JP2006170669A - Quality inspection device of vegetables and fruits - Google Patents

Quality inspection device of vegetables and fruits Download PDF

Info

Publication number
JP2006170669A
JP2006170669A JP2004360361A JP2004360361A JP2006170669A JP 2006170669 A JP2006170669 A JP 2006170669A JP 2004360361 A JP2004360361 A JP 2004360361A JP 2004360361 A JP2004360361 A JP 2004360361A JP 2006170669 A JP2006170669 A JP 2006170669A
Authority
JP
Japan
Prior art keywords
vegetables
fruits
fruit
region
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360361A
Other languages
Japanese (ja)
Inventor
Hitoshi Otake
均 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004360361A priority Critical patent/JP2006170669A/en
Publication of JP2006170669A publication Critical patent/JP2006170669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality inspection device of vegetables and fruits capable of inspecting both of external and internal appearances of vegetables and fruits at the same time by one measurement. <P>SOLUTION: A spectroscopic device is connected to a solid-state imaging apparatus having a photodetector surface having pixels arranged thereto two-dimensionally, the light from a unidimensional region to be imaged is guided to a slit while the unidemensional image passed through the slit is dispersed at every wavelength by a diffraction lattice, the pixel line direction of the photodetector surface is set as the position axis of a unidimensional image while a pixel row direction is set as a wavelength axis so as to obtain a spectrum solved in wavelength in the respective pixels in the pixel row direction with respect to the respective pixels in the pixel line direction corresponding to the respective positions of the unidimensional image, the light from a unidimensional region to be imaged almost vertical to the moving direction of vegetables and fruits is successively allowed to enter the slit while moving the vegetables and fruits and the spectrum solve in wavelength is obtained in the respective pixels in the pixel row direction in the respective pixels in the pixel line direction of the photodetector surface with respect to the unidimensional image from the region to be imaged at the respective positions continuous in the moving direction of the vegetables and fruits to perform inspection. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、検査対象の青果物からの反射光もしくは透過光を検出して解析することにより青果物の外観および内部品質について検査を行う青果物の品質検査装置に関する。   The present invention relates to a fruit and vegetable quality inspection apparatus that inspects the appearance and internal quality of fruits and vegetables by detecting and analyzing reflected light or transmitted light from the fruits and vegetables to be inspected.

果実、野菜などの青果物は、例えばその色、形状、大きさ、傷の度合いなどについて出荷前に検査が行われ、階級、等級、色味等に応じて選別される。また、青果物の外観からその青果物に頻発する内部傷害を判別し、その度合いに応じて等級別に選別することもある。   Fruits and vegetables such as fruits and vegetables are inspected before shipment for their color, shape, size, degree of damage, etc., for example, and sorted according to class, grade, color, and the like. In addition, internal injuries that frequently occur in the fruits and vegetables are determined from the appearance of the fruits and vegetables, and the grades may be selected according to the degree.

また、果実、野菜などの青果物の中には、完熟状態で収穫すると、食味の低下、果肉の粉質化、果肉の褐変などを生じるものがあり、これを防止するために、果肉が硬く完熟になっていない状態で収穫し、その後一定温度下で放置することにより追熟を行って食用に適した状態としている。逆に、完熟状態で収穫することが望ましい青果物もあり、最適な収穫時は個々の青果物で異なる。個々の青果物の最適な収穫時の目安を得るために、その糖度、酸度、熟度等を測定することが行われている。   In addition, some fruits and vegetables such as fruits and vegetables, when harvested in a fully ripe state, cause a decrease in taste, pulverization of the pulp, browning of the pulp, etc. Harvested in a state that is not, and then ripened by leaving it at a constant temperature to make it suitable for edible use. Conversely, some fruits and vegetables are desirable to be harvested in the ripe state, and the optimum harvest time varies with individual fruits and vegetables. In order to obtain an optimum harvest time standard for individual fruits and vegetables, sugar content, acidity, ripeness and the like are measured.

従来、青果物の外観からその品質を検査する方法として、目視による検査、CCDカメラ等で検査対象の青果物を撮像し、得られた画像データについて画像処理を行う検査が行われている。   Conventionally, as a method for inspecting the quality of fruits and vegetables from the appearance thereof, visual inspection, inspection of images of fruits and vegetables to be inspected with a CCD camera or the like, and performing image processing on the obtained image data are performed.

一方、青果物の糖度、酸度、熟度、内部障害などの青果物の内部品質について内観検査を行う方法として、近赤外光を青果物に照射し、青果物からの反射光、もしくは青果物の内部を透過した透過光を検出する方法が知られている。   On the other hand, as a method of inspecting the internal quality of fruits and vegetables such as sugar content, acidity, ripeness, and internal disturbances of fruits and vegetables, near-infrared light was irradiated to the fruits and vegetables, and the reflected light from the fruits and vegetables or the inside of the fruits and vegetables were transmitted. A method for detecting transmitted light is known.

このうち、反射光を測定する方法では、青果物への照射光は表皮の下の表層部で反射され、この反射光を受光部で受光し、受光部からの検出信号を解析して内部品質を測定する。   Among them, in the method of measuring reflected light, the light irradiated to the fruits and vegetables is reflected by the surface layer part under the epidermis, and this reflected light is received by the light receiving part, and the detection signal from the light receiving part is analyzed to improve the internal quality. taking measurement.

