JP2007077284A - Phosphor, method for preparing the same and light-emitting element - Google Patents

Phosphor, method for preparing the same and light-emitting element Download PDF

Info

Publication number
JP2007077284A
JP2007077284A JP2005267161A JP2005267161A JP2007077284A JP 2007077284 A JP2007077284 A JP 2007077284A JP 2005267161 A JP2005267161 A JP 2005267161A JP 2005267161 A JP2005267161 A JP 2005267161A JP 2007077284 A JP2007077284 A JP 2007077284A
Authority
JP
Japan
Prior art keywords
phosphor
activator
oxide
compound
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005267161A
Other languages
Japanese (ja)
Other versions
JP5016804B2 (en
Inventor
Tomohiro Nagata
智啓 永田
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005267161A priority Critical patent/JP5016804B2/en
Publication of JP2007077284A publication Critical patent/JP2007077284A/en
Application granted granted Critical
Publication of JP5016804B2 publication Critical patent/JP5016804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor safe, low price and having high luminous brightness, to provide a method for preparing the phosphor, and to provide a light-emitting element. <P>SOLUTION: The phosphor uses as a matrix a material which has a cage-like lattice capable of including at least one atom in the crystal structure, and is activated an activator in the inclusion site or co-activated in the inclusion site and another site in the lattice. The phosphor contains, e.g. Ca, Sr or Ba and Al, and is prepared by adding an activator to a matrix mixture and firing, which matrix mixture is decomposed to oxide on firing. And a compound convertible to an electroconductive oxide containing an electroconductive metal is preferably added. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光体及びその作製方法並びにこの蛍光体を含む発光素子に関する。   The present invention relates to a phosphor, a manufacturing method thereof, and a light emitting element including the phosphor.

今日、ディスプレイ分野では、ブラウン管(CRT)から薄型のフラットパネルディスプレイ(FPD)に移行しつつあり、液晶ディスプレイ、プラズマディスプレイパネル(PDP)、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)等の、様々なFPDが開発されている。その中でFEDは、CRTと同様の発光原理で、陰極から発生した電子線を陽極の蛍光体に衝突させて発光させるものである。また、PDPは、放電ガスから放出される真空紫外線が蛍光体に照射させて発光させるものである。これらの発光源を担う蛍光体は、発光輝度・色純度・寿命等の特性が優れたものであることが望ましい。従来のCRTや現状のFEDやPDPで主に用いられている蛍光体は、高コストであったり、劇物であったり、蛍光体表面の劣化に起因した発光効率の低下を引き起こすこと、また、赤・緑・青の三色のうち青色は、材料自身が低輝度であること等、未だ解決すべき課題があり、代替材料の開発も盛んに行われている。しかし、未だに満足すべきものは得られていない。   Today, in the display field, a cathode ray tube (CRT) is shifting to a thin flat panel display (FPD), and various displays such as liquid crystal display, plasma display panel (PDP), organic EL display, field emission display (FED), etc. FPD has been developed. Among them, the FED emits light by causing an electron beam generated from the cathode to collide with an anode phosphor on the same light emission principle as the CRT. The PDP emits light by irradiating a phosphor with vacuum ultraviolet rays emitted from a discharge gas. It is desirable that the phosphor serving as the light source has excellent characteristics such as light emission luminance, color purity, and lifetime. The phosphors mainly used in the conventional CRT and the current FED and PDP are high cost, are deleterious, cause a decrease in luminous efficiency due to phosphor surface deterioration, Of the three colors of red, green, and blue, blue has problems to be solved such as low brightness of the material itself, and alternative materials are being actively developed. However, there are still no satisfactory ones.

蛍光体としては、例えば、式:M 12 1433(式中のMはCa、Sr及びBaからなる群から選ばれる1種以上であり、MはAl及びGaからなる群から選ばれる1種以上である。)により表される化合物に付活剤としてLn(LnはCe、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb及びMnからなる群より選ばれる1種以上である。)が含有されているものが知られている(例えば、特許文献1参照)。この蛍光体は、紫外線発光体素子用のものである。
特開2004−300261号公報(特許請求の範囲)
Examples of the phosphor include a formula: M 1 12 M 2 14 O 33 (wherein M 1 is one or more selected from the group consisting of Ca, Sr and Ba, and M 2 is a group consisting of Al and Ga). Ln (Ln is Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Mn) as an activator for the compound represented by the formula (1). In which one or more selected from the group consisting of the above-mentioned groups is contained (for example, see Patent Document 1). This phosphor is for an ultraviolet light emitter element.
JP 2004-300261 A (Claims)

本発明の課題は、上述の従来技術の問題点を解決することにあり、CRTやFED用の蛍光体として現在用いられている蛍光体に代わり、安全で発光輝度の高い蛍光体及びその作製方法並びにこの蛍光体を含んでなる発光素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to replace phosphors currently used as phosphors for CRTs and FEDs, a safe phosphor having high emission luminance and a method for producing the same. Another object of the present invention is to provide a light emitting device comprising the phosphor.

本発明者らは、蛍光体の開発過程において、結晶構造内に少なくとも1種の原子を包接することのできるカゴ状格子を有する物質を母体とすることで、その包接サイトに添加された付活剤に対する電子線及び/又は紫外線の照射により得られた励起エネルギーをカゴ状格子内にとどめ易くすることができ、その結果、高効率な発光が示されること、また、付活剤を包接サイトとそれ以外の格子内サイトとに共付活させることで、相乗効果により発光輝度が向上することを見出し、本発明を完成させるに至った。この場合、母体に、さらに導電性金属を添加することにより、電子線励起を利用する場合に、電子線照射時のチャージアップ防止による発光輝度が向上することも見出し、本発明を完成させるに至った。   In the process of developing a phosphor, the inventors have used a substance having a cage lattice that can include at least one kind of atom in the crystal structure as a base material, and added the inclusion to the inclusion site. The excitation energy obtained by irradiating the active agent with an electron beam and / or ultraviolet rays can be easily retained in the cage lattice, and as a result, high-efficiency luminescence is exhibited, and the activator is included. By co-activating the sites and other intra-lattice sites, the inventors found that the luminance is improved by a synergistic effect and completed the present invention. In this case, it has also been found that by adding a conductive metal to the base material, when using electron beam excitation, emission luminance is improved by preventing charge-up during electron beam irradiation, and the present invention has been completed. It was.

本発明の蛍光体は、結晶構造内に少なくとも1種の原子を包接できるカゴ状格子を有する物質を母体とすることを特徴とする。   The phosphor of the present invention is characterized in that a substance having a cage lattice capable of including at least one atom in the crystal structure is used as a base material.

前記母体に付活剤を添加せしめてなり、この付活剤が母体のカゴ状格子の包接サイトとそれ以外の格子内サイトとに共付活されてなることを特徴とする。   An activator is added to the base material, and this activator is co-activated at the inclusion site of the base cage lattice and the other intra-lattice sites.

本発明の蛍光体はまた、励起手段に応じて異なる発光をする物質を母体とすることを特徴とし、この母体に付活剤を添加せしめてなる。   The phosphor of the present invention is also characterized in that a substance that emits light depending on the excitation means is used as a base material, and an activator is added to the base material.

前記励起手段が紫外線照射及び電子線照射であり、物質が結晶構造内に少なくとも1種の原子を包接できるカゴ状格子を有する物質であることを特徴とする。   The excitation means is ultraviolet irradiation and electron beam irradiation, and the substance is a substance having a cage lattice capable of including at least one kind of atom in the crystal structure.

前記付活剤は、Mn、Sn、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びBiからなる群から選ばれた少なくとも1種の元素である。   The activator is at least selected from the group consisting of Mn, Sn, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Bi. It is a kind of element.

前記母体に、さらに導電性金属を添加せしめてなることを特徴とする。   Further, a conductive metal is further added to the base body.

この導電性金属は、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiからなる群から選ばれた少なくとも1種の金属である。   The conductive metal is at least one metal selected from the group consisting of Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti. It is.

