JP2007084656A - 吸液性樹脂の製造方法 - Google Patents

吸液性樹脂の製造方法 Download PDF

Info

Publication number
JP2007084656A
JP2007084656A JP2005273680A JP2005273680A JP2007084656A JP 2007084656 A JP2007084656 A JP 2007084656A JP 2005273680 A JP2005273680 A JP 2005273680A JP 2005273680 A JP2005273680 A JP 2005273680A JP 2007084656 A JP2007084656 A JP 2007084656A
Authority
JP
Japan
Prior art keywords
liquid
blade
stirring blade
speed stirring
absorbent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005273680A
Other languages
English (en)
Inventor
Hisakazu Tanaka
寿計 田中
Yoshiki Hasegawa
義起 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2005273680A priority Critical patent/JP2007084656A/ja
Publication of JP2007084656A publication Critical patent/JP2007084656A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】 海水や塩化カルシウム潮解水溶液等の高濃度の含塩溶液に対しても優れた吸液性を有し、1次粒子同士の凝集がなく、体積基準のメジアン径が0.5〜50μmの範囲の粒子径に制御することができ、粒子径分布の非常に狭い吸液性樹脂微粒子の製造方法を提供する。
【解決手段】 界面活性剤を含む疎水性有機溶媒と、スルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体を含有する単量体混合物及びラジカル重合開始剤を含む水溶液とを、撹拌機を有する重合槽に仕込み、前記撹拌機により撹拌しながら逆相懸濁重合させて吸液性樹脂を製造する方法であって、前記撹拌機として低速撹拌翼と高速撹拌翼とを有する多軸撹拌機を用いて吸液性樹脂粒子の平均粒子径を制御することを特徴とする吸液性樹脂の製造方法に関する。
【選択図】 なし

