JP2007073692A - Substrate processor - Google Patents

Substrate processor Download PDF

Info

Publication number
JP2007073692A
JP2007073692A JP2005258200A JP2005258200A JP2007073692A JP 2007073692 A JP2007073692 A JP 2007073692A JP 2005258200 A JP2005258200 A JP 2005258200A JP 2005258200 A JP2005258200 A JP 2005258200A JP 2007073692 A JP2007073692 A JP 2007073692A
Authority
JP
Japan
Prior art keywords
heater
substrate
processing
processing container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005258200A
Other languages
Japanese (ja)
Other versions
JP4616734B2 (en
Inventor
Mitsunori Ishizaka
光範 石坂
Hidehiro Nouchi
英博 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005258200A priority Critical patent/JP4616734B2/en
Publication of JP2007073692A publication Critical patent/JP2007073692A/en
Application granted granted Critical
Publication of JP4616734B2 publication Critical patent/JP4616734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hold the entire process container at a uniform temperature with a less number of heaters. <P>SOLUTION: The substrate processor has a process container 10 for processing a silicon substrate 8 and a heater 55 for heating a silicon substrate 8 in the process container 10, a heater for heating the wall surface 11 of the process container 10. The heater for heating the wall surface 11 of the process container 10 is provided as a bottom side heating heater 13 at the bottom side of the container 10. The bottom side 15 of the container 10 is thicker than the side wall 14 of the container 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板の加熱に加えて処理容器を加熱しながら基板を処理する基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus for processing a substrate while heating a processing container in addition to heating the substrate.

図2に示すように、従来の基板処理装置は、処理容器10内にシリコン基板8を保持する基板支持台3を備える。基板加熱ヒータ55で加熱した基板支持台3からの伝熱によりシリコン基板8を加熱する。また、処理容器10の壁面11を一定温度に加熱するために処理容器10の側面部側及び底面部側に側面加熱ヒータ12、底面加熱ヒータ13を取り付けて制御、加熱していた。
このように、従来例の装置では、処理容器10内のシリコン基板8を加熱する基板加熱ヒータ55の他に、処理容器10の側面を加熱する側面加熱ヒータ12と、処理容器10の底面を加熱する底面加熱ヒータ13とを設けて、壁面全面にヒータを取り付けている。なお、この種の装置では、処理容器10の底壁15の厚みaは処理容器10の側壁14の厚みbよりも薄くなっているものが通常である。
As shown in FIG. 2, the conventional substrate processing apparatus includes a substrate support 3 that holds a silicon substrate 8 in a processing container 10. The silicon substrate 8 is heated by heat transfer from the substrate support 3 heated by the substrate heater 55. Further, in order to heat the wall surface 11 of the processing container 10 to a constant temperature, the side surface heater 12 and the bottom surface heater 13 are attached to the side surface part side and the bottom surface part side of the processing container 10 to control and heat.
Thus, in the conventional apparatus, in addition to the substrate heater 55 that heats the silicon substrate 8 in the processing container 10, the side surface heater 12 that heats the side surface of the processing container 10 and the bottom surface of the processing container 10 are heated. The bottom surface heater 13 is provided, and the heater is attached to the entire wall surface. In this type of apparatus, the thickness a of the bottom wall 15 of the processing container 10 is usually thinner than the thickness b of the side wall 14 of the processing container 10.