本発明の蛍光体の作製方法は、Ca、Sr又はBaを含み、焼成の際に分解してカルシウム酸化物、ストロンチウム酸化物又はバリウム酸化物となり得る化合物と、Alを含み、焼成の際に分解してアルミニウム酸化物となり得る化合物とをCa、Sr又はBaとAlとの原子当量比で12:14となるように配合して得た母体混合物に、付活剤を、その元素に換算して、母体混合物基準で、0.001〜10原子%添加し、かくして得られた混合物を焼成することにより、式:(Ca(又はSr若しくはBa)12Al1433)100:A(式中、Aは付活剤としての前記少なくとも1種の元素を表し、xは0.001〜10である)で表される蛍光体を得ることを特徴とする。 The method for producing the phosphor of the present invention includes Ca, Sr or Ba, a compound that can be decomposed upon firing to become calcium oxide, strontium oxide, or barium oxide, and Al, and is decomposed upon firing. In the base mixture obtained by blending the compound capable of becoming an aluminum oxide with an atomic equivalent ratio of Ca, Sr or Ba and Al of 12:14, the activator is converted to the element. By adding 0.001 to 10 atomic% on the basis of the base material mixture and firing the mixture thus obtained, the formula: (Ca (or Sr or Ba) 12 Al 14 O 33 ) 100 : A x (wherein , A represents the at least one element as an activator, and x is 0.001 to 10).

前記焼成の際に分解してカルシウム酸化物、ストロンチウム酸化物又はバリウム酸化物となり得る化合物及び前記焼成の際に分解してアルミニウム酸化物となり得る化合物は、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物及びシュウ酸塩から選ばれた化合物であり、好ましくは炭酸塩である。   The compound that can be decomposed during the baking to become calcium oxide, strontium oxide, or barium oxide and the compound that can be decomposed to become aluminum oxide during the baking are oxide, hydroxide, carbonate, nitrate , Halides and oxalates, preferably carbonates.

前記作製方法において、付活材は、Mn、Sn、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びBiから選ばれた少なくとも1種の元素又はその酸化物からなる。   In the manufacturing method, the activator was selected from Mn, Sn, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Bi. It consists of at least one element or its oxide.

前記作製方法において、さらに、導電性金属を含む導電性酸化物となり得る化合物を、その金属に換算して、前記母体混合物基準で、1〜40原子%添加し、かくして得られた混合物を焼成することにより、式:(Ca(又はSr若しくはBa)12Al1433)100:A(式中、Aは付活剤としての前記少なくとも1種の元素を表し、Bは前記少なくと1種の導電性金属を表し、xは0.001〜10であり、yは1〜40である)で表される蛍光体を得ることが好ましい。 In the manufacturing method, a compound that can be a conductive oxide containing a conductive metal is further added in an amount of 1 to 40 atomic% in terms of the base material mixture, and the mixture thus obtained is fired. by the formula: (Ca (or Sr or Ba) 12 Al 14 O 33) 100: in a x B y (wherein, a represents at least one element as activator, B is when the small It is preferable to obtain a phosphor represented by 1 type of conductive metal, wherein x is 0.001 to 10 and y is 1 to 40.

前記作製方法において、導電性酸化物となり得る化合物は、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiからなる群から選ばれた少なくとも1種の導電性金属を含む酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物並びにシュウ酸塩から選ばれた化合物であり、酸化物であることが好ましい。   In the manufacturing method, the compound that can be a conductive oxide is selected from the group consisting of Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti. It is a compound selected from oxides, hydroxides, carbonates, nitrates, halides and oxalates containing at least one selected conductive metal, and is preferably an oxide.

本発明の発光素子は、前記蛍光体を含んでなることを特徴とする。   The light emitting device of the present invention comprises the phosphor.

本発明の蛍光体によれば、結晶構造内にカゴ状格子を有する物質を母体とするため、包接サイト内を占有する付活剤の効率的な励起や、複数の占有サイトへの共付活や、導電性金属の添加が可能であることに起因して、優れた発光輝度・色純度を示すと共に、チャージアップも防止されるという効果を奏する。   According to the phosphor of the present invention, since a substance having a cage lattice in the crystal structure is used as a base, efficient excitation of an activator that occupies the inclusion site, and co-attachment to a plurality of occupied sites Due to the fact that it is possible to add a conductive metal or a conductive metal, it exhibits excellent light emission luminance and color purity and also prevents the charge-up.

本発明によれば、紫外線照射及び電子線照射に応じて異なる発光、例えば赤色及び青色という発光をするため、蛍光体としての用途が広がる。   According to the present invention, different light emission depending on ultraviolet ray irradiation and electron beam irradiation, for example, red and blue light emission, the use as a phosphor is expanded.

また、結晶構造内にカゴ状格子を有する物質として、例えばCa12Al1433で表される化合物を使用する場合は、資源の豊富なCaとAlとの複合酸化物を母体とするため、従来用いられている蛍光体に比べて、低環境負荷、低コストも実現できるという効果を奏する。 In addition, when a compound represented by, for example, Ca 12 Al 14 O 33 is used as a substance having a cage lattice in the crystal structure, a complex oxide of Ca and Al, which is rich in resources, is used as a base. As compared with the phosphors used conventionally, there is an effect that low environmental load and low cost can be realized.

また、本発明の蛍光体は、通常の焼成による容易なプロセスで作製することができるという効果を奏する。   In addition, the phosphor of the present invention has an effect that it can be produced by an easy process by ordinary firing.

さらに、本発明の蛍光体は、上記したようにして優れた発光輝度・色純度を示すと共に、チャージアップも防止されるので、この蛍光体を含んでなる発光素子は、FED等のFPDやCRTディスプレイ等への利用が期待され得るという効果を奏する。   Furthermore, since the phosphor of the present invention exhibits excellent emission luminance and color purity as described above, and charge-up is prevented, a light-emitting device containing this phosphor is suitable for FPD such as FED and CRT. There exists an effect that the utilization to a display etc. can be anticipated.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明によれば、励起手段に応じて異なる発光をする物質であり、例えば、その結晶構造内に少なくとも1つの原子を包接できるカゴ状格子を基本構造としている物質を母体として用い、この母体に付活剤、さらに所望により導電性金属を添加せしめてなる蛍光体を提供することにより、所期の目的を達成することができた。   According to the present invention, a substance that emits light differently depending on excitation means, for example, a substance having a basic structure of a cage-like lattice that can include at least one atom in its crystal structure is used as a matrix. By providing a phosphor in which an activator and, if desired, a conductive metal are added, a desired object could be achieved.

カゴ状格子を基本構造とする物質としては、例えば、式:M121433(式中、MはCa、Sr及びBaからなる群から選ばれる少なくとも1種の金属元素であり、NはAl、Ga及びInからなる群から選ばれる少なくとも1種の金属元素である。)で表される組成の化合物や、Siクラスレート、スクッテルダイト、フラーレン及び正20面体準結晶(例えば、Al系準結晶)等を挙げることができる。これらの化合物は、原理的には、励起エネルギーの発散をとどめるので、高効率発光が可能である。 Examples of the substance having a cage lattice as a basic structure include, for example, the formula: M 12 N 14 O 33 (wherein M is at least one metal element selected from the group consisting of Ca, Sr and Ba, and N is A compound having a composition represented by at least one metal element selected from the group consisting of Al, Ga, and In), Si clathrate, skutterudite, fullerene, and icosahedral quasicrystals (for example, Al-based). Quasicrystals). In principle, these compounds only diverge the excitation energy, and thus can emit light with high efficiency.