Description

本発明は、有用なる吸液性樹脂の製造方法に関する。更に詳しくは、海水や塩化カルシウム潮解水溶液等の高濃度の含塩溶液を吸収するための吸液性樹脂の製造方法に関する。 本発明の方法により得られる吸液性樹脂からなる吸液性材料は、高濃度の含塩溶液の吸液および吸止水材、土木、農園芸用等の吸液性材料として幅広く利用可能である。
近年、吸水性材料は、生理用品や紙おむつ等の衛生材料分野のみならず、止水材、結露防止材、更に鮮度保持材、溶剤脱水剤等の産業用途、緑化用途、農園芸用途等にも実用化されつつある。しかし、従来の吸水性材料では、カルシウムやマグネシウム等の多価金属イオンが存在する含塩溶液に対する吸水性能が、イオン濃度の増大に伴って低下するために、海水等の塩濃度が極めて高い条件下では殆ど吸水しないという大きな問題があった。
このような問題を解消するために、スルホアルキル(メタ)アクリレートやアクリルアミド等からなる吸水性材料が提案されている(例えば特許文献1参照)。またそれを用いた耐塩性膨潤剤(例えば特許文献2参照)、育苗床(例えば特許文献3参照)などが提案されている。しかし、これらの提案の吸水性材料は水溶液重合により架橋構造を形成してゲル重合体を調製するものであり、吸水倍率も低くまた使用時に粉砕する必要があった。
これに対し、油中水滴型の逆相懸濁重合法による製造法として、スルホン酸基含有不飽和単量体20〜100モル%およびその他の重合性単量体0〜80モル%からなる単量体またはその水溶液を、該単量体またはその水溶液100重量部に対して0〜10重量部のソルビタン脂肪酸エステルの存在下、該単量体またはその水溶液100重量部に対して100〜400重量部の疎水性有機溶媒中で逆相懸濁重合して、粒子径50μm以下の重合性微粒子の懸濁液を作製し、この懸濁液から該微粒子を分離し乾燥することを特徴とする耐塩性吸水性樹脂微粒子の製造方法が提案されている(例えば特許文献4参照)。
本製造方法によれば、粒子径が50μm以下の重合性微粒子が凝集することなく得られるとしているが、1次粒子同士の凝集を起こすことなく、粒子径50μm以下の重合性微粒子を得るために、単量体またはその水溶液100重量部に対して100〜400重量部の疎水性有機溶媒を用いる必要があり、反応釜当たりの収率が低くなることを避けられなかった。また最適な攪拌翼や攪拌速度が充分記載されておらず、1mをこえる商用レベルの反応釜にスケールアップを行った場合や攪拌翼としてパドル翼を用いた場合、1次粒子同士の凝集を避けるには限界があった。さらに、得られる吸水性樹脂粒子の粒子径分布は広がる傾向にあり、製品への大粒子径の吸水性樹脂の混入をさけることは困難であった。
吸水性樹脂微粒子の製造方法としては、重合前に予めモノマーの油中水型の微小分散滴を形成せしめその微小分散滴を昇温した有機溶媒中に滴下して重合させる吸水性ポリマー微粒子の製造方法が開示されている(例えば特許文献5参照)。しかしこの提案では重合前に予めモノマーの油中水型の微小分散滴を形成せしめるためにホモミキサー等の分散装置を必要とするため装置が大がかりになるという欠点があった。
さらに低速撹拌翼と高速撹拌翼とを有する多軸撹拌機を有する反応釜において吸液性樹脂を製造する方法が開示されている(例えば特許文献6参照)。本製造方法によれば、重合槽内への樹脂の付着量を大幅に低減し、収率を向上させるとしている。しかしこの提案で開示されている吸液性樹脂の粒子径の制御範囲は80〜1000μmであり、粒子径50μm以下、さらには10μm以下の粒子径制御法についてはなんら開示されていなかった。
特開平1−144404号公報 特公昭63−5427号公報 特開昭64−51025号公報 特開平1−249808号公報 特開平5−222107号公報 特開2005−132957号公報
本発明の目的は、海水や塩化カルシウム潮解水溶液等の高濃度の含塩溶液に対しても優れた吸液性を有し、1次粒子同士の凝集がなく、体積基準のメジアン径が0.5〜50μmの範囲の粒子径に制御することができ、粒子径分布の非常に狭い吸液性樹脂微粒子の製造方法を提供することにある。
本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、界面活性剤を溶解した疎水性有機溶媒と、スルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体を含有する単量体混合物及びラジカル重合開始剤を含む水溶液を、低速撹拌翼と高速撹拌翼とを有する多軸撹拌機を有する重合槽中で、撹拌しながら逆相懸濁重合させることにより、体積基準のメジアン径が0.5〜50μmの範囲に制御された重合性微粒子を1次粒子同士の凝集がなく得られ、しかも粒子径分布の非常に狭い吸液性樹脂が製造できることを見出し、本発明を完成するに至った。
すなわち、本発明は、界面活性剤を含む疎水性有機溶媒と、スルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体を含有する単量体混合物及びラジカル重合開始剤を含む水溶液とを、撹拌機を有する重合槽に仕込み、前記撹拌機により撹拌しながら逆相懸濁重合させて吸液性樹脂を製造する方法であって、前記撹拌機として低速撹拌翼と高速撹拌翼とを有する多軸撹拌機を用いて吸液性樹脂粒子の平均粒子径を制御することを特徴とする吸液性樹脂の製造方法を提供するものである。
本発明による吸液性樹脂の製造方法によれば、低速撹拌翼で全体を緩やかに混合させながら、高速撹拌翼の剪断力により単量体混合物及びラジカル重合開始剤を含む水溶液を、界面活性剤を溶解した疎水性有機溶媒中に均一に微分散させることにより、重合により生成する樹脂の一次粒子の粒子径を小さく制御することができ、しかも粒子径分布を非常に狭くすることができる。
本発明に用いられる重合槽の形状は特に制限はなく、従来の公知の反応装置や撹拌槽等を使用することができる。また、加熱装置、凝縮器等の付加装置は適宜使用することができる。
以下、本発明を図面に基づき詳細に説明する。
図1は、本発明で用いる内径Dの重合槽1の一実施形態を示す模式図であり、翼径dlの低速撹拌翼2としてピッチドパドル翼を使用し、翼径dhの高速撹拌翼3としてタービン翼とを有する複数の撹拌翼を備えている。この高速撹拌翼3は少なくとも1本を配置するが、重合槽1の大きさや低速撹拌翼2の種類に応じて2本以上配置させても良く(図2参照)、また、低速撹拌翼2に対して公転するようにしても良い。したがって、低速撹拌翼2は重合槽1と接触しないように配置し、かつ、高速撹拌翼3は低速撹拌翼2の障害とならないように配置させるために、それぞれの翼径と重合槽1の内径との関係は、2・dl<dh<Dとなる。
低速撹拌翼2の回転数は、重合槽1内の溶液を緩やかに撹拌して高速撹拌翼3が液面から露出しない程度であれば良く、大きなボルテックスを生じることがないので撹拌軸近傍に樹脂が付着することがなく、さらにこの回転により生じる旋回流によって重合槽1の内壁面に樹脂が付着することを防止できるとともに、樹脂粒子の塊状化を防ぐ役割も担う。 これに対して高速撹拌翼3は、その回転数を低速撹拌翼2の回転数よりも大きくし、この回転によりスルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体を含有する単量体混合物及びラジカル重合開始剤を含む水溶液を疎水性有機溶媒中に均一分散させると同時に、重合によって生成する樹脂に剪断力を与え、剪断力を調製することにより樹脂粒子の微細化と粒子径コントロールを行う役割を担うことになる。
高速撹拌翼3の溶液に対する挿入深さは上記したように液面から露出しない程度であれば良いが、液面近傍の場合は高速回転することにより気泡を発生し易いか、あるいは気泡を巻き込みやすいので、低速撹拌翼2の障害とならないようにして、液面と低速撹拌翼2との中央付近に配置させることが好ましい。また、高速撹拌翼3の回転軸を傾斜させて撹拌するようにすれば、低速撹拌翼2による旋回流に対して上昇流も発生させることができ、より剪断力を向上させることができるとともに低速撹拌翼2の回転軸への樹脂付着もより低減できるので好ましい。
