JP2004026608A - Electrically conductive inorganic compound including alkali metal - Google Patents

Electrically conductive inorganic compound including alkali metal Download PDF

Info

Publication number
JP2004026608A
JP2004026608A JP2002188561A JP2002188561A JP2004026608A JP 2004026608 A JP2004026608 A JP 2004026608A JP 2002188561 A JP2002188561 A JP 2002188561A JP 2002188561 A JP2002188561 A JP 2002188561A JP 2004026608 A JP2004026608 A JP 2004026608A
Authority
JP
Japan
Prior art keywords
alkali metal
compound
concentration
12sro
12cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188561A
Other languages
Japanese (ja)
Inventor
Hideo Hosono
細野 秀雄
Masahiro Hirano
平野 正浩
Katsuro Hayashi
林 克郎
Hitoshi Miyagawa
宮川 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002188561A priority Critical patent/JP2004026608A/en
Publication of JP2004026608A publication Critical patent/JP2004026608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain substances having a high electrical conductivity (>10<SP>-4</SP>Scm<SP>-1</SP>) at room temperature in a solid solution system of CaO and Al<SB>2</SB>O<SB>3</SB>. <P>SOLUTION: The substances include a 12CaO-7Al<SB>2</SB>O<SB>3</SB>compound including alkali metal atoms or ions of a concentration of ≥1x10<SP>18</SP>cm<SP>-3</SP>, a 12SrO-7Al<SB>2</SB>O<SB>3</SB>compound including alkali metal atoms or ions of a concentration of ≥1x10<SP>18</SP>cm<SP>-3</SP>, and further a mixed crystal compound of 12CaO-7Al<SB>2</SB>O<SB>3</SB>and 12SrO-7Al<SB>2</SB>O<SB>3</SB>including alkali metal atoms or ions of a concentration of ≥1x10<SP>18</SP>cm<SP>-3</SP>. These compounds have an electrical conductivity of ≥10<SP>-4</SP>Scm<SP>-1</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、12CaO・7Al化合物(以下C12A7と記す。)、12SrO・7Al化合物(以下S12A7と記す。)、又は12CaO・7Alと12SrO・7Alとの混晶化合物、及びこれらの製造方法と、これらの化合物の用途に関する。
【0002】
【従来の技術】
1970年にH.B.Bartlらは、C12A7結晶が2分子を含む単位胞にある66個の酸素のうち2個を、結晶中に存在するケージ内の空間に「フリー酸素」として包接しているという、特異な特徴を持つことを示していた(H.B.Bartl and T.Scheller, Neuses Jarhrb. Mineral.,Monatsh.1970,547)。以後、このフリー酸素が種々の陰イオンに置換できることが明らかにされた。
【0003】
本発明者らの一人である細野は、CaCOとAl又はAl(OH)を原料とし、空気中で1200℃の温度で固相反応により合成したC12A7結晶の電子スピン共鳴を測定することで、1×1019個cm−3程度のO が包接されていることを発見し、フリー酸素の一部がO の形でケージ内に存在するというモデルを提案した(H.Hosono and Y. Abe,Inorg.Chem.26,1193,1987、「材料科学」,第33巻,第4号,p171−172,1996)。
【0004】
本発明者らは、カルシウムとアルミニウムを概略12:14の原子当量比で混合した原料を、雰囲気と温度を制御した条件下で固相反応させ、1020個cm−3以上の高濃度の活性酸素種を包接するC12A7化合物が得られることを新たに見出した。その化合物自体、その製法、包接イオンの取り出し手段、活性酸素イオンラジカルの同定法、および該化合物の用途に関する発明について、特許出願した(特願2001−49524,PCT/JP01/03252)。
【0005】
また、該化合物中のOHイオンなど酸素以外のアニオン濃度を制御し、700℃付近で、活性酸素を包接させたり、取り出したりする方法を新たに見出し、これに関する発明を特許出願した(特願2001−226843)。さらに、活性酸素を高濃度に含むC12A7化合物に電場を印加することで、高密度のOイオンビームを取り出せることを見出し、これに関する発明を特許出願した(特願2001−377293)。