一方、透過光を測定する方法では、青果物への照射光が青果物の内部を散乱、透過した透過光を受光部で受光し、受光部からの検出信号を解析して内部品質を測定する。
特開2002−122540号公報 特開2002−048709号公報 特開2002−139442号公報
On the other hand, in the method of measuring the transmitted light, the irradiated light to the fruits and vegetables scatters and transmits the inside of the fruits and vegetables, and the transmitted light is received by the light receiving unit, and the detection signal from the light receiving unit is analyzed to measure the internal quality.
JP 2002-122540 A JP 2002-048709 A JP 2002-139442 A

しかし従来の装置では、青果物の色、形状、大きさ等についての外観検査を行う場合と、青果物の糖度、酸度、熟度等の内観検査を行う場合とでは別途の装置を用いる必要があり、同一の装置でこれらの検査を行うことができない。   However, in the conventional apparatus, it is necessary to use separate apparatuses for the appearance inspection about the color, shape, size, etc. of the fruits and vegetables, and the inside inspection such as sugar content, acidity, maturity, etc. of the fruits, These tests cannot be performed on the same device.

検査対象の青果物について外観検査と内観検査の両方を行うことが必要な場合があるが、従来では、例えば別途の装置構成である外観検査部と内観検査部とを青果物の搬送ラインにおける別途の位置にそれぞれ設置して検査を行っていた。しかし、画像処理による外
観検査と、青果物からの反射光等のスペクトル解析による内観検査との両方を同一の装置構成で行うことができ、さらにこれらの検査を同時に行うことができる装置は従来知られていない。
Although it may be necessary to perform both an appearance inspection and an introspection inspection on the fruit or vegetable to be inspected, conventionally, for example, the appearance inspection section and the interior inspection section, which are separate apparatus configurations, are separately located in the fruit and vegetable transport line. Each was installed and inspected. However, an apparatus that can perform both an appearance inspection by image processing and an introspection inspection by spectral analysis of reflected light from fruits and vegetables with the same apparatus configuration, and an apparatus that can simultaneously perform these inspections are conventionally known. Not.

また、従来の内観検査装置では、近赤外光のスペクトルを解析することによって得られる糖度などについては、その面分布(例えば青果物をある一面から見た場合における糖度分布)を可視化することができない。   Further, in the conventional interior inspection apparatus, it is impossible to visualize the surface distribution (for example, the sugar content distribution when the fruits and vegetables are viewed from a certain surface) with respect to the sugar content obtained by analyzing the spectrum of near-infrared light. .

本発明は、青果物の色、形状、大きさ等についての外観検査と、糖度、酸度、熟度等を測定する内観検査との双方を行うことができ、さらに、1回の測定でこれらの検査を同時に行うことができる青果物の品質検査装置を提供することを目的としている。   The present invention can perform both an appearance inspection for the color, shape, size, etc. of fruits and vegetables and an interior inspection for measuring sugar content, acidity, maturity, etc., and further, these inspections can be performed in one measurement. It aims at providing the quality inspection apparatus of the fruits and vegetables which can be performed simultaneously.

本発明の青果物の品質検査装置は、行列方向へ二次元状に画素が配列された受光素子面を有する固体撮像装置と、
一次元の被撮像領域からの光を集光レンズを介してスリットへ導き、該スリットを通過した一次元像を回折格子で波長毎に分散させ、前記固体撮像装置における受光素子面の画素行方向を前記一次元像の位置軸とし、画素列方向を波長軸として、前記一次元像の各位置に対応する画素行方向の各画素について画素列方向の各画素に波長分解したスペクトルを得るように、前記固体撮像装置の受光素子面に対して前記一次元像を入射させる分光装置と、
検査対象の青果物と前記分光装置とを、前記スリットの線方向と略垂直な方向へ相対移動させる移動手段と、
前記移動手段によって前記青果物と前記分光装置とを相対移動させながら、この相対移動方向と略垂直である一次元の被撮像領域からの光を前記分光装置のスリットへ順次入射させ、これにより、前記相対移動の方向へ連続した各位置における前記被撮像領域からの一次元像について、前記受光素子面の画素行方向の各画素について画素列方向の各画素に波長分解したスペクトルを得た後に、この前記青果物を含む二次元領域におけるスペクトルデータに基づいて、前記青果物の内観検査、外観検査またはこれら両方の検査を行う解析装置と、を備えることを特徴とする。
The quality inspection apparatus for fruits and vegetables of the present invention includes a solid-state imaging device having a light receiving element surface in which pixels are arrayed two-dimensionally in a matrix direction,
The light from the one-dimensional imaging region is guided to the slit through the condenser lens, and the one-dimensional image passing through the slit is dispersed for each wavelength by the diffraction grating, and the pixel row direction of the light receiving element surface in the solid-state imaging device To obtain a spectrum that is wavelength-resolved into pixels in the pixel column direction for each pixel in the pixel row direction corresponding to each position of the one-dimensional image, with the pixel axis direction as the wavelength axis. A spectroscopic device that makes the one-dimensional image incident on a light receiving element surface of the solid-state imaging device;
A moving means for relatively moving the fruit and vegetable to be inspected and the spectroscopic device in a direction substantially perpendicular to the line direction of the slit;
While relatively moving the fruit and vegetables and the spectroscopic device by the moving means, light from a one-dimensional imaging region that is substantially perpendicular to the relative movement direction is sequentially incident on the slits of the spectroscopic device, thereby After obtaining a spectrum obtained by wavelength-resolving each pixel in the pixel row direction on the light receiving element surface into each pixel in the pixel column direction for a one-dimensional image from the imaging region at each position continuous in the direction of relative movement. And an analysis device that performs an inspecting inspection and / or an appearance inspection of the fruits and vegetables based on spectrum data in a two-dimensional region including the fruits and vegetables.