低速撹拌翼2と高速撹拌翼3の回転方向は同回転方向であっても逆回転方向であっても構わないが、高速撹拌翼3に対する負荷を低減する点からは、同回転方向とすることが好ましい。
また、重合槽1内壁の樹脂付着防止の点と低速撹拌翼2の回転ぶれによるトラブル防止の点からは、重合槽1の内径Dと低速撹拌翼2の翼径dlの関係を0.95≦dl/D≦0.99とすることが好ましく、0.96≦dl/D≦0.98とすることがより好ましい。
また、重合槽1の全体にわたり溶液の撹拌効率を向上させるとともに、重合槽1内壁の樹脂の付着を低減させる点から、低速撹拌翼2としてアンカー翼を使用することが好ましい。アンカー翼を使用する場合には、図3に示すように、アンカー翼の翼幅をwlとすると0.05≦wl/D≦0.10とすることが好ましい。
アンカー翼を使用すれば、上記したように重合槽1の全体にわたり溶液の撹拌効率を向上させることができるとともに、アンカー翼とその撹拌軸の中間に高速撹拌翼3を配置させることができるため、重合により生成する樹脂に効率的に剪断力を与えることができることから、樹脂の粒子径をより簡便に制御することが可能となる。
この場合、高速撹拌翼3としてはタービン翼を使用することが好ましく、例えば、図4(a)に示すような傾斜した複数のブレードが配置されたディスクタービン翼や図4(b)に示すような複数のブレードが略垂直に配置されたディスクタービン翼などを使用することができる。そして、低速撹拌翼2としてのアンカー翼の外径dl及び翼幅wlとタービン翼の外径dhとの関係は、低速撹拌翼2の回転軸との干渉を防止するとともに撹拌効率の点からは、0.1・dl<dh<0.8(dl/2−wl)とし、かつ、重合槽1の内径Dとの関係では、0.15≦dh/D≦0.4とすることが好ましい。
さらに、高速撹拌翼3として、タービン翼に代えて各寸法が上記範囲となるディスパー翼を使用することも好ましい。例えば、図5(a)に示すように平面視した状態でディスクの周囲が鋸歯状に突出しており、図5(b)に示すように斜視した状態で複数のブレードが交互に上下方向に配置されたようなディスパー翼であれば、より剪断力を得ることができるので、樹脂の粒子径を微細化するのに好適である。
本発明において製造される吸液性樹脂は、ゴムやセメント、プラスチック等に混合し用いられる。このため平均粒子径は体積基準のメジアン径で少なくとも50μm以下であり、10〜20μmであることが好ましい。さらに、吸液性樹脂を塗膜材料に混合して用いる場合には10μm以下の塗膜厚で使用されるため吸液性樹脂の粒子径は1μm前後であることが好ましい。このようなことから、全てのニーズに対応するためには吸液性樹脂の平均粒子径は0.5〜50μmであることが好ましい。これらの吸液性樹脂の平均粒子径は、本発明の製造方法により制御可能である。
本発明の吸液性樹脂は、重合反応時、低速撹拌翼2の回転数を高速撹拌翼3の回転数よりも小さい回転数となる状態を維持しながら、高速撹拌翼3の回転数をウェーバー数に基づいて制御し攪拌することにより、吸液性樹脂の1次粒子の体積基準のメジアン径を0.5〜50μmに制御することが可能になる。ウェーバー数は気泡や液滴の境界面に働く慣性力と表面張力の比を示す無次元数であり式(1)により表わされる。
Figure 2007084656
式(1)中、nは高速攪拌翼の攪拌速度(rpm)、dhは高速撹拌翼3の攪拌翼径(m)、ρは液密度(kg/m)、μは液粘度(Pa・s)、σは界面張力(N/m)を示すものである。
ウェーバー数を制御する具体的な方法としては、ウェーバー数と高速攪拌翼径に対する吸液性樹脂の1次粒子の平均粒子径(吸液性樹脂の1次粒子の平均粒子径/高速攪拌翼径)の関係を利用する方法が挙げられる。図6は、吸液性樹脂の1次粒子の平均粒子径を高速攪拌翼径で割った数値とウェーバー数の関係を示したグラフである。すなわち、ウェーバー数と高速攪拌翼径に対する吸液性樹脂の1次粒子の平均粒子径(吸水性樹脂の1次粒子の平均粒子径/高速攪拌翼径)の間には式(2)で表される関係が成立する。
Figure 2007084656
式(2)中、dhは高速撹拌翼3の攪拌翼径、Weはウェーバー数、kは、図6の直線において、Weを1としたときの[(吸液性樹脂の1次粒子の平均粒子径)/dh]の値、すなわち縦軸の切片の値、kは、図6の直線の傾きの絶対値を示すものである。ここで、吸液性樹脂の1次粒子の平均粒子径は、レーザー回折・散乱式粒度分布測定装置により測定する方法で求められる値で示され、体積基準で測定されるメジアン径を表すものである。
図6のグラフを利用することにより、所望の吸液性樹脂の1次粒子の体積基準のメジアン径を得ることが可能になる。
実際に商用スケールの反応釜で所望とする0.5〜50μm以下の1次粒子の平均粒子径を有する吸液性樹脂は、例えば次の操作を行うことにより得ることができる。
まず製造を想定する商用スケールの反応釜と相似形の多軸撹拌機を有する小スケールの反応釜において、低速撹拌翼2の攪拌速度を一定に制御し、高速攪拌翼3の攪拌速度を変化させた実験を複数回行い、1次粒子径の異なる吸液性樹脂の調製を行う。次に、吸液性樹脂の1次粒子径を高速攪拌翼径で割った数値[(吸液性樹脂の1次粒子の平均粒子径)/dh]をウェーバー数に対し両対数プロットし、式(1)を、図6の対数表上の直線として表現することにより、式(1)の関係を満足する直線を求めることができる。この図1からk1およびk2を決定することができる。
次いで、逆相懸濁重合の際の攪拌速度を決めると、式(2)からウェーバー数を導くことができる。ウェーバー数が決まると、図6により、[(吸液性樹脂の1次粒子の平均粒子径)/dh]を計算することができ、吸液性樹脂の1次粒子の平均粒子径が予想される。 このことから、式(1)基づき、吸液性樹脂の1次粒子の平均粒子径が一定の数値に維持されるようにウェーバー数を制御し、高速攪拌速度を維持しながら攪拌することにより、1次粒子の平均粒子径を0.5〜50μmの範囲に制御することができる。
具体的には、例えば攪拌翼径0.8mのアンカー翼、攪拌翼径22.5cmのディスパー翼を付帯する商用スケールの反応釜において、1次粒子の平均粒子径を例えば10μmに制御するためには、ディスパー翼のウェーバー数を約10に制御することにより、すなわちディスパー翼の回転速度を400〜450rpmに制御することにより所望の1次粒子を10μm前後に制御することが可能になる。
本発明で用いる単量体混合物中のスルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体としては、例えば、2−スルホエチルアクリレート、2−スルホエチルメタアクリレート、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタアクリルアミド−2−メチルプロパンスルホン酸、2−スルホプロピルアクリレート、2−スルホプロピルメタアクリレート、3−スルホプロピルアクリレート、3−スルホプロピルメタアクリレート、2−スルホブチルアクリレート、2−スルホブチルメタアクリレート等の含スルホン酸基含有化合物又はその塩を挙げることが出来る。含スルホン酸基含有化合物の塩としては、そのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が挙げられる。アルカリ金属塩としては、ナトリウム塩、カリウム塩、リチウム塩、ルビジウム塩等が挙げられ、アルカリ土類金属塩としてはカルシウム塩、マグネシウム塩等が挙げられる。これらの中で最も高い吸液性が得られる点で、2−アクリルアミド−2−メチルプロパンスルホン酸、またはそのアルカリ金属塩が好ましい。
