ、またアスファルト舗装との接着性に優れる等の長所を有する。しかしながら、シートに厚みがあるためコンクリート床版の不陸に沿って防水層を形成しにくく空気を巻き込み易い、防水層の上にアスファルト合材を舗設する際に骨材によってシートに孔が開き易く、又一旦防水層の一部が破れて水が浸入した場合水が廻り易い等の問題点があった。 Since the sheet-based waterproofing layer uses an asphalt-based soft material, it has advantages such as excellent crack followability when cracks occur in the floor slab and excellent adhesion to asphalt pavement. However, due to the thickness of the sheet, it is difficult to form a waterproof layer along the unevenness of the concrete floor slab, and it is easy to entrain air. When paving asphalt mixture on the waterproof layer, it is easy to open a hole in the sheet by aggregate. In addition, once a part of the waterproof layer is broken and water enters, there is a problem that the water easily turns.

舗装系防水材としては、ストレートアスファルトに精製トリニダットアスファルトを配合した硬質アスファルトに骨材や砂粉を混合した物で、15〜25mm程度の厚さに施工されるものである。通常の舗装機器・設備で施工できる等の特徴はあるが、他の防水材に比べ防水性能の確実性に欠ける。特にコンクリート床版に不陸がある場合に防水層に薄い箇所が発生するため防水性能を確保しにくいという問題点があった。 As the pavement waterproofing material, a hard asphalt in which purified trinidad asphalt is mixed with straight asphalt is mixed with aggregates and sand powder, and is constructed to a thickness of about 15 to 25 mm. Although it can be constructed with ordinary paving equipment / equipment, it is less reliable than other waterproofing materials. In particular, when the concrete floor slab is uneven, there is a problem that it is difficult to secure waterproof performance because a thin portion is generated in the waterproof layer.

塗膜系防水材としては、クロロプレンゴムなどの合成ゴムに無機質フィラー、加硫剤、顔料などを添加し、揮発性溶剤を加えた高粘度溶液の合成ゴム系塗膜防水材やアスファルトに合成ゴムを10〜40質量%添加したゴム入りアスファルトを主成分とし、加熱溶融してコンクリート床版に塗布して防水層を形成するアスファルト系塗膜防水材。エポキシ樹脂からなる主剤と変性ポリアミンからなる硬化剤の2成分から構成され、このほかに軟化剤、充填材、顔料などが添加されたエポキシ系塗膜防水材が知られている。何れもコンクリート床版に数回に分けて塗布し、最終的な膜厚として0.4〜1.5mm程度の防水層を形成するものであるが、ピンホールが発生し易く、防水性能の確実性が低い。防水材自体や併用するプライマーに溶剤を含む事が多いため、残留溶剤により舗装材料のカットバックを引き起こす可能性がある。又、エポキシ系塗膜防水材は床版に対する接着性は充分だが、舗装材料に対する接着性を確保するのが現場施工では難しいという問題点があった。 As a coating film waterproofing material, synthetic rubber such as chloroprene rubber is added to inorganic rubber, vulcanizing agents, pigments, etc., and volatile solvents are added. An asphalt-based coating film waterproofing material comprising, as a main component, rubber-containing asphalt added with 10 to 40% by mass, and melted by heating and applied to a concrete floor slab. There are known epoxy-based waterproofing membranes composed of two components, a main component composed of an epoxy resin and a curing agent composed of a modified polyamine, to which softeners, fillers, pigments and the like are added. All of these are applied to the concrete floor slab in several steps to form a waterproof layer with a final film thickness of about 0.4 to 1.5 mm. The nature is low. Since the waterproof material itself and the primer used in combination often contain a solvent, the residual solvent may cause a cutback of the pavement material. In addition, the epoxy film waterproofing material has sufficient adhesion to the floor slab, but has a problem that it is difficult to secure the adhesion to the paving material in the field construction.

また、新たな提案として特許文献1には熱硬化性樹脂防水層として伸び率の大きなラジカル硬化性樹脂を用いる方法が、また特許文献2には床版上に合成樹脂防水層を形成する工程と、合成樹脂防水層上に熱可塑性樹脂粒状物を散布する工程と、合成樹脂防水層上に加熱アスファルト混合物を用いて舗装する工程を有する床版の防水工法が提案されている。
特開平8−311805号公報 特開平9−021113号公報
Further, as a new proposal, Patent Document 1 discloses a method using a radical curable resin having a high elongation rate as a thermosetting resin waterproof layer, and Patent Document 2 includes a step of forming a synthetic resin waterproof layer on a floor slab. There has been proposed a waterproofing method for floor slabs comprising a step of spraying thermoplastic resin granules on a synthetic resin waterproof layer and a step of paving using a heated asphalt mixture on the synthetic resin waterproof layer.
JP-A-8-31805 JP-A-9-021113

以上の背景技術で述べた床版防水工法は何れもコンクリート床版上に厚みが 0.2〜4.0mmの防水層を形成するものであり、これらの接着層を含む防水層には必ずコンクリート表面との界面が存在する。また床版コンクリートそのものに防水性能を付与しているものではないため、防水層の一部に欠損が発生した場合、その欠陥部分を通して水がコンクリート床版全体に広がる可能性がある等の問題点がある。さらに、防水層の端部の界面部分から水分が浸入しやすいという問題点もあり、防水性能の確実性に問題があった。 All of the floor slab waterproofing methods described in the background art described above form a waterproof layer having a thickness of 0.2 to 4.0 mm on a concrete floor slab. There is an interface with the surface. Also, because the floor slab concrete itself is not waterproof, there is a problem that, when a defect occurs in a part of the waterproof layer, water may spread throughout the concrete slab through the defective part. There is. Furthermore, there is a problem that moisture easily enters from the interface portion at the end of the waterproof layer, and there is a problem in the reliability of waterproof performance.

以上の様な問題点を解決するため、本発明者はコンクリートに含浸した後硬化して床版と一体化した防水層を形成する浸透型防水材とアスファルト塗膜防水材を分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物を介して密着させる二重防水システムを提案している。本防水工法は床版のクラック補修を同時に行う事で床版の耐久性改善に効果があると同時に、加熱溶融アスファルト塗膜防水材が後から発生するクラックに対する追従性を持っているため、長期間防水性能を維持する優れた防水工法である。 In order to solve the above-mentioned problems, the present inventor has unsaturated in the molecule an osmotic waterproofing material and an asphalt coating waterproofing material which are cured after being impregnated with concrete to form a waterproof layer integrated with the floor slab. A double waterproof system is proposed in which the heat-softening resin granules having double bond groups are in close contact with each other. This waterproofing method is effective in improving the durability of the floor slab by repairing cracks in the floor slab at the same time, and at the same time, the heat-melted asphalt coating waterproof material has the ability to follow the cracks that occur later. It is an excellent waterproofing method that maintains the waterproof performance over the period.

しかしながら、熱軟化性樹脂粒状物は分子量が低いため脆いという欠点があり、取り扱い中に微粉が発生し散布時に飛散するという問題点や、熱軟化性樹脂粒状物を散布後、人や工事車両が通ると靴やタイヤに付着し周囲を汚染するという問題点があった。又、アスファルト合材の温度が低いと十分軟化しないため、浸透型防水材と加熱溶融アスファルト塗膜防水材の間の密着力が低下するという問題点があった。 However, thermosoftening resin granules have the disadvantage of being brittle due to their low molecular weight, and there are problems that fine powder is generated during handling and scatters when spraying, and after spraying thermosoftening resin granules, people and construction vehicles There was a problem that when it passed, it adhered to shoes and tires and contaminated the surroundings. Further, when the temperature of the asphalt mixture is low, it is not sufficiently softened, so that there is a problem that the adhesion between the penetration type waterproof material and the heat-melted asphalt coating film waterproof material is lowered.