上記の発明では、受光素子面に画素が二次元状に配列された固体撮像装置(エリアカメラ)を用いて、ラインカメラのように一次元での撮像を行い画素行方向へ一次元像の受光信号を取り込むと共に、固体撮像装置の受光素子面の前方に設置した分光装置によって、一次元像の光を受光素子面の画素列方向へ波長毎に分散させ、画素行方向の各画素位置について画素列方向に波長分解した受光信号(スペクトル)を得ている。   In the above invention, a solid-state imaging device (area camera) in which pixels are two-dimensionally arranged on the light receiving element surface is used to perform one-dimensional imaging like a line camera and receive a one-dimensional image in the pixel row direction. While capturing the signal, the spectroscopic device installed in front of the light receiving element surface of the solid-state imaging device disperses the light of the one-dimensional image for each wavelength in the pixel column direction on the light receiving element surface, and the pixel at each pixel position in the pixel row direction. A received light signal (spectrum) that is wavelength-resolved in the column direction is obtained.

そして、検査対象の青果物を分光装置に対して相対移動させながらデータを取り込んでいるので、結果として青果物を含む二次元の撮像領域の各位置についてスペクトルデータが得られる。   Since the data is taken in while moving the fruit or vegetable to be inspected relative to the spectroscopic device, as a result, spectral data can be obtained for each position in the two-dimensional imaging region including the fruit and vegetable.

可視光領域について得られたスペクトルデータによって、例えばこのスペクトルデータを色相値、明度値、および彩度値に変換して画像解析を行うことで、青果物の色、形状、大きさ、傷等についての外観検査を行うことができる。   The spectral data obtained for the visible light region, for example, by converting the spectral data into hue values, lightness values, and saturation values and performing image analysis, the color, shape, size, scratches, etc. of the fruits and vegetables Appearance inspection can be performed.

また、青果物の近赤外領域におけるスペクトルの多変量解析により得られた回帰式を用いて、前記スペクトルデータから青果物の糖度、酸度、熟度、障害果等についての内観検査を行うことができる。   In addition, by using regression equations obtained by multivariate analysis of spectra in the near-infrared region of fruits and vegetables, it is possible to perform an introspection on the sugar content, acidity, ripeness, disordered fruits and the like of the fruits and vegetables from the spectrum data.

さらに、撮像した青果物の各点ごとに、近赤外領域のスペクトルデータが得られるので
、このスペクトルデータを解析することによって得られた糖度などについて、その面分布(例えば青果物をある一面から見た場合における糖度の分布状態)を可視化して画像表示することができる。
Furthermore, spectral data in the near-infrared region can be obtained for each point of the imaged fruit and vegetables, and the surface distribution (for example, the fruit and vegetables is seen from a certain surface) with respect to the sugar content obtained by analyzing this spectral data. The distribution of sugar content in the case can be visualized and displayed as an image.

本発明の装置では、調整板(白色板、黒色板、またはハロン板)を撮像することによって、固体撮像装置のゲインおよびオフセットを調整することができる。
本発明の装置は、青果物の種類などに応じて、可視領域のスペクトルデータによる外観検査と、近赤外領域のスペクトルデータによる内観検査とのいずれか一方を選択して品質検査を行うこともできるが、可視光領域から近赤外領域までのスペクトルデータを一度に得て、撮像した青果物に対して外観検査および内観検査の両方を行うこともできる。
In the device of the present invention, the gain and offset of the solid-state imaging device can be adjusted by imaging the adjustment plate (white plate, black plate, or halon plate).
The apparatus of the present invention can also perform a quality inspection by selecting either an appearance inspection based on spectral data in the visible region or an interior inspection based on spectral data in the near-infrared region, depending on the type of fruits and vegetables. However, it is also possible to obtain spectral data from the visible light region to the near-infrared region at a time and perform both the appearance inspection and the interior inspection on the captured fruits and vegetables.

本明細書において、「外観検査」には、例えば青果物を等級毎、階級毎に選別するために、青果物の色、形状、大きさ、傷などの度合いを画像処理の結果に基づいて判別する検査が含まれる。   In this specification, the “appearance inspection” is an inspection for discriminating the degree of color, shape, size, scratches, and the like of fruits and vegetables based on the results of image processing in order to sort fruits and vegetables by grade and class, for example. Is included.

「内観検査」には、青果物からの反射光、あるいは青果物へ照射した測定光が青果物内部を散乱、透過した透過光を、固体撮像装置で撮像することにより得られたスペクトルデータを用いて、多変量解析によって青果物の糖度、酸度、熟度などを測定する検査、および、青果物の内部障害の度合いとスペクトルデータとの相関を予め測定しておき、測定対象の青果物を撮像して得られたスペクトルデータによりこの相関から内部障害の度合いを判別する障害果の検査が含まれる。また、上記の画像処理による青果物の色、形状等の判別結果と、青果物の内部障害の度合いとスペクトルデータとの相関に基づいた青果物のスペクトルデータの解析結果とを組み合わせて青果物の内部障害の度合いを判別する検査も含まれる。   “Introspection” involves using spectral data obtained by imaging with a solid-state imaging device, the reflected light from fruits and vegetables or the measured light irradiated to the fruits and vegetables scattered and transmitted inside the fruits and vegetables. A spectrum obtained by imaging the fruits and vegetables to be measured by measuring the sugar content, acidity, ripeness, etc. of the fruits and vegetables by the variable analysis, and measuring the correlation between the degree of internal damage and the spectrum data in advance. The data includes an inspection of the failure result that determines the degree of internal failure from this correlation. In addition, the degree of internal failure of fruits and vegetables is determined by combining the results of the above-mentioned image processing to determine the color, shape, etc. of fruits and vegetables, and the analysis results of the spectrum data of fruits and vegetables based on the correlation between the degree of internal failure of fruits and vegetables and the spectrum data. Also included is an inspection to determine

