JP2007071603A - Nondestructive determination method of japanese radish having internal fault and its device - Google Patents

Nondestructive determination method of japanese radish having internal fault and its device Download PDF

Info

Publication number
JP2007071603A
JP2007071603A JP2005256958A JP2005256958A JP2007071603A JP 2007071603 A JP2007071603 A JP 2007071603A JP 2005256958 A JP2005256958 A JP 2005256958A JP 2005256958 A JP2005256958 A JP 2005256958A JP 2007071603 A JP2007071603 A JP 2007071603A
Authority
JP
Japan
Prior art keywords
radish
light
absorbance
transmitted light
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256958A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakano
和弘 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2005256958A priority Critical patent/JP2007071603A/en
Publication of JP2007071603A publication Critical patent/JP2007071603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nondestructive determination method of a Japanese radish having an internal fault and its device capable of detecting a Japanese radish having an internal fault nondestructively and highly accurately without visual confirmation. <P>SOLUTION: This established nondestructive determination method of a Japanese radish having an internal fault is characterized as follows: the Japanese radish is irradiated with light; a spectrum of transmitted light transmitted through the Japanese radish is detected; each absorbance or each light intensity of a plurality of wavelengths acquired based on a spectrum detection value of the transmitted light is calculated; a ratio determined by dividing the absorbance or the light intensity of some wavelength by the absorbance or the light intensity of a reference wavelength is calculated as a band ratio; the band ratio is compared with a threshold set beforehand; and thereby existence of the internal fault of the Japanese radish is determined. Hereby, the Japanese radish having the internal fault can be determined simply, quickly and highly accurately without cutting the Japanese radish, and without performing visual confirmation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部障害を有する大根の非破壊判定方法及びその装置に関する。   The present invention relates to a nondestructive determination method and apparatus for radish having an internal failure.

日本国内における近年の漬物加工市場は、年間生産量120万トン、年間販売高5,000億円と言われている。米の消費量が年間800万トンであることから、漬物は米の副菜として食されていることが理解できる。   The recent pickle processing market in Japan is said to have an annual production of 1.2 million tons and an annual sales of 500 billion yen. Since rice consumption is 8 million tons per year, it can be understood that pickles are eaten as a side dish of rice.

一方、消費者や流通業者からの「食の安全・安心」に対する要望は年々強くなっている。例えば、大根の漬物に「ス入り(空洞)」があった場合でも、「スの部分が変色している」とか、「腐敗しているのではないか」といったクレームがこの近年で急増している。大根の内部が変色する生理障害は、収穫間際の高温によって発生すると思われる生理障害であり、大根内部が茶褐色になる「赤芯症」や黒く変色する「黒芯症」がある。これらの生理障害は、外観からは判別がしにくいため、産地では大きな問題となっている。従って、大根に発生する種々の欠陥を非破壊的に検査可能な装置が望まれていた。   On the other hand, demands for “food safety and security” from consumers and distributors are increasing year by year. For example, even in the case of radish pickles that contain “succulents (cavities)”, claims such as “the part of the sushi is discolored” or “is it corrupt?” Yes. Physiological disorders that cause discoloration of the inside of radish are physiological disorders that are thought to occur due to high temperatures just before harvesting, and there are “red-core disease” in which the inside of radish turns brown and “black-core disease” that changes color to black. Since these physiological disorders are difficult to discriminate from the appearance, they are a serious problem in production areas. Therefore, there has been a demand for an apparatus capable of nondestructively inspecting various defects occurring in the radish.

上記の期待に応えるものとして、例えば特許文献1には、大根に光を当て透過する光で、赤芯症の有無を透視することを特徴とする大根の赤芯症検出法が開示されている。   As a response to the above expectation, for example, Patent Document 1 discloses a method for detecting radish erythroderma characterized by seeing through the presence or absence of erythroderma with light transmitted through the radish. .

また、特許文献2には、洗浄機より搬入された根菜類を、移動するコンベア上に一定間隔を置いて配置し、1本の根菜類ごとに、一定光量の光を2ケ所以上の場所に照射して、画像処理カメラにより外部検査をした後、そのデータに基づき調整した光を根菜類の内部を透過させ、その透過光の波長分布変化を画像処理カメラで分析して根菜類の内部欠陥を検査する装置が開示されている。
特開平5−18898号公報 特許第3389098号公報
Further, in Patent Document 2, root vegetables brought in from a washing machine are arranged at regular intervals on a moving conveyor, and a certain amount of light is distributed to two or more places for each root vegetable. After irradiation and external inspection with an image processing camera, the light adjusted based on the data is transmitted through the root vegetables, and the wavelength distribution change of the transmitted light is analyzed with the image processing camera to detect internal defects in the root vegetables An apparatus for inspecting is disclosed.
Japanese Patent Laid-Open No. 5-18898 Japanese Patent No. 3389098

しかしながら、上記特許文献1の大根の赤芯症検出法は、簡単に内部の赤芯症の発生有無を確認できるものの、目視確認が必要であり、この目視確認では、作業員の個人差や疲労状況などが原因で判定ミスが生じる問題がある。一方、上記特許文献2の根菜類の内部欠陥を検査する装置によれば、目視確認する必要がなく、根菜類の内部障害を非破壊的に判定できるかのような記載があるものの、判定方法については「内部検査は根菜類の芯部に光を透過させ、その際の透過光の成分を画像処理カメラで、赤・緑・青の三原色分析(RGB分析)をする仕組みとし、波長分布変化を測定し、連続的に欠陥根菜類の判別を可能にした(公報第0006段)」とのみ記載されており、判定方法の科学的な例示又は解説がなく、判別能力の記載もない。   However, although the radish erythroderma detection method of the above-mentioned patent document 1 can easily confirm the presence or absence of internal erythroderma, visual confirmation is necessary. In this visual confirmation, individual differences in workers and fatigue There is a problem that a determination error occurs due to the situation. On the other hand, according to the apparatus for inspecting an internal defect of root vegetables of Patent Document 2 described above, there is no need to visually check and there is a description as to whether an internal failure of root vegetables can be determined nondestructively. As for “Internal inspection, light is transmitted through the core of root vegetables, and the component of the transmitted light is analyzed by the image processing camera with the three primary colors (RGB analysis) of red, green, and blue, and the wavelength distribution changes. ”, And the defect root vegetables can be discriminated continuously (Patent Gazette, No. 0006)”, and there is no scientific example or explanation of the determination method, and there is no description of the discrimination ability.

そこで、本発明は、目視確認することなく、内部障害を有する大根を非破壊的に且つ高精度に検出可能な内部障害を有する大根の非破壊判定方法及びその装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a non-destructive determination method and apparatus for a radish having an internal failure that can detect the radish having an internal failure non-destructively and with high accuracy without visual confirmation. .

本発明における請求項1の内部障害を有する大根の非破壊判定方法は、大根に光を照射し、前記大根を透過した透過光のスペクトルを検出し、前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定することを特徴とする。   According to a first aspect of the present invention, there is provided a nondestructive determination method for a radish having an internal defect, wherein the radish is irradiated with light, a spectrum of transmitted light transmitted through the radish is detected, and obtained based on a spectrum detection value of the transmitted light. Calculate the absorbance or light intensity of a plurality of wavelengths, and calculate a ratio obtained by dividing the absorbance or light intensity at a certain wavelength by the absorbance or light intensity at a reference wavelength as a band ratio, and the band ratio and a preset threshold value To determine whether there is an internal failure of the radish.

