JP2007077325A - Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material - Google Patents

Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material Download PDF

Info

Publication number
JP2007077325A
JP2007077325A JP2005268770A JP2005268770A JP2007077325A JP 2007077325 A JP2007077325 A JP 2007077325A JP 2005268770 A JP2005268770 A JP 2005268770A JP 2005268770 A JP2005268770 A JP 2005268770A JP 2007077325 A JP2007077325 A JP 2007077325A
Authority
JP
Japan
Prior art keywords
resin
electronic
molding material
thermal conductivity
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268770A
Other languages
Japanese (ja)
Inventor
Keiji Asai
啓二 浅井
Kei Miyata
圭 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2005268770A priority Critical patent/JP2007077325A/en
Publication of JP2007077325A publication Critical patent/JP2007077325A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin molding material for a board made of a resin for electronic/electric part which is improved in thermal conductivity while keeping heat resistance, mechanical strength and electrical insulation, and to provide a resin board for electronic/electric part molded from the resin. <P>SOLUTION: The thermosetting resin molding material for a board made of resin for electronic/electric part comprises 50-150 parts by mass of a glass fiber and 80-150 parts by mass of a thermal conductivity imparting filler based on 100 parts by mass of the thermosetting resin, and has a thermal conductivity of ≥0.5 W/m K and has an insulation resistance of ≥1×10<SP>12</SP>Ω. The thermosetting resin molding material for a board made of resin for electronic/electric part comprises the thermal conductivity imparting filler which is at least one filler selected from aluminum oxide, magnesium hydroxide, magnesium oxide and boron nitride. The resin board for electronic/electric part is molded from the molding material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は各種金属部品の代替化に好適な電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料に関するものであり、さらに詳しくは、耐熱性、寸法精度、電気絶縁性を損なうことなく熱伝導性に優れた電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料に関するものである。   The present invention relates to a thermosetting resin molding material for resin substrates for electronic and electrical parts suitable for substitution of various metal parts, and more specifically, heat without impairing heat resistance, dimensional accuracy, and electrical insulation. The present invention relates to a thermosetting resin molding material for resin-made substrates for electronic and electrical parts having excellent conductivity.

熱硬化性樹脂成形材料は、耐熱性、機械的強度、寸法精度及びコストのバランスに優れた材料として、各種分野において幅広く用いられている。しかしながら、一般的に樹脂製部品は熱伝導性に乏しく、また近年の小型化への流れに伴い製品スペースを充分に確保できないことから、製品内部の蓄熱による強度低下などの不具合が生じており、樹脂製品の強度を維持しながらの放熱性、言い換えれば熱伝導率をより向上させることが求められている。そこで、たとえば、固形エポキシ樹脂、メラミン樹脂、レゾールタイプ、ノボラックタイプ等の各種フェノール樹脂を含む樹脂と膨張黒鉛粉を含む成形体中の樹脂分を炭化して放熱性成形体を得ることにより放熱性を改善する試みが行われている。(特許文献1参照。)。同文献には、関連技術として、汎用型タイプの放熱材料として、樹脂及び膨張黒鉛粉に必要に応じて金属粉を添加して樹脂組成物を得て、それを成形体とすることにより、耐熱性、放熱性などを改善しようとする試みがなされたことも開示されている。   Thermosetting resin molding materials are widely used in various fields as materials having an excellent balance of heat resistance, mechanical strength, dimensional accuracy, and cost. However, in general, resin parts have poor thermal conductivity, and due to the recent trend toward downsizing, product space cannot be secured sufficiently, causing problems such as reduced strength due to heat storage inside the product, There is a demand for further improving heat dissipation while maintaining the strength of resin products, in other words, thermal conductivity. Therefore, for example, the heat content is obtained by carbonizing the resin in the molded body containing various phenolic resins such as solid epoxy resin, melamine resin, resol type, novolac type and the expanded graphite powder to obtain a heat radiating molded body. Attempts have been made to improve. (See Patent Document 1). In this document, as a related technology, as a general-purpose type heat dissipation material, a resin composition is obtained by adding a metal powder to a resin and an expanded graphite powder as necessary, and it is used as a molded body. It has also been disclosed that attempts have been made to improve performance and heat dissipation.