上述した処理容器の壁面全面にヒータを取り付ける加熱方法では、処理容器側面の形状によってはヒータ形状が複雑になったり、ヒータの数が多くなったり、あるいはヒータ分割の仕方によってはヒータ制御ゾーン数も多くなったり、ヒータ制御が複雑になったりするなどの問題があった。
例えば、処理容器の側面形状が複雑になる例としては、処理容器を上部から見たとき、熱的な対称性から、できるだけ軸対称(円形)に近いことが望ましいが、実際には加工上の問題等から六角形等の多角形をしている。そのため処理容器の側面は複数の面から構成される。また、ウェハの搬送口や排気口、その他調整用のポート等が処理容器側面に取り付けられるので、それだけ形状も複雑となる。
また、ヒータの出力の関係や製作上の問題で分割数が多くなると、ヒータの数が多くなったり、あるいはヒータ分割の仕方によて制御が複雑になったりすることになる。
In the heating method in which the heater is attached to the entire wall surface of the processing vessel described above, the shape of the heater may be complicated depending on the shape of the side surface of the processing vessel, the number of heaters may be increased, or the number of heater control zones may be increased depending on how the heater is divided. There were problems such as an increase in the number of heaters and complicated heater control.
For example, as an example of the complicated shape of the side surface of the processing container, it is desirable that the processing container is as close to axial symmetry (circular) as possible from the viewpoint of thermal symmetry when viewed from the top. Due to problems, it is a polygon such as a hexagon. Therefore, the side surface of the processing container is composed of a plurality of surfaces. Further, since the wafer transfer port, the exhaust port, and other adjustment ports are attached to the side surface of the processing container, the shape becomes complicated accordingly.
In addition, if the number of divisions increases due to heater output relationships or manufacturing problems, the number of heaters increases, or the control becomes complicated depending on how the heaters are divided.

本発明の課題は、上述した従来技術の問題点を解消して、少ないヒータ数で処理容器の全体を均一な温度に保つことが可能な基板処理装置を提供することにある。   An object of the present invention is to provide a substrate processing apparatus capable of solving the above-described problems of the prior art and maintaining the entire processing container at a uniform temperature with a small number of heaters.

第1の発明は、基板を処理する処理容器と、前記処理容器内の前記基板を加熱するヒータと、前記処理容器の壁面を加熱するヒータとを有し、前記処理容器の壁面を加熱するヒータは、前記処理容器の底面部側に設けられ、前記処理容器の底面部の厚みが前記処理容器の側面部の厚みよりも厚いことを特徴とする基板処理装置である。
処理容器の底面部の厚みが側面部の厚みよりも厚いと、底面部から側面部への熱伝導によるエネルギーの移動量を大きくできるので、処理容器の底面部側に設けられたヒータで底面部側を加熱してやれば、処理容器の底面のみならず側面も加熱することができる。したがって、少ないヒータ数で処理容器の全体を均一な温度に保つことができる。
1st invention has the processing container which processes a substrate, the heater which heats the said substrate in the said processing container, and the heater which heats the wall surface of the said processing container, The heater which heats the wall surface of the said processing container Is a substrate processing apparatus provided on the bottom surface side of the processing container, wherein the thickness of the bottom surface portion of the processing container is larger than the thickness of the side surface portion of the processing container.
If the thickness of the bottom surface portion of the processing container is larger than the thickness of the side surface portion, the amount of energy transferred by heat conduction from the bottom surface portion to the side surface portion can be increased. If the side is heated, not only the bottom surface of the processing container but also the side surface can be heated. Therefore, the entire processing container can be maintained at a uniform temperature with a small number of heaters.

第2の発明は、第1の発明において、前記処理容器の壁面を加熱するヒータは、前記処理容器の底面部側に設けられ、側面部側には設けられないことを特徴とする基板処理装置である。
処理容器の側面部の厚さに対する底面部の厚さの比を、例えば1以上と大きくすれば、底面部から側面部へのエネルギー移動量を充分大きくできるので、側面部側にヒータを設けなくても、処理容器の全体を均一な温度に保つことができる。
According to a second aspect of the present invention, there is provided the substrate processing apparatus according to the first aspect, wherein the heater for heating the wall surface of the processing container is provided on the bottom surface side of the processing container and is not provided on the side surface side. It is.
If the ratio of the thickness of the bottom surface portion to the thickness of the side surface portion of the processing container is increased to, for example, 1 or more, the amount of energy transferred from the bottom surface portion to the side surface portion can be sufficiently increased, so no heater is provided on the side surface portion side. Even in this case, the entire processing container can be maintained at a uniform temperature.

本発明によれば、少ないヒータ数で処理容器の全体を均一な温度に保つことができる。   According to the present invention, the entire processing container can be maintained at a uniform temperature with a small number of heaters.

以下に本発明の実施の形態を説明する。
図1は実施の形態における枚葉式の基板処理装置の縦断面図である。
Embodiments of the present invention will be described below.
FIG. 1 is a longitudinal sectional view of a single wafer processing apparatus according to an embodiment.