「青果物」には、本発明が適用可能なあらゆる果実、野菜が含まれるが、本発明を好適に適用できる青果物としては、例えば桃、苺、林檎、柑橘類、スイカ、メロンなどを挙げることができる。   “Fruits and vegetables” includes all fruits and vegetables to which the present invention can be applied. Examples of the fruits and vegetables to which the present invention can be suitably applied include peaches, strawberries, apples, citrus fruits, watermelons, and melons. .

「固体撮像装置」には、CCDカメラ、CMOSカメラなどが含まれる。
「解析装置」は、例えば、青果物を含む二次元領域におけるスペクトルデータおよび、当該データを用いて各種演算処理、画像処理等を解析装置に行わせて内観検査、外観検査の結果を与えるためのプログラムを記憶するRAM、ROMなどの記憶手段と、各種の演算処理を行うCPUなどの演算手段と、カラー画像を表示するディスプレイなどの表示手段と、解析装置に指示を送信するためのマウス、キーボード等の入力手段などを含む。
The “solid-state imaging device” includes a CCD camera, a CMOS camera, and the like.
“Analyzer” is, for example, a program for giving spectral data in a two-dimensional region including fruits and vegetables and results of introspection and appearance inspections by using the data to perform various arithmetic processing, image processing, etc. Storage means such as RAM and ROM for storing data, arithmetic means such as a CPU for performing various arithmetic processes, display means such as a display for displaying a color image, a mouse, a keyboard, etc. for transmitting instructions to the analysis device Input means.

検査対象の青果物と分光装置との相対移動は、分光装置を固定し、青果物を搬送する搬送装置によって青果物を移動させて行ってもよく、青果物を固定し、分光装置を固体撮像装置と共に移動させて行ってもよい。   The relative movement between the fruits and vegetables to be inspected and the spectroscopic device may be performed by fixing the spectroscopic device and moving the fruits and vegetables by a transport device that transports the fruits and vegetables. The fruits and vegetables are fixed and the spectroscopic device is moved together with the solid-state imaging device. You may go.

本発明では、照明光源を青果物へ照射し、青果物からの反射光を固体撮像装置で撮像するようにしてもよく、光源から青果物へ照射した測定光が青果物の内部を散乱して外部へ透過した透過光を固体撮像装置で撮像するようにしてもよい。後者の場合は、特に青果物に近赤外光を照射し、その糖度、酸度、熟度、内部障害等の検査を行う際に適用される。   In the present invention, the illumination light source may be irradiated to the fruits and vegetables, and the reflected light from the fruits and vegetables may be imaged by the solid-state imaging device, and the measurement light irradiated from the light sources to the fruits and vegetables is scattered inside the fruits and vegetables and transmitted to the outside. The transmitted light may be imaged with a solid-state imaging device. The latter case is particularly applied when the fruit and vegetables are irradiated with near-infrared light and tested for sugar content, acidity, maturity, internal damage, and the like.

本発明の青果物の品質検査装置によれば、青果物の色、形状、大きさ等についての外観検査と、糖度、酸度、熟度等の内観検査との双方を行うことができ、さらに、1回の測定でこれらの検査を同時に行うことができる。   According to the quality inspection apparatus for fruits and vegetables of the present invention, it is possible to perform both an appearance inspection for the color, shape, size, etc. of fruits and vegetables and an interior inspection such as sugar content, acidity, ripeness, etc. These tests can be performed simultaneously by measuring

以下、図面を参照しながら本発明の実施形態について説明する。図1は、本発明の青果物の品質検査装置の一実施形態を示した図、図2は、一次元の被撮像領域からの反射光を分光装置で分光してCCDカメラの受光素子面へ入射させるまでの光学系を示した図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a quality inspection apparatus for fruits and vegetables according to the present invention, and FIG. 2 is a diagram showing how reflected light from a one-dimensional imaged region is dispersed by a spectroscopic device and incident on a light receiving element surface of a CCD camera. It is the figure which showed the optical system until it is made to do.

図1に示したように、検査対象の青果物1はリニアスライダ2の載置台3に載置され、載置台3と共に同図のY方向に移動する。リニアスライダ2の上方には、分光装置21が接続された2/3インチCCDカメラ11と照明光源5が配置されている。   As shown in FIG. 1, the fruit 1 to be inspected is placed on the placing table 3 of the linear slider 2 and moves with the placing table 3 in the Y direction. Above the linear slider 2, a 2/3 inch CCD camera 11 and an illumination light source 5 to which a spectroscopic device 21 is connected are arranged.