本発明における請求項2の内部障害を有する大根の非破壊判定方法は、大根に光を照射し、前記大根を透過した透過光から得られる透過光画像を得て、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定することを特徴とする。   According to a second aspect of the present invention, there is provided a nondestructive determination method for a radish having an internal defect, wherein the radish is irradiated with light, a transmitted light image obtained from the transmitted light transmitted through the radish is obtained, and the radish is based on the transmitted light image. By calculating the transmittance of a plurality of wavelengths obtained, calculating a ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at a reference wavelength as a band ratio, and comparing the band ratio with a preset threshold value The presence or absence of an internal failure of the radish is determined.

本発明における請求項3の内部障害を有する大根の非破壊判定装置は、大根に光を照射する照射手段と、前記照射手段から照射された照射光が前記大根を透過して得られる透過光を受光し、該透過光のスペクトルを検出する受光手段と、前記受光手段から検出された前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定する演算処理手段とを備えたことを特徴とする。   The non-destructive determination device for radish having an internal failure according to claim 3 of the present invention is an irradiation means for irradiating light to the radish, and transmitted light obtained by transmitting the irradiation light emitted from the irradiation means through the radish. Receiving light and detecting the spectrum of the transmitted light; and calculating the absorbance or light intensity of a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light detected from the light receiving means; Calculation to determine the presence or absence of internal damage of the radish by calculating the ratio of light intensity divided by absorbance or light intensity at a reference wavelength as a band ratio and comparing the band ratio with a preset threshold value And a processing means.

本発明における請求項4の内部障害を有する大根の非破壊判定装置は、大根に光を照射する照射手段と、前記照射手段から照射された照射光が前記大根を透過して得られる透過光を受光し透過光画像を撮像する撮像手段と、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における吸光度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定する演算処理手段とを備えたことを特徴とする。   The non-destructive determination device for radish having internal obstruction according to claim 4 of the present invention includes an irradiating means for irradiating light to the radish, and transmitted light obtained by transmitting the irradiating light from the irradiating means through the radish. An imaging means that receives light and picks up a transmitted light image, and calculates a transmittance of a plurality of wavelengths obtained based on the transmitted light image, and a ratio obtained by dividing the transmittance at a certain wavelength by the absorbance at a reference wavelength is used as a band ratio. Computation processing means for determining the presence or absence of an internal failure of the radish by calculating and comparing the band ratio with a preset threshold value is provided.

本発明における請求項1の内部障害を有する大根の非破壊判定方法によれば、大根を切断することなく且つ目視確認することなく、内部障害を有する大根を簡便且つ迅速に、さらに高精度に判定することが可能である。従って、内部障害を有する大根を流通させることがなく、食品の安全・安心を消費者に供給し、品質保証を強化することができる。   According to the non-destructive determination method for a radish having an internal failure according to claim 1 of the present invention, a radish having an internal failure is determined easily, quickly, and with higher accuracy without cutting the radish and visually confirming it. Is possible. Therefore, it is possible to supply food safety and security to consumers and enhance quality assurance without distributing radishes with internal obstacles.

本発明における請求項2の内部障害を有する大根の非破壊判定方法によれば、大根を切断することなく且つ目視確認することなく、内部障害を有する大根を簡便且つ迅速に、さらに高精度に判定することが可能である。従って、内部障害を有する大根を流通させることがなく、食品の安全・安心を消費者に供給し、品質保証を強化することができる。   According to the nondestructive determination method for radish having an internal failure according to claim 2 of the present invention, the radish having an internal failure is determined easily, quickly, and with higher accuracy without cutting the radish and visually confirming it. Is possible. Therefore, it is possible to supply food safety and security to consumers and enhance quality assurance without distributing radishes with internal obstacles.

本発明における請求項3の内部障害を有する大根の非破壊判定装置によれば、生食用大根の食材不適果を簡便且つ迅速に、さらに高精度に判定することが可能である。また、大根を切断することなく、且つ、目視確認する必要がない。   According to the non-destructive determination device for radish having an internal failure according to claim 3 of the present invention, it is possible to easily and quickly determine the inappropriate fruits of raw radish with higher accuracy. Further, it is not necessary to visually check without cutting the radish.

本発明における請求項4の内部障害を有する大根の非破壊判定装置によれば、生食用大根の食材不適果を簡便且つ迅速に、さらに高精度に判定することが可能である。また、大根を切断することなく、且つ、目視確認する必要がない。   According to the non-destructive determination device for radish having an internal failure according to claim 4 of the present invention, it is possible to easily and quickly determine the inappropriate fruits of raw radish with higher accuracy. Further, it is not necessary to visually check without cutting the radish.

本発明において「内部障害を有する大根」とは、外観は全くの健全果であるが、大根の根部内部が黒斑細菌症、黒芯症、赤芯症等で変色した大根を意味する。黒斑細菌症は細菌が病原で起こる病気であり、病原菌名はPseudomonas syringae pv.Maculicola(スードモナス・シリンガエpv.マクリコーラ)と呼ばれている。黒斑細菌症は始めに、根頭内部で小さい灰色の病斑を生じ、やがて黒色の不整形斑となり、根部内部が黒色に変色する。また、病気が進行すると葉が黄化し離脱しやすくなり、根部の肥大も悪くなる。さらに、病気が進行した状態の大根を放置すると、異臭を放ち、食材には全く適さない状態となる。   In the present invention, “radish having an internal disorder” means a radish whose appearance is completely healthy, but whose root has been discolored due to black spot bacteriosis, sclerotia, erythroderma and the like. Black spot bacteriosis is a disease caused by bacteria, and the name of the pathogen is Pseudomonas syringae pv. It is called Maculacola (Pseudomonas syringae pv. Makricola). Black spot bacteriosis initially causes small gray lesions inside the roots that eventually become black irregular spots and the inside of the roots turns black. In addition, as the disease progresses, the leaves turn yellow and are easily detached, and the root enlargement also worsens. Furthermore, if the radish in a state where the disease has progressed is left unattended, it gives off a strange odor and is not suitable for foods.

以下、本発明の内部障害を有する大根の非破壊判定方法およびその装置の好ましい実施形態を、添付図面を参照しながら説明する。図1は本発明の第1実施形態に係る内部障害を有する大根の非破壊判定装置の要部構成を示すブロック図であり、図2は本発明の第1実施形態に係る内部障害を有する大根の非破壊判定装置の構成図である。   Hereinafter, a preferred embodiment of a non-destructive determination method and apparatus for a radish having an internal failure according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a main part of a non-destructive determination device for radish having an internal failure according to the first embodiment of the present invention, and FIG. 2 is a diagram showing a radish having an internal failure according to the first embodiment of the present invention. It is a block diagram of the nondestructive determination apparatus.

図1及び2に示すように、内部障害を有する大根の非破壊判定装置1は、葉の付いた一本取りの大根10に光を照射する照射手段20と、照射手段20から照射された照射光が大根10を透過して得られる透過光を受光し、この透過光のスペクトルを検出する受光手段21と、前記受光手段から検出された前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部に細菌症などの変色障害の有無を判別する演算処理手段22等を備えている。   As shown in FIGS. 1 and 2, a non-destructive determination device 1 for radish having an internal failure includes an irradiation means 20 for irradiating light to a single radish 10 with leaves, and irradiation irradiated from the irradiation means 20. Light receiving means 21 for detecting the transmitted light obtained by transmitting light through the radish 10, and detecting the spectrum of the transmitted light, and a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light detected from the light receiving means The ratio of the absorbance or light intensity at a certain wavelength divided by the absorbance or light intensity at the reference wavelength is calculated as a band ratio, and the band ratio is compared with a preset threshold value. Thus, the radish 10 is provided with arithmetic processing means 22 for determining the presence or absence of a discoloration disorder such as bacteriosis.