このカゴ状格子内には特定の付活剤が所望の量で包接され得る。例えば、結晶学的なナノ細孔とその中にランダムに存在するフリー酸素イオン(O2−)で結晶が構成されており、結晶中で電子が特定のアニオンサイトを占有するいるいわゆるエレクトライドであるCa12Al1433母体中には、付活される元素の占有サイトは3種類、すなわちカゴ状格子を構成する3価のAlサイトと2価のCaサイト、そしてカゴ状格子の包接サイトが存在する。付活剤元素は、包接サイトや、それ以外の格子内サイトであるAlサイトサイトやCaサイトに添加され得る。このようなCa12Al1433で表される化合物は、安全であると共に、クラーク数上位の豊富な元素(Ca:5位、Al:3位、O:1位)で構成されており、安価な蛍光体の母体材料として利用できる。 A specific activator can be included in the cage lattice in a desired amount. For example, a so-called electride in which a crystal is composed of crystallographic nanopores and free oxygen ions (O 2− ) randomly present therein, and electrons occupy a specific anion site in the crystal. In a certain Ca 12 Al 14 O 33 matrix, there are three types of sites occupied by the activated elements, that is, the trivalent Al site constituting the cage lattice, the divalent Ca site, and the inclusion of the cage lattice. The site exists. The activator element can be added to an inclusion site or an Al site site or a Ca site, which are other intra-lattice sites. Such a compound represented by Ca 12 Al 14 O 33 is safe and is composed of abundant elements having higher Clark numbers (Ca: 5th, Al: 3rd, O: 1th), It can be used as a base material for inexpensive phosphors.

本発明の蛍光体中に添加、含有される付活剤量は、母体基準で、一般に0.001〜10原子%、好ましくは0.1〜6.0原子%である。0.001原子%未満であり、また、10原子%を超えると、輝度が著しく低下する。   The amount of activator added and contained in the phosphor of the present invention is generally 0.001 to 10 atomic%, preferably 0.1 to 6.0 atomic%, based on the base material. If it is less than 0.001 atomic% and more than 10 atomic%, the luminance is remarkably lowered.

また、本発明の蛍光体中に添加、含有される導電性金属量は、母体基準で、1.0〜40原子%、好ましくは1.0〜10原子%の量である。1.0原子%未満であり、また、40原子%を超えると、輝度が著しく低下する。   Further, the amount of the conductive metal added and contained in the phosphor of the present invention is 1.0 to 40 atom%, preferably 1.0 to 10 atom%, based on the base material. If it is less than 1.0 atomic% and exceeds 40 atomic%, the luminance is remarkably lowered.

本発明の蛍光体は、母体が有するカゴ状格子内に付活剤が包接されるようにして作製され得る。また、包接サイトのみならず、格子内サイトをも占有するように2種類以上の付活剤を添加して共付活させても目的とする蛍光体を作製できる。さらに、包接サイトを占有する付活剤に加えて、所望によりさらに少なくとも1種の導電性金属を含有せしめてなる蛍光体を作製することができる。   The phosphor of the present invention can be produced in such a manner that the activator is included in the cage lattice of the host. Moreover, the target phosphor can be produced by adding two or more kinds of activators so as to occupy not only the inclusion sites but also the intra-lattice sites. Furthermore, in addition to the activator that occupies the clathrate site, it is possible to produce a phosphor that further contains at least one conductive metal as desired.

以下、本発明の蛍光体の作製方法の一実施の形態について説明する。   Hereinafter, an embodiment of a method for producing a phosphor of the present invention will be described.

本発明の蛍光体の作製方法は、特に限定されるものではない。例えば、エレクトライドであるCa(或いはストロンチウム等)12Al1433を母体として用いる蛍光体の場合、母体を構成するカルシウム等及び/又はアルミニウムを含む化合物と付活剤元素又はその酸化物と所望により導電性酸化物となり得る化合物との混合物を焼成することにより作製することができる。この母体を構成する元素を含む化合物及び導電性化合物となり得る化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物、及びシュウ酸塩等のような焼成温度で分解して酸化物となり得る化合物を用いることができる。これらの化合物を母体の所定の組成となるように配合し、混合して用いる。母体のみを先に調製し、次いでこの母体に付活剤元素又はその酸化物と所望により導電性酸化物となり得る化合物とを配合して得た混合物を焼成することにより、目的とする蛍光体を作製することもできる。 The method for producing the phosphor of the present invention is not particularly limited. For example, in the case of a phosphor using the electride Ca (or strontium or the like) 12 Al 14 O 33 as a base material, a compound containing calcium and / or aluminum and an activator element or oxide thereof constituting the base body and desired Can be produced by firing a mixture with a compound capable of becoming a conductive oxide. The compound containing the element constituting the matrix and the compound that can be a conductive compound include oxides, hydroxides, carbonates, nitrates, halides, oxalates, and the like that are decomposed at a firing temperature and oxidized. Compounds that can be used can be used. These compounds are blended so as to have a predetermined composition of the matrix, and are used by mixing. A target phosphor is prepared by firing a mixture obtained by preparing only a matrix first, and then blending this matrix with an activator element or its oxide and a compound that can optionally become a conductive oxide. It can also be produced.

本発明によれば、例えば、上記母体を構成する元素を含む化合物と付活剤元素又はその酸化物と所望により導電性酸化物となり得る化合物とを、目的とする蛍光体の組成に併せて秤量し、既知のボールミル、ジェットミル、V型混合器、攪拌装置等を用いて混合・粉砕し、得られた混合物を、例えば、不活性ガス雰囲気(アルゴン等の希ガスや窒素等の雰囲気)、酸化性ガス雰囲気(空気、酸素、酸素原子含有ガス等の雰囲気)、還元性ガス雰囲気(水素ガス、水素原子含有ガス等の雰囲気)中、1000〜1500℃(好ましくは、1200〜1300℃)で所定の時間焼成し、目的とする蛍光体を得ることができる。これらの焼成雰囲気のうち、輝度の点からは、窒素ガス雰囲気が最も好ましい。   According to the present invention, for example, a compound containing an element constituting the matrix, an activator element or an oxide thereof, and a compound that can become a conductive oxide if desired are weighed together with the composition of the target phosphor. Then, mixing and pulverizing using a known ball mill, jet mill, V-type mixer, stirring device, etc., the resulting mixture, for example, inert gas atmosphere (rare gas such as argon or atmosphere such as nitrogen), In an oxidizing gas atmosphere (atmosphere of air, oxygen, oxygen atom-containing gas, etc.) and reducing gas atmosphere (atmosphere of hydrogen gas, hydrogen atom-containing gas, etc.) at 1000 to 1500 ° C. (preferably 1200 to 1300 ° C.) The target phosphor can be obtained by firing for a predetermined time. Of these firing atmospheres, a nitrogen gas atmosphere is most preferable from the viewpoint of luminance.

本発明の蛍光体の一つの実施の形態として、Ca12Al1433で表される組成の化合物を母体として用いる場合の作製方法を以下に記す。 As one embodiment of the phosphor of the present invention, a manufacturing method in the case where a compound having a composition represented by Ca 12 Al 14 O 33 is used as a base will be described below.

本発明によれば、具体的には、例えば、炭酸カルシウム(CaCO)と酸化アルミニウム(Al)とを、その混合比がCaとAlとの原子当量比で12:14となるように配合し、これに、付活剤として、Mn、Sn、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びBiから選ばれた少なくとも1種の元素又はその酸化物を、その元素に換算して、Ca12Al1433基準で、0.001〜10原子%、好ましくは0.1〜6.0原子%の量で混合し、かくして得られた混合粉末をボールミル中で粉砕・攪拌した後、これを不活性ガス雰囲気、酸化性ガス雰囲気又は還元性ガス雰囲気中において好ましくは1200〜1300℃(例えば、1200℃)で焼成することにより、所望の蛍光体を得ることができる。 Specifically, according to the present invention, for example, calcium carbonate (CaCO 3 ) and aluminum oxide (Al 2 O 3 ) are mixed at an atomic equivalent ratio of Ca and Al of 12:14. In addition, Mn, Sn, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Bi are selected as activators. An amount of 0.001 to 10 atomic percent, preferably 0.1 to 6.0 atomic percent, based on Ca 12 Al 14 O 33 , in terms of at least one element selected from the above or an oxide thereof. The mixed powder thus obtained is pulverized and stirred in a ball mill, and then preferably 1200 to 1300 ° C. (for example, 1200 ° C.) in an inert gas atmosphere, an oxidizing gas atmosphere or a reducing gas atmosphere. To fire in Ri, it is possible to obtain a desired phosphor.