また、フェノール樹脂をベースレジンとし、補強用充填剤を配合してなり、成形体としたときの熱伝導率が0.5W/m・K以上、曲げ強さが150MPa以上、アイゾット衝撃強さが30J/m以上であるフェノール樹脂成形材料が提案されている(特許文献2参照。)。同文献では、具体的な組成分として、補強用充填材として、少なくとも、強化繊維が成形材料全量の15〜55質量%、熱伝導率10W/m・K以上の高熱伝導性充填材が成形材料全量の15〜45質量%、ゴム成分が成形材料全量の0.5〜10質量%配合されたフェノール樹脂成形材料が記載されている。さらに、強化繊維材として、ガラス繊維、カーボン繊維、アラミド繊維及び綿布繊維から選ばれる少なくとも1種を用いること、および高熱伝導性充填材として、炭化ケイ素、窒化アルミニウム、窒化ホウ素、酸化アルミニウム、酸化ベリリウム、グラファイト及びダイヤモンドから選ばれる少なくとも1種を用いることが記載されている。   In addition, a phenol resin is used as a base resin, and a reinforcing filler is blended. When formed into a molded body, the thermal conductivity is 0.5 W / m · K or more, the bending strength is 150 MPa or more, and the Izod impact strength is A phenol resin molding material of 30 J / m or more has been proposed (see Patent Document 2). In this document, as a specific composition, as a reinforcing filler, at least 15 to 55% by mass of a reinforcing fiber and a high thermal conductivity filler with a thermal conductivity of 10 W / m · K or more is used as a molding material. A phenol resin molding material in which 15 to 45% by mass of the total amount and a rubber component is blended in an amount of 0.5 to 10% by mass of the total amount of the molding material is described. Further, at least one selected from glass fiber, carbon fiber, aramid fiber and cotton fiber fiber is used as the reinforcing fiber material, and silicon carbide, aluminum nitride, boron nitride, aluminum oxide, beryllium oxide as the high thermal conductive filler , Use of at least one selected from graphite and diamond.

特開2001−122663号公報JP 2001-122663 A 特開2004−339352号公報JP 2004-339352 A

しかしながら、熱伝導率を向上させるために黒鉛を添加した場合、放熱性に優れた材料を得ることはできるが、黒鉛を含有することにより、機械的強度、電気絶縁性が低下するため、その使用が、機械的強度とか電気的絶縁性がさほど求められないような特定の用途のみに限られていた。   However, when graphite is added to improve thermal conductivity, it is possible to obtain a material with excellent heat dissipation. However, the use of graphite reduces the mechanical strength and electrical insulation. However, it has been limited to specific applications where mechanical strength and electrical insulation are not so required.

また、熱伝導率と衝撃強度を満足させるために、炭化ケイ素、窒化アルミニウム等の高熱伝導性充填材とゴム成分を樹脂成形材料に加えて用いる場合、炭化ケイ素、窒化アルミニウム等の高熱伝導性充填材とゴム成分により熱伝導率と衝撃強度は向上するが、ゴム成分を含有することにより、成形時に材料の溶融粘度が上がり成形性が安定しないこと、また得られた製品について長期の耐熱性が低下すること、そのため耐熱性の要求される樹脂化部品には使用が困難ということ、ならびに熱膨張係数が大きくなり寸法精度が低下するという問題があり、このような成形材料は、たとえプリーなどの成形材料として利用可能であるとしても、特に、高熱伝導性および高絶縁抵抗性を必要とする電子・電気部品用樹脂製基板などには利用することが適切でない。   Also, in order to satisfy thermal conductivity and impact strength, when using high thermal conductive fillers such as silicon carbide and aluminum nitride and rubber components in addition to resin molding materials, high thermal conductive fillers such as silicon carbide and aluminum nitride are used. Although the thermal conductivity and impact strength are improved by the material and the rubber component, the inclusion of the rubber component increases the melt viscosity of the material at the time of molding and makes the moldability unstable, and the obtained product has long-term heat resistance. Therefore, it is difficult to use resinated parts that require heat resistance, and the thermal expansion coefficient increases and the dimensional accuracy decreases. Even if it can be used as a molding material, it should be used especially for resin substrates for electronic and electrical parts that require high thermal conductivity and high insulation resistance. Not appropriate.