CCDカメラ11は、その直下を被撮像領域として、この被撮像領域を通過する青果物1を撮像する。照明光源5は、棒状のシリンドリカルレンズの両端にハロゲンランプを配置し、シリンドリカルレンズと平行にリフレクタを配置した線状光源であり、青果物1の移動方向Yに対して略垂直に、そして図2の分光装置21のスリット23と略平行に配置されている。ハレーション(光沢)を防止するために、照明光源5からの光を、CCDカメラ11から直下への垂直軸から10〜45度の角度だけ傾けた斜め上方から被撮像領域を通過する青果物1に対して照射している。   The CCD camera 11 images the fruits and vegetables 1 passing through the imaged area, with the area directly below the imaged area. The illumination light source 5 is a linear light source in which halogen lamps are arranged at both ends of a rod-shaped cylindrical lens, and reflectors are arranged in parallel with the cylindrical lens. The illumination light source 5 is substantially perpendicular to the moving direction Y of the fruits and vegetables 1 and shown in FIG. The spectroscopic device 21 is disposed substantially parallel to the slit 23. In order to prevent halation (gloss), the light from the illumination light source 5 is applied to the fruits and vegetables 1 that pass through the imaged region from obliquely above, tilted by an angle of 10 to 45 degrees from the vertical axis directly below the CCD camera 11. Irradiating.

これらのリニアスライダ2、分光装置21が接続されたCCDカメラ11、および照明光源5等からなる撮像系は、外乱光を遮蔽するために暗室内に配置されている。CCDカメラ11は、暗室外部のコンピュータ31へインターフェースを介して接続され、これらの間で信号が送受信される。CCDカメラ11からの受光信号はコンピュータ31へ送られ、外観検査のための画像処理および内観検査のための解析処理のためのデータとしてコンピュータ31の記憶部に格納される。   An imaging system including the linear slider 2, the CCD camera 11 to which the spectroscopic device 21 is connected, the illumination light source 5, and the like are arranged in a dark room to shield disturbance light. The CCD camera 11 is connected to a computer 31 outside the dark room via an interface, and signals are transmitted and received between them. The light reception signal from the CCD camera 11 is sent to the computer 31 and stored in the storage unit of the computer 31 as data for image processing for appearance inspection and analysis processing for interior inspection.

以下、上記の装置におけるスペクトルデータの取得動作について説明する。図1のCCDカメラ11の受光素子面には、図3に示したように行方向(x方向)および列方向(y方向)へ二次元状に画素13が配列されている。この受光素子面12の前方には、図2に示したように、分光装置21の集光レンズ22、スリット23および、回折格子27を含む光学系25等が配置されている。   Hereinafter, an operation of acquiring spectrum data in the above apparatus will be described. As shown in FIG. 3, pixels 13 are two-dimensionally arranged in the row direction (x direction) and the column direction (y direction) on the light receiving element surface of the CCD camera 11 of FIG. In front of the light receiving element surface 12, as shown in FIG. 2, a condensing lens 22, a slit 23 of the spectroscopic device 21, an optical system 25 including a diffraction grating 27, and the like are arranged.

X方向に配置されたスリット23には、CCDカメラ11の直下に位置するX方向と略平行な一次元の被撮像領域41からの反射光が、集光レンズ22により一次元像として結像される。スリット23を通過した一次元像は、回折格子27を含む光学系25へ導かれて波長毎にY方向に分散され、CCDカメラ11の受光素子面12に入射する。   In the slit 23 arranged in the X direction, the reflected light from the one-dimensional imaged region 41 that is substantially parallel to the X direction located immediately below the CCD camera 11 is formed as a one-dimensional image by the condenser lens 22. The The one-dimensional image that has passed through the slit 23 is guided to the optical system 25 including the diffraction grating 27, is dispersed in the Y direction for each wavelength, and enters the light receiving element surface 12 of the CCD camera 11.

光学系25は、図5に示したように、透過型の回折格子27と、その両面側に配置されたプリズム26,28とから構成されている。なお、図5のような構成を有する分光装置として、Imspector(商標: Specim社(フィンランド)製)が市販されている。スリット23からの一次元像は、レンズ24で平行光とされ、測定波長域の中央波長の光がプリズム26、回折格子27およびプリズム28を対称的な経路で通過し、これよりも短波長の光は一方側の斜方に、長波長の光は他方側の斜方に分光される。次いで、レンズ29により光を収束させてCCDカメラ11の受光素子面12に結像させる。   As shown in FIG. 5, the optical system 25 includes a transmissive diffraction grating 27 and prisms 26 and 28 arranged on both sides thereof. Note that Imspector (trademark: manufactured by Specim (Finland)) is commercially available as a spectroscopic device having the configuration shown in FIG. The one-dimensional image from the slit 23 is converted into parallel light by the lens 24, and the light having the center wavelength in the measurement wavelength region passes through the prism 26, the diffraction grating 27, and the prism 28 along a symmetric path, and has a shorter wavelength than this. Light is split in one oblique direction, and long wavelength light is divided in the other oblique direction. Next, the light is converged by the lens 29 to form an image on the light receiving element surface 12 of the CCD camera 11.

Y方向に分散された一次元像は、図3のx方向(画素行方向)を一次元像の位置軸とし、y方向(画素列方向)を一次元像の各位置における波長軸として、一次元像の各位置に対応する画素座標x1,x2…xnの各画素について、画素座標y1,y2…yn毎に波長分解したスペクトルを得るように受光素子面12へ入射される。一例として、1nm/画素のピッチで、約400nmから1000nmまでの各波長における光を約600個の画素座標y1,y2…へ受光させることにより、可視から近赤外までの波長域における受
光強度分布が一次元像の各位置x1,x2…のそれぞれについて得られる。
The one-dimensional image dispersed in the Y direction is first-order with the x direction (pixel row direction) in FIG. 3 as the position axis of the one-dimensional image and the y direction (pixel column direction) as the wavelength axis at each position of the one-dimensional image. The pixel coordinates x1, x2,... Xn corresponding to the positions of the original image are incident on the light receiving element surface 12 so as to obtain a wavelength-resolved spectrum for each of the pixel coordinates y1, y2,. As an example, the received light intensity distribution in the wavelength range from visible to near infrared by receiving light at each wavelength from about 400 nm to 1000 nm at about 600 pixel coordinates y1, y2,... At a pitch of 1 nm / pixel. Are obtained for each position x1, x2,... Of the one-dimensional image.