この場合、付活剤を添加した後又は付活剤の添加と同時に、さらに、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiからなる群から選ばれた少なくとも1種の導電性金属を含む導電性酸化物となり得る化合物を、その金属に換算して、Ca12Al1433基準で、1〜40原子%、好ましくは1.0〜10原子%の量で混合し、かくして得られた混合物を上記雰囲気中で好ましくは1200〜1300℃(例えば、1200℃)で焼成することにより、(Ca12Al1433)100:A(式中、Aは付活剤としての前記少なくとも1種の元素を表し、Bは前記少なくとも1種の導電性金属を表し、xは0.0 01〜10、好ましくは0.1〜6.0であり、yは1〜40、好ましくは1.0〜10である)で表される蛍光体を得ることができる。 In this case, after adding the activator or simultaneously with the addition of the activator, Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La , And a compound that can be a conductive oxide containing at least one conductive metal selected from the group consisting of Ti, in terms of Ca 12 Al 14 O 33 , in terms of Ca 12 Al 14 O 33 , Preferably, it is mixed in an amount of 1.0 to 10 atomic%, and the mixture thus obtained is calcined in the above atmosphere, preferably at 1200 to 1300 ° C. (for example, 1200 ° C.), so that (Ca 12 Al 14 O 33 ) 100 : A x B y (wherein A represents the at least one element as an activator, B represents the at least one conductive metal, and x is 0.001 to 10, preferably Is 0.1 to 6.0 and y 1-40, preferably it is possible to obtain a phosphor represented by a is) 1.0 to 10.

上記したようにして得られる本発明の蛍光体は従来の蛍光体よりも優れた発光輝度を有する。この蛍光体を用いて、公知の製造方法により発光素子を製造できる。この蛍光体を用いるFEDやCRT用発光素子のうちFED用発光素子を例にとり、以下簡単に説明する。   The phosphor of the present invention obtained as described above has a light emission luminance superior to that of conventional phosphors. Using this phosphor, a light emitting device can be manufactured by a known manufacturing method. Of the FED and CRT light-emitting elements using this phosphor, an FED light-emitting element will be briefly described below as an example.

例えば、本発明の蛍光体粒子を高分子化合物(例えば、セルロース系化合物、ポリビニルアルコール等)からなるバインダーの有機溶媒溶液中に分散せしめて、蛍光体ペーストを調製する。この蛍光体ペーストを公知のスクリーン印刷等の塗布方法により導電性膜(例えば、ITO(酸化インジウムスズ))が形成された(この導電性膜をアノード電極とする)前面基板の表面に塗布する。この蛍光体層と、電子源(例えば、カーボンナノチューブ、グラファイトナノチューブ)及びカソード電極を備えた背面基板とを、真空領域を確保するためのスペーサーを挟んで重ねて貼り合わせる。次いで、内部を排気して真空封止し、電子飛行空間を形成させることにより、目的とするFEDモデルを製造することができる。   For example, the phosphor particles of the present invention are dispersed in an organic solvent solution of a binder made of a polymer compound (for example, a cellulose compound, polyvinyl alcohol, etc.) to prepare a phosphor paste. This phosphor paste is applied to the surface of a front substrate on which a conductive film (for example, ITO (indium tin oxide)) is formed (this conductive film is used as an anode electrode) by a known application method such as screen printing. This phosphor layer and a back substrate provided with an electron source (for example, carbon nanotube, graphite nanotube) and a cathode electrode are laminated and bonded together with a spacer for securing a vacuum region interposed therebetween. Next, the target FED model can be manufactured by evacuating the inside and vacuum-sealing to form an electron flight space.

以下に、本発明の実施例として、結晶構造内にカゴ状格子を有するCa12Al1433で表される組成の化合物を母体として用い、このカゴ状格子内に付活剤を包接せしめる例や、さらに導電性金属を含有せしめる例を挙げて具体的に説明するが、本発明はこの実施例によって限定されるものではない。 Hereinafter, as an example of the present invention, a compound having a composition represented by Ca 12 Al 14 O 33 having a cage lattice in the crystal structure is used as a base material, and an activator is included in the cage lattice. Although an example and the example which contains an electroconductive metal further are given and demonstrated concretely, this invention is not limited by this Example.

CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合して得た母体(Ca12Al1433)の原料粉末に、
(1)酸化ユーロピウム(Eu)を、Euに換算して、Ca12Al1433基準で、0.48原子%添加した試料((Ca12Al1433)100:Eu0.48)、
(2)酸化ツリウム(Tm)を、Tmに換算して、Ca12Al1433基準で、4.8原子%添加した試料((Ca12Al1433)100:Tm4.8)、
(3)酸化ユーロピウム(Eu)を、Euに換算して、Ca12Al1433基準で、0.48原子%添加し、さらに酸化ツリウム(Tm)を、Tmに換算して、Ca12Al1433基準で、4.8原子%添加した試料((Ca12Al1433)100:Eu0.48Tm4。8)、及び
(4)酸化ユーロピウム(Eu)を、Euに換算して、Ca12Al1433基準で0.48原子%添加し、さらに導電性酸化物として酸化亜鉛(ZuO)を、Znに換算して、Ca12Al1433基準で、10原子%添加した試料((Ca12Al1433)100:Eu0.48Zn10)、並びに
(5)付活剤も導電性酸化物も添加しない試料(Ca12Al1433)
の5種類の試料の混合粉末を乾式粉砕・攪拌した後、大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。
To a raw material powder of a base (Ca 12 Al 14 O 33 ) obtained by mixing CaCO 3 and Al 2 O 3 so that the atomic equivalent ratio of Ca and Al is 12:14,
(1) europium oxide (Eu 2 O 3), in terms of Eu, Ca 12 Al 14 with O 33 standard, 0.48 atomic% added sample ((Ca 12 Al 14 O 33 ) 100: Eu 0. 48 ),
(2) a thulium oxide (Tm 2 O 3), in terms of Tm, Ca 12 Al 14 with O 33 basis, 4.8 atomic% added sample ((Ca 12 Al 14 O 33 ) 100: Tm 4. 8 ),
(3) Europium oxide (Eu 2 O 3 ) is converted to Eu, 0.48 atomic% is added based on Ca 12 Al 14 O 33 , and thulium oxide (Tm 2 O 3 ) is converted to Tm. and, at Ca 12 Al 14 O 33 standard, 4.8 atomic% added sample ((Ca 12 Al 14 O 33 ) 100: Eu 0.48 Tm 4.8), and
(4) Europium oxide (Eu 2 O 3 ) is converted to Eu, and 0.48 atomic% is added based on Ca 12 Al 14 O 33 , and zinc oxide (ZuO) is further added to Zn as a conductive oxide. In conversion, a sample added with 10 atomic% on the basis of Ca 12 Al 14 O 33 ((Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn 10 ), and
(5) Sample to which neither activator nor conductive oxide is added (Ca 12 Al 14 O 33 )
After dry-grinding and stirring the mixed powder of the five types of samples, the temperature was raised to 1200 ° C. in 1 hour and 30 minutes in the air, and this temperature was maintained for 4 hours and calcined.

図1に、焼成した(Ca12Al1433)100:Eu0.48の粉末XRD回折スペクトルを示す。図中、下段に併せて示してある結晶構造データより求めたピークと比べて分かるように非常に単相性の良い試料が作製された。図中、C12A7はCa12Al1433を意味する。 FIG. 1 shows a powder XRD diffraction spectrum of calcined (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 . In the figure, a sample having a very good single phase was prepared as can be seen from the peak obtained from the crystal structure data shown in the lower part of the figure. In the figure, C12A7 means Ca 12 Al 14 O 33.