図1に示すように基板処理装置は、例えば1枚のシリコン基板8を内部で略水平姿勢で処理する偏平な処理室1と、処理室1内にシリコン基板8を略水平に保持する保持具としての基板支持台3とを備える。   As shown in FIG. 1, the substrate processing apparatus includes, for example, a flat processing chamber 1 that processes a single silicon substrate 8 in a substantially horizontal position therein, and a holder that holds the silicon substrate 8 in the processing chamber 1 approximately horizontally. As a substrate support base 3.

処理容器10は、上部が開口した下容器27と、下容器27の開口を塞ぐ上容器26とにより真空引き可能に構成されて、密閉された処理室1内でシリコン基板8を処理するように構成されている。
上容器26には、シリコン基板8に対してガスを供給する複数の供給口(図示せず)が設けられる。ガス供給口は、例えば、ガスを供給するための2系統のラインがそれぞれ連結され、一方の系統は金属酸化膜、例えばアルミニウム酸化膜の有機液体原料であるTMA(Al(CH33:トリメチルアルミニウム)を供給するTMA供給ラインが連結され、他方の系統は例えば原料と反応性の高いガスである水を供給する水供給ラインが連結されている。
The processing container 10 is configured to be evacuated by a lower container 27 having an upper opening and an upper container 26 that closes the opening of the lower container 27, so that the silicon substrate 8 is processed in the sealed processing chamber 1. It is configured.
The upper container 26 is provided with a plurality of supply ports (not shown) for supplying gas to the silicon substrate 8. For example, two lines for supplying gas are connected to the gas supply port, and one line is TMA (Al (CH 3 ) 3 : trimethyl, which is an organic liquid raw material of a metal oxide film, for example, an aluminum oxide film. A TMA supply line that supplies (aluminum) is connected, and the other system is connected to a water supply line that supplies, for example, water which is a gas highly reactive with the raw material.

下容器27の一方の側壁14には排気口(図示せず)が設けられている。この排気口はガス排気ラインに接続されて、処理室1内の雰囲気を排出するようになっている。処理室1内は圧力制御手段(図示せず)によって所定の圧力に制御できるようになっている。   An exhaust port (not shown) is provided on one side wall 14 of the lower container 27. This exhaust port is connected to a gas exhaust line so as to discharge the atmosphere in the processing chamber 1. The inside of the processing chamber 1 can be controlled to a predetermined pressure by pressure control means (not shown).

また、下容器27の一方の側壁14と対向する他方の側壁14には、基板搬入出口(図示せず)が設けられている。この基板搬入出口から搬送ロボット(図示せず)によりシリコン基板8を処理室1内外に搬送できるようになっている。   The other side wall 14 facing the one side wall 14 of the lower container 27 is provided with a substrate loading / unloading port (not shown). The silicon substrate 8 can be transferred into and out of the processing chamber 1 from the substrate loading / unloading port by a transfer robot (not shown).

上述した上容器26と下容器27とは、例えばアルミニウム、ステンレスなどの金属で構成される。   The upper container 26 and the lower container 27 described above are made of a metal such as aluminum or stainless steel, for example.

基板支持台3は、処理室1内に設けられ、例えば円板状をしており、その上にシリコン基板8を保持するように構成されている。基板支持台3は、セラミックスヒータなどの基板加熱ヒータ55を内蔵して、シリコン基板8を所定温度に加熱するように構成される。基板支持台3は支持軸29を備えている。支持軸29は、処理室1の下容器27の底壁15の中央に設けられた貫通孔28より鉛直方向に挿入されて、基板支持台3を上下動させるようになっている。基板支持台3が上方にある成膜位置で成膜処理がなされ、下方の基板搬入出位置でシリコン基板8の搬送が行われる。
基板支持台3は、例えば、石英、カーボン、セラミックス、炭化ケイ素(SiC)、酸化アルミニウム(Al23)、又は窒化アルミニウム(AlN)などで構成される。
The substrate support 3 is provided in the processing chamber 1 and has a disk shape, for example, and is configured to hold the silicon substrate 8 thereon. The substrate support 3 includes a substrate heater 55 such as a ceramic heater, and is configured to heat the silicon substrate 8 to a predetermined temperature. The substrate support 3 is provided with a support shaft 29. The support shaft 29 is inserted in a vertical direction through a through hole 28 provided in the center of the bottom wall 15 of the lower container 27 of the processing chamber 1 to move the substrate support 3 up and down. The film forming process is performed at the film forming position where the substrate support 3 is above, and the silicon substrate 8 is transferred at the substrate loading / unloading position below.
The substrate support 3 is made of, for example, quartz, carbon, ceramics, silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), or aluminum nitride (AlN).