照射手段20は、光源2と、光源2から大根10に光を導く投光用光ファイバ3と、投光用光ファイバ3の先端に設けられた投光器4を含む。光源2としては、可視領域の光を発するものであれば特に限定されず、例えばハロゲンランプ,タングステンランプ,キセノンランプなどが挙げられる。また、照射にあたっては、他の光線が入り込まないように投光器4、後述する受光器5、および大根10をカバーで覆った暗箱13中で光を大根10に照射する。   The irradiation means 20 includes a light source 2, a light projecting optical fiber 3 that guides light from the light source 2 to the radish 10, and a light projector 4 provided at the tip of the light projecting optical fiber 3. The light source 2 is not particularly limited as long as it emits light in the visible region, and examples thereof include a halogen lamp, a tungsten lamp, and a xenon lamp. In irradiation, the radish 10 is irradiated with light in a projector 4, a light receiver 5 described later, and a dark box 13 with the radish 10 covered with a cover so that other light rays do not enter.

また、受光手段21は、光源2から照射されて大根10を透過してきた光を受光する受光器5と、受光器5に接続する受光した光信号を電気信号に導く受光用光ファイバ6と、受光用光ファイバ6で受光した光信号を各波長別にアナログ電気信号に変換してアナログ・スペクトルを出力する光電変換素子(図示せず)を介してこのアナログ・スペクトルをデジタル・スペクトルに変換するアナログ/デジタル変換器7などを含む。   The light receiving means 21 receives the light irradiated from the light source 2 and transmitted through the radish 10, the light receiving optical fiber 6 that guides the received optical signal connected to the light receiver 5 to an electrical signal, An analog for converting the analog spectrum into a digital spectrum through a photoelectric conversion element (not shown) that converts an optical signal received by the light receiving optical fiber 6 into an analog electrical signal for each wavelength and outputs an analog spectrum. / Digital converter 7 etc. are included.

また、演算処理手段22は、アナログ/デジタル変換器7から得られる透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出する演算部8と、受光手段21から検出されたバンド比と予め設定された閾値とを比較することにより大根10の内部に細菌症などの変色障害部分の有無を判別し、内部障害を有する大根であると判定された場合、内部障害を有する大根の計数と排出信号を出す判別部9を含む。また、判定部9では、内部障害を有する大根又は正常大根であるかを表示するモニターなどを設けてもよい。   The arithmetic processing means 22 calculates the absorbance or light intensity of a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light obtained from the analog / digital converter 7, and uses the absorbance or light intensity at a certain wavelength as a reference. The calculation unit 8 that calculates a ratio obtained by dividing the absorbance at the wavelength or the light intensity as a band ratio, and the band ratio detected from the light receiving means 21 and a preset threshold value are compared with a bacteriosis inside the radish 10. And a discriminating unit 9 that outputs a discharge signal and a count of radishes having an internal fault when it is determined that the radish has an internal fault. Further, the determination unit 9 may be provided with a monitor that displays whether the radish has an internal failure or is a normal radish.

11は、大根10を載置するための支持台であり、照射手段20と受光手段21の間に設けられている。また、支持台11の上には黒色ポリウレタンボードが固定されている。支持台11は、大根10を固定するように構成されていてもよく、或いは回転可動式などの可動するように構成されていてもよい。なお、大根10を載置する位置は、投光器4と受光器5の間に大根の根頭部が配置されるように置くことが好ましい。   Reference numeral 11 denotes a support for placing the radish 10, and is provided between the irradiation means 20 and the light receiving means 21. A black polyurethane board is fixed on the support base 11. The support base 11 may be configured to fix the radish 10 or may be configured to be movable such as a rotationally movable type. In addition, it is preferable to place the radish 10 so that the root of the radish is disposed between the projector 4 and the light receiver 5.

次に、上記のように構成された内部障害を有する大根の非破壊検出装置1について、その動作を説明する。まず、光源2から出射された光は、投光用光ファイバ3を経て投光器4から大根10を透過して透過光となり、受光器5と受光用光ファイバ6を経て、光電変換素子を内蔵するアナログ/デジタル変換器7に到達する。そして、透過光の光信号は各波長別にアナログ電気信号に変換されアナログ・スペクトルが出力され、次いでこのアナログ・スペクトルがデジタル・スペクトルに変換される。各スペクトルを用いて演算処理手段22にある演算部8により透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、判別部9により前記バンド比と予め設定された閾値とを比較することにより大根10の内部に細菌症などの変色障害部分の有無を判別する。そして、内部障害を有する大根であると判定された場合、判別部9から内部障害を有する大根の計数と排出信号が出される。   Next, the operation of the radish nondestructive detection apparatus 1 having an internal failure configured as described above will be described. First, the light emitted from the light source 2 passes through the light projecting optical fiber 3 and passes through the radish 10 from the light projecting device 4 to become transmitted light, and passes through the light receiving device 5 and the light receiving optical fiber 6 to incorporate a photoelectric conversion element. The analog / digital converter 7 is reached. Then, the optical signal of the transmitted light is converted into an analog electric signal for each wavelength to output an analog spectrum, and then this analog spectrum is converted into a digital spectrum. Using each spectrum, the calculation unit 8 in the calculation processing means 22 calculates the absorbance or light intensity of a plurality of wavelengths obtained based on the spectrum detection value of transmitted light, and the absorbance or light intensity at a certain wavelength is used as a reference wavelength. The ratio divided by the absorbance or the light intensity is calculated as a band ratio, and the discriminator 9 compares the band ratio with a preset threshold value to discriminate the presence or absence of a discoloration disorder part such as bacterosis in the radish 10 To do. When it is determined that the radish has an internal failure, the determination unit 9 outputs the count of the radish having the internal failure and a discharge signal.

次に、上記の方法で得られた、透過光のスペクトル検出値に基づいて得られる複数波長の吸光度を算出し、ある波長における吸光度を基準となる波長における吸光度で除したバンド比から、内部障害を有する大根を抽出するための上記閾値を設定する方法について説明する。   Next, the absorbance at a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light obtained by the above method is calculated, and the internal disturbance is calculated from the band ratio obtained by dividing the absorbance at a certain wavelength by the absorbance at the reference wavelength. A method for setting the above threshold value for extracting radishes having the above will be described.

吸光度から算出されるバンド比によって内部障害を有する大根と正常大根を判別するためには、内部障害を有する大根と正常大根の特徴を抽出し、閾値を決定する必要がある。そこで、まず各大根の吸光度を求めた。なお、実験終了後、大根を切断し、内部障害の有無を調べて内部障害を有する大根または正常大根であることを確認した。   In order to discriminate between a radish having an internal disorder and a normal radish based on a band ratio calculated from the absorbance, it is necessary to extract the characteristics of the radish having the internal disorder and the normal radish and determine a threshold value. Therefore, first, the absorbance of each radish was determined. After the experiment was completed, the radish was cut, and the presence or absence of an internal disorder was examined to confirm that the radish had an internal disorder or a normal radish.