【0006】
また、水中、水分を含む溶媒中、又は水蒸気を含む気体中で水和反応させたC12A7化合物粉末を、酸素雰囲気で焼成することにより、OHイオンを1021個cm−3以上の濃度で包接するC12A7化合物を合成し、その化合物自体、その製法、OHイオンの同定法、及び該化合物の応用に関する発明について、特許出願した(特願2001−117546)。
【0007】
また、水素陰イオンを含むC12A7化合物が高速イオン伝導を示す物質であること、電場の印加によりその水素陰イオンを真空中に引き出せることを見出した。さらには、紫外線又はX線照射により緑色の着色が生じること、同時に電気的絶縁体から電気伝導体に永続的に変化し、加熱又は強い可視光の照射により再び絶縁状態に戻せることも発見し、これの応用に関する発明について、特許出願した(特願2002−117314)。
【0008】
また、C12A7化合物と同等の結晶構造を持つ物質として、S12A7化合物が知られている(O.Yamaguchi et al.,J.Am.Ceram.Soc.69[2]C−36,1986)。本発明者らは、S12A7についてもその合成方法と活性酸素イオンの包接方法、該化合物の応用に関する発明について、特許出願した(特願2002−045302)。
【0009】
【発明が解決しようとする課題】
これまで、CaOとAlの固溶系において、室温で高い電気伝導性(>10−4Scm−1)を有する物質を得ることは困難であった。また、上記に述べた水素陰イオンを包接したC12A7では、永続的な電気伝導性を実現するためには、紫外線照射の処理が必要であった。
【0010】
【課題を解決するための手段】
本発明者らは、水素陰イオンを包接したC12A7化合物に関する研究から得られた知見を基に研究を重ねた結果、高温のアルカリ金属蒸気中に保持されたC12A7化合物が、紫外線照射を行わないにも関わらず、緑色の着色を生じていること、また、同時に電気伝導性を有していることを発見した。
【0011】
本発明は、種々の陰イオンを包接することが可能で、安定な固体材料であるC12A7に、アルカリ金属を包接させることによって、本来は電気的絶縁体であるC12A7を電気伝導体に永続的に転換させる方法と、室温大気中で電気伝導性を発現できる材料を提供する。
【0012】
すなわち、本発明は、下記のものからなる。
(1) 1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とするC12A7化合物。
(2) 1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とするS12A7化合物。
(3) 1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とするC12A7とS12A7との混晶化合物。
(4) アルカリ金属が、ナトリウム又はリチウムであることを特徴とする上記(1)から(3)のいずれかに記載された化合物。
(5) 室温で電気伝導率10−6Scm−1以上の電気伝導性を有することを特徴とする上記(1)から(4)のいずれかに記載された化合物。
【0013】
(6) 12CaO・7Al化合物、12SrO・7Al化合物、又は12CaO・7Alと12SrO・7Alとの混晶化合物をアルカリ金属蒸気の存在する雰囲気中で500℃以上の温度で熱処理を施して1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接させることを特徴とする上記(1)から(5)のいずれかに記載の化合物の製造方法。
【0014】
(7)上記(1)から(5)のいずれかに記載された化合物を用いることを特徴とする透明電極又は透明配線。
(8)上記(1)から(5)のいずれかに記載された化合物を用いることを特徴とする透明蛍光体。
(9)上記(8)に記載された透明蛍光体を用いることを特徴とする紫外光又はX線検出素子。
【0015】
【発明の実施の形態】
本発明の化合物の製造方法において、出発物質は、純粋なC12A7化合物でもよいし、処理中にC12A7特有の結晶構造が破壊されない限りは、カルシウムとアルミニウムの一部又は全てが他の元素で置換されたC12A7化合物と同等の結晶構造をもつ混晶や固溶体(以下、これらを同等物質と略す)でもよい。
【0016】
C12A7化合物と同等の結晶構造をもつ物質として、現在、S12A7化合物が知られており、CaとSrの混合比を自由に変化させて混合することができる。つまり、C12A7とS12A7の混晶化合物でもよい。また、初期に包接されている陰イオンの種類や量は、アルカリ金属の包接効果に大きな影響を及ぼさない。さらに、形態は、粉末、膜、多結晶体、単結晶のいずれでもよい。
【0017】
出発物質であるC12A7は、カルシウムとアルミニウムを原子当量比で12:14含む原料を用い、焼成温度1200℃以上1415℃未満で固相反応させることで合成される。代表的な原料は炭酸カルシウムと酸化アルミニウムの混合物である。
【0018】
単結晶は、固相反応で得られたC12A7を前駆体として、帯融法(FZ法)によって得ることができる。C12A7単結晶の育成には、棒状のセラミック前駆体に赤外線を集光しながら前駆体棒を引き上げることにより溶融帯を移動させて、溶融帯−凝固部界面に単結晶を連続的に成長させる。本発明者らは、高濃度の活性酸素種を含むC12A7化合物単結晶と、気泡の無いC12A7単結晶の製造方法に関する発明について、特許出願している(特願2001−226843号)。
【0019】
本発明の化合物を製造するには、出発物質のC12A7化合物及び同等物質を、アルカリ金属蒸気を含む雰囲気中に、500℃以上、望ましくは800℃以上、1350℃未満の熱処理温度で、出発物質の形態に応じて、数分から数時間保持することによりアルカリ金属を出発物質に拡散させた後、200℃/時間以上、望ましくは200℃/分以上の降温速度で速やかに冷却する。熱処理温度が500℃未満では、アルカリ金属の該物質への拡散速度が小さく1018個cm−3未満にしかアルカリ金属原子及び/又はイオンを包接できない。1350℃以上の高温では該物質が分解してしまう。アルカリ金属蒸気を含む雰囲気は、石英ガラスのような熱的、化学的耐久性のある容器中にアルカリ金属片やアルカリ金属粉末と出発物質を真空封入し、容器全体を加熱することでアルカリ金属が蒸発することにより形成される。