本発明は、上記のような先行技術の有する問題点を解決すると共に、耐熱性、機械的強度、電気絶縁性を維持しつつ、熱伝導性を向上させた電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料を提供し、さらにその樹脂により成形した電子・電気部品用樹脂基板を提供することを目的とするものである。   The present invention solves the problems of the prior art as described above, and for resin-made substrates for electronic / electrical components that have improved heat conductivity while maintaining heat resistance, mechanical strength, and electrical insulation. It is an object of the present invention to provide a thermosetting resin molding material, and further to provide a resin substrate for electronic / electrical parts molded with the resin.

本発明者らは、前記課題を克服するために鋭意研究した結果、熱硬化性樹脂とガラス繊維、熱伝導性付与充填材とを特定の割合で配合することによって、耐熱性、機械的強度、電気絶縁性を維持しつつ、熱伝導性を向上させた電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料が得られることを見出し、本発明を完成するに至った。   As a result of diligent research to overcome the above problems, the present inventors have blended a thermosetting resin and glass fiber, a thermal conductivity-imparting filler at a specific ratio, so that heat resistance, mechanical strength, The inventors have found that a thermosetting resin molding material for resin-made substrates for electronic / electrical parts having improved thermal conductivity while maintaining electrical insulation has been obtained, and the present invention has been completed.

すなわち、本発明の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料は、熱硬化性樹脂100質量部に対しガラス繊維50〜150質量部、熱伝導率付与充填材80〜150質量部を含有し、熱伝導率が0.5W/m・K以上であり、絶縁抵抗が1×1012Ω以上であることを第1の特徴とし、熱伝導率付与充填材が酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、チッ化ホウ素から選ばれる少なくとも1種類以上の充填材であることを第2の特徴とし、熱硬化性樹脂がフェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂のいずれかであることを第3の特徴とする。また、本発明は上記各特徴を有する電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料を用いて成形された熱伝導率が0.5W/m・K以上である電子・電気部品用樹脂製基板であることを第4の特徴とする。 That is, the thermosetting resin molding material for resin substrate for electronic / electrical components of the present invention is 50 to 150 parts by mass of glass fiber and 80 to 150 parts by mass of filler with thermal conductivity for 100 parts by mass of thermosetting resin. The thermal conductivity is 0.5 W / m · K or more, the insulation resistance is 1 × 10 12 Ω or more, and the thermal conductivity-imparting filler is aluminum oxide, hydroxide The second feature is that it is at least one filler selected from magnesium, magnesium oxide, and boron nitride, and the thermosetting resin is one of a phenol resin, an unsaturated polyester resin, and a diallyl phthalate resin. Is the third feature. Further, the present invention is for an electronic / electrical component having a thermal conductivity of 0.5 W / m · K or more formed by using a thermosetting resin molding material for a resin-made substrate for electronic / electrical components having the above characteristics. A fourth feature is that it is a resin substrate.

本発明の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料は耐熱性、機械的強度、熱伝導率性、電気絶縁性、寸法精度に優れている。中でも熱伝導性において特に優れている。したがって、この成形材料から得られる成形部品は放熱性に優れることから、自動車、家電等の分野における熱源に近接する製品や自己の発熱が予想される駆動部品などの電子・電気部品用樹脂製基板において好適に使用される。   The thermosetting resin molding material for resin substrates for electronic and electrical parts of the present invention is excellent in heat resistance, mechanical strength, thermal conductivity, electrical insulation and dimensional accuracy. Of these, thermal conductivity is particularly excellent. Therefore, the molded parts obtained from this molding material are excellent in heat dissipation, so that the resin-made substrates for electronic and electrical parts such as products that are close to heat sources in the fields of automobiles, home appliances, etc. and drive parts that are expected to generate heat by themselves Are preferably used.

以下、本発明に関し、電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料について説明する。   Hereinafter, the thermosetting resin molding material for resin-made substrates for electronic / electrical parts is demonstrated regarding this invention.

本発明において電子・電気部品用樹脂製基板用熱硬化性樹脂は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、メラミン樹脂、ユリア樹脂など特に限定はされないが、機械的強度、寸法精度、耐熱性の点でフェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂が好適である。   In the present invention, the thermosetting resin for resin substrates for electronic / electrical parts is not particularly limited, such as phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, melamine resin, urea resin, but mechanical strength, dimensions Phenol resin, unsaturated polyester resin, and diallyl phthalate resin are preferable in terms of accuracy and heat resistance.