一次元の撮像領域からのスペクトルデータの取り込みは、図1のリニアスライダ2で青果物1をY方向へ移動させながら行う。即ち、図2の被撮像領域41を横切るように青果物1を移動させながら(例えば90mm/s程度)一次元像のデータを取り込むことによって、図4に示したように、被撮像領域41を順次通過するY方向へ連続した各位置Y1,Y2…Ynからの一次元像について、受光素子面12における画素座標x1,x2…のそれぞれについて画素座標y1,y2…毎に波長分解されたスペクトルが得られる。   Spectral data acquisition from the one-dimensional imaging region is performed while moving the fruits and vegetables 1 in the Y direction with the linear slider 2 in FIG. That is, by capturing the one-dimensional image data while moving the fruits and vegetables 1 across the imaged area 41 in FIG. 2 (for example, about 90 mm / s), the imaged area 41 is sequentially moved as shown in FIG. With respect to the one-dimensional image from each position Y1, Y2,..., Yn continuous in the passing Y direction, a wavelength-resolved spectrum is obtained for each of the pixel coordinates x1, x2,. It is done.

各位置Y1,Y2…Ynの幅は、図1のリニアスライダ2によって移動する青果物1の速度により調節することができる。即ち、青果物1を速度v(mm/s)で移動させ、CCDカメラ11による一次元像の取り込み時間をt1(s)とすれば、この取り込み時間t1(s)の間に被撮像領域41を通過する載置台3および青果物1の幅はv/t1(mm)となり、速度vを変化させることにより各位置Y1,Y2…Ynの幅を調節することができる。この速度vを変えることで、後述する外観検査における2次元画像の縦横比を補正することができる。なお、青果物1の移動速度は、リニアスライダ2に接続したエンコーダ(図示せず)からの出力をコンピュータ31へ取り込むことで把握している。 The width of each position Y1, Y2,... Yn can be adjusted by the speed of the fruits and vegetables 1 moving by the linear slider 2 in FIG. That is, if the fruits and vegetables 1 are moved at a speed v (mm / s) and the time for capturing a one-dimensional image by the CCD camera 11 is t 1 (s), the area to be imaged during this time t 1 (s) is captured. The width of the table 3 and the fruits and vegetables 1 passing through 41 is v / t 1 (mm), and the width of each position Y1, Y2,... Yn can be adjusted by changing the speed v. By changing the speed v, it is possible to correct the aspect ratio of the two-dimensional image in the appearance inspection described later. The moving speed of the fruits and vegetables 1 is grasped by taking the output from an encoder (not shown) connected to the linear slider 2 into the computer 31.

このようにして、青果物1を含む二次元撮像領域の各位置(スペクトルデータを得た各点、以下、画素ともいう)におけるスペクトルデータが得られる。
なお、CCDカメラ11の機差を無くし、カメラのゲインとオフセットを調整するために、白色板および黒色板を調整板として用い、この調整板を撮像することにより、白色板で信号値の高域を、黒色板で信号値の低域を決定することができる。白色調整板は、分光反射率を得る際の基準としても使用される。
In this way, spectral data at each position (each point where spectral data is obtained, hereinafter also referred to as a pixel) of the two-dimensional imaging region including the fruits and vegetables 1 is obtained.
In addition, in order to eliminate the machine difference of the CCD camera 11 and adjust the gain and offset of the camera, the white plate and the black plate are used as the adjustment plate, and by imaging the adjustment plate, the white plate has a high signal value range. The low frequency range of the signal value can be determined with a black plate. The white adjustment plate is also used as a reference when obtaining the spectral reflectance.

近赤外の波長領域におけるカメラのゲインとオフセットの調整は、広い波長範囲で拡散反射特性のよい硫酸バリウムの反射板、あるいは、いわゆるハロン板が好ましい。
例えば図11に示したように、この調整板45は、被撮像領域41を通過するように載置台3上に配置して青果物1の撮像に先立ち予め撮像しておくか、あるいは、図12に示したように、調整板45を青果物1と共に載置台3上に配置して、これらを被撮像領域41を移動させて同時に撮像することができる。また、図13に示したように、CCDカメラ11の視野内に調整板45を常時固定して配置してもよい。あるいは、図14に示したように、調整板45をCCDカメラ11の視野の内外(図中位置A1と位置A2)に移動させるアーム46を設けて、このアーム46で調整板45を移動させて適宜CCDカメラ11の視野内に位置させるようにしてもよい。このように調整板をアームで移動させる場合、同図のようなX方向への移動に限らず、調整板が円弧状の軌跡を描くように移動させるなど他の移動形態であってもよい。
For adjusting the gain and offset of the camera in the near-infrared wavelength region, it is preferable to use a barium sulfate reflecting plate having good diffuse reflection characteristics in a wide wavelength range, or a so-called halon plate.
For example, as shown in FIG. 11, the adjusting plate 45 is arranged on the mounting table 3 so as to pass through the imaged region 41 and is imaged in advance prior to imaging of the fruits and vegetables 1 or as shown in FIG. As shown, the adjusting plate 45 can be arranged on the mounting table 3 together with the fruits and vegetables 1, and these can be imaged simultaneously by moving the imaged area 41. Further, as shown in FIG. 13, the adjustment plate 45 may be always fixedly disposed in the field of view of the CCD camera 11. Alternatively, as shown in FIG. 14, an arm 46 for moving the adjustment plate 45 in and out of the visual field of the CCD camera 11 (position A1 and position A2 in the figure) is provided, and the adjustment plate 45 is moved by this arm 46. You may make it locate in the visual field of CCD camera 11 suitably. When the adjustment plate is moved by the arm in this manner, the movement is not limited to the movement in the X direction as shown in the figure, and other movement forms such as moving the adjustment plate so as to draw an arcuate locus may be used.