また、処理容器10は、シリコン基板8を加熱する基板加熱ヒータ55に加え、処理容器10の壁面11を加熱する加熱ヒータ13を有して、ウォームウォール型の反応容器を構成している。
ここで、ウォームウォール型の反応容器とは、反応容器の壁面を反応生成物が付着しない程度の低温(基板温度(処理温度)より低い温度)に加熱した状態で基板を処理するタイプの反応容器のことをいう。コールドウォール型と同様、基板を加熱するための熱の大部分を、反応容器の壁面を加熱することにより得るのではなく、基板は、基板支持台に設けられたヒータで直接加熱したり、ヒータにより加熱した基板支持台からの伝熱により加熱したりする。
In addition to the substrate heater 55 that heats the silicon substrate 8, the processing container 10 includes a heater 13 that heats the wall surface 11 of the processing container 10 to form a warm wall type reaction container.
Here, the warm wall type reaction vessel is a type of reaction vessel in which the substrate is processed in a state where the reaction vessel wall surface is heated to a low temperature (a temperature lower than the substrate temperature (processing temperature)) at which reaction products do not adhere. I mean. Similar to the cold wall type, most of the heat for heating the substrate is not obtained by heating the wall surface of the reaction vessel, but the substrate is directly heated by the heater provided on the substrate support base, or the heater Or by heat transfer from the substrate support heated by the above.

ガス供給口から処理室1内に流れ込んだガスは、シリコン基板8上に平行に流れて排出口を経てガス排気ラインから排気される。以上述べたように実施の形態の基板処理装置が構成される。   The gas flowing into the processing chamber 1 from the gas supply port flows in parallel on the silicon substrate 8 and is exhausted from the gas exhaust line through the exhaust port. As described above, the substrate processing apparatus of the embodiment is configured.

次に上述した基板処理装置を用いて半導体装置を製造する工程の一工程として基板を処理する方法を説明する。ここでは、シリコン基板8にアルミニウム酸化膜の成膜を行うプロセスを例にとって説明する。成膜方法には、一例として、金属原料と酸素又は窒素を含有するガスとを交互に供給して、膜を堆積させるALDを用いる。また、金属原料には常温で液体のTMA(原料A)を用い、酸素又は窒素を含有するガスには水(原料B)を用いる。   Next, a method of processing a substrate will be described as one step of manufacturing a semiconductor device using the substrate processing apparatus described above. Here, a process for forming an aluminum oxide film on the silicon substrate 8 will be described as an example. As an example of the film formation method, ALD in which a metal raw material and a gas containing oxygen or nitrogen are alternately supplied to deposit a film is used. Further, TMA (raw material A) that is liquid at room temperature is used as the metal raw material, and water (raw material B) is used as the gas containing oxygen or nitrogen.

基板処理では先ず、基板支持台3を基板搬入出位置に下降させた上で、搬送ロボットにより、1枚のシリコン基板8を基板搬入出口を介して処理室1内に搬入して、基板支持台3上に移載して保持する。昇降機構により、基板支持台3を所定の成膜位置まで上昇させる。温度制御手段により基板支持台3を加熱して、シリコン基板8を一定時間加熱する。処理室1内を真空引きし、処理室1内を所定の圧力に制御する。シリコン基板8が所定温度に加熱され、圧力が安定した後、シリコン基板8上への成膜を開始する。   In the substrate processing, first, the substrate support table 3 is lowered to the substrate loading / unloading position, and then a single silicon substrate 8 is loaded into the processing chamber 1 via the substrate loading / unloading port by the transfer robot. 3 is transferred and held. The substrate support 3 is raised to a predetermined film formation position by the lifting mechanism. The substrate support 3 is heated by the temperature control means, and the silicon substrate 8 is heated for a predetermined time. The inside of the processing chamber 1 is evacuated and the inside of the processing chamber 1 is controlled to a predetermined pressure. After the silicon substrate 8 is heated to a predetermined temperature and the pressure is stabilized, film formation on the silicon substrate 8 is started.