次に、得られた焼成粉末の蛍光特性評価について説明する。   Next, the fluorescence characteristic evaluation of the obtained fired powder will be described.

測定サンプルの準備として、まず、エタノール20ccを注入したビーカーに上記各焼成粉末0.01gを入れ、十分攪拌した。このビーカー中に導電性を持つITOの成膜されたガラス基板を投入し、エタノール混合液を乾燥させた。この手法により堆積した粉末に波長254nmの紫外線、又は加速電圧3kV電子線を照射し、分光光度計により蛍光特性を評価した。   As preparation of the measurement sample, first, 0.01 g of each of the fired powders was placed in a beaker into which 20 cc of ethanol was injected and sufficiently stirred. A glass substrate on which a conductive ITO film was formed was placed in the beaker, and the ethanol mixture was dried. The powder deposited by this method was irradiated with ultraviolet rays having a wavelength of 254 nm or an electron beam with an acceleration voltage of 3 kV, and the fluorescence characteristics were evaluated with a spectrophotometer.

図2に波長254nmの紫外線を(Ca12Al1433)100:Eu0.48試料に照射したときの発光スペクトルを示す。この発光スペクトルは、波長約615nmにシャープなピークを持ち、色座標は、CIE色度図上ではx=0.636、y=0.361に位置する良質な赤色発光を示した。また、図3に、(Ca12Al1433)100:Eu0.48試料に加速電圧3kVの電子線を照射したときの発光スペクトルを示す。この発光スペクトルは、波長395nm程度にピークを持ち、色座標は、CIE色度図上ではx=0.186、y=0.054に位置する青色発光を示した。これは、従来のCRT用青色蛍光体であるZnS:Agの色座標x=0.146、y=0.074と同等であり、ZnS:Agに匹敵する色度であることが確認できた。 FIG. 2 shows an emission spectrum when the (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 sample is irradiated with ultraviolet light having a wavelength of 254 nm. This emission spectrum had a sharp peak at a wavelength of about 615 nm, and the color coordinates showed high-quality red emission located at x = 0.636 and y = 0.361 on the CIE chromaticity diagram. FIG. 3 shows an emission spectrum when the (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 sample is irradiated with an electron beam with an acceleration voltage of 3 kV. This emission spectrum had a peak at a wavelength of about 395 nm, and the color coordinates showed blue light emission located at x = 0.186 and y = 0.054 on the CIE chromaticity diagram. This is equivalent to the color coordinates x = 0.146 and y = 0.074 of ZnS: Ag, which is a conventional blue phosphor for CRT, and it was confirmed that the chromaticity was comparable to ZnS: Ag.

次に、(Ca12Al1433)100:Tm4.8及び(Ca12Al1433)100:Eu0.48Tm4.8の各試料に加速電圧3kVの電子線を照射した時の発光スペクトルを図4に示す。比較のため、(Ca12Al1433)100:Eu0.48試料の結果を合わせて示す。図中、C12A7はCa12Al1433を意味する。Tmを付活剤として添加した場合、460nm付近にシャープなピークを持った青色発光を示す。また、EuとTmとを共付活させた(Ca12Al1433)100:Eu0.48Tm4.8試料では、波長約395nmと約460nmとにピークを持っており、それぞれ1種類の添加を行った試料と比べて、相乗効果により大幅に発光輝度が増加していることが分かる。従来の蛍光体では、付活剤の占有サイトは1種類のため、2種類以上の付活剤を添加してもそのサイトの限界濃度までしか置換できないが、本実施例の場合には、Euが包接サイト、TmがCaサイトを占有するため、発光輝度の相乗効果を引き起こしている。ちなみに、色座標は、CIE色度図上ではx=0.187、y=0.088に位置する青色発光を示した。これは、従来のCRT用青色蛍光体であるZnS:Agの色座標x=0.146、y=0.074と同等であり、ZnS:Agに匹敵する色度であることが確認できた。 Next, when (Ca 12 Al 14 O 33 ) 100 : Tm 4.8 and (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Tm 4.8 were irradiated with an electron beam with an acceleration voltage of 3 kV The emission spectrum of is shown in FIG. For comparison, the results of (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 sample are also shown. In the figure, C12A7 means Ca 12 Al 14 O 33. When Tm is added as an activator, blue light emission having a sharp peak around 460 nm is exhibited. In addition, the (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Tm 4.8 sample in which Eu and Tm are co-activated has peaks at wavelengths of about 395 nm and about 460 nm, respectively. It can be seen that the emission luminance is greatly increased due to the synergistic effect as compared with the sample to which is added. In the conventional phosphor, the activator occupies only one site, so even if two or more activators are added, only the limit concentration of the site can be replaced. Occupies the inclusion site and Tm occupies the Ca site, thus causing a synergistic effect of light emission luminance. Incidentally, the color coordinates showed blue light emission located at x = 0.187 and y = 0.088 on the CIE chromaticity diagram. This is equivalent to the color coordinates x = 0.146 and y = 0.074 of ZnS: Ag, which is a conventional blue phosphor for CRT, and it was confirmed that the chromaticity was comparable to ZnS: Ag.

さらに、(Ca12Al1433)100:Eu0.48Zn10試料に加速電圧3kVの電子線を照射した時の発光スペクトルを図5に示す。比較のため、Ca12Al1433(C12A7)及び(Ca12Al1433)100:Eu0.48試料の結果を併せて示す。図中、C12A7は母体自体であり、ほとんど発光しない。(Ca12Al1433)100:Eu0.48の発光輝度は約94cd/mであった。これと比較して、(Ca12Al1433)100:Eu0.48Zn10では、波長430nm付近に大きなピークを持った青色発光を示した。発光輝度は約430cd/mという値を示し、Znのような導電性金属を添加すると約5倍の発光輝度の向上が見られ、低加速電圧においてもチャージアップの防止により高輝度を示した。 Further, FIG. 5 shows an emission spectrum when an (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn 10 sample is irradiated with an electron beam having an acceleration voltage of 3 kV. For comparison, the results of Ca 12 Al 14 O 33 (C12A7) and (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 samples are also shown. In the figure, C12A7 is the mother body and emits little light. The luminous intensity of (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 was about 94 cd / m 2 . In comparison with this, (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn 10 showed blue light emission having a large peak near a wavelength of 430 nm. The emission luminance was about 430 cd / m 2 , and when a conductive metal such as Zn was added, the emission luminance was improved about 5 times. Even at a low acceleration voltage, the luminance was high by preventing charge-up. .

CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、付活剤として、酸化ユーロピウム(Eu)を、Euに換算して、Ca12Al1433基準で、0.48原子%及び酸化ツリウム(Tm)を、Tmに換算して、Ca12Al1433基準で、4.8原子%、また、導電性酸化物として酸化亜鉛(ZnO)を、Znに換算して、Ca12Al1433基準で、2.0原子%添加し(この試料の組成式は(Ca12Al1433)100:Eu0.48Tm4.8Zn2.0で表される)、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。ここで、Zn添加効果を検討するために、(Ca12Al1433)100:Eu0.48及び(Ca12Al1433)100:Tm4.8についても上記作製方法に準じて作製した。 CaCO 3 and Al 2 O 3 are mixed so that the atomic equivalent ratio of Ca and Al is 12:14, and europium oxide (Eu 2 O 3 ) is converted into Eu as an activator. In terms of Ca 12 Al 14 O 33 , 0.48 atomic% and thulium oxide (Tm 2 O 3 ) are converted to Tm, and 4.8 atomic% based on Ca 12 Al 14 O 33 , zinc oxide (ZnO) as a conductive oxide, in terms of Zn, Ca 12 Al 14 O 33 standard, was added 2.0 atomic% (composition formula of the sample (Ca 12 Al 14 O 33) 100 : Eu 0.48 Tm 4.8 Zn 2.0 ), dry pulverized and stirred powder was heated to 1200 ° C. in the air for 1 hour 30 minutes, and kept at this temperature for 4 hours Baked. Here, in order to examine the effect of Zn addition, (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 and (Ca 12 Al 14 O 33 ) 100 : Tm 4.8 are also produced according to the above production method. did.