フェノール樹脂については、ノボラック型でもレゾール型でもよく特に限定はされないが、密閉系内で水分・湿度の影響を受ける製品に用いる場合にはレゾール型が好適である。また不飽和ポリエステル樹脂、ジアリルフタレート樹脂についても特に限定されず、単独または併用しても構わないが、耐湿性が要求される製品に用いる場合はジアリルフタレート樹脂が好適である。ジアリルフタレート樹脂はオルソ系でもイソ系でもよく特に限定されないが、耐熱性の点においてイソ系が好適である。   The phenolic resin may be a novolak type or a resol type, and is not particularly limited. However, the resol type is suitable for use in products that are affected by moisture and humidity in a closed system. Further, the unsaturated polyester resin and diallyl phthalate resin are not particularly limited and may be used alone or in combination. However, diallyl phthalate resin is preferable when used for a product requiring moisture resistance. The diallyl phthalate resin may be ortho-based or iso-based, and is not particularly limited, but is preferably iso-based in terms of heat resistance.

本発明において電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料の量比は、他に断りのない限り「質量部」で表す。   In the present invention, the amount ratio of the thermosetting resin molding material for resin-made substrates for electronic / electrical parts is represented by “part by mass” unless otherwise specified.

本発明で用いられるガラス繊維は繊維径5〜20μm、繊維長1〜6mmのガラス繊維である。ガラス繊維は熱伝導性がよく、また絶縁抵抗および補強効果も高いので、本発明の目的を達成するには好適な材料である。   The glass fiber used in the present invention is a glass fiber having a fiber diameter of 5 to 20 μm and a fiber length of 1 to 6 mm. Glass fiber is a suitable material for achieving the object of the present invention because of its good thermal conductivity and high insulation resistance and reinforcing effect.

ガラス繊維の配合量は、熱硬化性樹脂100質量部に対して、50〜150質量部で、好ましくは60〜130質量部である。機械的強度、寸法精度の低下を防ぐためには、ガラス繊維が50質量部より多いことが好ましく、流動性が低下し成形性が悪くなることを防ぐためには、150質量部より少ないことが好ましい。   The compounding quantity of glass fiber is 50-150 mass parts with respect to 100 mass parts of thermosetting resins, Preferably it is 60-130 mass parts. In order to prevent the mechanical strength and the dimensional accuracy from being lowered, the glass fiber is preferably more than 50 parts by mass, and in order to prevent the fluidity from being lowered and the moldability to be deteriorated, the amount is preferably less than 150 parts by mass.

また、補強効果を向上させるためゴム成分の添加が知られているが、ゴム成分は少量の添加であれば大きな影響は及ぼさないが、添加量によっては熱伝導率を低下させる方向に働き、線膨張係数の増大が認められるため、寸法精度の要求される耐熱部品用の樹脂への添加は好ましくない。   In addition, the addition of a rubber component is known to improve the reinforcing effect. However, if the rubber component is added in a small amount, it does not have a great effect. Since an increase in expansion coefficient is recognized, addition to a resin for heat-resistant parts that requires dimensional accuracy is not preferable.

本発明で用いられる熱伝導性付与充填材は酸化アルミニウム、水酸化マグネシウム、チッ化ホウ素等の電気絶縁性に優れた熱伝導性付与充填材を単独もしくは2種類以上組合せて使用することができる。   As the thermal conductivity-imparting filler used in the present invention, thermal conductivity-imparting fillers having excellent electrical insulation properties such as aluminum oxide, magnesium hydroxide and boron nitride can be used alone or in combination of two or more.

熱伝導性付与充填材の配合量は、熱硬化性樹脂100質量部に対して、80〜150質量部で、好ましくは100〜130質量部である。満足のいく熱伝導性が得るためには、熱伝導性付与充填材が80質量部より多いことが好ましく、熱伝導性を向上させ、機械的強度の低下を防ぐためには、150質量部より少ないことが好ましい。   The compounding amount of the thermal conductivity-imparting filler is 80 to 150 parts by mass, preferably 100 to 130 parts by mass with respect to 100 parts by mass of the thermosetting resin. In order to obtain satisfactory thermal conductivity, the thermal conductivity imparting filler is preferably more than 80 parts by mass, and in order to improve thermal conductivity and prevent a decrease in mechanical strength, it is less than 150 parts by mass. It is preferable.