本発明は、コンクリート床版を防水するだけでなくコンクリート床版のひび割れ補修を同時に行なう事で耐久性に優れ、更に塗布された加熱溶融アスファルトにより施工後の交通荷重により発生するクラックへの追従性を確保する事で、長期に亘ってコンクリート床版の劣化を防ぐ事が可能な優れた床版防水システムを飛散や周囲の汚染等の施工上の問題やアスファルト合材の付着力の低下等の品質上の問題を起こす事無く実際の現場へ適応する事を目的としている。 The present invention not only waterproofs concrete floor slabs, but also repairs cracks in concrete floor slabs at the same time, and has excellent durability.Furthermore, it can follow cracks caused by traffic loads after construction due to applied heated and melted asphalt. By securing the above, an excellent floor slab waterproofing system that can prevent deterioration of the concrete slab over a long period of time, such as construction problems such as scattering and surrounding contamination, and a decrease in the adhesion of asphalt composites, etc. The purpose is to adapt to the actual site without causing quality problems.

上記問題点を解決するため本発明は、コンクリート床版に浸透型防水材を塗布した上に硅砂を撒布し、更に加熱塗布型アスファルト塗膜防水材を塗布する組み合わせを提案している。即ち、本発明は、コンクリートに含浸した後硬化して床版と一体化した防水層を形成するアクリル系ラジカル硬化性液状樹脂組成物の上に、硅砂が撒布され且つ、加熱塗布系アスファルト防水材を施工してなることを特徴とするコンクリート床版防水工法であり、好ましくは、前記アクリル系ラジカル硬化性樹脂組成物の塗布時の粘度が2000mPa・s以下であり且つ、塗布量が50g/m以上500g/m以下であり、更に好ましくは、前記ラジカル硬化性液状樹脂組成物がJIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加え2片に破断した後、その2片の破断面を0.2mmの間隔をあけて突き合わせ対向させた状態で固定することにより試験片を作製し、水平方向に維持し、該ラジカル硬化性樹脂組成物を試験片上面に200g/m塗布した際に、該ラジカル硬化性樹脂組成物がひび割れに含浸硬化してコンクリートを一体化する深さが10mm以上であり、更に好ましくは、前記ラジカル硬化性樹脂組成物がアクリル系及び/又はメタアクリル系樹脂を主成分とする液状樹脂組成物であることを特徴とする前記のコンクリート床版防水施工方法である。加えて、本発明は、前記の床版防水施工方法で施工されたコンクリート床版防水構造体である。 In order to solve the above-mentioned problems, the present invention proposes a combination in which osmotic waterproofing material is applied to a concrete slab, dredged sand is spread, and further, a heat-applied asphalt coating waterproofing material is applied. That is, the present invention relates to an asphalt waterproofing material in which dredged sand is spread on an acrylic radical curable liquid resin composition that is cured after being impregnated into concrete to form a waterproof layer integrated with a floor slab. The concrete floor slab waterproofing method is characterized in that the viscosity at the time of application of the acrylic radical curable resin composition is 2000 mPa · s or less and the application amount is 50 g / m. 2 or more and 500 g / m 2 or less, more preferably, the radical curable liquid resin composition is bent near the center of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen). And then breaking into two pieces, and then fixing the two pieces in a state where they face each other with a gap of 0.2 mm facing each other. To produce Ri test pieces were kept in a horizontal direction, when the radical-curable resin composition 200 g / m 2 coated on the test piece top, the radical curable resin composition of the concrete is impregnated cured cracking The integration depth is 10 mm or more, and more preferably, the radical curable resin composition is a liquid resin composition mainly composed of an acrylic and / or methacrylic resin. Concrete floor slab waterproofing construction method. In addition, the present invention is a concrete floor slab waterproofing structure constructed by the floor slab waterproofing construction method described above.

本発明によれば、コンクリート床版にラジカル硬化性液状樹脂組成物を塗布、含浸硬化させる事で床版と一体化した防水層を形成すると同時にひび割れを一体化する工程と、硅砂を散布する工程と、加熱溶融型アスファルト防水材の施工工程からなる床版防水施工方法は、硅砂の替わりに不飽和二重結合基を有する熱軟化性樹脂粒状物を使う床版防水施工方法の持つ問題点、即ち熱軟化性樹脂粒状物を散布するときの飛散、靴やタイヤを介した周辺の汚染や、アスファルト合材温度が低下した時のアスファルト合材との付着力低下等の問題を防ぎ、長期に亘って防水性能を確保する事が可能な床版防水工法並びに床版防水構造体を提供できる。 According to the present invention, a radical curable liquid resin composition is applied to a concrete floor slab, a waterproof layer integrated with the floor slab is formed by impregnating and curing, and at the same time, a crack is integrated, and a step of spraying dredged sand And the floor slab waterproofing construction method consisting of the construction process of heat-melting type asphalt waterproofing material is a problem with the floor slab waterproofing construction method using thermosoftening resin granules having unsaturated double bond groups instead of dredged sand, In other words, it prevents problems such as scattering when spraying thermosoftening resin particulates, contamination around shoes and tires, and decrease in adhesion with asphalt mixture when the temperature of asphalt mixture decreases, It is possible to provide a floor slab waterproofing method and a floor slab waterproof structure capable of ensuring waterproof performance.

本発明で提案している床版防水方法及び床版防水構造体は新設床版に舗装を行なう場合、又は既設床版の舗装打ち替えの場合双方に適応が可能である。 The floor slab waterproofing method and floor slab waterproof structure proposed in the present invention can be applied to both cases where paving is performed on a newly installed floor slab or when paving is replaced with an existing floor slab.

本発明では、アクリル系ラジカル硬化性液状樹脂組成物として、塗布時の粘度が2000mPa・s以下の物を使用する。該ラジカル硬化性液状樹脂組成物の塗布時の粘度が2000mPa・s以下であれば、コンクリート床版への含浸性が極端に悪くなり防水性が劣るということが防げるし、本発明の特徴である床版に含浸し表層と一体化した防水層の形成が確保できる。更に、浸透せず表面に塗膜を形成するためピンホールが発生し易くなることも防げる。又、該アクリル系ラジカル硬化性液状樹脂組成物の塗布量が50g/m以上であれば、床版と一体化する防水層が塗り斑により部分的に防水層の形成が出来ない等の不具合が生じることも防げるし、コンクリート表面に樹脂硬化物の皮膜が形成され加熱アスファルト系防水層との密着力が低下してしまうことも防止できる。 In the present invention, an acrylic radical curable liquid resin composition having a viscosity of 2000 mPa · s or less during coating is used. If the viscosity at the time of application of the radical curable liquid resin composition is 2000 mPa · s or less, it is possible to prevent the impregnation property of the concrete floor slab from becoming extremely worse and the waterproof property to be inferior, which is a feature of the present invention. The formation of a waterproof layer impregnated in the floor slab and integrated with the surface layer can be ensured. Furthermore, since a coating film is formed on the surface without penetrating, it is possible to prevent pinholes from being easily generated. In addition, when the application amount of the acrylic radical curable liquid resin composition is 50 g / m 2 or more, the waterproof layer integrated with the floor slab cannot be partially formed due to smears. In addition, it is possible to prevent the adhesive strength with the heated asphalt waterproof layer from being reduced due to the formation of a cured resin film on the concrete surface.