【0020】
以上の高温熱処理によりアルカリ金属を包接させた当該物質は、純粋なC12A7が出発物質であれば黄緑から深緑色の着色が認められる。同時に高温処理前では電気的絶縁体(10−11Scm−1以下)であったC12A7が、室温で約10−2Scm−1程度の電気伝導性を示すようになる。化合物中にアルカリ金属が包接されていることは、ラザフォード後方散乱分光スペクトルにより確認できる。ただし、該スペクトルからではアルカリ金属の状態がイオンか原子かは識別できない。
【0021】
当該物質中に包接されたアルカリ金属は、包接直後は、電気的に中性な原子状態、又はマイナス1価に帯電したイオン状態、あるいは、その2つが混在した状態にあると考えられる。該状態のアルカリ金属のほとんどは、直ぐに、電子を放出し、原子状態のアルカリ金属はプラス1価のイオン状態に、イオン状態のアルカリ金属は、原子状態に変化すると考えられる。すなわち、包接されたアルカリ金属は、原子又はイオン状態、あるいは両者の混在した状態にあると考えられる。したがって、包接されるアルカリ金属の濃度は原子及び/又はイオンの個数として示すことができる。
【0022】
放出された電子は、当該物質中のケージに緩く束縛され、Fセンターを形成する。電場の印加により、Fセンターの電子がケージ間をホッピングすることで結晶中を移動し、図3に示す電気伝導性を示す様になると解釈される。室温で10−4Scm−1以上の電気伝導度を生じるためには、1×1018個cm−3、望ましくは1019個cm−3以上のFセンターを形成させる必要があり、そのために、1×1018個、望ましくは1019個cm−3以上のアルカリ金属原子及び/又はイオンを包接させる必要がある。
【0023】
1019個cm−3の個数のアルカリ金属を原子及び/又はイオンの形で包接するC12A7はほぼ同数のFセンターが形成される。Fセンターは、440nm付近に吸収バンドを有するが、200nm厚さの試料の可視光透過率は99%であり、透明膜とみなすことができる。
【0024】
C12A7中に存在するケージの個数は約7×1021個cm−3である。したがって、単純に1つのケージに一個のアルカリ金属原子及び/又はイオンが包接されると、包接される最大個数は約7×1021個cm−3である。また、ケージの大きさは約0.4nmであり、アルカリ金属のイオン半径は0.06〜0.17nmである。つまり、Li、Na、K、Rb、Csのアルカリ金属を当該物質は包接することが可能であり、いずれのアルカリ金属イオンを包接させても当該物質を電気伝導体に転換することができる。
よって、これらの化合物を太陽電池、液晶表示素子などの透明電極又は透明配線として用いることができる。
【0025】
アルカリ金属を包接した当該物質は、図4に示すように、紫外光又はX線励起により、波長375nmを中心とした300〜500nmにわたるブロードな蛍光を示す。
よって、これらの化合物を励起光源に対する透明蛍光体として用いることが可能である。また、同蛍光体を紫外光又はX線検出素子(イメージインテンシファイア)の蛍光面に用いることが可能である。イオン・電子線による当該物質の励起においては、当該物質が電気伝導性を持つことから、従来の蛍光体に比べチャージアップ効果が低く抑えられる。
【0026】
【実施例】
次に、実施例によって本発明をさらに詳細に説明する。
実施例1
帯融法によって作製したC12A7単結晶を切り出し、両面研磨することで厚み約0.3mmの板状の試料に加工した。これを約0.03mgの金属ナトリウム片と共に、石英管中に挿入、封管し、800℃で3時間保持した後、炉外室温環境に取り出し、速やかに冷却した。図1に、ラザフォード後方散乱分光法(RBS)により求めたこの試料の深さ方向に対するNa金属原子及び/又はイオンの濃度分布を示す。図2は、昇温前後におけるNa金属を包接したC12A7単結晶の光吸収スペクトルをNa金属を包接しないC12A7単結晶と比較して示したものである。
【0027】
図3に、この試料の電気伝導度の温度依存性を示す。Na金属包接前では電気伝導性を示さなかった試料(10−11Scm−1以下)が、包接後に室温大気中で4.3×10−2Scm−1の電気伝導度を示すようになる。試料の可視域での吸収率は、200nmの厚みに対しては1 %以下であり、当該化合物を透明導電膜として用いることが可能である。
【0028】
図4に、この試料の励起スペクトル及び蛍光スペクトルを示す。Na金属を包接後300〜500nmにわたりブロードな発光を示している。
【図面の簡単な説明】
【図1】図1は、実施例1で得られたC12A7単結晶表面からのNa金属原子及び/又はイオンの濃度分布(縦軸には濃度を、横軸には深さをとった。)を示すグラフである。
【図2】図2は、実施例1で得られたC12A7単結晶の光吸収スペクトルを示すグラフである。
【図3】図3は、実施例1で得られたC12A7単結晶の電気伝導度の温度依存性(縦軸には導電率の対数を、横軸には絶対温度の−1/4乗をとった。)を示すグラフである。
【図4】図4は、実施例1で得られたC12A7単結晶の励起スペクトルと蛍光スペクトルを示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, 12CaO · 7Al 2 O 3 compound (hereinafter referred to as C12A7.), 12SrO · 7Al 2 O 3 compound (hereinafter referred to as S12A7.), Or the 12CaO · 7Al 2 O 3 and 12SrO · 7Al 2 O 3 The present invention relates to mixed crystal compounds, methods for producing them, and uses of these compounds.