本発明で用いられるスルホン酸基またはそのアルカリ金属塩を有するエチレン性不飽和単量体は、高濃度の含塩溶液に対し高い吸液性維持できる点で、単量体混合物中で10〜100重量%が好ましく、さらに20〜70重量%用いられるのが好ましい。
スルホン酸基またはそのアルカリ金属塩を有するエチレン性不飽和単量体は、他の水溶性エチレン性不飽和化合物と混合して使用することが出来る。かかる水溶性エチレン性不飽和化合物としては、例えば、(メタ)アクリル酸及び/又はそのアルカリ金属塩、アンモニウム塩、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート等のアミノ基含有不飽和化合物やそれらの四級化物等を挙げることが出来、これらの群から選ばれる1種又は2種以上を用いることが出来る。尚、ここで「(メタ)アクリル」という用語は、「アクリル」及び「メタクリル」の何れをも意味するものとする。これらの中でスルホン酸基、またはそのアルカリ金属塩を有するエチレン性不飽和単量体との共重合性を鑑みると、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミドが好ましい。
前記単量体混合物が重合した重合体同士は、前記架橋剤を使用せずとも自己架橋する場合があるが、架橋剤を使用して架橋させることが、吸液性に優れた高吸液性樹脂を製造する上で好ましい。
架橋剤としては、2個以上のエチレン性不飽和結合を有する単量体、前記単量体混合物中の単量体の有する官能基と反応する官能基を2個以上有する化合物が挙げられる。
2個以上のエチレン性不飽和結合を有する単量体としては、例えばジ(メタ)アクリル酸エステル、トリ(メタ)アクリル酸エステル、ビスアクリルアミドなどが挙げられる。
ジ(メタ)アクリル酸エステルとしては、例えばエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジ(メタ)アクリル酸カルバミルエステルなどが挙げられる。
トリ(メタ)アクリル酸エステルとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレートなどが挙げられる。
ビスアクリルアミドとしては、例えばN,N'−メチレンビスアクリルアミド、N,N'−エチレンビスアクリルアミドなどが挙げられる。
前記2個以上のエチレン性不飽和結合を有する単量体のなかでも、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、N,N’−メチレンビス(メタ)アクリルアミドを使用することが好ましい。
前記単量体混合物中の単量体の有する官能基と反応する官能基を2個以上有する化合物としては、(メタ)アクリル酸の有するカルボキシル基と反応する官能基を2個以上有する化合物が挙げられる。具体的には、例えばエポキシ基を2個以上有する化合物、イソシアネート基を2個以上有する化合物等が挙げられ、なかでもジグリシジルエーテル化合物を使用することが好ましい。
エポキシ基を2個以上有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリグリセリンジグリシジルエーテル等が挙げられ、なかでもエチレングリコールジグリシジルエーテルを使用することが好ましい。
イソシアネート基を2個以上有する化合物としては、例えば2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
前記2個以上のエチレン性不飽和結合を有する単量体及び前記(メタ)アクリル酸の有するカルボキシル基と反応する官能基を2個以上有する化合物は、前記単量体混合物100重量部に対して0.01〜1重量部の範囲内で使用することが好ましい。0.01〜0.5重量部の範囲内であることが特に好ましい。0.01〜1重量部の範囲内であれば充分な架橋構造が得られ、吸液性能が低下することがない。
本発明で使用するラジカル重合開始剤としては、例えば過酸化水素、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過酸化物や、2,2'−アゾビス−(2−アミノジプロパン)2塩酸塩、2,2'−アゾビス−(N,N'−ジメチレンイソブチルアミジン)2塩酸塩、2,2'−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}等のアゾ化合物が挙げられ、これらを単独又は2種以上併用できる。このとき、前記過酸化物に亜硫酸塩、L−アスコルビン酸等の還元性物質やアミン塩等を併用しレドックス系の開始剤としても使用できる。ラジカル重合開始剤は、前記単量体混合物100重量部に対して0.1〜1重量部を使用することが好ましい。
前記単量体混合物等は、水と混合、撹拌することにより単量体混合物を含む水溶液を調製することができる。
本発明は、界面活性剤を含む疎水性有機溶媒に、この単量体混合物を含む水溶液を供給して、逆相懸濁重合させるものである。
かかる疎水性有機溶媒としては、基本的に水に難溶性で、重合反応に不活性であれば、いかなるものも使用出来る。その一例を挙げれば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環状炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。この内、特に好ましい溶媒としては、n−ヘキサン、n−ヘプタン、シクロヘキサン等を挙げることが出来る。
前記水溶液の供給は、その一部または全量を滴下する方法を採用することができる。
すなわち、まずスルホン酸基、またはそのアルカリ金属塩を10〜100重量%含有するエチレン性不飽和単量体水溶液に、2個以上のエチレン性不飽和結合を有する単量体又は前記単量体混合物の有する官能基と反応する官能基を2個以上有する化合物を0.01〜1重量部混合し、さらにラジカル重合開始剤を0.1〜1重量部、及び必要に応じてチオール類、チオール酸類、第2級アルコール類、アミン類、次亜りん酸塩類等の水溶性連鎖移動剤を添加し、単量体等を含む水溶液を調製し、窒素等の不活性ガスを導入して脱気を行う。一方、重合装置内で、疎水性有機溶媒に界面活性剤を入れ、必要ならば若干加温し界面活性剤を疎水性有機溶媒に溶解せしめ、窒素等不活性ガスを導入し、脱気を行う。その疎水性有機溶媒中に上記単量体の水溶液を一部注入し、攪拌下、昇温を開始する。この間に反応系の水溶液は微細な液滴となって疎水性有機溶媒中に分散しながら懸濁する。昇温とともにやがて発熱が起こり重合が開始する。重合開始後に、残りの単量体の水溶液を滴下しながら重合する。一部または全量を滴下することにより重合による発熱を分散させることが可能となる。
逆相懸濁重合に使用する界面活性剤は、疎水性有機溶媒に可溶又は親和性を持ち、基本的に油中水滴型乳化系を作るものであれば何れのものも使用することが出来る。このような界面活性剤としては、一般的にはHLB(Hydrophile-Lipophile-Balance)が好ましくは1〜9の範囲であり、より好ましくは2〜7の範囲の非イオン系界面活性剤及び/又はアニオン系界面活性剤である。
かかる界面活性剤の具体例としては、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、エチルセルロース、エチルヒドロキシエチルセルロース、酸化ポリエチレン、無水マレイン化ポリエチレン、無水マレイン化ポリブタジエン、無水マレイン化エチレン・プロピレン・ジエン・ターポリマー、α−オレフインと無水マレイン酸の共重合体又はその誘導体ポリオキシエチレンアルキルエーテルリン酸等が挙げられる。これら界面活性剤は2種以上を適宜併用することも可能である。