次に、得られた焼成粉末の蛍光特性評価について説明する。   Next, the fluorescence characteristic evaluation of the obtained fired powder will be described.

測定サンプルの準備として、まず、エタノール20ccを注入したビーカーに上記各焼成粉末0.01gを入れ、十分攪拌した。このビーカー中に導電性を持つITOの成膜されたガラス基板を投入し、エタノール混合液を乾燥させた。この手法により堆積した粉末に加速電圧3kV電子線を照射し、分光光度計により蛍光特性を評価した。   As preparation of the measurement sample, first, 0.01 g of each of the fired powders was placed in a beaker into which 20 cc of ethanol was injected and sufficiently stirred. A glass substrate on which a conductive ITO film was formed was placed in the beaker, and the ethanol mixture was dried. The powder deposited by this method was irradiated with an accelerating voltage of 3 kV electron beam, and the fluorescence characteristics were evaluated by a spectrophotometer.

(Ca12Al1433)100:Eu0.48Tm4.8Zn2.0、(Ca12Al1433)100:Eu0.48及び(Ca12Al1433)100:Tm4.8のそれぞれに加速電圧3kVの電子線を照射したときの発光スペクトルを図6に示す。付活剤としてEuを添加した(Ca12Al1433)100:Eu0.48は波長400nm付近にピークを持っており、発光輝度は約94cd/mであり、また、(Ca12Al1433)100:Tm4.8は510nm付近にピークを持っており、発光輝度は約400cd/mであった。これに対し、(Ca12Al1433)100:Eu0.48Tm4.8Zn2.0では、波長約400及び510nm付近に大きなピークを持つており、発光輝度は約550cd/mであり、導電性金属を添加することで発光輝度の向上が見られた。 (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Tm 4.8 Zn 2.0 , (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 and (Ca 12 Al 14 O 33 ) 100 : Tm 4 8 shows an emission spectrum when each electron beam is irradiated with an electron beam with an acceleration voltage of 3 kV. Eu added as an activator (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 has a peak in the vicinity of a wavelength of 400 nm, the emission luminance is about 94 cd / m 2 , and (Ca 12 Al 14 O 33 ) 100 : Tm 4.8 had a peak in the vicinity of 510 nm, and the light emission luminance was about 400 cd / m 2 . On the other hand, (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Tm 4.8 Zn 2.0 has large peaks in the vicinity of wavelengths of about 400 and 510 nm, and the emission luminance is about 550 cd / m 2. The emission luminance was improved by adding a conductive metal.

実施例1記載の方法に従って、CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ユーロピウム(Eu)を、Ca12Al1433基準で、Euに換算して0〜8原子%の範囲で変動させて添加し、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。かくして得られた式:(Ca12Al1433)100:Eu(x=0〜8)で表される蛍光体に電子線を加速電圧3kVで照射した時の発光輝度(任意単位)に対するEu濃度依存性を評価した。その結果、付活剤としてのEuの濃度が一般に0.001〜8原子%の範囲である程度の発光輝度が得られ、1〜4原子%の範囲でそれより高い発光輝度が得られ、1.6〜2原子%の範囲でさらに高い発光輝度が得られ、1.6原子%で最も高い発光輝度が得られることが分かった。 In accordance with the method described in Example 1, CaCO 3 and Al 2 O 3 were mixed so that the atomic equivalent ratio of Ca and Al was 12:14, and europium oxide (Eu 2 O 3 ) was added thereto. 12 Al 14 O 33 standard, converted to Eu, changed in the range of 0 to 8 atomic%, added, and dry-pulverized and stirred powder was heated to 1200 ° C. in the air for 1 hour and 30 minutes, It was kept at this temperature for 4 hours and fired. The thus obtained formula for Eu x (x = 0~8) represented by phosphor emission luminance when irradiated with electron beam at an acceleration voltage 3 kV (arbitrary units): (Ca 12 Al 14 O 33) 100 Eu concentration dependency was evaluated. As a result, a certain luminance is obtained when the Eu concentration as the activator is generally in the range of 0.001 to 8 atomic%, and higher luminance is obtained in the range of 1 to 4 atomic%. It was found that even higher emission luminance was obtained in the range of 6 to 2 atom%, and the highest emission luminance was obtained at 1.6 atom%.

実施例1記載の方法に従って、CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ツリウム(Tm)を、Ca12Al1433基準で、Tmに換算して0〜10原子%の範囲で変動させて添加し、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。かくして得られた式:(Ca12Al1433)100:Tm(x=0〜10)で表される蛍光体に電子線を加速電圧3kVで照射した時の発光輝度(cd/m)に対するTm濃度依存性を評価した。その結果、付活剤としてのTmの濃度が一般に0.001〜10原子%の範囲である程度の発光輝度が得られ、3〜8原子%の範囲でそれより高い発光輝度が得られ、4〜6原子%の範囲で最も高い発光輝度が得られることが分かった。 In accordance with the method described in Example 1, CaCO 3 and Al 2 O 3 were mixed so that the atomic equivalent ratio of Ca and Al was 12:14. To this, thulium oxide (Tm 2 O 3 ) was added to Ca Based on 12 Al 14 O 33 standard, converted to Tm and added in a range of 0 to 10 atomic%, dry-pulverized and stirred powder was heated to 1200 ° C. in the air for 1 hour and 30 minutes, It was kept at this temperature for 4 hours and fired. Luminescence brightness (cd / m 2 ) when the phosphor represented by the formula: (Ca 12 Al 14 O 33 ) 100 : Tm x (x = 0 to 10) is irradiated with an electron beam at an acceleration voltage of 3 kV. ) Was evaluated for Tm concentration dependency. As a result, a certain level of luminance is obtained when the concentration of Tm as an activator is generally in the range of 0.001 to 10 atomic%, and higher luminance is obtained in the range of 3 to 8 atomic%. It was found that the highest light emission luminance was obtained in the range of 6 atomic%.

実施例1記載の方法に従って、CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ユーロピウム(Eu)を、Ca12Al1433基準で、Euに換算して0.48原子%、また、導電性金属酸化物として酸化亜鉛(ZnO)を、Znに換算して、Ca12Al1433基準で、0〜10原子%の範囲で変動させて添加し、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。かくして得られた式:(Ca12Al1433)100:Eu0.48Zn(x=0〜10)で表される蛍光体に電子線を加速電圧3kVで照射した時の発光輝度(任意単位)に対するZn濃度依存性を評価した。その結果、Znの濃度が一般に0.1〜10.0原子%の範囲である程度の発光輝度が得られ、1.0〜3.0原子%の範囲でそれより高い発光輝度が得られ、2.0原子%で最も高い発光輝度が得られることが分かった。このように輝度が向上するのは、導電性金属の導電性に起因した蛍光体のチャージアップ防止のためである。
(参考例1)
In accordance with the method described in Example 1, CaCO 3 and Al 2 O 3 were mixed so that the atomic equivalent ratio of Ca and Al was 12:14, and europium oxide (Eu 2 O 3 ) was added thereto. In terms of 12 Al 14 O 33 , 0.48 atomic% in terms of Eu, zinc oxide (ZnO) as a conductive metal oxide, and in terms of Zn, 0 to 0 in terms of Ca 12 Al 14 O 33 The powder, which was added in a range of 10 to 10 atomic%, and was dry-pulverized and stirred, was heated to 1200 ° C. in the air for 1 hour and 30 minutes, and kept at this temperature for 4 hours and calcined. Luminescence brightness when the phosphor represented by the formula: (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn x (x = 0 to 10) is irradiated with an electron beam at an acceleration voltage of 3 kV ( The Zn concentration dependence on (arbitrary unit) was evaluated. As a result, a certain amount of emission luminance is obtained when the Zn concentration is generally in the range of 0.1 to 10.0 atomic%, and higher emission luminance is obtained in the range of 1.0 to 3.0 atomic%. It was found that the highest luminance was obtained at 0.0 atomic%. The luminance is improved in order to prevent the phosphor from being charged up due to the conductivity of the conductive metal.
(Reference Example 1)

CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ユーロピウム(Eu)を、Ca12Al1433基準で、Euに換算して0.48原子%((Ca12Al1433)100:Eu0.48)添加し、乾式粉砕・攪拌した粉末を大気中1200℃、大気中1300℃、Nガス中1200℃、及びNガス中1300℃の4種類の焼成雰囲気にて、焼成時間1、2、4及び8時間の4種類で焼成すると共に、ロータリーポンプにより排気焼成についても実施した。 CaCO 3 and Al 2 O 3 were mixed so that the atomic equivalent ratio of Ca and Al was 12:14, and europium oxide (Eu 2 O 3 ) was added to this with reference to Ca 12 Al 14 O 33 , In conversion to Eu, 0.48 atomic% ((Ca 12 Al 14 O 33 ) 100 : Eu 0.48 ) was added, and the dry pulverized and stirred powder was 1200 ° C. in air, 1300 ° C. in air, and N 2 gas. While firing at four types of firing times of 1, 2, 4 and 8 hours in four types of firing atmospheres of 1200 ° C. and 1300 ° C. in N 2 gas, exhaust firing was also performed by a rotary pump.

かくして得られた蛍光体に電子線を加速電圧3kVで照射した時の発光輝度(任意単位)に対する焼成時間依存性を評価し、その結果を図7に示す。図中、C12A7は、Ca12Al1433を意味する。図7から明らかなように、焼成時間1〜8時間でほぼ満足できる輝度を有する蛍光体が得られ、特に2〜4時間でより高い輝度を有する蛍光体が得られることが分かる。なお、焼成雰囲気としては、Nガス中の場合により高い輝度を有する蛍光体が得られる傾向があった。 The phosphor time thus obtained was evaluated for the firing time dependence on the emission luminance (arbitrary unit) when an electron beam was irradiated with an acceleration voltage of 3 kV, and the results are shown in FIG. In the figure, C12A7 means Ca 12 Al 14 O 33. As is apparent from FIG. 7, it can be seen that a phosphor having a substantially satisfactory luminance can be obtained at a firing time of 1 to 8 hours, and in particular, a phosphor having a higher luminance can be obtained at 2 to 4 hours. As the firing atmosphere, there was a tendency to obtain a phosphor having higher luminance in the case of N 2 gas.

上記参考例1と上記実施例とから、参考例1で得られた蛍光体にTmを含有せしめたものやさらに導電性金属を含有せしめたものも、参考例の結果と同様な結果が得られ、焼成雰囲気としては、Nガス中の場合に、より高い輝度を有する蛍光体が得られることが分かる。 From the above Reference Example 1 and the above Example, the same results as those of the Reference Example are obtained for the phosphor obtained in Reference Example 1 containing Tm and further containing a conductive metal. It can be seen that a phosphor having higher luminance can be obtained when the firing atmosphere is N 2 gas.

本発明によれば、結晶構造内にカゴ状格子を有する物質を母体とするため、包接サイト内を占有する付活剤の効率的な励起や、複数の占有サイトへの共付活や、導電性酸化物の添加が可能であることに起因して、優れた発光輝度・色純度を示すと共に、チャージアップも防止された蛍光体が実現できるので、この蛍光体は発光素子用に好適である。本発明は、薄型のFPD(液晶ディスプレイ、PDP、有機ELディスプレイ、FED等)、特にFEDやCRT等のディスプレイ分野への利用が工業的に極めて有用である。   According to the present invention, since a substance having a cage lattice in the crystal structure is used as a base, efficient excitation of an activator occupying the inclusion site, co-activation to a plurality of occupied sites, Due to the fact that a conductive oxide can be added, a phosphor exhibiting excellent emission luminance and color purity and preventing charge-up can be realized. Therefore, this phosphor is suitable for a light emitting device. is there. The present invention is industrially extremely useful for use in thin FPDs (liquid crystal displays, PDPs, organic EL displays, FEDs, etc.), particularly FEDs and CRTs.

上段は、実施例1で得られた(Ca12Al1433)100:Eu0.48のX線回折スペクトル、下段は、既知結晶構造から求めたピーク位置と強度を表すグラフ。The upper graph shows the X-ray diffraction spectrum of (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1, and the lower graph shows the peak position and intensity determined from the known crystal structure. 実施例1で得られた(Ca12Al1433)100:Eu0.48に波長254nmの紫外線を照射した時の発光スペクトル。An emission spectrum when (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1 is irradiated with ultraviolet light having a wavelength of 254 nm. 実施例1で得られた(Ca12Al1433)100:Eu0.48に電子線を加速電圧3kVで照射した時の発光スペクトル。An emission spectrum when (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1 is irradiated with an electron beam at an acceleration voltage of 3 kV. 実施例1で得られた(Ca12Al1433)100:Eu0.48、(Ca12Al1433)100:Tm4。8、及び(Ca12Al1433)100:Eu0.48Tm4.8)の各試料に、電子線を加速電圧3kVで照射した時の発光スペクトル。(Ca 12 Al 14 O 33 ) 100 : Eu 0.48 , (Ca 12 Al 14 O 33 ) 100 : Tm 4. 8 obtained in Example 1, and (Ca 12 Al 14 O 33 ) 100 : Eu 0 .48 Tm 4.8 ) Emission spectra when each sample was irradiated with an electron beam at an acceleration voltage of 3 kV. 実施例1で得られたCa12Al1433、(Ca12Al1433)100:Eu0.48、及び(Ca12Al1433)100:Eu0.48Zn10に電子線を加速電圧3kVで照射した時の発光スペクトル。Electron beams were applied to Ca 12 Al 14 O 33 , (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 , and (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn 10 obtained in Example 1. Emission spectrum when irradiated at an acceleration voltage of 3 kV. 実施例2で得られたCa12Al1433、(Ca12Al1433)100:Eu0.48、及び(Ca12Al1433)100:Eu0.48Zn10に電子線を加速電圧3kVで照射した時の発光スペクトル。Electron beams were applied to Ca 12 Al 14 O 33 , (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 , and (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 Zn 10 obtained in Example 2. Emission spectrum when irradiated at an acceleration voltage of 3 kV. 参考例1で得られた蛍光体の輝度に対する、焼成条件依存性を示すグラフ。The graph which shows the baking condition dependence with respect to the brightness | luminance of the fluorescent substance obtained in the reference example 1. FIG.