前記ラジカル硬化性液状樹脂組成物の硬化時間は特に制限は無いが、施工時間の制限が厳しい既設コンクリート床版に適用する場合は30分以内が好ましい。 Although there is no restriction | limiting in particular in the hardening time of the said radical curable liquid resin composition, When applying to the existing concrete floor slab where the restriction | limiting of construction time is severe, within 30 minutes are preferable.

又、前記ラジカル硬化性液状樹脂組成物がJIS A 1106.3 (供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加え2片に破断した後、その2片の破断面を0.2mmの間隔をあけて突き合わせ対向させた状態で固定することにより試験片を作製し、水平方向に維持し、該アクリル系ラジカル硬化性樹脂組成物を試験片上面に200g/m塗布した際に、該ラジカル硬化性樹脂組成物がひび割れに含浸硬化してコンクリートを一体化する深さが10mm以上であるクラック含浸性に優れた物が好ましい。該ラジカル硬化性液状樹脂組成物の上記クラック浸透性が10mm以上であれば、細かいクラックに充分深く浸透して一体化する事ができず、床版のクラック補修効果が小さくなるという現象を防止できる。 Further, after the radical curable liquid resin composition was broken into two pieces by applying a bending load in the vicinity of the central part of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen), the two pieces A test piece is prepared by fixing the fractured surface of the test piece in a state of being opposed to each other with an interval of 0.2 mm, and maintained in a horizontal direction. The acrylic radical curable resin composition is 200 g / When m 2 is applied, the radical curable resin composition is preferably crack-impregnated with a depth of 10 mm or more for impregnating and hardening the cracks to integrate the concrete. If the above-mentioned crack permeability of the radical curable liquid resin composition is 10 mm or more, it is possible to prevent the phenomenon that the crack repair effect of the floor slab is reduced because the fine cracks cannot be sufficiently deeply penetrated and integrated. .

前記硅砂として、天然に石英砂の状態で存在する物を採取し水洗・乾燥篩い分けした天然硅砂、岩石状硅砂を人工的に粉砕し篩い分けした人造硅砂や、ガラス粉砕品等を使うことができるが、コストや入手し易さを基準に選定することができる。しかし、散布時の飛散を防ぐため、予めメーカーで篩い分けして製品化している物を使う事が好ましい。具体的には、粒子径が2.4mm〜1.2mm(8メッシュ〜18メッシュ)である3号硅砂、粒子径が1.2mm〜0.6mm(10メッシュ〜23メッシュ)である4号硅砂や、粒子径が0.8mm〜0.3mm(18メッシュ〜50メッシュ)である5号硅砂が散布時の飛散が少なく好ましい。これらの硅砂は各々単独又は2種以上を組み合わせて使用する事ができる。 As the dredged sand, it is possible to use natural dredged sand that has been collected naturally in the form of quartz sand, washed with water and dried and screened, artificial dredged sand that has been artificially ground and screened with rock-shaped dredged sand, and glass ground products. Yes, but can be selected based on cost and availability. However, in order to prevent scattering at the time of spraying, it is preferable to use a product that has been pre-screened by a manufacturer and commercialized. Specifically, No. 3 cinnabar having a particle diameter of 2.4 mm to 1.2 mm (8 mesh to 18 mesh), No. 4 cinnabar having a particle diameter of 1.2 mm to 0.6 mm (10 mesh to 23 mesh). Moreover, No. 5 cinnabar having a particle diameter of 0.8 mm to 0.3 mm (18 mesh to 50 mesh) is preferable because of less scattering when sprayed. These cinnabar sands can be used alone or in combination of two or more.

硅砂の散布量は使用する粒度や散布する床版の不陸の程度により異なるが、0.3Kg/mから1.5Kg/mの範囲で散布することができる。0.3Kg/m以上でアスファルト塗膜防水材との密着力が安定し、且つ浸透型防水材が硬化するまでの間、靴やタイヤによる周辺の汚染も可能性が低くすることができるし、1.5Kg/m以下であればアスファルト塗膜防水材との間の密着力が著しく低下することもない。又、硅砂を散布するタイミングは浸透型防水材が硬化するまでに散布する事が出来るが、浸透型防水材を塗付した直後が好ましい。 Spraying amount of silica sand varies depending on the degree of uneven surface of the floor plate to the particle size and spray to use, it can be sprayed in the range of 0.3 Kg / m 2 of 1.5 Kg / m 2. Adhesion between asphalt waterproofing membrane material is stable at 0.3 kg / m 2 or more, and until osmotic waterproofing material is hardened, it can be less possibility contamination near by shoes or tires If it is 1.5 kg / m 2 or less, the adhesion strength with the asphalt waterproofing membrane will not be significantly reduced. Moreover, the timing of spraying the cinnabar can be sprayed until the permeable waterproof material is cured, but it is preferably immediately after the permeable waterproof material is applied.

本発明に係るラジカル硬化性液状樹脂組成物としては“ハードロック DK 550−003”(電気化学工業社製アクリル樹脂),“ハードロック DK 550−007”(電気化学工業社製アクリル樹脂)等があるが、本発明はこれらに限定されるものではない。 Examples of the radical curable liquid resin composition according to the present invention include “Hard Rock DK 550-003” (acrylic resin made by Denki Kagaku Kogyo), “Hard Rock DK 550-007” (acrylic resin made by Denki Kagaku Kogyo), and the like. However, the present invention is not limited to these.

未硬化のラジカル硬化性液状樹脂組成物の塗布方法は特に制限は無いがローラー、コテ、吹き付け方法等が挙げられる。 The method for applying the uncured radically curable liquid resin composition is not particularly limited, and examples thereof include a roller, a trowel, and a spraying method.

本発明に関わる加熱塗布型アスファルト防水材としては、ニチレキ株式会社製“セロシールSS-B”、東亜道路株式会社“タフシール”などがあるが特にこれらに限定される物ではなく、一般的に床版防水材に使用されている加熱塗布型アスファルト防水材を使用する事ができる。 Examples of the heat-applied asphalt waterproofing material according to the present invention include “Cello Seal SS-B” manufactured by Nichireki Co., Ltd. and “Tough Seal” manufactured by Toa Road Co., Ltd. Heat-applied asphalt waterproofing materials used for waterproofing materials can be used.

加熱塗布型アスファルト防水材を塗布した後、アスファルト防水材の粘着性を低減し舗装用の重機の通行を確保すると同時に、アスファルト塗膜防水材の損傷を防ぐため、硅砂を撒布する事ができる。 After applying the heat-applied asphalt waterproofing material, dredged sand can be distributed to reduce the adhesiveness of the asphalt waterproofing material and ensure the passage of heavy equipment for paving and at the same time prevent damage to the asphalt coating waterproofing material.

次に実施例により本発明をより具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.