本発明の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料には所望により、従来の熱硬化性樹脂成形材料に使用される各種添加剤、例えば硬化剤、硬化触媒の他、ステアリン酸亜鉛やステアリン酸カルシウムなどの離型剤、カップリング剤、顔料、溶剤等を配合することができる。カップリング剤については、樹脂との密着性を良好にし、強度向上の目的で、一般的にはガラス繊維のみに処理を行うが、熱伝導性付与充填材についてもカップリング剤による表面処理の効果が期待できることから表面処理をすることが好ましい。   If desired, the thermosetting resin molding material for resin substrates for electronic and electrical parts of the present invention can be used with various additives used in conventional thermosetting resin molding materials, such as curing agents, curing catalysts, and stearic acid. Release agents such as zinc and calcium stearate, coupling agents, pigments, solvents, and the like can be blended. For the coupling agent, the glass fiber is generally treated only for the purpose of improving the adhesion with the resin and improving the strength, but the effect of the surface treatment with the coupling agent is also applied to the heat conductivity imparting filler. Therefore, it is preferable to perform surface treatment.

本発明の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料の製造方法は特に限定されないが、加圧ニーダー、ミキシングロール、二軸押出機等で加熱溶融混練した混練物をパワーミル等を用いて粉砕して製造される。また、こうして得られた成形材料は射出成形、移送成形及び圧縮成形等のいずれにも適用することができる。   The method for producing a thermosetting resin molding material for resin substrates for electronic / electrical parts of the present invention is not particularly limited, but a power mill or the like is used for a kneaded material heated and kneaded by a pressure kneader, a mixing roll, a twin screw extruder, or the like. It is manufactured by pulverizing. Further, the molding material thus obtained can be applied to any of injection molding, transfer molding, compression molding and the like.

以下、実施例により本発明を具体的に説明するが、本発明はこの実施例によって限定されるものではない。また、実施例に記載の「部」及び「%」は、特に断らない限り「質量部」及び「質量%」を示す。なお、各種特性評価については、下記に基づいて実施した。本発明に関して、樹脂組成物の物性として規定した場合は、本発明に係る樹脂により試験片を作成し、それに基づいて下記の各試験法に基づいて測定した値を意味する。あるいは、樹脂製基板に関する物性値に関しては、本発明に係る樹脂によりモデル基板を作成し、それに基づいて下記の各試験法に基づいて測定した値を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example. Further, “parts” and “%” described in the examples indicate “parts by mass” and “% by mass” unless otherwise specified. Various characteristic evaluations were performed based on the following. In the present invention, when the physical properties of the resin composition are defined, it means a value measured based on each test method described below based on a test piece prepared from the resin according to the present invention. Or regarding the physical-property value regarding a resin-made board | substrate, the model board | substrate is created with the resin which concerns on this invention, and the value measured based on each following test method based on it is meant.

(1)曲げ強さ
JISK7203に準じて、曲げ強さを測定した。
(2)シャルピー衝撃強さ
JISK7111に準じて、シャルピー衝撃強さを測定した。
(3)熱伝導率
50×150×厚み5mmの試験片およびモデル基板(50×50×0.5mm)を迅速熱伝導率計(京都電子工業製)にてプローブ法により、熱伝導率を測定した。
(4)絶縁抵抗
JISK6911に準じて、絶縁抵抗を測定した。
(5)線膨張係数
Φ5×20mmの円柱状試験片をTMA測定機(堀場製作所製)にて下記の条件で測定した。
測定温度:常温〜300℃ 昇温速度:5℃/min
試験荷重:10g 環境:窒素気流中
(1) Bending strength Bending strength was measured according to JISK7203.
(2) Charpy impact strength Charpy impact strength was measured according to JISK7111.
(3) Thermal conductivity
The thermal conductivity of a 50 × 150 × 5 mm thick test piece and a model substrate (50 × 50 × 0.5 mm) was measured by a probe method using a rapid thermal conductivity meter (manufactured by Kyoto Electronics Industry).
(4) Insulation resistance The insulation resistance was measured according to JISK6911.
(5) Linear expansion coefficient A cylindrical specimen having a diameter of 5 × 20 mm was measured with a TMA measuring machine (manufactured by Horiba) under the following conditions.
Measurement temperature: normal temperature to 300 ° C. Temperature rising rate: 5 ° C./min
Test load: 10 g Environment: In nitrogen stream