まず、近赤外分光器を用いて、正常大根と内部障害を有する大根について、500nm〜820nmの範囲内の複数波長の吸光度を求めた。結果を図3に示す。図3より、正常大根の吸光度の方が内部障害(ここでは、黒斑細菌症)を有する大根よりも小さいことがわかる。次いで、吸光度の差異が大きい波長についてバンド比を求め、2種類の吸光度のバンド比による検討を行った。図4は、吸光度のバンド比の一例を示すグラフであり、基準となる波長を719nmおよび801nmとして、742nm/719nmのバンド比を横軸に、641nm/801nmのバンド比を縦軸に示す。図4の結果から、内部障害を有する大根のバンド比の集団と、正常大根のバンド比の集団とを二つに分けることができるという傾向が示されたことから、図4に示されるように閾値を設定することにより、ある波長における吸光度を基準となる波長における吸光度で除したバンド比を予め設定された閾値と比較し、バンド比が閾値を超える場合に、内部障害を有する大根であると判別し、バンド比が閾値を超えない場合に、正常大根であると判別できることがわかる。   First, using a near-infrared spectrometer, the absorbance of a plurality of wavelengths within a range of 500 nm to 820 nm was determined for normal radishes and radishes having internal damage. The results are shown in FIG. FIG. 3 shows that the absorbance of normal radish is smaller than that of radish having an internal disorder (here, black spot bacteriosis). Next, band ratios were obtained for wavelengths having a large difference in absorbance, and examination was performed based on the band ratios of the two types of absorbance. FIG. 4 is a graph showing an example of the absorbance band ratio, where the reference wavelengths are 719 nm and 801 nm, the band ratio of 742 nm / 719 nm is shown on the horizontal axis, and the band ratio of 641 nm / 801 nm is shown on the vertical axis. As shown in FIG. 4, the results of FIG. 4 showed that the group of the radish band ratio having internal disorders and the group of the normal radish band ratio could be divided into two. By setting a threshold, the band ratio obtained by dividing the absorbance at a certain wavelength by the absorbance at the reference wavelength is compared with a preset threshold, and when the band ratio exceeds the threshold, it is a radish that has an internal failure. When the band ratio does not exceed the threshold value, it can be determined that the radish is normal.

次に、上記の方法で得られた、透過光のスペクトル検出値に基づいて得られる複数波長の光強度を算出し、ある波長における光強度を基準となる波長における光強度で除したバンド比から、内部障害を有する大根を抽出するための上記閾値を設定する方法について説明する。   Next, the light intensity of a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light obtained by the above method is calculated, and the light intensity at a certain wavelength is divided by the light intensity at the reference wavelength. A method for setting the threshold value for extracting the radish having an internal failure will be described.

光強度から算出されるバンド比によって内部障害を有する大根と正常大根を判別するためには、内部障害を有する大根と正常大根の特徴を抽出し、閾値を決定する必要がある。そこで、まず各大根の光強度を求めた。なお、実験終了後、大根を切断し、内部障害の有無を調べて内部障害を有する大根または正常大根であることを確認した。   In order to discriminate between a radish having an internal failure and a normal radish based on a band ratio calculated from the light intensity, it is necessary to extract the characteristics of the radish having the internal failure and the normal radish and determine a threshold value. Therefore, first, the light intensity of each radish was determined. After the experiment was completed, the radish was cut, and the presence or absence of an internal disorder was examined to confirm that the radish had an internal disorder or a normal radish.

まず、近赤外分光器を用いて、正常大根と内部障害を有する大根について、500nm〜820nmの範囲内の複数波長の光強度を求めた。結果を図5に示す。図5より、正常大根の光強度の方が内部障害(ここでは、黒斑細菌症)を有する大根よりも大きいことがわかる。特に、650〜710nmにかけて正常大根の光強度が高いこと、710〜730nmにかけてピークの下がりが著しいことなどがわかる。次いで、光強度の差異が大きい波長についてバンド比を求め、2種類の光強度のバンド比による検討を行った。図6は、光強度のバンド比の一例を示すグラフであり、基準となる波長を700nmおよび781nmとして、602nm/700nmのバンド比を横軸に、700nm/781nmのバンド比を縦軸に示す。図6の結果から、内部障害を有する大根のバンド比の集団と、正常大根のバンド比の集団とを二つに分けることができるという傾向が示されたことから、図6に示されるように閾値を設定することにより、ある波長における光強度を基準となる波長における光強度で除したバンド比を予め設定された閾値と比較し、バンド比が閾値を超えない場合に、内部障害を有する大根であると判別し、バンド比が閾値を超える場合に、正常大根であると判別できることがわかる。   First, using a near-infrared spectrometer, the light intensity of a plurality of wavelengths within the range of 500 nm to 820 nm was determined for normal radishes and radishes having internal damage. The results are shown in FIG. From FIG. 5, it can be seen that the light intensity of normal radish is larger than that of radish having an internal disorder (here, black spot bacteriosis). In particular, it can be seen that the light intensity of normal radish is high from 650 to 710 nm, and that the peak drops significantly from 710 to 730 nm. Next, band ratios were obtained for wavelengths with large differences in light intensity, and examination was performed based on the band ratios of two types of light intensities. FIG. 6 is a graph showing an example of the band ratio of light intensity, where the reference wavelengths are 700 nm and 781 nm, the band ratio of 602 nm / 700 nm is shown on the horizontal axis, and the band ratio of 700 nm / 781 nm is shown on the vertical axis. The results shown in FIG. 6 showed a tendency that a group of band ratios of radishes having an internal disorder and a group of band ratios of normal radishes could be divided into two. As shown in FIG. By setting a threshold value, the band ratio obtained by dividing the light intensity at a certain wavelength by the light intensity at the reference wavelength is compared with a preset threshold value, and when the band ratio does not exceed the threshold value, the radish having an internal failure When the band ratio exceeds the threshold, it can be determined that the radish is normal.

従って、大根を透過した透過光のスペクトルを検出し、前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比(バンド比)を用いることによって、高精度で且つ簡便に内部障害を有する大根を判定できることが確認された。   Therefore, the spectrum of the transmitted light that has passed through the radish is detected, the absorbance or light intensity of a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light is calculated, and the absorbance or light intensity at a certain wavelength is used as a reference wavelength. It was confirmed that a radish having an internal defect can be determined with high accuracy and ease by using a ratio (band ratio) divided by absorbance or light intensity.

本発明によれば、次のような作用効果を奏する。第1実施形態の内部障害を有する大根の非破壊判定方法によれば、大根10に光を照射し、大根10を透過した透過光のスペクトルを検出し、前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部障害の有無を判定する方法であるため、大根を切断することなく且つ目視確認することなく、内部障害を有する大根を簡便且つ迅速に、さらに高精度に判定することが可能である。従って、内部障害を有する大根を流通させることがなく、食品の安全・安心を消費者に供給し、品質保証を強化することができる。   According to the present invention, the following operational effects can be obtained. According to the nondestructive determination method for a radish having an internal failure according to the first embodiment, the spectrum of transmitted light transmitted through the radish 10 is detected by irradiating light to the radish 10, and based on the spectrum detection value of the transmitted light. Calculate the absorbance or light intensity of the obtained multiple wavelengths, calculate the ratio obtained by dividing the absorbance or light intensity at a certain wavelength by the absorbance or light intensity at the reference wavelength as a band ratio, and the band ratio and a preset threshold value Is a method for determining the presence or absence of an internal failure of the radish 10, so that the radish having the internal failure can be easily and quickly performed with higher accuracy without cutting the radish and without visual confirmation. It is possible to determine. Therefore, it is possible to supply food safety and security to consumers and enhance quality assurance without distributing radishes with internal obstacles.