(実施例1)
本実施例では、ラジカル硬化型樹脂組成物として、電気化学工業製アクリル系含浸接着剤 DK 550−003を20℃の恒温室の中で使用した。DK 550−003の20℃における粘度は300mPa・sである。20℃の雰囲気で硬化時間を約30分に調整した物を使用した。試験体として表面をブラスト処理して表面のレイタンスを除去した30×30×6cmのコンクリート平板を7枚用意した。DK 550−003を200g/mの割合でゴムベラを使用して7枚全てに塗布し、直に4号硅砂を0.7Kg/mとなるよう手で均一に撒布した。30分放置して硬化させた後、供試体6枚に東亜道路工業製アスファルト塗膜防水材“タフシール”を230℃に加熱して完全に溶解し、試験体の表面に1.2Kg/mになる様バーナーで加熱した金ゴテを用いて素早く平らに均し、4号硅砂を1.0Kg/mとなるように手で撒布した。1 時間放置した後試験体5枚に、160℃に加熱した最大粒径13mmのSMAを厚さ4cmとなる様にコンパクターを使用して舗設を行なった。同時に、厚さ0.5mmの鉄板を280番の研磨紙で金属光沢が出るまで研磨した物を準備してアセトンで充分表面を脱脂した後、コンクリート平板と同じ様にDK 550−003と4号硅砂、タフシールを塗布した。試験体は1日放置した後、社団法人日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載されている床版防水材品質基準項目の試験を行なった。又、アスファルト塗膜防水材塗布時にタイヤや靴による周囲への汚染を定性的に評価するため、日本道路公団試験研究所規格JHERI 410−3“はがれ負荷方法”に準拠した評価を行なった。
Example 1
In this example, an acrylic impregnated adhesive DK 550-003 manufactured by Denki Kagaku Kogyo was used as a radical curable resin composition in a thermostatic chamber at 20 ° C. The viscosity of DK 550-003 at 20 ° C. is 300 mPa · s. What adjusted the hardening time to about 30 minutes in 20 degreeC atmosphere was used. Seven 30 × 30 × 6 cm concrete plates were prepared as test specimens, the surfaces of which were blasted to remove the surface latency. DK 550-003 was applied to all seven sheets at a rate of 200 g / m 2 using a rubber spatula, and No. 4 cinnabar sand was spread evenly by hand so that it would be 0.7 kg / m 2 . After being allowed to cure for 30 minutes, the asphalt coating waterproofing material “Tough Seal” manufactured by Toa Road Industry Co., Ltd. was heated to 230 ° C. and completely dissolved in 6 specimens, and 1.2 kg / m 2 on the surface of the specimen. Then, using a gold trowel heated with a burner, it was leveled quickly and spread by hand so that No. 4 cinnabar was 1.0 kg / m 2 . After standing for 1 hour, SMA with a maximum particle size of 13 mm heated to 160 ° C. was paved to a thickness of 4 cm using a compactor on 5 specimens. At the same time, a steel plate with a thickness of 0.5 mm was polished with a No. 280 polishing paper until a metallic luster appeared, and after thoroughly degreasing the surface with acetone, DK 550-003 and No. 4 were used in the same way as a concrete plate. The cinnabar and tough seal were applied. The test specimens were allowed to stand for a day and then tested for quality standards for floor slab waterproofing materials described in “Road Bridge Reinforced Concrete Slab Waterproofing Layer Design and Construction Data” of Japan Road Association. In addition, in order to qualitatively evaluate the contamination of the surroundings with tires and shoes when applying asphalt paint waterproofing material, evaluation was performed in accordance with the Japan Road Public Corporation Research Institute Standard JHERI 410-3 “Stripping Load Method”.

(実施例2)
本実施例では、ラジカル硬化型樹脂組成物として同じく電気化学工業製アクリル系含浸接着剤DK 550−007を実施例1と同じく 20℃の恒温室の中で使用した。DK 550−007の20℃における粘度は約700mPa・sである。20℃の雰囲気下で硬化時間を約30分に調整した物を用いた。実施例1と同様にブラスト処理した30×30×6cmのコンクリート平板7枚にDK 550−007を400g/mの割合でゴムベラを用いて塗布した。塗布直後、実施例1と同じく4号硅砂を1.0Kg/mとなるよう手で撒布した。実施例1と同じく約30分間放置して硬化させた後、230℃に加熱して溶融した東亜道路工業株式会社製アスファルト塗膜防水材“タフシール”を試験体の表面に1.2Kg/mになる様塗布し、バーナーで加熱した金ゴテを使用して平らに均した。次に4号硅砂を 1.0Kg/mとなるように手で撒布した。1時間放置した後、試験体5枚に160℃に加熱した最大粒径13mmのSMAを厚さ4cmとなる様にコンパクターを使用して舗設を行なった。同時に、厚さ0.5mmの鉄板を280番の研磨紙で金属光沢が出るまで研磨した物を準備してアセトンで充分表面を脱脂した後、コンクリート平板と同じ様にDK 550−007、硅砂、タフシールを塗布した。試験体は1日放置した後、社団法人日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載されている床版防水材品質基準項目の試験を行なった。又、実施例1と同様に「はがれ負荷試験」を行いタイヤや靴による周辺への汚染の可能性を定性的に評価した。
(Example 2)
In this example, an acrylic impregnated adhesive DK 550-007 manufactured by Denki Kagaku Kogyo Co., Ltd. was used as a radical curable resin composition in a constant temperature room at 20 ° C. as in Example 1. The viscosity of DK 550-007 at 20 ° C. is about 700 mPa · s. What adjusted the hardening time to about 30 minutes in 20 degreeC atmosphere was used. DK 550-007 was applied at a rate of 400 g / m 2 on 7 pieces of 30 × 30 × 6 cm concrete plates blasted in the same manner as in Example 1 using a rubber spatula. Immediately after application, No. 4 cinnabar was hand-spreaded by hand so as to be 1.0 kg / m 2 as in Example 1. As with Example 1, after being allowed to stand for about 30 minutes to cure, heated to 230 ° C. and melted asphalt paint waterproofing material “Tough Seal” manufactured by Toa Road Industry Co., Ltd. was applied to the surface of the test piece at 1.2 kg / m 2. Then, it was leveled using a gold iron heated with a burner. Next, No. 4 cinnabar was spread by hand so as to be 1.0 kg / m 2 . After being left for 1 hour, SMA with a maximum particle size of 13 mm heated to 160 ° C. was paved using a compactor so that the thickness was 4 cm. At the same time, after preparing an object obtained by polishing a 0.5 mm thick iron plate with a No. 280 polishing paper until a metallic luster appears, thoroughly degrease the surface with acetone, DK 550-007, cinnabar sand, A tough seal was applied. The test specimens were allowed to stand for a day and then tested for quality standards for floor slab waterproofing materials described in “Road Bridge Reinforced Concrete Slab Waterproofing Layer Design and Construction Data” of Japan Road Association. In addition, the “peeling load test” was performed in the same manner as in Example 1 to qualitatively evaluate the possibility of contamination of the surroundings by tires and shoes.

(実施例3)
本実施例では、ラジカル硬化型樹脂組成物であるDK 550−003の塗布量を50g/mとし、5号硅砂を0.4Kg/mとなる様手で撒布し、アスファルト系塗膜防水材としてニチレキ株式会社製“セロシールSS-B”を使用した以外は実施例1と同様に試験体を作成し評価試験を行なった。
(Example 3)
In this example, the coating amount of DK 550-003, which is a radical curable resin composition, is 50 g / m 2, and No. 5 cinnabar is spread by hand so as to be 0.4 Kg / m 2, and the asphalt-based coating film is waterproofed. A test specimen was prepared and an evaluation test was performed in the same manner as in Example 1 except that “Cello Seal SS-B” manufactured by Nichireki Co., Ltd. was used as the material.

(実施例4)
本実施例では、はラジカル硬化型樹脂組成物であるDK 550−007に石油樹脂(三井化学製ハイレッツG−100X)を溶解して20℃における粘度が1800mPa・sとなる様に調整した。(以下、DK−Xと標記する。)DK−Xを塗布量が150g/mとなるように塗布した後、5号硅砂を0.8Kg/mとなる様手で撒布した以外は実施例2と同様にアスファルト系塗膜防水材を塗布して床版防水材品質基準項目の試験を行なった。
Example 4
In this example, a petroleum resin (Hilets G-100X manufactured by Mitsui Chemicals) was dissolved in DK 550-007, which is a radical curable resin composition, and the viscosity at 20 ° C. was adjusted to 1800 mPa · s. (Hereinafter referred to as DK-X.) Implemented except that DK-X was applied so that the coating amount was 150 g / m 2, and then No. 5 cinnabar was spread by hand to 0.8 kg / m 2. In the same manner as in Example 2, an asphalt-based waterproof coating material was applied and a floor standard waterproof material quality standard item was tested.