この他、CCDカメラ11の受光素子面12を外光から遮断するように蓋をした状態で暗電流を計り、この暗電流による信号を、青果物1の撮像時における受光信号から差し引くことで簡便に調整を行うことができる。   In addition, the dark current is measured in a state where the light receiving element surface 12 of the CCD camera 11 is covered from outside light, and the signal due to the dark current is subtracted from the received light signal when the fruits and vegetables 1 are imaged. Adjustments can be made.

図1の実施形態ではCCDカメラ11を上方に配置したが、図6に示したように(リニアスライダの側方から見た図である)、リニアスライダ2のコンベア4aとコンベア4bとを離間させて間隙43を設け、載置台3を、これらのコンベアを乗り換えるようにY方向へ移動させながら、載置台3に載置された青果物1の下部をコンベア下方に設置したCCDカメラ11で撮像することもできる。同図のように上方にもCCDカメラ11を設置して上下から青果物1の上部および下部の両方を撮像するようにしてもよい。   In the embodiment of FIG. 1, the CCD camera 11 is disposed above, but as shown in FIG. 6 (viewed from the side of the linear slider), the conveyor 4a and the conveyor 4b of the linear slider 2 are separated from each other. The lower part of the fruits and vegetables 1 placed on the placing table 3 is imaged by the CCD camera 11 placed below the conveyor while moving the placing table 3 in the Y direction so as to transfer these conveyors. You can also. As shown in the figure, a CCD camera 11 may be installed on the upper side so that both the upper and lower parts of the fruits and vegetables 1 can be imaged from above and below.

このコンベア間の間隙43は、分光装置21における図2のスリット23と略平行な一
次元の被撮像領域41を含むのであれば、その搬送方向(Y方向)の幅は、青果物1の幅より短くすることができる。なお、載置台3に青果物1の下部を露出させる貫通穴を設けるか、あるいは載置台3を透明な材料で形成することで青果物1の下部へ照明光源5からの光を入射させることができる。
If the gap 43 between the conveyors includes a one-dimensional imaged area 41 substantially parallel to the slit 23 in FIG. 2 in the spectroscopic device 21, the width in the transport direction (Y direction) is larger than the width of the fruits and vegetables 1. Can be shortened. In addition, the light from the illumination light source 5 can be incident on the lower part of the fruit and vegetables 1 by providing the through-hole which exposes the lower part of the fruit and vegetables 1 in the mounting base 3, or forming the mounting base 3 with a transparent material.

また、図7に示したように(リニアスライダの搬送方向から見た図である)、反射鏡44を青果物1の側方に設置して、青果物1を直接撮像すると同時に、反射鏡44からの青果物1の反射像も撮像することで、青果物1の多面方向(同図では、直接に撮像される上部と、反射鏡44,44を介して撮像される両側部の3面方向)からの撮像データを同時に得ることができ、これにより、多面方向から得られたスペクトルデータを反映した解析をすることができる。反射鏡を複数設置することで、三次元的な解析も可能である。反射鏡は、可視用の反射鏡、近赤外用の反射鏡、あるいはこれらを兼ねるものであってもよい。   As shown in FIG. 7 (viewed from the conveying direction of the linear slider), the reflecting mirror 44 is installed on the side of the fruits and vegetables 1 to directly image the fruits and vegetables 1 and at the same time from the reflecting mirror 44. By capturing a reflection image of the fruit 1, the image is taken from multiple directions of the fruit 1 (in the same figure, the upper surface directly imaged and the three surface directions of both sides imaged through the reflecting mirrors 44, 44). Data can be obtained at the same time, whereby analysis reflecting spectral data obtained from multiple directions can be performed. By installing multiple reflectors, three-dimensional analysis is possible. The reflecting mirror may be a visible reflecting mirror, a near-infrared reflecting mirror, or a combination of these.

また、図7の構成に限らず、青果物の撮像時に該青果物の近傍となる位置に少なくとも1つの反射鏡を設け、固体撮像装置(CCDカメラ)によって該青果物を直接撮像すると同時に、反射鏡からの該青果物の反射像も撮像するように構成できればよい。例えば、反射鏡は、図7の載置台3に固定してもよく、あるいはCCDカメラによる被撮像領域に反射鏡の位置を固定し、青果物を載せた図7の載置台3の移動によって、固定された反射鏡の近傍を青果物が通過することによって反射鏡からの反射像を得るようにしてもよい。   In addition to the configuration of FIG. 7, at least one reflecting mirror is provided in the vicinity of the fruits and vegetables when imaging the fruits and vegetables, and the fruits and vegetables are directly imaged by the solid-state imaging device (CCD camera). What is necessary is just to be comprised so that the reflected image of this fruit and vegetables may also be imaged. For example, the reflecting mirror may be fixed to the mounting table 3 in FIG. 7, or fixed by moving the mounting table 3 in FIG. A reflected image from the reflecting mirror may be obtained by the fruits and vegetables passing through the vicinity of the reflecting mirror.