これら界面活性剤のうち、1次粒子の粒子径を0.5〜50μmの範囲に制御する上で、ソルビタン脂肪酸エステルまたはショ糖脂肪酸エステルを使用することが好ましい。また、ソルビタン脂肪酸エステルとショ糖脂肪酸エステルを混合使用しても良い。ソルビタン脂肪酸エステルとしては、例えばHLBが4〜9のソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタンモノオレート、ソルビタンジオレート、ソルビタントリオレート等が挙げられる。
また、ショ糖脂肪酸エステルとしては、例えばショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリル酸エステル、ショ糖ミリスチン酸エステル、ショ糖ベヘニン酸エステル、ショ糖エルカ酸エステル等が挙げられる。一般に市販されているショ糖脂肪酸エステルはモノエステルを主成分とするジエステル、トリエステルの混合物である。この中でもモノエステルを主成分とし、ジエステル、トリエステルの組成によりHLBが1〜16あるショ糖ステアリン酸エステルが好ましい。
上記界面活性剤の使用量は、疎水性有機溶媒に対して、好ましくは0.05〜10重量%、より好ましくは0.1〜5重量%の範囲である。
逆相懸濁重合法のより具体的な方法としては、次の方法が挙げられる。
すなわちまずスルホン酸基またはそのアルカリ金属塩を10〜100重量%含有するエチレン性不飽和単量体水溶液を調製し、この水溶液に2個以上のエチレン性不飽和結合を有する単量体又は前記単量体混合物の有する官能基と反応する官能基を2個以上有する化合物を0.01〜1重量部混合し、さらにラジカル重合開始剤を0.1〜1重量部、及び必要に応じてチオール類、チオール酸類、第2級アルコール類、アミン類、次亜りん酸塩類等の水溶性連鎖移動剤を添加し溶解させ、前記単量体等を含む水溶液を調製し、窒素等の不活性ガスを導入して脱気を行う。一方、重合装置内で界面活性剤を疎水性有機溶媒に入れ、必要ならば若干加温し溶解せしめ、窒素等不活性ガスを導入し、脱気を行う。次にこの中に上記単量体等を含む水溶液を注入し、攪拌下、昇温を開始する。この間に反応系の水溶液は微細な液滴となって疎水性有機溶媒中に分散しながら懸濁する。昇温とともにやがて発熱が起こり重合が開始する。
重合開始後、発熱の状態によっては適宜冷却もしくは加熱を行う。重合反応温度は、好ましくは60〜100℃、より好ましくは60〜80℃の範囲である。
本発明の吸液性樹脂の製造方法において、前記逆相懸濁重合後に、熱的安定性の高い界面活性剤であるショ糖脂肪酸エステルを懸濁液に添加することにより、1次粒子の凝集を抑制することができる。
本発明で得られる吸液性樹脂は、前記逆相懸濁重合法により、重合時に1次粒子の粒子径を50μm以下に制御することができる。懸濁液中にある粒子は、デカンテーション又はろ過等により疎水性有機溶媒と分離し、その後加熱により乾燥せしめることにより、粉末状の樹脂を得ることが出来る。この場合、懸濁液をそのままデカンテーション又はろ過し乾燥した場合、1次粒子同士が凝集する確率が高い。そのため、本発明の吸液性樹脂は、逆相懸濁重合が終了した後、形成された重合体を攪拌しつつ保持した状態で、疎水性有機溶媒と水との共沸脱水操作により懸濁液から水を除去することが好ましい。この操作を行うことにより、デカンテーション又はろ過又はその後の乾燥工程で1次粒子同士が凝集しにくくすることができる。共沸脱水量は、得られる吸液性樹脂の固形分に対する水分量が8〜20重量%であり、このうち10〜15重量%に脱水することが好ましい。水分量が8〜20重量%であれば、粒子同士が凝集し吸液性樹脂を粉末状態で得ることができ、また吸液特性が低下することもない。
疎水性有機溶媒と水溶液全体とを含む懸濁液中の水溶液の比率が大きい場合、水溶液中の固形分濃度が高い場合等においては、1次粒子径が50μm以下に制御されているにもかかわらず、共沸脱水時に1次粒子同士が凝集し、それよりも遙かに大きい2次粒子を形成する危険性がある。特に商用のスケールに反応釜をスケールアップした際にその傾向が高まる。1次粒子の凝集は、粒子が形成される逆相懸濁重合時よりも共沸脱水時に発生する確率が高い。逆相懸濁重合が終了した後共沸脱水を開始する前に、ショ糖脂肪酸エステルを添加することにより、前記の凝集の危険性を回避することが可能になる。
ショ糖脂肪酸エステルとしては、例えばショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリル酸エステル、ショ糖ミリスチン酸エステル、ショ糖ベヘニン酸エステル、ショ糖エルカ酸エステル等が挙げられる。一般に市販されているショ糖脂肪酸エステルはモノエステルを主成分とするジエステル、トリエステルの混合物である。この中でもモノエステルを主成分とし、ジエステル、トリエステルの組成によりHLBが1〜16あるショ糖ステアリン酸エステルが好ましい。
ショ糖ステアリン酸エステルの形態が粉体であり、重合反応温度である60〜100℃において熱的安定性が高いという物性が、1次粒子の凝集を回避できる効果に寄与しているのではないかと推定される。
ショ糖脂肪酸エステルの添加量は、重合当初に添加した界面活性剤の量の10〜50重量%であることが好ましい。
ショ糖脂肪酸エステルの添加方法としては、粉末をそのまま添加してもよく、また疎水性有機溶媒に懸濁または溶解させたものを添加してもよい。反応釜内が微加圧状態にあり粉末をマンホール等から添加することが操作上困難な場合は疎水性有機溶媒に懸濁または溶解させて添加することが好ましい。
ショ糖脂肪酸エステルの添加時期としては、逆相懸濁重合が終了した後、共沸脱水を開始する前までの間が好ましい。またショ糖脂肪酸エステルの効果を発揮させるには、共沸脱水量が得られる吸液性樹脂の固形分に対する水分量が25重量%、好ましくは30重量%に達していないことが好ましい。
疎水性有機溶媒は、水溶液100重量部に対し40〜200重量部の範囲であり、疎水性有機溶媒が40〜100重量部と少ない場合でも、1次粒子の凝集を起こすことなく樹脂粉末を得ることができる。
本発明の製造方法により得られる吸液性材料は、膨潤したビーズ状の粒子からなっており、デカンテーション又はろ過等により疎水性有機溶媒と分離することが出来る。その後加熱により乾燥せしめ粉末状の樹脂を得ることが出来る。
かくして得られる吸液性材料は、通常その平均粒子径が50μm以下の真球状の1次粒子及びそれらが一部凝集した2次粒子を含む粉体である。この2次粒子も機械力によって容易に粉砕することが出来、製造面及び使用面において大きな利点がある。
本発明の製造方法で得られる吸液性樹脂は、従来から知られている吸液性材料の全ての用途に適用可能である。例えば、光ファイバーケーブル用止水材、水膨潤性ゴム、セメントに混和剤、廃泥ゲル化剤等としての土木分野、建築分野、工業分野;土壌改質剤、及び保水剤等としての農業・園芸分野;オムツや生理用品等の衛生分野など多種多様な分野に利用することが出来る。
以下に、本発明を実施例と比較例により、一層、具体的に説明するが、本発明はこれらに限定されるものではない。以下において、部及び%は、特にことわりのない限り、全て重量基準であるものとする。尚、本発明の樹脂の諸特性は、以下に概略を示した評価方法にて測定した。
[平均粒子径、粒度分布の測定方法]
吸液性樹脂の平均粒子径、および粒子径分布はレーザー回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)を用い測定を行った。体積基準で測定されるメジアン径を平均粒子径とした。
《実施例1》