[0002]
[Prior art]
H. in 1970 B. Bartl et al. Have the unique feature that the C12A7 crystal includes two of the 66 oxygens in a unit cell containing two molecules as "free oxygen" in the space in the cage existing in the crystal. (HB Bartl and T. Scheller, Neuses Jarrhr. Mineral., Monatsh. 1970, 547). Thereafter, it was revealed that this free oxygen can be replaced by various anions.
[0003]
Hosono, one of the present inventors, measured the electron spin resonance of a C12A7 crystal synthesized from CaCO 3 and Al 2 O 3 or Al (OH) 3 by a solid-state reaction at 1200 ° C. in air. As a result, it was found that about 1 × 10 19 cm −3 of O 2 was included, and a model was proposed in which a part of free oxygen was present in the cage in the form of O 2 . (H. Hosono and Y. Abe, Inorg. Chem. 26, 1193, 1987, "Materials Science", Vol. 33, No. 4, p171-172, 1996).
[0004]
The present inventors conducted a solid-phase reaction of a raw material in which calcium and aluminum were mixed at an atomic equivalence ratio of approximately 12:14 under conditions where the atmosphere and temperature were controlled, and a high activity of 10 20 cm −3 or more. It has been newly found that a C12A7 compound that includes oxygen species can be obtained. A patent application was filed for the compound itself, its production method, a means for extracting clathrate ions, a method for identifying active oxygen ion radicals, and an invention relating to the use of the compound (Japanese Patent Application No. 2001-49524, PCT / JP01 / 03252).
[0005]
Further, OH in the compound - Controls the anion concentration other than oxygen ion, in the vicinity of 700 ° C., or by inclusion of active oxygen, newly found a method or removed and patent the invention relates to this (Japanese Application 2001-226843). Further, they have found that a high-density O - ion beam can be extracted by applying an electric field to a C12A7 compound containing active oxygen at a high concentration, and have applied for a patent relating to this invention (Japanese Patent Application No. 2001-377293).
[0006]
Further, water, solvents including water, or a C12A7 compound powder obtained by hydration reaction in a gas containing water vapor, by firing in an oxygen atmosphere, OH - ions 10 21 cm -3 or more at a concentration of follicles contact C12A7 compound synthesized, the compounds per se, their preparation, OH - identification of ions, and the invention relates to the application of said compounds, and patent application (Japanese Patent application No. 2001-117546).
[0007]
Further, they have found that a C12A7 compound containing a hydrogen anion is a substance exhibiting high-speed ionic conduction, and that the hydrogen anion can be extracted into a vacuum by applying an electric field. In addition, they discovered that green coloration occurs due to ultraviolet or X-ray irradiation, and at the same time, it changes permanently from an electrical insulator to an electrical conductor, and can be returned to an insulating state again by heating or irradiation of strong visible light, A patent application was filed for an invention relating to this application (Japanese Patent Application No. 2002-117314).
[0008]
Further, as a substance having a crystal structure equivalent to that of the C12A7 compound, an S12A7 compound is known (O. Yamaguchi et al., J. Am. Ceram. Soc. 69 [2] C-36, 1986). The present inventors filed a patent application for S12A7 with respect to a method for synthesizing the same, a method for inclusion of active oxygen ions, and an invention relating to the application of the compound (Japanese Patent Application No. 2002-0445302).
[0009]
[Problems to be solved by the invention]
Heretofore, it has been difficult to obtain a substance having high electric conductivity (> 10 −4 Scm −1 ) at room temperature in a solid solution system of CaO and Al 2 O 3 . Further, in the case of C12A7 in which a hydrogen anion was included as described above, an ultraviolet irradiation treatment was necessary to realize permanent electric conductivity.
[0010]
[Means for Solving the Problems]
The present inventors have repeated studies based on the knowledge obtained from the study on the C12A7 compound including a hydrogen anion, and found that the C12A7 compound held in the high-temperature alkali metal vapor does not perform ultraviolet irradiation. Nevertheless, they have found that they have been colored green and have electrical conductivity at the same time.
[0011]
The present invention makes it possible to include C12A7, a stable solid material, which is capable of encapsulating various anions. And a material capable of exhibiting electrical conductivity in the atmosphere at room temperature.
[0012]
That is, the present invention includes the following.
(1) A C12A7 compound comprising an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more.