(実施例5)
本実施例では、ラジカル硬化型樹脂組成物であるDK 550−003の塗布量を150g/mとし、3号硅砂を1.0Kg/mとなる様手で撒布した以外は実施例1と同様に試験体を作成し評価試験を行なった。
(Example 5)
In this example, the coating amount of DK 550-003, which is a radical curable resin composition, was 150 g / m 2, and No. 3 cinnabar sand was distributed by hand so as to be 1.0 Kg / m 2. Similarly, a test specimen was prepared and an evaluation test was performed.

(実施例6)
本実施例では、屋外ヤードに打設した厚さ30cmの模擬床版を1m×2mに区分し、表面の埃、水分、レイタンスを除去した後、DK 550−003をローラーで200g/m塗布した後、4号硅砂を0.7Kg/m手で撒布したが、その際飛散の有無を目視で評価した。約30分養生して硬化を確認した後、230℃に加熱溶融したアスファルト塗膜防水材“タフシール”を1.2Kg/mとなる様ひしゃくで撒布し、素早くゴム製レーキ他で均した。次に4号硅砂を1.0Kg/mとなる様手で撒布した。次に、一部防水層を残しながら、アスファルトフフィニッシャーで最大粒径が13mmのSMAを厚さ50mmとなる様舗設し、マカダムローラーとタイヤローラーで押し固めを行なった。翌日、コアリングマシンでアスファルト舗装が舗設されていない場所から直径100mmのコアを抜き防水試験を行なった。又、舗装を掛けた場所のほぼ中央の部分から同じく直径100mmのコアを採取し引張付着試験を行なった。
(Example 6)
In this example, a 30 cm thick simulated floor slab placed in an outdoor yard was divided into 1 m × 2 m, and after removing dust, moisture and latency on the surface, DK 550-003 was applied with a roller at 200 g / m 2. After that, No. 4 cinnabar was sprinkled with 0.7 kg / m 2 hands, and the presence or absence of scattering was visually evaluated. After curing for about 30 minutes and confirming the curing, an asphalt coating waterproofing material “Tough Seal” heated and melted at 230 ° C. was spread with a ladle so as to be 1.2 kg / m 2, and quickly leveled with a rubber rake or the like. Next, No. 4 cinnabar was spread by hand so as to be 1.0 kg / m 2 . Next, SMA with a maximum particle size of 13 mm was paved to a thickness of 50 mm with an asphalt finisher while leaving a part of the waterproof layer, and pressed with a Macadam roller and a tire roller. On the next day, a 100 mm diameter core was removed from a place where asphalt pavement was not paved with a coring machine, and a waterproof test was conducted. Similarly, a core having a diameter of 100 mm was sampled from a substantially central portion of the place where the pavement was applied, and a tensile adhesion test was performed.

(実施例7)
本実施例は、実施例6に使用した模擬床版と同様の床版を作成し1m×2mに区分した後、小型の切削機で切削し、補修工事を想定した床版(1m×2m)を作成した。その上に、ラジカル硬化型樹脂組成物としてDK 550−003を300g/mでローラーで塗布した後、3号硅砂を1.5Kg/mになる様手で散布したが、その際飛散の有無を目視で観察した。約30分養生して硬化を確認した後、実施例6と同様にタフシールと4号硅砂を施工後、実施例6と同じ手順で一部防水層を残しながら最大粒径が13mmの改質II型を使用した密粒アスファルト混合物を厚さ5cmとなる様に舗設を行なった。翌日、実施例6と同様に、未舗装の部分からコアリングマシンで直径100mmのコアを抜き防水試験を行ない、舗装した部分からも同様にコアリングを行い引張付着試験を実施した。
(Example 7)
In this example, a floor slab similar to the simulated floor slab used in Example 6 was prepared and divided into 1 m × 2 m, and then cut with a small cutting machine, assuming a repair work (1 m × 2 m) It was created. On top of that, after applying DK 550-003 as a radical curable resin composition with a roller at 300 g / m 2 , No. 3 cinnabar was sprayed by hand so as to be 1.5 Kg / m 2 . The presence or absence was visually observed. After curing for about 30 minutes and confirming hardening, after applying tough seal and No. 4 cinnabar as in Example 6, modified II with a maximum particle size of 13 mm while leaving a waterproof layer in the same procedure as in Example 6 The dense asphalt mixture using a mold was paved so as to have a thickness of 5 cm. On the next day, in the same manner as in Example 6, a 100 mm diameter core was removed from the unpaved portion with a coring machine, a waterproof test was performed, and a coring was similarly performed from the paved portion to perform a tensile adhesion test.

(実施例8)
本実施例では、JIS A 1106.3(供試体)で規定されている方法で作成した10×10×40cmのコンクリート供試体をほぼ中心部で割裂し、割れ部分に0.2mmのスペーサーを挟み込み、0.2mm幅のクラックを有するコンクリート供試体を12本準備した。次に、各4本づつ、DK 550−003、DK 550−007と実施例4で使用したDK−Xを200g/mとなるようにゴムベラで塗布し、一夜経過後再びクラック部分から破断させ、アクリル系ラジカル硬化型樹脂組成物が0.2mm幅のクラックに10mm以上含浸している事を確認した。残りの各3本は「財団法人社団法人日本道路協会」が道路橋鉄筋コンクリート床版防水層設計・施工資料に定めている試験法に則り防水試験を行った。具体的には、クラック部分が防水試験器の中心を通る様に装置をセットして測定を行ない、漏水量が0.0mlである事を確認した。
(Example 8)
In this example, a 10 × 10 × 40 cm concrete specimen prepared by the method defined in JIS A 1106.3 (specimen) is split at almost the center, and a 0.2 mm spacer is sandwiched between the cracks. Twelve concrete specimens having 0.2 mm width cracks were prepared. Next, DK 550-003, DK 550-007 and DK-X used in Example 4 were applied with a rubber spatula so as to be 200 g / m 2 for each four pieces, and after one night had elapsed, the cracks were broken again. It was confirmed that the acrylic radical curable resin composition impregnated 10 mm or more into a crack having a width of 0.2 mm. The remaining three were subjected to a waterproof test in accordance with the test method stipulated in the road bridge reinforced concrete floor slab design and construction data by the Japan Road Association. Specifically, the measurement was performed by setting the device so that the crack portion passed through the center of the waterproof tester, and it was confirmed that the amount of water leakage was 0.0 ml.

以上の実施例の試験条件を表1、表2に記載する。 The test conditions of the above examples are shown in Tables 1 and 2.

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

(比較例1)
比較例として、はアクリル系ラジカル硬化型樹脂組成物の20℃における粘度が4000mPa・sである電気化学工業製アクリル系接着剤DK 550−04を使用した事以外は実施例1と同様の手順・方法で供試体を作成して評価を行なった。
(Comparative Example 1)
As a comparative example, the same procedure as in Example 1 except that an acrylic adhesive DK 550-04 manufactured by Denki Kagaku Kogyo Co., Ltd., having a viscosity of 4000 mPa · s at 20 ° C. of the acrylic radical curable resin composition was used. A specimen was prepared by the method and evaluated.