攪拌翼径150mmのアンカー翼、攪拌翼径45mmのディスパー翼、冷却管、温度計を備え付けた、内径165mmの5Lセパラブルフラスコの重合槽にシクロヘキサン1500g、レオドールSP−S10V(ソルビタンステアレート、花王株式会社製)15.0gを仕込んだ後、アンカー翼の攪拌速度150rpm、ディスパー翼の攪拌速度3,000rpmで攪拌を開始した。一方、2LのディスカップにTBAS−Q(2−アクリルアミド−2−メチルプロパンスルホン酸、MRCユニテック株式会社製)410gを加え、外部より冷却しつつ、ヒドロキシ−テトラメチル-1-ピペリジンオキシルを0.04g含み、水酸化ナトリウム47.6gを溶解した水酸化ナトリウム水溶液800gを滴下して、TBAS−Qを中和した。
この液にアクリルアミド290g、N,N'−メチレンビスアクリルアミド0.30g、アクリル酸1.0g、過硫酸アンモニウム1.0gを加えて溶解させた後、窒素ガスを吹き込んで溶存酸素を追い出した。
次に、上述のようにして得られた、重合開始剤および架橋剤を含有する単量体水溶液を上述のシクロヘキサンに添加し、亜硫酸水素ナトリウム0.6gを粉末状態で添加した後アンカー翼の攪拌速度150rpm、ディスパー翼の攪拌速度3000rpmに設定し、70℃に昇温することにより重合を開始させた。重合による発熱が収まった後、DKエステルF−90(ショ糖ステアリン酸エステル、HLB=9、第一工業製薬株式会社製)3.0gを添加した。アンカー翼の攪拌速度150rpm、ディスパー翼の攪拌速度3000rpmで1時間攪拌しながら系内の温度を60℃〜70℃の温度に制御した。
この時、液密度は0.979kg・m、界面張力は0.05N/mであり、ウェーバー数は4.5であった。共沸脱水によって300gの水を抜き出した後、樹脂を取り出し、減圧下、70℃で乾燥させ、吸液性樹脂Aを得た。この吸液性樹脂Aの体積基準のメジアン径は4μmであった。
《実施例2》
ディスパ−翼の攪拌速度を2000rpmに制御したほかは、実施例1と同様の操作により吸液性樹脂Bを得た。ウェーバー数は2.0であった。この吸液性樹脂Bの体積基準のメジアン径は7μmであった。
《実施例3》
ディスパー翼の攪拌速度を1500rpmに制御したほかは、実施例1と同様の操作により吸液性樹脂Cを得た。ウェーバー数は1.1であった。この吸液性樹脂Cの体積基準のメジアン径は11μmであった。
《実施例4》
ディスパー翼の攪拌速度を1000rpmに制御したほかは、実施例1と同様の操作により吸液性樹脂Dを得た。ウェーバー数は0.5であった。この吸液性樹脂Dの体積基準のメジアン径は24μmであった。
《実施例5》
ディスパー翼の攪拌速度を800rpmに制御したほかは、実施例1と同様の操作により吸液性樹脂Eを得た。ウェーバー数は0.3であった。この吸液性樹脂Eの体積基準のメジアン径は41μmであった。
実施例1〜5の結果をもとにウェーバー数と攪拌翼径に対する吸水性樹脂の1次粒子径(吸水性樹脂の1次粒子径/攪拌翼径)の関係を図示すると図7に示すような直線関係のグラフが得られた。
《実施例6》
攪拌翼径800mmのアンカー翼、攪拌翼径225mmのディスパー翼、冷却管、温度計を備え付けた、内径820mmの300Lの重合槽にシクロヘキサン89.0kg、レオドールSP−S10V1.5kgを仕込んだ後、アンカー翼の攪拌速度500rpm、ディスパー翼の攪拌速度35rpmで攪拌を開始した。一方、100LのタンクにTBAS−Q24.0kgを加え、外部より冷却しつつ、ヒドロキシ−テトラメチル-1-ピペリジンオキシルを2.4g含み、水酸化ナトリウム2.8kgを溶解した水酸化ナトリウム水溶液47.6kgを滴下して、TBAS−Qを中和した。
この液にアクリルアミド17.0kg、N,N'−メチレンビスアクリルアミド17.8g、アクリル酸180g、過硫酸アンモニウム57.8gを加えて溶解させた後、窒素ガスを吹き込んで溶存酸素を追い出した。
次に、上述のようにして得られた、重合開始剤および架橋剤を含有する単量体水溶液を上述のシクロヘキサンに添加し、亜硫酸水素ナトリウム34.8gを粉末状態で添加した後、70℃に昇温することにより重合を開始させた。重合による発熱が収まった後、DKエステルF−90を350gを添加した。アンカー翼の攪拌速度35rpm、ディスパー翼の攪拌速度500rpmで1時間攪拌しながら系内の温度を60℃〜70℃の温度に制御した。
この時、液密度は0.979kg・m、界面張力は0.05N/mであり、ウェーバー数は30.1であった。共沸脱水によって39kgの水を抜き出した後、樹脂を取り出し、減圧下、70℃で乾燥させ、吸液性樹脂Fを得た。この吸液性樹脂Fの体積基準のメジアン径は7μmであった。本結果を図7に併せて示す。本結果は実施例1〜5で得られたウェーバー数と[(吸液性樹脂の1次粒子の平均粒子径)/d]の直線上にのっていることがわかる。小スケールで得られた関係をもとに大スケールでの粒子径を制御可能なことがわかった。
《比較例1》
攪拌翼径105mmのアンカー翼、冷却管、温度計を備え付けた、内径130mmの2Lセパラブルフラスコの重合槽にシクロヘキサン800g、レオドールSP−S10Vを13.2g仕込んだ後、還流冷却脱水管、滴下ロートを備え付け、攪拌速度450rpmで攪拌を開始した。一方、2LのディスカップにTBAS−Qを210g加え、外部より冷却しつつヒドロキシ−テトラメチル-1-ピペリジンオキシルを0.02g含み、水酸化ナトリウム23.8gを溶解した水酸化ナトリウム水溶液420gを滴下してTBAS−Qを中和した。
この液にアクリルアミド146g、N,N'−メチレンビスアクリルアミド0.15g、過硫酸アンモニウム0.5gを加えて溶解させた後、窒素ガスを吹き込んで溶存酸素を追い出した。
次に、上述のようにして得られた、重合開始剤および架橋剤を含有する単量体水溶液を上述のシクロヘキサンに添加し、亜硫酸水素ナトリウム0.4gを粉末状態で添加した。攪拌速度の調整を行ったところ450rpm以上回転させるとボルテックスが大きくなり操作が困難であることがわかった。そこで、攪拌速度を450rpmに設定し、70℃に昇温することにより重合を開始させた。重合による発熱が収まった後、攪拌速度450rpmで1時間攪拌しながら系内の温度を60℃〜70℃の温度に制御した。この時、液密度は0.979kg・m、界面張力は0.05N/mであり、ウェーバー数は1.4であった。共沸脱水によって300gの水を抜き出した後、樹脂を取り出し、減圧下、70℃で乾燥させ、吸液性樹脂Gを得た。この吸液性樹脂Gの体積基準のメジアン径は30μmであった。
アンカー翼を用いさらに粒子径の小さい吸液性樹脂を得るためには、攪拌速度をさらに大きくして重合を行う必要があるが、ボルテックスが大きくなり危険であることがわかった。本アンカー翼では粒子径制御が限定されることがわかった。
《比較例2》
攪拌翼径95mmの3段ピッチドパドル翼を用い、攪拌速度を1000rpmに設定したほかは、比較例1と同様の操作により吸液性樹脂Hを得た。この吸液性樹脂Hの体積基準のメジアン径は17μmであった。
3段ピッチドパドル翼を用い、さらに粒子径の小さい吸液性樹脂を得るためには、攪拌速度を1000rpmよりさらに大きくして重合を行う必要があるが、ボルテックスが大きくなり危険であることがわかった。本3段ピッチドパドル翼では粒子径制御が限定されることがわかった。
Figure 2007084656
本発明の吸水性樹脂の製造方法に使用する重合槽の一実施形態の配置を示す模式図。 本発明の吸水性樹脂の製造方法に使用する重合槽の一実施形態の配置を示す模式図。 本発明の吸水性樹脂の製造方法に使用する重合槽の一実施形態の配置を示す模式図。 高速撹拌翼であるディスクタービン翼の例を示す模式図。 高速撹拌翼であるディスパー翼の一例を示す模式図。 ウェーバー数と(吸液性樹脂の平均粒子径/攪拌翼径)との関係を示す直線を表したグラフである。 実施例1〜5で得られた実験結果に基づくウェーバー数と(吸液性樹脂の平均粒子径/攪拌翼径)との関係直線、および実施例6の結果を表したグラフである。
符号の説明
1 重合槽
2 低速撹拌翼
3 高速撹拌翼