(2) The S12A7 compound, which contains an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more.
(3) A mixed crystal compound of C12A7 and S12A7, which contains an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more.
(4) The compound according to any one of the above (1) to (3), wherein the alkali metal is sodium or lithium.
(5) The compound according to any one of the above (1) to (4), which has an electric conductivity of 10 −6 Scm −1 or more at room temperature.
[0013]
(6) 12CaO · 7Al 2 O 3 compound, 12SrO · 7Al 2 O 3 compound, or a mixed crystal compound of the 12CaO · 7Al 2 O 3 and 12SrO · 7Al 2 O 3 in an atmosphere in the presence of an alkali metal vapor 500 ° C. The method according to any one of the above (1) to (5), wherein a heat treatment is performed at the above temperature to cause inclusion of alkali metal atoms and / or ions at a concentration of 1 × 10 18 cm −3 or more. A method for producing a compound.
[0014]
(7) A transparent electrode or transparent wiring using the compound described in any one of (1) to (5) above.
(8) A transparent phosphor characterized by using the compound described in any of (1) to (5) above.
(9) An ultraviolet or X-ray detecting element, characterized by using the transparent phosphor described in (8) above.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing the compound of the present invention, the starting material may be a pure C12A7 compound, or some or all of calcium and aluminum may be replaced by another element as long as the crystal structure unique to C12A7 is not broken during the treatment. A mixed crystal or solid solution having a crystal structure equivalent to that of the C12A7 compound may be used (hereinafter, these are abbreviated as equivalent substances).
[0016]
At present, an S12A7 compound is known as a substance having a crystal structure equivalent to that of the C12A7 compound, and can be mixed by freely changing the mixing ratio of Ca and Sr. That is, a mixed crystal compound of C12A7 and S12A7 may be used. Also, the kind and amount of anions that are initially included do not significantly affect the inclusion effect of the alkali metal. Further, the form may be any of powder, film, polycrystal, and single crystal.
[0017]
C12A7, which is a starting material, is synthesized by performing a solid-phase reaction at a calcination temperature of 1200 ° C. or more and less than 1415 ° C. using a raw material containing calcium and aluminum in an atomic equivalent ratio of 12:14. A typical raw material is a mixture of calcium carbonate and aluminum oxide.
[0018]
A single crystal can be obtained by a zone melting method (FZ method) using C12A7 obtained by a solid-phase reaction as a precursor. To grow a C12A7 single crystal, the molten zone is moved by pulling up the precursor rod while focusing infrared rays on the rod-shaped ceramic precursor, and the single crystal is continuously grown at the molten zone-solidified portion interface. The present inventors have filed a patent application for an invention relating to a C12A7 compound single crystal containing a high concentration of active oxygen species and a method for producing a C12A7 single crystal without bubbles (Japanese Patent Application No. 2001-226843).
[0019]
To produce the compounds of the present invention, the starting C12A7 compound and equivalents are prepared by heating the starting C12A7 compound and equivalents in an atmosphere containing alkali metal vapor at a heat treatment temperature of 500 ° C. or more, preferably 800 ° C. or more and less than 1350 ° C. Depending on the form, the alkali metal is diffused into the starting material by holding it for several minutes to several hours, and then rapidly cooled at a rate of 200 ° C./hour or more, preferably 200 ° C./minute or more. When the heat treatment temperature is less than 500 ° C., the diffusion rate of the alkali metal into the substance is low, and the alkali metal atoms and / or ions can be included only at a temperature of less than 10 18 cm −3 . At a high temperature of 1350 ° C. or higher, the substance is decomposed. In an atmosphere containing alkali metal vapor, the alkali metal piece or alkali metal powder and the starting material are vacuum-sealed in a thermally and chemically durable container such as quartz glass, and the alkali metal is heated by heating the entire container. It is formed by evaporation.
[0020]
In the case where the alkali metal is included by the above-described high-temperature heat treatment, if pure C12A7 is a starting material, yellowish green to deep green coloring is recognized. At the same time, C12A7, which was an electrical insulator (10 −11 Scm −1 or less) before the high-temperature treatment, exhibits an electrical conductivity of about 10 −2 Scm −1 at room temperature. The inclusion of the alkali metal in the compound can be confirmed by Rutherford backscattering spectroscopy. However, it cannot be distinguished from the spectrum whether the state of the alkali metal is an ion or an atom.
[0021]
Immediately after the inclusion, the alkali metal included in the substance is considered to be in an electrically neutral atomic state, a negatively charged ionic state, or a state in which the two are mixed. It is considered that most of the alkali metal in this state immediately emits electrons, the alkali metal in the atomic state changes to a positive monovalent ionic state, and the alkali metal in the ionic state changes to an atomic state. That is, it is considered that the encapsulated alkali metal is in an atomic or ionic state or a state in which both are mixed. Therefore, the concentration of the included alkali metal can be expressed as the number of atoms and / or ions.