ALD成膜は次の4つの工程からなり、4つの工程を1サイクルとして、所望厚さの膜が形成されるまで、このサイクルが複数回繰り返される。
ALDは、原料Aを基板へ供給して吸着させ(工程1)、吸着後残留原料Aを排気し(工程2)、排気後原料Bを基板へ供給して原料Aと反応させて成膜し(工程3)、成膜後残留原料Bを排気する(工程4)という4つの工程を1サイクルとして、これを複数回繰り返す方法である。ガス供給タイミングは、原料Aと原料Bとを交互に供給する間に、パージガスによる排気を挟むようになっている。
ALD film formation includes the following four processes, and the four processes are defined as one cycle, and this cycle is repeated a plurality of times until a film having a desired thickness is formed.
In ALD, the raw material A is supplied and adsorbed to the substrate (step 1), the residual raw material A is exhausted after the adsorption (step 2), and the post-exhaust raw material B is supplied to the substrate and reacted with the raw material A to form a film. This is a method in which four steps of (Step 3) and exhausting the residual raw material B after the film formation (Step 4) are set as one cycle and this is repeated a plurality of times. The gas supply timing is such that the exhaust by the purge gas is sandwiched between the raw material A and the raw material B are alternately supplied.

この4つの工程を1サイクルとして、これを複数回繰り返して、所望の膜厚を有するアルミニウム酸化膜をシリコン基板8上に成膜する。成膜終了後、基板支持台3は昇降機構により基板搬入出位置まで降下する。成膜処理後のシリコン基板8は、搬送ロボットにより処理室1外に搬出される。   These four steps are set as one cycle, and this is repeated a plurality of times to form an aluminum oxide film having a desired film thickness on the silicon substrate 8. After film formation, the substrate support 3 is lowered to the substrate loading / unloading position by the lifting mechanism. The silicon substrate 8 after the film forming process is carried out of the processing chamber 1 by the transfer robot.

上記処理条件の範囲として、例示すれば、基板温度:100〜500℃、処理室内圧力:13.3〜133Pa(0.1〜1Torr)、キャリアガスと反応ガスを加えた総流量:0.1〜2slm、膜厚:1〜50nmが挙げられる。   As examples of the range of the processing conditions, for example, the substrate temperature: 100 to 500 ° C., the processing chamber pressure: 13.3 to 133 Pa (0.1 to 1 Torr), the total flow rate including the carrier gas and the reactive gas: 0.1 ˜2 slm, film thickness: 1 to 50 nm.

ところで、上述したは処理容器10の壁面全面にヒータを取り付ける加熱方法では、処理容器10の側面の形状によっては形状が複雑になったり、ヒータの数が多くなったり、あるいは分割の仕方によっては制御ゾーン数も多くなったり、制御が複雑になったりするなどの問題があったことは前述した通りである。
そこで、これを解決するために、本実施の形態では、図1に示すように、処理容器10の底壁15の外側に底壁面を加熱する底面加熱ヒータ13を設けるとともに、処理容器10の底面部である底壁15の厚さを側面部である側壁14の厚さよりも厚くして、底壁15から側壁14の方向への熱伝導によりエネルギーの移動量をより大きくしている。
By the way, in the heating method in which the heater is attached to the entire wall surface of the processing container 10 as described above, the shape may be complicated depending on the shape of the side surface of the processing container 10, the number of heaters may be increased, or the control may be performed depending on the way of division. As described above, there are problems such as an increase in the number of zones and complicated control.
Therefore, in order to solve this, in the present embodiment, as shown in FIG. 1, the bottom surface heater 13 for heating the bottom wall surface is provided outside the bottom wall 15 of the processing container 10, and the bottom surface of the processing container 10 is provided. The thickness of the bottom wall 15 which is a part is made thicker than the thickness of the side wall 14 which is a side part, and the amount of energy transfer is increased by heat conduction from the bottom wall 15 toward the side wall 14.