Claims (11)

  1. 界面活性剤を含む疎水性有機溶媒と、スルホン酸基またはそのアルキル金属塩を有するエチレン性不飽和単量体を含有する単量体混合物及びラジカル重合開始剤を含む水溶液とを、撹拌機を有する重合槽に仕込み、前記撹拌機により撹拌しながら逆相懸濁重合させて吸液性樹脂を製造する方法であって、前記撹拌機として低速撹拌翼と高速撹拌翼とを有する多軸撹拌機を用いて前記吸液性樹脂粒子の平均粒子径を制御することを特徴とする吸液性樹脂の製造方法。
  2. 前記高速攪拌翼の回転数を関係式(1)で表されるウェーバー数に基づいて制御することにより、吸液性樹脂粒子の平均粒子径を0.5〜50μmの範囲で制御する請求項1記載の吸液性樹脂の製造方法。
    Figure 2007084656
    [関係式(1)において、Weはウエーバー数、nは高速撹拌翼の回転数を表し、dhは高速撹拌翼の翼径、ρは液密度、σは界面張力を表す。]
  3. 前記高速撹拌翼が、タービン翼である請求項1又は2記載の吸液性樹脂の製造方法。
  4. 前記低速撹拌翼の回転数が、前記高速撹拌翼の回転数よりも小さい請求項1〜3のいずれか1項に記載の吸液性樹脂の製造方法。
  5. 前記重合槽の内径と前記低速撹拌翼の翼径との関係が、
    0.95≦dl/D≦0.99
    [前記式において、dl及びDは前記と同様である。]
    である請求項1〜4のいずれか1項に記載の吸液性樹脂の製造方法。
  6. 前記低速撹拌翼がアンカー翼であり、かつアンカー翼の翼幅と前記重合槽の内径との関係が
    0.05≦wl/D≦0.10
    [前記式において、wlはアンカー翼の翼幅を表し、Dは前記と同様である。]
    である請求項1〜5のいずれか1項に記載の吸液性樹脂の製造方法。
  7. 前記重合槽の内径と前記高速撹拌翼の翼径との関係が、
    0.15≦dh/D≦0.4
    [前記式において、dh及びDは前記と同様である。]
    である請求項1〜6のいずれか1項に記載の吸液性樹脂の製造方法。
  8. 前記界面活性剤が、ソルビタン脂肪酸エステルである請求項1〜7のいずれか1項に記載の吸液性樹脂の製造方法。
  9. 前記逆相懸濁重合が終了した後、攪拌しながら疎水性有機溶媒と水との共沸脱水操作を行い、懸濁液から水を除去する請求項1〜8のいずれか1項に記載の吸液性樹脂の製造方法。
  10. 共沸脱水操作を行う前に、ショ糖脂肪酸エステルを添加する請求項9記載の吸液性樹脂の製造方法。
  11. 前記スルホン酸基またはそのアルカリ金属塩を有するエチレン性不飽和単量体が、2−アクリルアミド−2−メチルプロパンスルホン酸またはそのアルカリ金属塩である請求項1〜8のいずれか1項に記載の吸液性樹脂の製造方法。