(比較例2)
他の比較例として、アクリル系ラジカル硬化型樹脂組成物の塗布量が40g/mであること以外は実施例2と同様の方法で供試体を作成して評価を行なった。
(Comparative Example 2)
As another comparative example, a specimen was prepared and evaluated in the same manner as in Example 2 except that the coating amount of the acrylic radical curable resin composition was 40 g / m 2 .

(比較例3)
他の比較例として、硅砂の散布量が0.2Kg/mである事以外は実施例3と同様に供試体を作成して評価を行なった。
(Comparative Example 3)
As another comparative example, a specimen was prepared and evaluated in the same manner as in Example 3 except that the amount of cinnabar dust applied was 0.2 kg / m 2 .

(比較例4)
他の比較例として、アクリル系ラジカル硬化型樹脂組成物として電気化学工業社製DK 550−007を200g/m塗布して床版に充分含浸させた後、直ちに5号硅砂を1.6Kg/m散布した以外は実施例4と同様に供試体を作成し評価を行なった。
(Comparative Example 4)
As another comparative example, 200 g / m 2 of DK 550-007 manufactured by Denki Kagaku Kogyo Co., Ltd. was applied as an acrylic radical curable resin composition, and the floor slab was sufficiently impregnated. A specimen was prepared and evaluated in the same manner as in Example 4 except that m 2 was applied.

(比較例5)
他の比較例として、屋外ヤードに打設した厚さ30cmのコンクリート模擬床版を1×2m に区分し、表面の埃、レイタンス、水分を除去した後、実施例6と同様にDK 550−003を200g/mとなるように塗布した後、6号硅砂を0.8Kg/mの割合で散布した。その際、目視で飛散の有無を評価した。約30分間養生してDK 550−003の硬化を確認した後、実施例6と同様にタフシールを塗付して一部防水層を残す様に最大粒径が13mmのSMAを厚さ50mmとなる様舗装した。翌日、コアリングマシンで防水層が剥き出しの箇所から直径100mmのコアを抜き防水試験を行った。又、アスファルト舗装を真中付近から同様に直径100mmのコアを抜き引張り付着試験を行なった。
(Comparative Example 5)
As another comparative example, a 30 cm thick concrete simulated floor slab placed in an outdoor yard was divided into 1 × 2 m 2, and after removing dust, latency, and moisture on the surface, DK 550-003 as in Example 6. the was coated to a 200 g / m 2, were sprayed with No. 6 silica sand at a rate of 0.8 Kg / m 2. At that time, the presence or absence of scattering was visually evaluated. After curing for about 30 minutes and confirming the hardening of DK 550-003, SMA with a maximum particle size of 13 mm is 50 mm thick so that a tough seal is applied to leave a waterproof layer in the same manner as in Example 6. Paved like. On the next day, a 100 mm diameter core was removed from the exposed portion of the waterproof layer with a coring machine, and a waterproof test was conducted. In addition, a core with a diameter of 100 mm was similarly removed from the middle of the asphalt pavement to conduct a tensile adhesion test.

(比較例6)
この比較例に於いては、比較例5と同様に厚さ30cmのコンクリート製模擬床版を1×2mに区分しDK 550−003を200g/mとなる様塗布した後、硅砂の替わりに予め7メッシュの金網(目開き2.83mm)で篩った石油樹脂(三井化学製ハイレッツ G−100X)を100g/mとなるように散布した。その際目視で飛散の有無を評価した。約30分養生してDK 550−003の硬化を確認した後、タフシールを塗布して最大粒径13mmのSMAを厚さ50mmとなる様一部防水層を残して舗設した。翌日、コアリングマシンで防水層の部分と舗装の中央部分からコアを採取し、それぞれ防水試験と引張り付着試験を行った。これら比較例に関して試験条件を表3、表4に示した。
(Comparative Example 6)
In this comparative example, similar to comparative example 5, a 30 cm thick concrete simulated floor slab was divided into 1 × 2 m, and DK 550-003 was applied to 200 g / m 2, and then instead of dredged sand. Petroleum resin (Hilets G-100X manufactured by Mitsui Chemicals) previously screened with a 7-mesh wire mesh (aperture 2.83 mm) was sprayed to 100 g / m 2 . At that time, the presence or absence of scattering was visually evaluated. After curing for about 30 minutes and confirming the hardening of DK 550-003, a tough seal was applied, and SMA with a maximum particle size of 13 mm was paved with a waterproof layer partially remaining to a thickness of 50 mm. The next day, cores were taken from the waterproof layer and the central part of the pavement with a coring machine and subjected to a waterproof test and a tensile adhesion test, respectively. The test conditions for these comparative examples are shown in Tables 3 and 4.

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

実施例1〜5、及び比較例1〜4で作成した供試体は全て、社団法人 日本道路協会が定める、「道路橋鉄筋コンクリート床版防水層設計。施工資料に示されている防水材品質基準評価方法に準拠して評価試験と日本道路公団試験研究所規格JHERI 410−3“はがれ負荷方法”によるタイヤや靴を介する周辺への汚染の可能性評価を行なった。実施例6〜8、比較例5〜6は防水層が露出している箇所をコアリングした供試体と舗装箇所をコアリングした供試体は夫々、日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に規定されている防水試験並びに引っ張り接着試験に準拠して評価した。又、硅砂並びに石油樹脂散布時の飛散の有無に関して目視で評価した。 All specimens created in Examples 1 to 5 and Comparative Examples 1 to 4 are defined by the Japan Road Association, “Road Bridge Reinforced Concrete Floor Slab Waterproof Layer Design. Waterproof Material Quality Standard Evaluation Shown in Construction Material” In accordance with the evaluation method, the possibility of contamination to the surroundings through tires and shoes was evaluated by the evaluation test and the Japan Road Public Examination Laboratory Standard JHERI 410-3 “peeling load method.” Examples 6 to 8 and Comparative Examples 5 to 6 are specimens that cored the areas where the waterproof layer is exposed and specimens that cored the paved areas, respectively, as stipulated in the “Road Bridge Reinforced Concrete Flooring Waterproof Layer Design / Construction Data”. It was evaluated according to a waterproof test and a tensile adhesion test. In addition, the presence or absence of scattering when spraying dredged sand and petroleum resin was visually evaluated.

各実施例及び比較例で作成した供試体のうち、厚さ0.5mmの脱脂した研磨鉄板に夫々の条件で防水層を施工した供試体は−10℃の恒温槽の中に一日以上放置し、同じく−10℃に冷却していた直径10mm鉄製マンドレルに押さえ付けて180°曲げ、塗布層の剥離や破損の無い場合を合格。ある場合を不合格として判定した。本試験は3回試験を行ない、その内2個が合格の場合合格と判定した。 Among the specimens prepared in each of the examples and comparative examples, specimens in which a waterproof layer was applied to a degreased polished iron plate having a thickness of 0.5 mm under each condition were left in a thermostatic bath at −10 ° C. for more than one day. Then, it was pressed against an iron mandrel with a diameter of 10 mm that had been cooled to −10 ° C., bent 180 °, and passed when there was no peeling or breakage of the coating layer. Some cases were judged as rejected. This test was performed three times, and when two of them passed, it was determined to be acceptable.

防水試験は各実施例及び比較例で作成した、アスファルト合材を舗設していない供試体の2箇所で試験を行なった。測定開始後3分から33分までの30分間の漏水量が0.5ml以下の場合合格と判定した。 The waterproof test was conducted in two places of the specimens prepared in each Example and Comparative Example, in which the asphalt composite material was not paved. When the amount of water leakage for 30 minutes from 3 minutes to 33 minutes after the start of measurement was 0.5 ml or less, it was determined to be acceptable.