具体的には、図1に示すように、基板処理装置は、処理容器10の壁面11を加熱する加熱ヒータを有する。処理容器10の壁面11を加熱するヒータは、処理容器10の底壁15に設けられ、底面加熱ヒータ13として機能する。また、底面加熱ヒータ13により加熱される処理容器10の底壁15の厚みaは、側壁14の厚みbよりも厚くなっている。底面加熱ヒータ13の具体例としては、例えば、発熱体を埋め込んだ金属のパネル型のヒータやラバーヒータなどが挙げられる。
なお、処理容器10の内側面の段差32は、処理容器10内の流れの問題等に由来するもので、とくに熱伝導には関係ない。
Specifically, as shown in FIG. 1, the substrate processing apparatus includes a heater that heats the wall surface 11 of the processing container 10. A heater for heating the wall surface 11 of the processing container 10 is provided on the bottom wall 15 of the processing container 10 and functions as a bottom surface heater 13. Further, the thickness a of the bottom wall 15 of the processing vessel 10 heated by the bottom heater 13 is larger than the thickness b of the side wall 14. Specific examples of the bottom surface heater 13 include a metal panel heater or a rubber heater in which a heating element is embedded.
In addition, the level | step difference 32 of the inner surface of the processing container 10 originates in the problem of the flow in the processing container 10, etc., and is not especially related to heat conduction.

このように処理容器10の底壁15の厚みaが側壁14の厚みbよりも厚いと(a>b)、底壁15から側壁14への熱伝導によるエネルギーの移動量を大きくできる。したがって、処理容器10の底壁15の側に設けられた底面加熱ヒータ13で底壁15を加熱してやれば、処理容器10の底壁15から処理容器10の側壁14を間接的に加熱することができる。したがって、少ないヒータの数で処理容器10の壁面11全体を均一な温度に保つことができる。このように少ないヒータの数で処理容器10の壁面11全体を均一な温度に保つことができるので、曲面あるいは多平面からなる側壁の加熱は簡便で済ませることが可能になる。   As described above, when the thickness a of the bottom wall 15 of the processing container 10 is larger than the thickness b of the side wall 14 (a> b), the amount of energy transferred by heat conduction from the bottom wall 15 to the side wall 14 can be increased. Therefore, if the bottom wall 15 is heated by the bottom surface heater 13 provided on the bottom wall 15 side of the processing container 10, the side wall 14 of the processing container 10 can be indirectly heated from the bottom wall 15 of the processing container 10. it can. Therefore, the entire wall surface 11 of the processing container 10 can be kept at a uniform temperature with a small number of heaters. Since the entire wall surface 11 of the processing container 10 can be kept at a uniform temperature with a small number of heaters, heating of the curved or multi-side wall can be simplified.

この場合において、特に、処理容器10の壁面11を加熱するヒータは、処理容器10の底壁15側に設けられ、側壁14側には設けられないようにすることが可能である。処理容器10の側壁14の厚さbに対する底壁15の厚さaの比(a/b)を、例えば1以上と大きくすれば、底壁15から側壁14に充分な熱量を移動できるので、従来のように、側壁14に側面加熱ヒータを設けなくても、側壁面を加熱することができ、処理容器10の壁面11の全体を均一な温度に保つことができる。   In this case, in particular, the heater for heating the wall surface 11 of the processing container 10 can be provided on the bottom wall 15 side of the processing container 10 and not on the side wall 14 side. If the ratio (a / b) of the thickness a of the bottom wall 15 to the thickness b of the side wall 14 of the processing vessel 10 is increased to, for example, 1 or more, a sufficient amount of heat can be transferred from the bottom wall 15 to the side wall 14. The side wall surface can be heated without providing the side surface heater on the side wall 14 as in the prior art, and the entire wall surface 11 of the processing vessel 10 can be kept at a uniform temperature.

なお、底壁15の厚さaと側壁14の厚さbとの比(a/b)は1以上が好ましい。1未満では逆に側壁14から底壁15への熱移動が起こってしまうから、実施の形態の効果が期待できない。なお、aとbとの比の値はより大きいほど熱伝導によるエネルギー移動量が大きいくなるため好ましいが、物理的、経済的、装置構成上からの制約から、aとbの比の上限は10程度が好ましい。   The ratio (a / b) between the thickness a of the bottom wall 15 and the thickness b of the side wall 14 is preferably 1 or more. If it is less than 1, heat transfer from the side wall 14 to the bottom wall 15 occurs conversely, so the effect of the embodiment cannot be expected. The larger the ratio of a and b, the greater the amount of energy transfer due to heat conduction, which is preferable. However, the upper limit of the ratio of a and b is limited due to physical, economic, and device restrictions. About 10 is preferable.