<実施例1>
表1に示すように、フェノール樹脂100部、ガラス繊維(日東紡ガラス製、繊維径:11μm、平均繊維長:3mm)120部、酸化アルミニウム粉末(日本軽金属製、平均粒子径:15μm)86部、硬化剤としてヘキサメチレンテトラミン15部、離型剤としてステアリン酸亜鉛3部、その他8部を配合し均一混合した。その後、熱ロールにて均一に加熱混練してシート状にし、冷却後パワーミルで粉砕しグラニュール状の成形材料を得た。
<Example 1>
As shown in Table 1, phenol resin 100 parts, glass fiber (manufactured by Nittobo Glass, fiber diameter: 11 μm, average fiber length: 3 mm) 120 parts, aluminum oxide powder (manufactured by Nippon Light Metal, average particle diameter: 15 μm) 86 parts Then, 15 parts of hexamethylenetetramine as a curing agent, 3 parts of zinc stearate as a release agent, and 8 parts of others were blended and mixed uniformly. Thereafter, the mixture was heated and kneaded uniformly with a hot roll to form a sheet, cooled and pulverized with a power mill to obtain a granulated molding material.

得られた成形材料を以下の条件で射出成形し、試験片を得た。
シリンダー温度:前部85℃、後部40℃
金型温度:170℃
硬化時間:90秒
得られた試験片およびモデル基板を用いて、曲げ強さ、シャルピー衝撃強さ、熱伝導率、絶縁抵抗、線膨張係数について評価を行った。その結果を表1に示す。
The obtained molding material was injection molded under the following conditions to obtain a test piece.
Cylinder temperature: front 85 ° C, rear 40 ° C
Mold temperature: 170 ° C
Curing time: 90 seconds Using the obtained test piece and model substrate, bending strength, Charpy impact strength, thermal conductivity, insulation resistance, and linear expansion coefficient were evaluated. The results are shown in Table 1.

<実施例2〜3、比較例1〜3>
配合割合を表1に示すように変えた以外は実施例1と同様にして実施し、成形材料を製造し評価した。
<Examples 2-3 and Comparative Examples 1-3>
Except having changed the mixture ratio as shown in Table 1, it carried out like Example 1 and manufactured and evaluated the molding material.

Figure 2007077325
Figure 2007077325

表1から明らかなように、実施例1〜3で得られた熱硬化性樹脂成形材料は、機械的強度、電気絶縁性を損なうことなく、熱伝導性が良好であり放熱性に優れた特性を示している。また線膨張係数も低く、寸法精度も良好であるので、電子・電気部品用基板に特に好適に用いられる。
実施例においては、熱伝導性付与充填材として、最も適切な酸化アルミニウム粉末を用いたが水酸化マグネシウム、チッ化ホウ素等を用いても同様の作用効果を得ることができる。
As is clear from Table 1, the thermosetting resin molding materials obtained in Examples 1 to 3 have good thermal conductivity and excellent heat dissipation without impairing mechanical strength and electrical insulation. Is shown. Further, since the linear expansion coefficient is low and the dimensional accuracy is good, it is particularly suitably used for a substrate for electronic / electrical parts.
In the examples, the most appropriate aluminum oxide powder was used as the thermal conductivity-imparting filler, but the same effects can be obtained by using magnesium hydroxide, boron nitride or the like.

比較例1は熱伝導性付与充填材が未添加のため、熱伝導率が維持できず、比較例2では
黒鉛添加のため絶縁抵抗が低下し特性を満足しない。また、比較例3ではゴム成分添加により線膨張係数が大きくなり、基板として寸法精度が維持できない。したがって、これらの樹脂は、電子・電気部品用基板には不適当である。
In Comparative Example 1, the thermal conductivity-imparting filler is not added, so that the thermal conductivity cannot be maintained. In Comparative Example 2, since the graphite resistance is added, the insulation resistance is lowered and the characteristics are not satisfied. In Comparative Example 3, the linear expansion coefficient increases due to the addition of the rubber component, and the dimensional accuracy cannot be maintained as the substrate. Therefore, these resins are unsuitable for electronic / electrical component substrates.