第1実施形態の内部障害を有する大根の非破壊判定装置1によれば、大根10に光を照射する照射手段20と、照射手段20から照射された照射光が大根10を透過して得られる透過光を受光し、該透過光のスペクトルを検出する受光手段21と、受光手段21から検出された前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部障害の有無を判定する演算処理手段22とを備えているため、生食用大根の食材不適果や「一本取り漬物用大根」を簡便且つ迅速に、さらに高精度に判定することが可能である。さらに、作業者の目視検査による選別によらずに、大根10の内部障害を簡便且つ迅速に、さらに高精度に大根を切断することなしに大根10の内部障害を判定することが可能である。また、生産圃場での非破壊検査が可能であることから、食材買い付け時の個体検査や栽培技術指導にも大きな効果を発揮できる。さらに、生産地での品質管理に使用可能である。   According to the nondestructive determination device 1 for radish having an internal failure according to the first embodiment, irradiation means 20 for irradiating light to the radish 10 and irradiation light irradiated from the irradiation means 20 are obtained through the radish 10. Light receiving means 21 that receives the transmitted light and detects the spectrum of the transmitted light, and calculates the absorbance or light intensity of a plurality of wavelengths obtained based on the spectrum detection value of the transmitted light detected from the light receiving means 21, The ratio of absorbance or light intensity at the wavelength divided by the absorbance or light intensity at the reference wavelength is calculated as a band ratio. By comparing the band ratio with a preset threshold, the presence or absence of an internal failure of the radish 10 Therefore, it is possible to easily and quickly determine the inappropriate fruits of raw radish and “single pickled radish” with higher accuracy. Furthermore, it is possible to determine the internal failure of the radish 10 simply and quickly without cutting the radish with high accuracy, without selecting by visual inspection of the operator. In addition, since non-destructive inspection can be performed in the production field, it is possible to exert a great effect on individual inspection and cultivation technique guidance when purchasing food. Furthermore, it can be used for quality control in production areas.

図7は本発明の第2実施形態を示し、上記第1実施形態と同一部分に同一符号を付し、その詳細な説明を省略して詳述する。内部障害を有する大根の非破壊判定装置1は、大根10に光を照射する照射手段20と、照射手段20から照射された照射光が大根10を透過して得られる透過光を受光し透過光画像を撮像する撮像手段14と、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部に細菌症などの変色障害の有無を判定する演算処理手段22等を備えている。なお、撮像手段14及び照射手段20は、外光を遮断した暗箱13内に収納されている。   FIG. 7 shows a second embodiment of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The non-destructive determination device 1 for radish having an internal failure receives irradiation light 20 for irradiating light to the radish 10 and transmitted light obtained by transmitting the irradiation light irradiated from the irradiation means 20 through the radish 10 to transmit the transmitted light. The imaging means 14 for capturing an image, and the transmittance of a plurality of wavelengths obtained based on the transmitted light image are calculated, and a ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at a reference wavelength is calculated as a band ratio. The radish 10 is provided with arithmetic processing means 22 for determining the presence or absence of a discoloration disorder such as bacteriosis by comparing the band ratio with a preset threshold value. Note that the imaging means 14 and the irradiation means 20 are housed in a dark box 13 that blocks external light.

照射手段20は、大根10を照射するための白色の光源2を有する面発光ライト等を備えている。なお、本実施形態では、面発光ライトの上面に直に大根10を載置しているが、大根10を載置するための支持台等を備えてもよい。   The irradiating means 20 includes a surface-emitting light having a white light source 2 for irradiating the radish 10. In the present embodiment, the radish 10 is placed directly on the upper surface of the surface emitting light. However, a support base for placing the radish 10 may be provided.

撮像手段14は、マルチスペクトルカメラなどを有し、照射手段20の上方に配設してあり、透過光による透過光画像を複数の方向から撮像する。このマルチスペクトルカメラには、予め定められた波長域の光のみを透過する分光フィルタが取り付けられている。   The imaging unit 14 includes a multispectral camera and the like, is disposed above the irradiation unit 20, and captures a transmitted light image by transmitted light from a plurality of directions. The multispectral camera is provided with a spectral filter that transmits only light in a predetermined wavelength range.

また、演算処理手段22は、撮像手段14から得られる透過光画像を取得し、次いで例えば白色板の反射光データ等を使用して複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出する演算部8と、前記バンド比と予め設定された閾値とを比較することにより大根10の内部に細菌症などの変色障害部分の有無を判別し、内部障害を有する大根であると判定された場合、内部障害を有する大根の計数と排出信号を出す判別部9を含む。   The arithmetic processing unit 22 acquires the transmitted light image obtained from the imaging unit 14, and then calculates the transmittance of a plurality of wavelengths using, for example, reflected light data of a white plate, and the transmittance at a certain wavelength is used as a reference. The calculation unit 8 that calculates the ratio divided by the transmittance at the wavelength to be used as a band ratio, and the presence or absence of a discoloration disorder part such as bacteriosis in the radish 10 by comparing the band ratio with a preset threshold value And a discriminating section 9 that outputs a discharge signal and a count of radish having an internal failure when it is determined that the radish has an internal failure.

次に、上記のように構成された内部障害を有する大根の非破壊検出装置1について、その動作を説明する。まず、光源2の光は、大根10を透過して透過光となり、この透過光を受けて透過光画像を撮像手段14にて得る。その後、白色板の反射光データを用いて演算処理手段22にある演算部8により複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、判別部9により前記バンド比と予め設定された閾値とを比較することにより大根10の内部に細菌症などの変色障害部分の有無を判別する。そして、内部障害を有する大根であると判定された場合、判別部9から内部障害を有する大根の計数と排出信号が出される。   Next, the operation of the radish nondestructive detection apparatus 1 having an internal failure configured as described above will be described. First, light from the light source 2 is transmitted through the radish 10 to become transmitted light, and the transmitted light image is received by the imaging means 14 upon receiving this transmitted light. Thereafter, the transmittance of a plurality of wavelengths is calculated by the calculation unit 8 in the calculation processing means 22 using the reflected light data of the white plate, and the ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at the reference wavelength is a band ratio. And the discriminator 9 compares the band ratio with a preset threshold value to discriminate the presence or absence of a discoloration disorder portion such as bacteriosis in the radish 10. When it is determined that the radish has an internal failure, the determination unit 9 outputs the count of the radish having the internal failure and a discharge signal.

次に、上記の方法で得られた、透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における吸光度で除したバンド比から、内部障害を有する大根を抽出するための上記閾値を設定する方法について説明する。   Next, the transmittance of a plurality of wavelengths obtained based on the transmitted light image obtained by the above method is calculated, and the internal failure is determined from the band ratio obtained by dividing the transmittance at a certain wavelength by the absorbance at the reference wavelength. A method of setting the threshold value for extracting the radish that is included will be described.

透過率から算出されるバンド比によって内部障害を有する大根と正常大根を判別するためには、内部障害を有する大根と正常大根の特徴を抽出し、閾値を決定する必要がある。そこで、まず各大根の透過率を求めた。なお、実験終了後、大根を切断し、内部障害の有無を調べて内部障害を有する大根または正常大根であることを確認した。   In order to discriminate between a radish having an internal failure and a normal radish based on the band ratio calculated from the transmittance, it is necessary to extract the characteristics of the radish having the internal failure and the normal radish and determine a threshold value. Therefore, first, the transmittance of each radish was determined. After the experiment was completed, the radish was cut, and the presence or absence of an internal disorder was examined to confirm that the radish had an internal disorder or a normal radish.