[0022]
The emitted electrons are loosely bound to cages in the material, forming F + centers. It can be interpreted that the application of the electric field causes the electrons at the F + center to hop between the cages and move in the crystal, so as to exhibit the electrical conductivity shown in FIG. In order to generate an electrical conductivity of 10 −4 Scm −1 or more at room temperature, it is necessary to form 1 × 10 18 cm −3 , preferably 10 19 cm −3 or more F + centers. It is necessary to include 1 × 10 18 , preferably 10 19 cm −3 or more alkali metal atoms and / or ions.
[0023]
C12A7, which includes 10 19 cm −3 alkali metals in the form of atoms and / or ions, has approximately the same number of F + centers. Although the F + center has an absorption band near 440 nm, the 200-nm-thick sample has a visible light transmittance of 99% and can be regarded as a transparent film.
[0024]
The number of cages present in C12A7 is about 7 × 10 21 cm −3 . Therefore, if one alkali metal atom and / or ion is simply included in one cage, the maximum number included is about 7 × 10 21 cm −3 . The size of the cage is about 0.4 nm, and the ionic radius of the alkali metal is 0.06 to 0.17 nm. That is, the substance can include the alkali metals of Li, Na, K, Rb, and Cs, and the substance can be converted to an electric conductor by including any of the alkali metal ions.
Therefore, these compounds can be used as a transparent electrode or a transparent wiring of a solar cell, a liquid crystal display element, or the like.
[0025]
As shown in FIG. 4, the substance containing the alkali metal exhibits broad fluorescence over 300 to 500 nm centered on a wavelength of 375 nm by ultraviolet light or X-ray excitation.
Therefore, these compounds can be used as a transparent phosphor for an excitation light source. In addition, the phosphor can be used for a fluorescent surface of an ultraviolet light or X-ray detection element (image intensifier). When the substance is excited by an ion / electron beam, the charge-up effect is suppressed to be lower than that of a conventional phosphor because the substance has electric conductivity.
[0026]
【Example】
Next, the present invention will be described in more detail with reference to examples.
Example 1
A C12A7 single crystal produced by the zone melting method was cut out and polished on both sides to be processed into a plate-like sample having a thickness of about 0.3 mm. This was inserted into a quartz tube together with about 0.03 mg of metallic sodium pieces, sealed, kept at 800 ° C. for 3 hours, taken out of the furnace at room temperature, and immediately cooled. FIG. 1 shows the concentration distribution of Na metal atoms and / or ions in the depth direction of this sample determined by Rutherford backscattering spectroscopy (RBS). FIG. 2 shows the light absorption spectra of a C12A7 single crystal with inclusion of Na metal before and after the temperature increase, in comparison with a C12A7 single crystal without inclusion of Na metal.
[0027]
FIG. 3 shows the temperature dependence of the electrical conductivity of this sample. A sample (10 −11 Scm −1 or less) that did not show electrical conductivity before inclusion of the Na metal exhibits an electrical conductivity of 4.3 × 10 −2 Scm −1 in room temperature air after inclusion. Become. The absorptance in the visible region of the sample is 1% or less for a thickness of 200 nm, and the compound can be used as a transparent conductive film.
[0028]
FIG. 4 shows an excitation spectrum and a fluorescence spectrum of this sample. It shows broad light emission over 300 to 500 nm after inclusion of Na metal.
[Brief description of the drawings]
FIG. 1 is a concentration distribution of Na metal atoms and / or ions from the surface of a C12A7 single crystal obtained in Example 1 (concentration is plotted on the vertical axis, and depth is plotted on the horizontal axis). FIG.
FIG. 2 is a graph showing a light absorption spectrum of a C12A7 single crystal obtained in Example 1.
FIG. 3 is a graph showing the temperature dependence of the electric conductivity of the C12A7 single crystal obtained in Example 1 (the ordinate represents the logarithm of the conductivity, and the abscissa represents the − 温度 power of the absolute temperature). FIG.
FIG. 4 is a graph showing an excitation spectrum and a fluorescence spectrum of the C12A7 single crystal obtained in Example 1.