以上説明したように、本発明によれば、従来の熱硬化性樹脂成形材料に比べて耐熱性、機械的強度、電気絶縁性を維持しつつ、熱伝導性の向上すなわち放熱性の向上が図られ、蓄熱による特性の低下を引き起こすことのない、また、線膨張係数も低く、寸法精度も良好な電子・電気部品用基板が製造できる。   As described above, according to the present invention, while maintaining heat resistance, mechanical strength, and electrical insulation as compared with conventional thermosetting resin molding materials, it is possible to improve thermal conductivity, that is, improve heat dissipation. Therefore, it is possible to manufacture a substrate for electronic / electrical parts that does not cause deterioration of characteristics due to heat storage, has a low coefficient of linear expansion, and good dimensional accuracy.

Claims (4)

熱硬化性樹脂100質量部に対し、ガラス繊維50〜150質量部、熱伝導率付与充填材80〜150質量部を含有し、熱伝導率が0.5W/m・K以上であり、絶縁抵抗が1×1012Ω以上であることを特徴とする電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料。 It contains 50 to 150 parts by mass of glass fiber and 80 to 150 parts by mass of a filler with thermal conductivity for 100 parts by mass of the thermosetting resin, has a thermal conductivity of 0.5 W / m · K or more, and has an insulation resistance. Is 1 × 10 12 Ω or more, a thermosetting resin molding material for resin-made substrates for electronic and electrical parts. 前記熱伝導率付与充填材が酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、チッ化ホウ素から選ばれる少なくとも1種類以上の充填材であることを特徴とする請求項1に記載の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料。   2. The resin for electronic and electrical parts according to claim 1, wherein the thermal conductivity-imparting filler is at least one filler selected from aluminum oxide, magnesium hydroxide, magnesium oxide, and boron nitride. Thermosetting resin molding material for substrates. 前記熱硬化性樹脂がフェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂のいずれかであることを特徴とする請求項1または2に記載の電子・電気部品用樹脂製基板用熱硬化性樹脂成形材料。   3. The thermosetting resin molding material for resin-made substrates for electronic and electrical parts according to claim 1, wherein the thermosetting resin is any one of a phenol resin, an unsaturated polyester resin, and a diallyl phthalate resin. . 熱伝導率が0.5W/m・K以上であることを特徴とする請求項1〜3のいずれか一項に記載の熱硬化性樹脂成形材料により成形された電子・電気部品用樹脂製基板。   The resin substrate for electronic / electrical parts molded by the thermosetting resin molding material according to any one of claims 1 to 3, wherein the thermal conductivity is 0.5 W / m · K or more. .
JP2005268770A 2005-09-15 2005-09-15 Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material Pending JP2007077325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268770A JP2007077325A (en) 2005-09-15 2005-09-15 Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268770A JP2007077325A (en) 2005-09-15 2005-09-15 Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material

Publications (1)

Publication Number Publication Date
JP2007077325A true JP2007077325A (en) 2007-03-29

Family

ID=37937943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268770A Pending JP2007077325A (en) 2005-09-15 2005-09-15 Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material

Country Status (1)

Country Link
JP (1) JP2007077325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069271A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Polymer structure
KR20150120217A (en) * 2014-04-17 2015-10-27 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069271A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Polymer structure
KR20150120217A (en) * 2014-04-17 2015-10-27 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
KR102172297B1 (en) * 2014-04-17 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same

Similar Documents

Publication Publication Date Title
JP5549061B2 (en) Thermosetting resin composition
JP2004031008A (en) Fuel cell separator
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP5696304B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JP2007077325A (en) Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
JP2011084657A (en) Thermosetting resin composition
JP5551915B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP2008248048A (en) Molding material of high heat conductive thermoplastic resin
JP2011068705A (en) Phenolic resin molding material
JP2002220507A (en) Phenol resin molding material
JP2005048009A (en) Phenolic resin molding compound
JP5286863B2 (en) Phenolic resin molding material
JP5256795B2 (en) Thermosetting resin molding material
JP4952192B2 (en) Thermosetting resin molding material
WO2013161844A1 (en) Resin composition having high thermal conductivity
JP2006257114A (en) Phenolic resin molding material for commutator
JP2010100740A (en) Phenolic resin-molding material and brake piston
JP5874017B2 (en) Phenolic resin molding materials and molded products using the same
JP2004282923A (en) Phenolic resin molding compound for commutator
JP3938477B2 (en) Phenolic resin molding material
JP2022077613A (en) Thermosetting resin molding material, and molded article
JP2006089665A (en) Phenolic resin molding material
JP4432408B2 (en) Phenol resin molding material and sealing plate for electrolytic capacitor sealing plate
JP2011111540A (en) Bobbin