まず、外光を遮断した暗室内で、分光フィルタにより波長別画像が撮影可能なマルチスペクトルカメラを用いて、供試大根1本につき4方向から透過光画像を取得した。その後、白色板の反射光データを使用し、500nm〜760nmの範囲内の複数波長の透過率を求めた。結果を図8に示す。図8より、内部障害を有する大根の透過率は正常大根より低いことがわかる。これは、内部障害を有する大根は内部が黒変していることから光源光が大根内部で吸収されているためであると考えられる。次いで、透過率の差異が大きい波長について、2つの特定波長を選択し、その波長での透過率のバンド比を求め、2種類の透過率のバンド比による検討を行った。図9は、透過率のバンド比の一例を示すグラフであり、基準となる波長を700nmおよび530nmとして、740nm/700nmのバンド比を横軸に、700nm/530nmのバンド比を縦軸に示す。図9の結果から、内部障害を有する大根のバンド比の集団と、正常大根のバンド比の集団とを二つに分けることができるという傾向が示されたことから、図9に示されるように閾値を設定することにより、ある波長における透過率を基準となる波長における透過率で除したバンド比を予め設定された閾値と比較し、バンド比が閾値を超える場合に、内部障害を有する大根であると判別し、バンド比が閾値を超えない場合に、正常大根であると判別できることがわかる。   First, a transmitted light image was acquired from four directions for each of the test radishes using a multispectral camera capable of capturing images according to wavelength with a spectral filter in a dark room where outside light was blocked. Then, the transmittance | permeability of the several wavelength in the range of 500 nm-760 nm was calculated | required using the reflected light data of a white board. The results are shown in FIG. It can be seen from FIG. 8 that the transmittance of the radish having an internal defect is lower than that of the normal radish. This is considered to be because the light source light is absorbed inside the radish because the inside of the radish having an internal obstacle is blackened. Next, two specific wavelengths were selected for wavelengths having a large difference in transmittance, and the band ratio of the transmittance at that wavelength was determined, and examination was performed based on the band ratio of the two types of transmittance. FIG. 9 is a graph showing an example of the band ratio of transmittance, where the reference wavelengths are 700 nm and 530 nm, the band ratio of 740 nm / 700 nm is shown on the horizontal axis, and the band ratio of 700 nm / 530 nm is shown on the vertical axis. The results shown in FIG. 9 showed a tendency that a group of band ratios of radishes having internal disorders and a group of band ratios of normal radishes could be divided into two, as shown in FIG. By setting a threshold value, the band ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at the reference wavelength is compared with a preset threshold value, and when the band ratio exceeds the threshold value, When it is determined that there is a band ratio and does not exceed the threshold, it can be determined that the radish is normal.

従って、大根を透過した透過光から得られる透過光画像を得て、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における吸光度で除した比(バンド比)を用いることによって、高精度で且つ簡便に内部障害を有する大根を判定できることが確認された。   Therefore, a transmitted light image obtained from the transmitted light that has passed through the radish is obtained, the transmittance of a plurality of wavelengths obtained based on the transmitted light image is calculated, and the transmittance at a certain wavelength is divided by the absorbance at the reference wavelength. By using the ratio (band ratio), it was confirmed that a radish having an internal defect can be determined with high accuracy and ease.

本発明によれば、次のような作用効果を奏する。第2実施形態の内部障害を有する大根10の非破壊判定方法によれば、大根10に光を照射し、大根10を透過した透過光から得られる透過光画像を得て、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部障害の有無を判定する方法であるため、大根を切断することなく且つ目視確認することなく、内部障害を有する大根を簡便且つ迅速に、さらに高精度に判定することが可能である。従って、内部障害を有する大根を流通させることがなく、食品の安全・安心を消費者に供給し、品質保証を強化することができる。   According to the present invention, the following operational effects can be obtained. According to the nondestructive determination method for the radish 10 having an internal failure according to the second embodiment, the radish 10 is irradiated with light, a transmitted light image obtained from the transmitted light transmitted through the radish 10 is obtained, and the transmitted light image is obtained. The transmittance of a plurality of wavelengths obtained based on the above is calculated, a ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at a reference wavelength is calculated as a band ratio, and the band ratio is compared with a preset threshold value. Therefore, because it is a method for determining the presence or absence of internal failure of the radish 10, it is possible to easily and quickly determine the radish having an internal failure without cutting the radish and visually confirming it with higher accuracy. Is possible. Therefore, it is possible to supply food safety and security to consumers and enhance quality assurance without distributing radishes with internal obstacles.

第2実施形態の内部障害を有する大根の非破壊判定装置1によれば、大根10に光を照射する照射手段20と、照射手段20から照射された照射光が大根10を透過して得られる透過光を受光し透過光画像を撮像する撮像手段14と、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、大根10の内部障害の有無を判定する演算処理手段22とを備えているため、生食用大根の食材不適果や「一本取り漬物用大根」を簡便且つ迅速に、さらに高精度に判定することが可能である。さらに、作業者の目視検査による選別によらずに、大根10の内部障害を簡便且つ迅速に、さらに高精度に大根を切断することなしに大根10の内部障害を判定することが可能である。   According to the non-destructive determination device 1 for radish having an internal failure according to the second embodiment, irradiation means 20 for irradiating light to the radish 10 and irradiation light irradiated from the irradiation means 20 are obtained through the radish 10. Imaging means 14 for receiving transmitted light and capturing a transmitted light image, and calculating the transmittance of a plurality of wavelengths obtained based on the transmitted light image, and dividing the transmittance at a certain wavelength by the transmittance at a reference wavelength Since it has a calculation processing means 22 for determining the presence or absence of an internal failure of the radish 10 by calculating the ratio as a band ratio and comparing the band ratio with a preset threshold value, the ingredients for raw radish Inappropriate fruits and “single pickled radish” can be determined easily, quickly, and with higher accuracy. Furthermore, it is possible to determine the internal failure of the radish 10 simply and quickly without cutting the radish with high accuracy, without selecting by visual inspection of the operator.

なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能であり、例えば、上記実施形態では投光器4および受光器5を1組だけ用いた装置を示したが、同一平面内に投光器4および受光器5をそれぞれ複数個配列し、これら投光器4−受光器5対の群を複数設置してもよい。また、吸光度、光強度、透過率の何れかより算出されたバンド比を、組み合わせて使用してもよい。   The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, in the above embodiment, only one set of the projector 4 and the light receiver 5 is used. However, a plurality of projectors 4 and light receivers 5 may be arranged in the same plane, and a plurality of groups of these projector 4 and light receiver 5 pairs may be installed. A band ratio calculated from any of absorbance, light intensity, and transmittance may be used in combination.