剪断試験はアスファルト舗設を行なったコンクリート平板の周囲を約5cm幅でトリミングを行い、10×10cmに切り出して試験体とした。試験体は測定温度(20℃、−10℃)にセットした恒温槽に一夜以上放置した後、所定の冶具で載荷速度1mm/min.で剪断強度を測定した。測定は各温度条件で夫々試験体3個の剪断強度を求め、その平均値を求めた。 The shear test was performed by trimming the periphery of a concrete plate subjected to asphalt pavement with a width of about 5 cm and cutting out to 10 × 10 cm to obtain a test specimen. The specimen was left in a thermostat set at the measurement temperature (20 ° C., −10 ° C.) for one night or longer, and then loaded with a predetermined jig at a loading speed of 1 mm / min. The shear strength was measured at In the measurement, the shear strength of each of the three test specimens was obtained under each temperature condition, and the average value was obtained.

引張試験はアスファルト混合物を舗設したコンクリート平板の中央部分にコアリングマシンで直径100mmの切込みをコンクリート板に達するまで入れ、直径100mmの鉄製冶具を接着剤で貼り付ける。接着剤の硬化を待って測定温度に調整している恒温層へ入れ一夜放置後、建研式引張試験機で引張強度を測定する。測定は各温度条件で夫々3箇所測定し、その平均値を示した。 In the tensile test, a 100 mm diameter incision is made in a central portion of a concrete plate paved with asphalt mixture until reaching the concrete plate with a coring machine, and a steel jig with a diameter of 100 mm is attached with an adhesive. After waiting for the adhesive to harden, put it in a constant temperature layer adjusted to the measurement temperature and leave it overnight, then measure the tensile strength with a Kenken-type tensile tester. The measurement was carried out at three locations for each temperature condition, and the average value was shown.

水浸7日後の引張接着試験は引張試験と同様に、コアリングマシンで直径100mmの切込みをコンクリート板まで入れ、直径100mmの鉄製冶具を接着材で貼り付けた物を20℃の水中に7日間浸漬した後、建研式引張試験機で引張強度を測定する。測定は各温度条件で3箇所行いその平均値を求め、水浸試験を行なわない場合の引張強度に対する保持率を算出した。 The tensile adhesion test after 7 days of water immersion is the same as the tensile test. A 100 mm diameter incision was made up to the concrete plate with a coring machine, and an iron jig with a diameter of 100 mm was attached with an adhesive material in 20 ° C water for 7 days. After dipping, the tensile strength is measured with a Kenken tensile tester. The measurement was performed at three locations under each temperature condition, the average value was obtained, and the retention rate with respect to the tensile strength when the water immersion test was not performed was calculated.

はがれ負荷試験は アクリル系ラジカル硬化型樹脂組成物を塗布し、硅砂又は熱軟化性樹脂粒状物を散布した後、樹脂組成物の硬化を確認した供試体に、硬度55〜60のゴム板100×100×10mmと100×100mmの鋼製載荷板を載せて5kN(500Kg)の荷重を1分間保持する。速やかに鉄製載荷板とゴム板を取り外し、ゴム板の汚損状況を目視で評価する。 The peeling load test was performed by applying an acrylic radical curable resin composition, spraying cinnabar sand or thermosoftening resin granules, and then applying a rubber plate 100x having a hardness of 55 to 60 to a specimen that was confirmed to be cured. A steel loading plate of 100 × 10 mm and 100 × 100 mm is placed and a load of 5 kN (500 Kg) is held for 1 minute. Immediately remove the iron loading plate and the rubber plate, and visually evaluate the contamination of the rubber plate.

以上の測定結果を表5、表6、表7、表8に示した。 The above measurement results are shown in Table 5, Table 6, Table 7, and Table 8.

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

(比較例7)
比較例として、JIS A 1106.3(供試体)で規定されている方法で作成した10×10×40cmのコンクリート供試体をほぼ中心部で割裂し、割れ部分に0.2mmのスペーサーを挟み込み、0.2mm幅のクラックを有するコンクリート供試体を4本準備した。次に、この試験体の表面にラジカル硬化型樹脂組成物としてDK−550−04を200g/mゴムベラで塗布し、一夜経過後4個の供試体の中の一体を選びクラック部分から破断させ、ラジカル硬化型樹脂組成物が0.2mm幅のクラックに10mm以上含浸していない事を確認した。残りの供試体三体は日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に規定されている防水性能評価試験方法に準じて防水試験を行った。具体的には、クラック部分が防水試験器の中心を通る様に装置をセットして測定を行なった。その結果、漏水量が0.5mlを上回ることを確認した。
(Comparative Example 7)
As a comparative example, a 10 × 10 × 40 cm concrete specimen created by the method defined in JIS A 1106.3 (specimen) was split at almost the center, and a 0.2 mm spacer was sandwiched between the cracked parts, Four concrete specimens having cracks with a width of 0.2 mm were prepared. Next, DK-550-04 as a radical curable resin composition was applied to the surface of this test body with a 200 g / m 2 rubber spatula, and after one night, one of the four test specimens was selected and fractured from the crack portion. It was confirmed that the radical curable resin composition did not impregnate 10 mm or more into a crack having a width of 0.2 mm. The remaining three specimens were subjected to a waterproof test in accordance with the waterproof performance evaluation test method specified in the “Road Bridge Reinforced Concrete Floor Waterproofing Layer Design and Construction Material” of the Japan Road Association. Specifically, the measurement was performed by setting the device so that the crack portion passed through the center of the waterproof tester. As a result, it was confirmed that the amount of water leakage exceeded 0.5 ml.

Figure 2007085013
Figure 2007085013

(実施例9)
本実施例としては、30×30×6cmのコンクリート平板3枚にDK 550−003を 200g/mとなる様塗布した後直ちに4号硅砂を0.7Kg/m散布して約30分養生した。次に、230℃に加熱して溶解したタフシールを1.2Kg/mとなるように塗布し、素早く熱した金属ヘラで均した。その上に4号硅砂を1Kg/mの割合で散布した。次に160℃、135℃、110 ℃に加熱した最大粒径13mmのSMAをコンパクターを用いて厚さ4cmになる様舗設した。翌日、社団法人日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に準拠した方法で20℃の引張り接着強度を測定した。
Example 9
In this example, after applying DK 550-003 to 200 g / m 2 on three 30 × 30 × 6 cm concrete flat plates, No. 4 cinnabar sand was sprayed at 0.7 Kg / m 2 and cured for about 30 minutes. did. Next, a tough seal dissolved by heating to 230 ° C. was applied to 1.2 kg / m 2 and leveled with a rapidly heated metal spatula. On top of that, No. 4 cinnabar was sprayed at a rate of 1 kg / m 2 . Next, SMA with a maximum particle size of 13 mm heated to 160 ° C., 135 ° C., and 110 ° C. was paved using a compactor to a thickness of 4 cm. On the next day, the tensile adhesive strength at 20 ° C. was measured by a method in accordance with “Japan Road Association“ Road Bridge Reinforced Concrete Floor Waterproofing Layer Design / Construction Data ””.

(比較例8)
比較例として、DK 550−003を200Kg/mとなる様塗布した後に散布する4 号硅砂の替わりに、予め7メッシュの金網(目開き2.83mm)で篩った石油樹脂(三井化学製ハイレッツG−100X)を100g/mとなる様に散布した以外は実施例9と同様に供試体を作成し20℃の引張り接着力強度を測定した。
(Comparative Example 8)
As a comparative example, petroleum resin (manufactured by Mitsui Chemicals) was screened in advance with a 7-mesh wire mesh (mesh opening 2.83 mm) instead of No. 4 cinnabar sand which was applied after application of DK 550-003 to 200 kg / m 2 . Specimens were prepared in the same manner as in Example 9 except that Highlets G-100X) was sprayed to 100 g / m 2, and the tensile adhesive strength at 20 ° C. was measured.