Claims (9)

1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする12CaO・7Al化合物。A 12CaO · 7Al 2 O 3 compound, which contains an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more. 1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする12SrO・7Al化合物。A 12SrO · 7Al 2 O 3 compound, which contains an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more. 1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接することを特徴とする12CaO・7Alと12SrO・7Alとの混晶化合物。A mixed crystal compound of 12CaO · 7Al 2 O 3 and 12SrO · 7Al 2 O 3, which contains an alkali metal atom and / or ion at a concentration of 1 × 10 18 cm −3 or more. アルカリ金属が、ナトリウム又はリチウムであることを特徴とする請求項1から3のいずれかに記載された化合物。The compound according to any one of claims 1 to 3, wherein the alkali metal is sodium or lithium. 室温で電気伝導率10−6Scm−1以上の電気伝導性を有することを特徴とする請求項1から4のいずれかに記載された化合物。The compound according to any one of claims 1 to 4, wherein the compound has an electric conductivity of 10 -6 Scm -1 or more at room temperature. 12CaO・7Al化合物、12SrO・7Al化合物、又は12CaO・7Alと12SrO・7Alとの混晶化合物をアルカリ金属の存在する雰囲気中で500℃以上の温度で熱処理を施して1×1018個cm−3以上の濃度のアルカリ金属原子及び/又はイオンを包接させることを特徴とする請求項1から5のいずれかに記載の化合物の製造方法。12CaO · 7Al 2 O 3 compound, 12SrO · 7Al 2 O 3 compound, or a 12CaO · 7Al in 2 O 3 and 12SrO · 7Al 2 O 3 with a temperature of more than 500 ° C. in an atmosphere of the mixed crystal compound present in the alkali metal process for the preparation of a compound according to any one of claims 1-5, characterized in that for inclusion of alkali metal atoms and / or ions of 1 × 10 18 atoms cm -3 or more concentrations by heat treatment. 請求項1から5のいずれかに記載された化合物を用いることを特徴とする透明電極又は透明配線。A transparent electrode or a transparent wiring, comprising the compound according to claim 1. 請求項1から5のいずれかに記載された化合物を用いることを特徴とする透明蛍光体。A transparent phosphor using the compound according to any one of claims 1 to 5. 請求項8に記載された透明蛍光体を用いることを特徴とする紫外光又はX線検出素子。An ultraviolet or X-ray detecting element using the transparent phosphor according to claim 8.
JP2002188561A 2002-06-27 2002-06-27 Electrically conductive inorganic compound including alkali metal Pending JP2004026608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188561A JP2004026608A (en) 2002-06-27 2002-06-27 Electrically conductive inorganic compound including alkali metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188561A JP2004026608A (en) 2002-06-27 2002-06-27 Electrically conductive inorganic compound including alkali metal

Publications (1)

Publication Number Publication Date
JP2004026608A true JP2004026608A (en) 2004-01-29

Family

ID=31183279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188561A Pending JP2004026608A (en) 2002-06-27 2002-06-27 Electrically conductive inorganic compound including alkali metal

Country Status (1)

Country Link
JP (1) JP2004026608A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000741A1 (en) * 2003-06-26 2005-01-06 Japan Science And Technology Agency ELECTROCONDUCTIVE 12CaO·7Al2O3 AND COMPOUND OF SAME TYPE, AND METHOD FOR PREPARATION THEREOF
WO2005077859A1 (en) * 2004-02-13 2005-08-25 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
WO2006129674A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
WO2006129675A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
JP2007077284A (en) * 2005-09-14 2007-03-29 Ulvac Japan Ltd Phosphor, method for preparing the same and light-emitting element
JP2007077282A (en) * 2005-09-14 2007-03-29 Ulvac Japan Ltd Phosphor for electron beam-exciting light-emitting element, method for preparing the same and electron beam-exciting light-emitting element
WO2007060890A1 (en) 2005-11-24 2007-05-31 Japan Science And Technology Agency METALLIC ELECTROCONDUCTIVE 12Cao·7Al2O3 COMPOUND AND PROCESS FOR PRODUCING THE SAME
WO2008038801A1 (en) 2006-09-29 2008-04-03 Japan Science And Technology Agency Method of producing diol, polydiol, secondary alcohol or diketone compound
JP2009107858A (en) * 2007-10-26 2009-05-21 Asahi Kasei Corp Method for producing composite oxide film and electrically conductive composite compound film
KR101410636B1 (en) 2007-01-18 2014-06-20 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Antioxidant
WO2018195396A1 (en) * 2017-04-21 2018-10-25 Baylor University An oxygen-enabled composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000741A1 (en) * 2003-06-26 2005-01-06 Japan Science And Technology Agency ELECTROCONDUCTIVE 12CaO·7Al2O3 AND COMPOUND OF SAME TYPE, AND METHOD FOR PREPARATION THEREOF
US7507289B2 (en) 2003-06-26 2009-03-24 Japan Science And Technology Agency Electroconductive 12CaO—7Al2O3 and compound of same type, and method for preparation thereof
JPWO2005077859A1 (en) * 2004-02-13 2007-10-18 旭硝子株式会社 Process for producing conductive mayenite type compound
WO2005077859A1 (en) * 2004-02-13 2005-08-25 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
EP1717217A1 (en) * 2004-02-13 2006-11-02 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
JP4641946B2 (en) * 2004-02-13 2011-03-02 旭硝子株式会社 Process for producing conductive mayenite type compound
US7465433B2 (en) 2004-02-13 2008-12-16 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