以下に本発明の実施例によって、本発明を詳細に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。   The present invention will be described in detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

(吸光度から算出されるバンド比を用いた内部障害を有する大根の検出)
図2に示す構成の内部障害を有する大根の非破壊判定装置1を用いて、内部障害を有する大根の判定を行った。なお、本実施例においてはアナログ/デジタル変換器7として近赤外分光分析計を用い、供試材料として白首大根を用いた。まず、測定では、支持台11に大根10を載置し、試料用暗室に静置した大根10へハロゲン光を照射し、受光用光ファイバ5により透過光を近赤外分光分析計で取得した。その後、大根を載置していない状態をバックグラウンドとして吸光度スペクトルを算出した。本実施例では、基準となる波長を719nmおよび801nmとして、742nm/719nmのバンド比と641nm/801nmのバンド比の2種類の吸光度のバンド比を計算して、図4に示す閾値を用いて、内部障害を有する大根の判別を行った。測定後は、供試大根を切断して、内部障害の有無を確認した。表1に、吸光度における内部障害を有する大根の判別結果を示す。
(Detection of radish with internal damage using band ratio calculated from absorbance)
The radish having an internal failure was determined using the non-destructive determination device 1 for an internal failure having an internal failure having the configuration shown in FIG. In this example, a near-infrared spectrometer was used as the analog / digital converter 7 and white radish was used as the test material. First, in the measurement, the radish 10 was placed on the support 11, the radish 10 placed in the dark room for the sample was irradiated with halogen light, and the transmitted light was acquired by the near-infrared spectrometer with the optical fiber 5 for light reception. . Thereafter, an absorbance spectrum was calculated using a state in which no radish was placed as a background. In this example, assuming that the reference wavelengths are 719 nm and 801 nm, the band ratio of two kinds of absorbances of the band ratio of 742 nm / 719 nm and the band ratio of 641 nm / 801 nm is calculated, and the threshold shown in FIG. 4 is used. Discrimination of radish with internal disorder was performed. After the measurement, the test radish was cut to check for internal failure. Table 1 shows the results of discriminating radishes having internal disturbances in absorbance.

Figure 2007071603
Figure 2007071603

表1より、吸光度における内部障害を有する大根の判別率は100%となり、正常大根は92.6%、総合判別率は97.1%と非常に高い判別率であった。また、この傾向は、他のバンド比を用いた判別でもほぼ同じであったことから、吸光度による判別は非常に有効であることが確認できた。   From Table 1, the discrimination rate of radish having an internal disorder in absorbance was 100%, that of normal radish was 92.6%, and the overall discrimination rate was 97.1%, which was a very high discrimination rate. In addition, since this tendency was almost the same in discrimination using other band ratios, it was confirmed that discrimination by absorbance was very effective.

(光強度から算出されるバンド比を用いた内部障害を有する大根の検出)
本実施例では、光強度から算出されるバンド比を用いた以外は、上記実施例1と同様の方法及び装置により内部障害を有する大根の検出を行った。なお、基準となる波長を700nmおよび781nmとして、602nm/700nmのバンド比と700nm/781nmのバンド比の2種類の光強度のバンド比を計算して、図6に示す閾値を用いて、内部障害を有する大根の判別を行った。表2に、光強度における内部障害を有する大根の判別結果を示す。
(Detection of radish with internal obstruction using band ratio calculated from light intensity)
In this example, radish having an internal failure was detected by the same method and apparatus as in Example 1 except that the band ratio calculated from the light intensity was used. In addition, assuming that the reference wavelengths are 700 nm and 781 nm, the band ratio of two types of light intensity, that is, the band ratio of 602 nm / 700 nm and the band ratio of 700 nm / 781 nm is calculated, and the internal disturbance is calculated using the threshold shown in FIG. The radish with Table 2 shows the results of discriminating radish having an internal failure in light intensity.

Figure 2007071603
Figure 2007071603

表2の結果は、表1に示した吸光度の結果とは逆に、正常大根の検出は100%であったが、内部障害を有する大根について、判別率は約88%であった。この結果から、吸光度と光強度のバンド比を有効に使用することにより、より判別精度を向上できることが示唆された。   Contrary to the absorbance results shown in Table 1, the results in Table 2 were 100% for detection of normal radish, but the discrimination rate was about 88% for radish having an internal disorder. From these results, it was suggested that the discrimination accuracy can be further improved by effectively using the band ratio of absorbance and light intensity.

(透過率から算出されるバンド比を用いた内部障害を有する大根の検出)
図7に示す構成の内部障害を有する大根の非破壊判定装置1を用いて、内部障害を有する大根の判定を行った。なお、本実施例においては供試材料として白首大根を用い、供試材料1本につき4方向から透過光画像を撮像した。なお、基準となる波長を700nmおよび530nmとして、740nm/700nmのバンド比と700nm/530nmのバンド比の2種類の透過率のバンド比を計算して、図9に示す閾値を用いて、内部障害を有する大根の判別を行った。表3に、透過率における内部障害を有する大根の判別結果を示す。
(Detection of radish with internal obstruction using band ratio calculated from transmittance)
The radish having an internal failure was determined using the non-destructive determination device 1 for the radish having an internal failure having the configuration shown in FIG. In this example, white neck radish was used as a test material, and transmitted light images were taken from four directions for each test material. In addition, assuming that the reference wavelengths are 700 nm and 530 nm, the band ratio of two types of transmittances of 740 nm / 700 nm band ratio and 700 nm / 530 nm band ratio is calculated, and the internal disturbance is calculated using the threshold shown in FIG. The radish having Table 3 shows the results of discriminating radish having an internal hindrance in transmittance.

Figure 2007071603
Figure 2007071603

表3より、総合判別率は86.7%であり、内部障害を有する大根の判別率は83.1%であった。この結果から、透過率のバンド比を使用することにより、内部障害を有する大根の判別できることがわかった。
From Table 3, the overall discrimination rate was 86.7%, and the discrimination rate for radishes with internal disorders was 83.1%. From this result, it was found that radish having an internal failure can be discriminated by using the band ratio of transmittance.

本発明の第1実施形態における内部障害を有する大根の非破壊判定装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the nondestructive determination apparatus of the radish which has an internal failure in 1st Embodiment of this invention. 本発明の第1実施形態における内部障害を有する大根の非破壊判定装置の構成図である。It is a block diagram of the nondestructive determination apparatus of a radish which has an internal failure in 1st Embodiment of this invention. 黒斑細菌症の大根および正常大根の各波長における吸光度を示すグラフである。It is a graph which shows the light absorbency in each wavelength of the radish of black spot bacteriosis and a normal radish. 吸光度のバンド比の一例を示すグラフである。It is a graph which shows an example of the band ratio of a light absorbency. 黒斑細菌症の大根および正常大根の各波長における光強度を示すグラフである。It is a graph which shows the light intensity in each wavelength of the radish of black spot bacteriosis and a normal radish. 光強度のバンド比の一例を示すグラフである。It is a graph which shows an example of the band ratio of light intensity. 本発明の第2実施形態における内部障害を有する大根の非破壊判定装置の構成図である。It is a block diagram of the radish nondestructive determination apparatus which has an internal failure in 2nd Embodiment of this invention. 黒斑細菌症の大根および正常大根の各波長における透過率を示すグラフである。It is a graph which shows the transmittance | permeability in each wavelength of the radish of black spot bacteriosis and a normal radish. 透過率のバンド比の一例を示すグラフである。It is a graph which shows an example of the band ratio of the transmittance | permeability.