これらの結果を表10、表11に示す。 These results are shown in Tables 10 and 11.

Figure 2007085013
Figure 2007085013

Figure 2007085013
Figure 2007085013

本発明は、道路橋の鉄筋コンクリート床版を始めとするいろいろな建築、土木分野の防水工法として有効であり、産業上非常に有用である。 The present invention is effective as a waterproofing method in various construction and civil engineering fields including reinforced concrete floor slabs for road bridges, and is very useful in industry.

Claims (5)

コンクリートに含浸した後硬化して床版と一体化した防水層を形成するアクリル系ラジカル硬化性液状樹脂組成物の上に、硅砂が撒布され且つ、加熱塗布系アスファルト防水材を施工してなることを特徴とするコンクリート床版防水工法。 It is made by dripping sand and spreading heat-applied asphalt waterproofing material on an acrylic radical curable liquid resin composition that is cured after impregnation into concrete and forms a waterproof layer integrated with the floor slab. Concrete floor slab waterproofing method characterized by 前記アクリル系ラジカル硬化性樹脂組成物の塗布時の粘度が2000mPa・s以下であり且つ、塗布量が50g/m以上500g/m以下であることを特徴とする請求項1記載のコンクリート床版防水工法。 2. The concrete floor according to claim 1, wherein the acrylic radical curable resin composition has a viscosity of 2000 mPa · s or less and a coating amount of 50 g / m 2 or more and 500 g / m 2 or less. Plate waterproofing method. 前記ラジカル硬化性液状樹脂組成物がJIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加え2片に破断した後、その2片の破断面を0.2mmの間隔をあけて突き合わせ対向させた状態で固定することにより試験片を作製し、水平方向に維持し、該ラジカル硬化性樹脂組成物を試験片上面に200g/m塗布した際に、該ラジカル硬化性樹脂組成物がひび割れに含浸硬化してコンクリートを一体化する深さが10mm以上であることを特徴とする請求項1又は請求項2に記載のコンクリート床版防水施工方法。 After the radical curable liquid resin composition was broken into two pieces by applying a bending load near the center of a 100 mm × 100 mm × 400 mm concrete block prepared by JIS A 1106.3 (specimen), the two pieces were broken. A test piece was prepared by fixing the cross section in a state of being opposed to each other with an interval of 0.2 mm, maintained in a horizontal direction, and 200 g / m 2 of the radical curable resin composition was applied to the upper surface of the test piece. 3. The concrete floor slab waterproofing construction method according to claim 1, wherein a depth at which the radical curable resin composition is impregnated and cured in cracks to integrate the concrete is 10 mm or more. . 前記ラジカル硬化性樹脂組成物がアクリル系及び/又はメタアクリル系樹脂を主成分とする液状樹脂組成物であることを特徴とする請求項1、請求項2、又は請求項3記載のコンクリート床版防水施工方法。 4. The concrete slab according to claim 1, wherein the radical curable resin composition is a liquid resin composition mainly composed of an acrylic and / or methacrylic resin. Waterproof construction method. 請求項1乃至4のいずれか1項に記載の床版防水施工方法で施工されたコンクリート床版防水構造体。 A concrete floor slab waterproofing structure constructed by the floor slab waterproofing construction method according to any one of claims 1 to 4.
JP2005271666A 2005-09-20 2005-09-20 Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure Pending JP2007085013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271666A JP2007085013A (en) 2005-09-20 2005-09-20 Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271666A JP2007085013A (en) 2005-09-20 2005-09-20 Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure

Publications (1)

Publication Number Publication Date
JP2007085013A true JP2007085013A (en) 2007-04-05

Family

ID=37972266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271666A Pending JP2007085013A (en) 2005-09-20 2005-09-20 Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure

Country Status (1)

Country Link
JP (1) JP2007085013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080275A (en) * 2009-10-07 2011-04-21 Denki Kagaku Kogyo Kk Concrete slab waterproofing construction method
JP5323980B1 (en) * 2012-12-22 2013-10-23 三菱樹脂株式会社 Waterproof structure of road bridge deck
JP2016017298A (en) * 2014-07-07 2016-02-01 首都高速道路株式会社 Waterproofing method for concrete slab, and waterproof construction of concrete slab
WO2016093068A1 (en) * 2014-12-12 2016-06-16 Dic株式会社 Floor slab waterproof structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080275A (en) * 2009-10-07 2011-04-21 Denki Kagaku Kogyo Kk Concrete slab waterproofing construction method
JP5323980B1 (en) * 2012-12-22 2013-10-23 三菱樹脂株式会社 Waterproof structure of road bridge deck
JP2016017298A (en) * 2014-07-07 2016-02-01 首都高速道路株式会社 Waterproofing method for concrete slab, and waterproof construction of concrete slab
WO2016093068A1 (en) * 2014-12-12 2016-06-16 Dic株式会社 Floor slab waterproof structure
JPWO2016093068A1 (en) * 2014-12-12 2017-04-27 Dic株式会社 Floor slab waterproof structure
CN107208387A (en) * 2014-12-12 2017-09-26 Dic株式会社 Ground water-proof structure

Similar Documents

Publication Publication Date Title
JP5086917B2 (en) Repair method for asphalt pavement
JP6328936B2 (en) Concrete construction method
KR101160540B1 (en) Repair material for asphalted road and method of road repair using thereof
JP5385171B2 (en) Waterproof pavement structure of concrete floor slab, waterproof construction method thereof and waterproof pavement construction method
KR101030165B1 (en) Very early strength-latex modified mortar composition and method of protect construction in waterproofing systems for reinforced concrete bridge decks using thereof
Chen et al. Field performance evaluations of partial-depth repairs
JP5457777B2 (en) Waterproofing method for concrete floor slabs
JP5323980B1 (en) Waterproof structure of road bridge deck
JP2007085013A (en) Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure
JP2008057119A (en) Waterproof construction method for concrete floor slab for road bridge
KR20130063802A (en) Composition for repairing road and method using the same
KR102128967B1 (en) Method of ultra-rapid repairement of road pavement using eco-friendly resin mortar composition
Abe et al. Proposition of Thin‐Layer Repairing Methods Using Low‐Elasticity Polymer Portland Cement Materials and Glue and Study on the Fatigue Resistance of Reinforced Concrete Slab
CN108529929B (en) High-strength thin-layer asphalt layer for improving structural depth of debonding ice-suppressing material spraying interface
KR100724163B1 (en) Repairing method of bridge or road using waste tire chip
JP4022209B2 (en) Floor slab waterproofing construction method and floor slab waterproof structure
Yue Towards a performance evaluation method for durable and sustainable thin surfacings
JP2016199908A (en) Construction method for concrete pavement structure
JP4058017B2 (en) Concrete floor slab waterproofing construction method and waterproof concrete slab
JP6512908B2 (en) Construction method of floor slab structure
CN114277677A (en) Novel rigid-flexible composite steel bridge deck pavement structure and pavement method thereof
RU2372304C1 (en) Method for manufacturing of coarse filler for concretes
US9988308B1 (en) Epoxy based material and applications therefore
KR0185286B1 (en) Repairing construction of bridge deck and road
SK500182017A3 (en) Skid treatment method of surface course

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081008

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609