EP1717217A4 (en) * 2004-02-13 2008-09-03 Asahi Glass Co Ltd Method for preparing electroconductive mayenite type compound
US7722846B2 (en) 2005-05-30 2010-05-25 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
JP4497484B2 (en) * 2005-05-30 2010-07-07 国立大学法人東京工業大学 Process for producing conductive mayenite type compound
KR101243576B1 (en) 2005-05-30 2013-03-20 도오쿄 인스티튜드 오브 테크놀로지 Process for producing conductive mayenite compound
JPWO2006129674A1 (en) * 2005-05-30 2009-01-08 国立大学法人東京工業大学 Process for producing conductive mayenite type compound
JPWO2006129675A1 (en) * 2005-05-30 2009-01-08 国立大学法人東京工業大学 Process for producing conductive mayenite type compound
WO2006129674A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
US7670585B2 (en) 2005-05-30 2010-03-02 Asahi Glass Company, Limited Method for preparing electroconductive mayenite type compound
JP4495757B2 (en) * 2005-05-30 2010-07-07 国立大学法人東京工業大学 Process for producing conductive mayenite type compound
WO2006129675A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
JP2007077282A (en) * 2005-09-14 2007-03-29 Ulvac Japan Ltd Phosphor for electron beam-exciting light-emitting element, method for preparing the same and electron beam-exciting light-emitting element
JP2007077284A (en) * 2005-09-14 2007-03-29 Ulvac Japan Ltd Phosphor, method for preparing the same and light-emitting element
US7892458B2 (en) 2005-11-24 2011-02-22 Japan Science And Technology Agency Metallic electroconductive 12CaO 7Al2O3 compound and process for producing the same
WO2007060890A1 (en) 2005-11-24 2007-05-31 Japan Science And Technology Agency METALLIC ELECTROCONDUCTIVE 12Cao·7Al2O3 COMPOUND AND PROCESS FOR PRODUCING THE SAME
US7696386B2 (en) 2006-09-29 2010-04-13 Japan Science And Technology Agency Method of producing diol, polydiol, secondary alcohol or diketone compound
WO2008038801A1 (en) 2006-09-29 2008-04-03 Japan Science And Technology Agency Method of producing diol, polydiol, secondary alcohol or diketone compound
KR101410636B1 (en) 2007-01-18 2014-06-20 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Antioxidant
JP2009107858A (en) * 2007-10-26 2009-05-21 Asahi Kasei Corp Method for producing composite oxide film and electrically conductive composite compound film
WO2018195396A1 (en) * 2017-04-21 2018-10-25 Baylor University An oxygen-enabled composition

Similar Documents

Publication Publication Date Title
US7507289B2 (en) Electroconductive 12CaO—7Al2O3 and compound of same type, and method for preparation thereof
US7892458B2 (en) Metallic electroconductive 12CaO 7Al2O3 compound and process for producing the same
Hu et al. Enhanced deep-red emission from Mn 4+/Mg 2+ co-doped CaGdAlO 4 phosphors for plant cultivation
EP1500631B1 (en) Hydrogen-containing electrically conductive inorganic compound
Shang et al. LaOF: Eu 3+ nanocrystals: hydrothermal synthesis, white and color-tuning emission properties
JP2004026608A (en) Electrically conductive inorganic compound including alkali metal
TW201034996A (en) Method for manufacturing mayenite-containing oxides and method for manufacturing conductive mayenite-containing oxides
Matos et al. Synthesis and photoluminescent properties of yttrium vanadate phosphor prepared by the non-hydrolytic sol–gel process
JP2018012825A (en) Mn ACTIVATED COMPLEX FLUORIDE FLUOPHOR AND MANUFACTURING METHOD THEREFOR
JP4111931B2 (en) Electrically conductive complex oxide crystal compound and production method thereof.
Fu et al. A convenient and efficient synthesis method to improve the emission intensity of rare earth ion doped phosphors: the synthesis and luminescent properties of novel SrO: Ce 3+ phosphor
Liao et al. Characteristics, thermodynamics, and preparation of nanocaged 12CaO· 7Al2O3 and its derivatives
CN108690617B (en) White light L ED fluorescent material and preparation method thereof
CN107635922A (en) The manufacture method of conductive mayenite compound
CN109208079A (en) A kind of preparation method of mayenite semiconductor material
CN1955130A (en) Glass ceramic and its preparation method
Lim et al. Cyclic MAM synthesis of SPION/BaMoO4: Er3+, Yb3+ composite and its optical properties
WO2007004366A9 (en) Phosphorescent material, process for producing the same, and phosphorescent display element
Amster Photosensitization of terbium fluorescence by europium in CaF2
Faridnia et al. Optimising synthesis conditions for long lasting SrAl2O4 phosphor
RU2606229C1 (en) Complex lithium-lanthanum hafnate as luminescent material for conversion of monochromatic laser radiation and method for production thereof
Jin et al. Photoluminescence and Long Persistent Luminescence Properties of a Novel Green Emitting Phosphor Ba2Y (BO3) 2Cl: Tb
Rojas-Hernandez et al. On the potential of Transparent Rare-Earth-Free ZnAl2O4 Ceramics targeted at the UV-C to UV-B emission
Bryukvina et al. Formation of color centers during growth of alkali-earth fluoride crystals
Hu et al. Noble Metals Enhanced Frequency Conversion Luminescence of Ln3+ Ions Doped Glasses

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129