符号の説明Explanation of symbols

1 内部障害を有する大根の非破壊判定装置
10 大根
14 撮像手段
20 照射手段
21 受光手段
22 演算処理手段
1 Nondestructive judgment device for radish with internal failure
10 radishes
14 Imaging means
20 Irradiation means
21 Light receiving means
22 Arithmetic processing means

Claims (4)

大根に光を照射し、前記大根を透過した透過光のスペクトルを検出し、前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定することを特徴とする内部障害を有する大根の非破壊判定方法。   Irradiate light to the radish, detect the spectrum of the transmitted light that has passed through the radish, calculate the absorbance or light intensity of multiple wavelengths obtained based on the spectrum detection value of the transmitted light, absorb the light or light intensity at a certain wavelength Is calculated as a band ratio by dividing the ratio of the absorbance at the reference wavelength by the absorbance or light intensity, and the presence or absence of internal damage of the radish is determined by comparing the band ratio with a preset threshold value. A non-destructive judgment method for radish having an internal failure. 大根に光を照射し、前記大根を透過した透過光から得られる透過光画像を得て、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定することを特徴とする内部障害を有する大根の非破壊判定方法。   Irradiate the radish with light, obtain a transmitted light image obtained from the transmitted light transmitted through the radish, calculate the transmittance of a plurality of wavelengths obtained based on the transmitted light image, and based on the transmittance at a certain wavelength Calculating the ratio divided by the transmittance at a certain wavelength as a band ratio, and comparing the band ratio with a preset threshold value to determine the presence or absence of the internal failure of the radish Nondestructive judgment method of radish. 大根に光を照射する照射手段と、前記照射手段から照射された照射光が前記大根を透過して得られる透過光を受光し、該透過光のスペクトルを検出する受光手段と、前記受光手段から検出された前記透過光のスペクトル検出値に基づいて得られる複数波長の吸光度又は光強度を算出し、ある波長における吸光度又は光強度を基準となる波長における吸光度又は光強度で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定する演算処理手段とを備えたことを特徴とする内部障害を有する大根の非破壊判定装置。   An irradiating means for irradiating light on the radish; a light receiving means for receiving the transmitted light obtained by the irradiation light irradiated from the irradiating means passing through the radish; and detecting a spectrum of the transmitted light; and Calculate the absorbance or light intensity of multiple wavelengths obtained based on the detected spectrum of the transmitted light, and the ratio of the absorbance or light intensity at a certain wavelength divided by the absorbance or light intensity at the reference wavelength. A non-destructive radish having an internal failure, comprising: an arithmetic processing unit that calculates the presence or absence of the internal failure of the radish by comparing the band ratio with a preset threshold value Judgment device. 大根に光を照射する照射手段と、前記照射手段から照射された照射光が前記大根を透過して得られる透過光を受光し透過光画像を撮像する撮像手段と、前記透過光画像に基づいて得られる複数波長の透過率を算出し、ある波長における透過率を基準となる波長における透過率で除した比をバンド比として算出し、前記バンド比と予め設定された閾値とを比較することにより、前記大根の内部障害の有無を判定する演算処理手段とを備えたことを特徴とする内部障害を有する大根の非破壊判定装置。

Based on the transmitted light image, an irradiating means for irradiating the radish with light, an imaging means for receiving the transmitted light obtained by the irradiation light irradiated from the irradiating means passing through the radish and capturing a transmitted light image, and By calculating the transmittance of a plurality of wavelengths obtained, calculating a ratio obtained by dividing the transmittance at a certain wavelength by the transmittance at a reference wavelength as a band ratio, and comparing the band ratio with a preset threshold value And a non-destructive determination device for radish having an internal failure, comprising: arithmetic processing means for determining the presence or absence of an internal failure of the radish.

JP2005256958A 2005-09-05 2005-09-05 Nondestructive determination method of japanese radish having internal fault and its device Pending JP2007071603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256958A JP2007071603A (en) 2005-09-05 2005-09-05 Nondestructive determination method of japanese radish having internal fault and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256958A JP2007071603A (en) 2005-09-05 2005-09-05 Nondestructive determination method of japanese radish having internal fault and its device

Publications (1)

Publication Number Publication Date
JP2007071603A true JP2007071603A (en) 2007-03-22

Family

ID=37933177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256958A Pending JP2007071603A (en) 2005-09-05 2005-09-05 Nondestructive determination method of japanese radish having internal fault and its device

Country Status (1)

Country Link
JP (1) JP2007071603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271020A (en) * 2008-05-10 2009-11-19 Institute Of National Colleges Of Technology Japan Inspection method and inspection device of clam
JP2012173174A (en) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd Device and method for detecting abnormality

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518898A (en) * 1991-07-08 1993-01-26 Fujio Kawamura Detection method for red eruption of radish
JPH06265408A (en) * 1993-03-12 1994-09-22 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Method for making spectral diffraction of image and its device
JPH06288903A (en) * 1993-03-31 1994-10-18 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Light transmission detector for inspecting internal quality of vegetables and fruits
JPH1082739A (en) * 1996-09-09 1998-03-31 Kishimoto Akira Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2003156441A (en) * 2001-09-10 2003-05-30 Tokan Kogyo Co Ltd Method and device for inspecting quality inside fruit and vegetable
JP2003329582A (en) * 2002-05-15 2003-11-19 Tokan Kogyo Co Ltd Method for inspecting internal quality of apple

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518898A (en) * 1991-07-08 1993-01-26 Fujio Kawamura Detection method for red eruption of radish
JPH06265408A (en) * 1993-03-12 1994-09-22 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Method for making spectral diffraction of image and its device
JPH06288903A (en) * 1993-03-31 1994-10-18 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Light transmission detector for inspecting internal quality of vegetables and fruits
JPH1082739A (en) * 1996-09-09 1998-03-31 Kishimoto Akira Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2003156441A (en) * 2001-09-10 2003-05-30 Tokan Kogyo Co Ltd Method and device for inspecting quality inside fruit and vegetable
JP2003329582A (en) * 2002-05-15 2003-11-19 Tokan Kogyo Co Ltd Method for inspecting internal quality of apple

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271020A (en) * 2008-05-10 2009-11-19 Institute Of National Colleges Of Technology Japan Inspection method and inspection device of clam
JP2012173174A (en) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd Device and method for detecting abnormality

Similar Documents

Publication Publication Date Title
Wu et al. Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique
JP5206335B2 (en) Principal component analysis method, principal component analysis apparatus, heterogeneous product detection apparatus, principal component analysis program, and recording medium on which principal component analysis program is recorded
JP2006170669A (en) Quality inspection device of vegetables and fruits
RU2738593C2 (en) System and method of detecting acrylamide precursors in raw potatoes and potato-based food products
JP2009122083A (en) Meter using near-infrared led
JP2013164338A (en) Method for detecting foreign matter of plant or plant product
Lu Imaging spectroscopy for assessing internal quality of apple fruit
JP6203922B1 (en) Fruit and vegetable inspection equipment
JP2005201636A (en) Method and device for judging putrid part
US20090185164A1 (en) Method of inspecting food and inspection apparatus implementing the same
JP2016045091A (en) Nondestructive measurement device and nondestructive measurement method of anthocyanin content in fruit and vegetable
JP2007071603A (en) Nondestructive determination method of japanese radish having internal fault and its device
WO2011122584A1 (en) Food quality inspection device and method of inspecting food quality
KR101096790B1 (en) Apparatus of measuring volume of agricultural products using multi-channel cameras
JP2015040818A (en) Method and apparatus for grain classification
JP6403872B2 (en) Fruit and vegetable inspection equipment
JP2011112575A (en) Non-destructive quality determination device
JP3857191B2 (en) Method and apparatus for internal quality inspection of fruits and vegetables
EP3144665B1 (en) Food analysis device
Balabanov et al. Mechatronic system for fruit and vegetables sorting
WO2018044327A1 (en) Food inspection systems and methods
JP2012058130A (en) Non-destructive inspection method and device in agricultural product
JP2021092461A (en) Internal quality inspection device for fruits and vegetables
JP4591064B2 (en) Nondestructive detection method for blood eggs
JP2015148453A (en) Fruit/vegetable quality measuring apparatus and fruit/vegetable quality measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100315