これにより処理容器10の側壁を直接加熱しなくても、処理容器10の底壁からの熱が充分に移動してくるため、間接的に側壁面を加熱することができ、処理容器10の壁面11全体を容易に均一な温度で保つことができるようになる。また、処理容器10の底壁は、側壁と異なり、ほぼ一般に単一平面を有するので、曲面あるいは多平面からなる側壁を加熱するよりも簡便に加熱することができる。また、側面加熱ヒータを設ける場合には、処理容器の側壁形状によってはヒータ形状が複雑になったり、ヒータの数が多くなったり、あるいはヒータ分割の仕方によってはヒータ制御ゾーン数も多くなったり、ヒータ制御が複雑になったりするなどの問題が大きいが、本実施の形態によれば、そのような問題を解決できる。   Thus, even if the side wall of the processing container 10 is not directly heated, the heat from the bottom wall of the processing container 10 is sufficiently transferred, so that the side wall surface can be indirectly heated, and the wall surface of the processing container 10 can be heated. 11 can be easily maintained at a uniform temperature. In addition, unlike the side wall, the bottom wall of the processing vessel 10 has a generally single plane, so that it can be heated more easily than heating a side wall composed of a curved surface or multiple planes. In addition, when a side heater is provided, the heater shape becomes complicated depending on the side wall shape of the processing vessel, the number of heaters increases, or the number of heater control zones increases depending on how the heaters are divided, The problem such as complicated heater control is large, but according to the present embodiment, such a problem can be solved.

本実施の形態によれば次の効果を発揮できる。
(1)処理容器の底壁の厚みを側壁の厚みよりも厚くしたので、少ない壁面加熱ヒータ数で処理容器の全体を均一な温度に保つことができる。
(2)少ないヒータの数、制御ゾーン数で処理容器の壁面全体を均一な温度で保つことができる。ここで、均一な温度の値とは±10℃程度である。従来例と実施の形態のヒータ数、制御ゾーン数の比較をすると、基本的に1つのヒータ毎に1つの制御系を設けているので、ヒータ数と制御ゾーン数は同じであるが、その数が従来例では8個くらいであるのが、実施の形態では2個くらいに低減できる。
(3)処理容器の底壁の体積が大きくなるため底壁の熱容量が増し、底壁は熱的な外乱に影響されにくくなる。すなわち側壁は曲面あるいは多平面からなることが多いので、外乱を受けやすいが、側壁に対して外乱が入っても、底壁の熱容量を大きくしておくことによって、底壁から側壁へのエネルギーの速やかな供給が可能となり、側壁に対する外乱を吸収し、壁面全体を均一な温度で保つことができる。
According to the present embodiment, the following effects can be exhibited.
(1) Since the thickness of the bottom wall of the processing container is made thicker than the thickness of the side wall, the entire processing container can be kept at a uniform temperature with a small number of wall heaters.
(2) The entire wall surface of the processing vessel can be kept at a uniform temperature with a small number of heaters and a small number of control zones. Here, the value of the uniform temperature is about ± 10 ° C. Comparing the number of heaters and the number of control zones in the conventional example and the embodiment, since one control system is basically provided for each heater, the number of heaters and the number of control zones are the same. However, in the conventional example, the number is about eight, but in the embodiment, it can be reduced to about two.
(3) Since the volume of the bottom wall of the processing container is increased, the heat capacity of the bottom wall is increased, and the bottom wall is less susceptible to thermal disturbance. In other words, the side wall is often curved or multi-planar, and is susceptible to disturbances. However, even if disturbances enter the side walls, increasing the heat capacity of the bottom wall increases the energy from the bottom wall to the side walls. A rapid supply becomes possible, the disturbance with respect to a side wall is absorbed, and the whole wall surface can be maintained at a uniform temperature.