Claims (14)

結晶構造内に少なくとも1種の原子を包接できるカゴ状格子を有する物質を母体とすることを特徴とする蛍光体。   1. A phosphor characterized in that a substance having a cage lattice capable of including at least one kind of atom in a crystal structure is used as a base material. 前記母体に付活剤を添加、含有せしめてなり、この付活剤が母体のカゴ状格子の包接サイトとそれ以外の格子内サイトとに共付活されてなることを特徴とする請求項1記載の蛍光体。   An activator is added to and contained in the matrix, and this activator is co-activated at the inclusion site of the cage cage lattice of the matrix and the other intra-lattice site. The phosphor according to 1. 励起手段に応じて異なる発光をする物質を母体とすることを特徴とする蛍光体。   1. A phosphor characterized in that a base material is a substance that emits light depending on excitation means. 前記励起手段が紫外線照射及び電子線照射であり、前記物質が結晶構造内に少なくとも2種の原子を包接できるカゴ状格子を有する物質であることを特徴とする請求項3記載の蛍光体。   4. The phosphor according to claim 3, wherein the excitation means is ultraviolet irradiation and electron beam irradiation, and the substance is a substance having a cage lattice capable of including at least two kinds of atoms in the crystal structure. 前記母体に付活剤を添加せしめてなることを特徴とする請求項3又は4記載の蛍光体。   The phosphor according to claim 3 or 4, wherein an activator is added to the base material. 前記付活剤が、Mn、Sn、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びBiからなる群から選ばれた少なくとも1種の元素であることを特徴とする請求項2又は5記載の蛍光体。   The activator is at least selected from the group consisting of Mn, Sn, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Bi. 6. The phosphor according to claim 2, wherein the phosphor is one kind of element. 前記母体にさらに導電性金属を添加せしめてなることを特徴とする請求項2又は5記載の蛍光体。   6. The phosphor according to claim 2, wherein a conductive metal is further added to the base. 前記導電性金属が、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiからなる群から選ばれた少なくとも1種の金属であることを特徴とする請求項7記載の蛍光体。   The conductive metal is at least one metal selected from the group consisting of Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti. The phosphor according to claim 7, wherein Ca、Sr又はBaを含み、焼成の際に分解してカルシウム酸化物、ストロンチウム酸化物又はバリウム酸化物となり得る化合物と、Alを含み、焼成の際に分解してアルミニウム酸化物となり得る化合物とをCa、Sr又はBaとAlとの原子当量比で12:14となるように配合して得た母体混合物に、付活剤を、その元素に換算して、前記母体混合物基準で、0.001〜10原子%添加し、かくして得られた混合物を焼成することにより、式:(Ca(又はSr若しくはBa)12Al1433)100:A(式中、Aは付活剤としての前記少なくとも1種の元素を表し、xは0.001〜10である)で表される蛍光体を得ることを特徴とする蛍光体の作製方法。 A compound containing Ca, Sr or Ba, which can be decomposed upon firing to become calcium oxide, strontium oxide or barium oxide, and a compound containing Al, which can be decomposed to become aluminum oxide upon firing. In the base mixture obtained by blending so that the atomic equivalent ratio of Ca, Sr or Ba and Al is 12:14, the activator is converted to the element, and 0.001 on the basis of the base mixture. By adding 10 atomic% and firing the mixture thus obtained, the formula: (Ca (or Sr or Ba) 12 Al 14 O 33 ) 100 : A x (wherein A represents the activator described above) A method for producing a phosphor, comprising: obtaining a phosphor represented by at least one element, wherein x is 0.001 to 10. 前記焼成の際に分解してカルシウム酸化物、ストロンチウム酸化物又はバリウム酸化物となり得る化合物及び前記焼成の際に分解してアルミニウム酸化物となり得る化合物が、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物及びシュウ酸塩から選ばれた化合物であることを特徴とする請求項9記載の蛍光体の作製方法。   Compounds that can be decomposed during the calcination to become calcium oxide, strontium oxide, or barium oxide and compounds that can be decomposed during the calcination to become aluminum oxide are oxides, hydroxides, carbonates, nitrates The method for producing a phosphor according to claim 9, wherein the phosphor is a compound selected from halides and oxalates. 前記付活材が、Mn、Sn、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びBiから選ばれた少なくとも1種の元素又はその酸化物からなることを特徴とする請求項9又は10に記載の蛍光体の作製方法。   The activator is at least one selected from Mn, Sn, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Bi. It consists of an element or its oxide, The manufacturing method of the fluorescent substance of Claim 9 or 10 characterized by the above-mentioned. 請求項9において、さらに導電性金属を含む導電性酸化物となり得る化合物を、その金属に換算して、前記母体混合物基準で、1〜40原子%添加し、かくして得られた混合物を焼成することにより、式:(Ca(又はSr若しくはBa)12Al1433)100:A(式中、Aは付活剤としての前記少なくとも1種の元素を表し、Bは前記少なくと1種の導電性金属を表し、xは0.001〜10であり、yは1〜40である)で表される蛍光体を得ることを特徴とする蛍光体の作製方法。 In Claim 9, the compound which can become a conductive oxide further containing a conductive metal is added to 1 to 40 atom% in terms of the matrix mixture in terms of the metal, and the mixture thus obtained is fired. the formula: (Ca (or Sr or Ba) 12 Al 14 O 33) 100: in a x B y (wherein, a represents at least one element as activator, B is the said at least 1 A method for producing a phosphor, comprising: obtaining a phosphor represented by a conductive metal of a kind, wherein x is 0.001 to 10 and y is 1 to 40. 前記導電性酸化物となり得る化合物が、Zn、In、Sn、Cr、Mo、Os、Re、Nb、V、W、Sm、Ir、Ru、Nd、La、及びTiからなる群から選ばれた少なくとも1種の導電性金属を含む酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物並びにシュウ酸塩から選ばれた化合物であることを特徴とする請求項12記載の蛍光体の作製方法。   The compound that can be the conductive oxide is at least selected from the group consisting of Zn, In, Sn, Cr, Mo, Os, Re, Nb, V, W, Sm, Ir, Ru, Nd, La, and Ti. 13. The method for producing a phosphor according to claim 12, wherein the phosphor is a compound selected from oxides, hydroxides, carbonates, nitrates, halides and oxalates containing one kind of conductive metal. 請求項1〜8のいずれかに記載の蛍光体又は請求項9〜13のいずれかに記載の作製方法により作製された蛍光体を含んでなることを特徴とする発光素子。   A light emitting device comprising the phosphor according to any one of claims 1 to 8 or the phosphor produced by the production method according to any one of claims 9 to 13.
JP2005267161A 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device Active JP5016804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267161A JP5016804B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267161A JP5016804B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Publications (2)

Publication Number Publication Date
JP2007077284A true JP2007077284A (en) 2007-03-29
JP5016804B2 JP5016804B2 (en) 2012-09-05

Family

ID=37937906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267161A Active JP5016804B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Country Status (1)

Country Link
JP (1) JP5016804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041438A (en) * 2006-08-07 2008-02-21 Pioneer Electronic Corp Plasma display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026608A (en) * 2002-06-27 2004-01-29 Japan Science & Technology Corp Electrically conductive inorganic compound including alkali metal
JP2004300261A (en) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd Phosphor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026608A (en) * 2002-06-27 2004-01-29 Japan Science & Technology Corp Electrically conductive inorganic compound including alkali metal
JP2004300261A (en) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd Phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041438A (en) * 2006-08-07 2008-02-21 Pioneer Electronic Corp Plasma display panel

Also Published As

Publication number Publication date
JP5016804B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4931175B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP4096620B2 (en) Method for manufacturing plasma display device
US7525245B2 (en) Electron beam excited fluorescence emitting device
JP2008181886A (en) Plasma display device
EP1995295A1 (en) Phosphor for display and field emission display
JP4931176B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JP4873910B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP5016804B2 (en) Phosphor, method for manufacturing the same, and light emitting device
TWI398505B (en) A phosphor and an electron beam to excite the light emitting element
JP4873909B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP2007177156A (en) Phosphor and its manufacturing method, and light-emitting element
JP2006335898A (en) Phosphor for low energy electron beam, phosphor paste and fluorescent display device
JP4526904B2 (en) Phosphor and plasma display device
JP5386092B2 (en) Method for producing oxide phosphor
JP3514836B2 (en) Green light emitting phosphor
JP2009114304A (en) Nanoparticle green phosphor for electron beam excitation
JP2004263068A (en) Green light emitting fluorescent substance for low voltage/high current density use, and field emission type display unit using the same
KR20000059660A (en) A red fluorescent body based SrTiO3and process for preparing them
JP2003336057A (en) Plasma display device
KR100270409B1 (en) Ared flurorescent body based lanthanum titanate and its preparing method
JP2006249120A (en) Phosphor for electron-beam-excited light-emitting element
JP2007329027A (en) Field emission display
JP2004224842A (en) Production method for high-luminance illuminator, and high-luminance illuminator
JPH0260707B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5016804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250