JP2005273680A 2005-09-21 2005-09-21 吸液性樹脂の製造方法 Pending JP2007084656A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273680A JP2007084656A (ja) 2005-09-21 2005-09-21 吸液性樹脂の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273680A JP2007084656A (ja) 2005-09-21 2005-09-21 吸液性樹脂の製造方法

Publications (1)

Publication Number Publication Date
JP2007084656A true JP2007084656A (ja) 2007-04-05

Family

ID=37971969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273680A Pending JP2007084656A (ja) 2005-09-21 2005-09-21 吸液性樹脂の製造方法

Country Status (1)

Country Link
JP (1) JP2007084656A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142116A (ja) * 2012-01-11 2013-07-22 Sumitomo Rubber Ind Ltd ラテックスフォームの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346389A (en) * 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
JPS57167302A (en) * 1981-04-08 1982-10-15 Sumitomo Chem Co Ltd Production of highly water-absorbing polymeric material having improved water absorption rate
JPH01249808A (ja) * 1988-03-31 1989-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd 耐塩性吸水性樹脂微粒子の製造方法
JPH02153907A (ja) * 1988-12-06 1990-06-13 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH0383520A (ja) * 1989-08-28 1991-04-09 Mitsui Constr Co Ltd 土壌の改良方法
JP2001158802A (ja) * 1999-12-02 2001-06-12 Kao Corp 高吸水性樹脂の製造方法
JP2003082097A (ja) * 2001-09-11 2003-03-19 Dainippon Ink & Chem Inc ポリアミドとガラスとの複合体から成るパルプと粒子の製造法
JP2005132957A (ja) * 2003-10-30 2005-05-26 Dainippon Ink & Chem Inc 吸水性樹脂の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346389A (en) * 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
JPS57167302A (en) * 1981-04-08 1982-10-15 Sumitomo Chem Co Ltd Production of highly water-absorbing polymeric material having improved water absorption rate
JPH01249808A (ja) * 1988-03-31 1989-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd 耐塩性吸水性樹脂微粒子の製造方法
JPH02153907A (ja) * 1988-12-06 1990-06-13 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH0383520A (ja) * 1989-08-28 1991-04-09 Mitsui Constr Co Ltd 土壌の改良方法
JP2001158802A (ja) * 1999-12-02 2001-06-12 Kao Corp 高吸水性樹脂の製造方法
JP2003082097A (ja) * 2001-09-11 2003-03-19 Dainippon Ink & Chem Inc ポリアミドとガラスとの複合体から成るパルプと粒子の製造法
JP2005132957A (ja) * 2003-10-30 2005-05-26 Dainippon Ink & Chem Inc 吸水性樹脂の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142116A (ja) * 2012-01-11 2013-07-22 Sumitomo Rubber Ind Ltd ラテックスフォームの製造方法

Similar Documents

Publication Publication Date Title
JP6359600B2 (ja) ポリアクリル酸系吸水性樹脂粉末の製造方法
JP3119900B2 (ja) 高吸水性ポリマーの製造法
JP4640923B2 (ja) 粒子状吸水性樹脂組成物の製造方法
EP0751159B1 (en) Method of preparing water-absorbing resin
JPH06345819A (ja) 高吸水性樹脂の製造法
JPH0423650B2 (ja)
CN109575350B (zh) 一种制备高通液性吸水性树脂的方法
CN103619887B (zh) 吸水性树脂的制造方法
JP3363000B2 (ja) 吸水性樹脂の製造方法
JPH0219122B2 (ja)
JP3005124B2 (ja) 不定形重合体粒子の製造方法
JPH03195713A (ja) 高吸水性ポリマーの製造法
JP4711122B2 (ja) 吸水材
JP2007084656A (ja) 吸液性樹脂の製造方法
JP4582402B2 (ja) 吸液性樹脂の製造方法
JP4107775B2 (ja) 高吸水性樹脂の製造方法
JPH03195709A (ja) 高吸水性ポリマーの製造法
JP2007146078A (ja) 吸液性樹脂の製造方法
JP2005081204A (ja) 吸水性樹脂組成物の製造方法
JP4515073B2 (ja) 吸水性樹脂の製造方法
JP4826878B2 (ja) 吸液性樹脂の製造方法
JP2004269593A (ja) 吸水性樹脂の製造方法およびこれに用いられる乾燥装置
JP2005054050A (ja) 吸水性樹脂の製造方法
JP2006265335A (ja) 耐塩性吸水剤及びその製造方法
JP2008264672A (ja) 粉体の造粒方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906