なお、上述し実施の形態では成膜方法にALDを用いたが、本発明はこれに限定されるものではなく、一般的なCVDでもよい。また、本発明は、基板処理装置として枚葉式に限定されず、複数の基板を一括処理するバッチ式にも適用可能である。   In the above-described embodiment, ALD is used as the film forming method. However, the present invention is not limited to this, and general CVD may be used. Further, the present invention is not limited to the single wafer type as the substrate processing apparatus, but can also be applied to a batch type that collectively processes a plurality of substrates.

実施の形態における基板処理装置の処理室の縦断面図である。It is a longitudinal cross-sectional view of the processing chamber of the substrate processing apparatus in an embodiment. 従来例による基板処理装置の処理室の縦断面図である。It is a longitudinal cross-sectional view of the processing chamber of the substrate processing apparatus by a prior art example.

符号の説明Explanation of symbols

8 基板
10 処理容器
13 底面加熱ヒータ
14 処理容器の側壁(側面部)
15 処理容器の底壁(底面部)
55 基板加熱ヒータ
8 Substrate 10 Processing vessel 13 Bottom heater 14 Side wall (side surface) of processing vessel
15 Bottom wall (bottom) of processing vessel
55 Substrate heater

Claims (1)

基板を処理する処理容器と、
前記処理容器内の前記基板を加熱するヒータと、
前記処理容器の壁面を加熱するヒータとを有し、
前記処理容器の壁面を加熱するヒータは、前記処理容器の底面部側に設けられ、前記処理容器の底面部の厚みが側面部の厚みよりも厚いことを特徴とする基板処理装置。

A processing vessel for processing a substrate;
A heater for heating the substrate in the processing container;
A heater for heating the wall surface of the processing container,
The substrate processing apparatus, wherein the heater for heating the wall surface of the processing container is provided on the bottom surface side of the processing container, and the thickness of the bottom surface of the processing container is larger than the thickness of the side surface.

JP2005258200A 2005-09-06 2005-09-06 Substrate processing equipment Active JP4616734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258200A JP4616734B2 (en) 2005-09-06 2005-09-06 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258200A JP4616734B2 (en) 2005-09-06 2005-09-06 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2007073692A true JP2007073692A (en) 2007-03-22
JP4616734B2 JP4616734B2 (en) 2011-01-19

Family

ID=37934896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258200A Active JP4616734B2 (en) 2005-09-06 2005-09-06 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP4616734B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273992A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Bonding device
JP2000150330A (en) * 1998-11-04 2000-05-30 Tokyo Electron Ltd Semiconductor device and manufacture therefor
JP2001332465A (en) * 2000-05-22 2001-11-30 Tokyo Electron Ltd Single-wafer processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273992A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Bonding device
JP2000150330A (en) * 1998-11-04 2000-05-30 Tokyo Electron Ltd Semiconductor device and manufacture therefor
JP2001332465A (en) * 2000-05-22 2001-11-30 Tokyo Electron Ltd Single-wafer processing apparatus

Also Published As

Publication number Publication date
JP4616734B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP6703496B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP4759073B2 (en) Substrate support, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2009044023A (en) Manufacturing method of semiconductor device and substrate processing device
JP5916909B1 (en) Substrate processing apparatus, gas rectifier, semiconductor device manufacturing method and program
JP2008016742A (en) Deposition device, thermal buffer member, and deposition method
KR20090004629A (en) Thermal batch reactor with removable susceptors
KR101474758B1 (en) Vertical batch-type film forming apparatus
KR101207593B1 (en) Cvd film-forming apparatus
JP2010287877A (en) Heat treatment apparatus and method of heat treatment
US20180171467A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-Transitory Computer-Readable Recording Medium
JP2011238832A (en) Substrate processing apparatus
JP7246184B2 (en) RuSi film formation method
WO2012153591A1 (en) Film-forming apparatus
JP4971954B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
JP2011132568A (en) Method for manufacturing semiconductor device, and substrate processing apparatus
JP5087283B2 (en) Temperature control system, substrate processing apparatus, and semiconductor device manufacturing method
JP4616734B2 (en) Substrate processing equipment
US20140038394A1 (en) Method and apparatus of forming compound semiconductor film
JP3904497B2 (en) Manufacturing method of semiconductor device
JP2012136743A (en) Substrate treatment device
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP2004095940A (en) Method of manufacturing semiconductor device
JP5571157B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP2007324478A (en) Substrate processing apparatus
JP2009289807A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4616734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350