図15は、本発明における他の実施形態を示した図である。図1の実施形態では、線状の照明光源5からの反射光を撮像したが、本実施形態では図15に示したように(図15(a)はリニアスライダの側方から見た図、図15(b)はリニアスライダの搬送方向から見た図である)、ハロゲンランプ、キセノンランプ、レーザ等の強度が高い近赤外光源6を配置して青果物1に照射し、青果物1の内部を通過して下方へ散乱、透過した透過光を、リニアスライダ2のコンベア4aとコンベア4bとの間隙43を通して載置台3の下方からCCDカメラ11で撮像している。   FIG. 15 is a diagram showing another embodiment of the present invention. In the embodiment of FIG. 1, the reflected light from the linear illumination light source 5 is imaged, but in this embodiment, as shown in FIG. 15 (FIG. 15A is a view seen from the side of the linear slider, FIG. 15 (b) is a view as seen from the conveying direction of the linear slider), a near-infrared light source 6 such as a halogen lamp, a xenon lamp, or a laser is arranged to irradiate the fruits and vegetables 1, and the inside of the fruits and vegetables 1 The CCD camera 11 captures the transmitted light that has been scattered and transmitted downward through the gap 4 through the gap 43 between the conveyor 4 a and the conveyor 4 b of the linear slider 2 from below the mounting table 3.

即ち、青果物1が載置された載置台3を、コンベアを乗り換えるようにY方向へ移動させながら青果物1の内部からの透過光をコンベア下方に設置したCCDカメラ11で撮像することによって、撮像により得られた近赤外のスペクトルデータを用いて、例えば後述するような多変量解析によって青果物1の糖度、酸度、熟度、内部障害等などを測定することができる。この場合、青果物1の内部を透過した透過光に基づいているので、図1の場合よりも青果物1の内部を反映した糖度情報が得られる。   That is, by moving the mounting table 3 on which the fruits and vegetables 1 are mounted in the Y direction so as to change the conveyor, the transmitted light from the inside of the fruits and vegetables 1 is imaged by the CCD camera 11 installed below the conveyor, thereby performing imaging. Using the obtained near-infrared spectrum data, the sugar content, acidity, maturity, internal disorder, etc. of the fruits and vegetables 1 can be measured, for example, by multivariate analysis as described later. In this case, since it is based on the transmitted light transmitted through the inside of the fruits and vegetables 1, sugar content information reflecting the inside of the fruits and vegetables 1 can be obtained more than in the case of FIG.

なお、このように透過光を撮像する場合において、光源6およびCCDカメラ11の配置位置は図15の配置に限定されず、例えば光源6は青果物1の側方、斜め上方などに位置させることができ、また、青果物1の両側に複数個の光源6を配置してもよい。光源6は、可視光源を兼ねてもよい。CCDカメラ11は、同図のように青果物1の下方に配置する他、青果物1の上方に配置してもよい。   In the case where the transmitted light is imaged in this way, the arrangement positions of the light source 6 and the CCD camera 11 are not limited to the arrangement shown in FIG. 15. For example, the light source 6 may be located on the side of the fruit 1 or obliquely above. In addition, a plurality of light sources 6 may be arranged on both sides of the fruit 1. The light source 6 may also serve as a visible light source. The CCD camera 11 may be disposed above the fruits and vegetables 1 as well as below the fruits and vegetables 1 as shown in FIG.

以下、上記のようにして得られた二次元撮像領域のスペクトルデータによる青果物の外観検査について説明する。この青果物を含んだ二次元撮像領域の各画素におけるスペクトルデータは、図1のコンピュータ31の記憶部に格納される。外観検査では、得られたスペクトルデータのうち、可視領域(例えば380nm〜780nm)におけるデータを使用する。最初に、各画素毎のスペクトルデータをコンピュータ31の演算部で演算処理して、HLS(H(Hue(色相)、Lightness(明度)、Saturation(彩度))値に変換する。   Hereinafter, the appearance inspection of fruits and vegetables using the spectrum data of the two-dimensional imaging region obtained as described above will be described. Spectral data in each pixel of the two-dimensional imaging region including the fruits and vegetables is stored in the storage unit of the computer 31 in FIG. In the appearance inspection, data in the visible region (for example, 380 nm to 780 nm) is used among the obtained spectrum data. First, the spectrum data for each pixel is calculated by the calculation unit of the computer 31 and converted into HLS (H (Hue, Hue, Lightness, Saturation)) values.

このスペクトルデータからHLS値への変換は、公知である各種の方法で行うことがで
き、そのためのプログラムも入手できるが、その概略を以下に説明する。先ず、スペクトルデータと、前述した調整用の白板を撮像して得られたデータとの比から、5nm毎に分光反射率S(λ)を求め、得られたS(λ)と、人間の感度分布の関数S(λ)x(λ)、S(λ)y(λ)、S(λ)z(λ)とから、下記式:

Figure 2006170669
The conversion from the spectrum data to the HLS value can be performed by various known methods, and a program for the conversion can be obtained. The outline thereof will be described below. First, the spectral reflectance S (λ) is obtained every 5 nm from the ratio between the spectral data and the data obtained by imaging the white plate for adjustment described above, and the obtained S (λ) and human sensitivity are obtained. From the distribution functions S (λ) x (λ), S (λ) y (λ), and S (λ) z (λ), the following formula:
Figure 2006170669

により三刺激値XYZを求め、得られた三刺激値XYZからRGB値にマトリックス変換する。
次に下記式:
L=0.3R+0.5866G+0.1B
RY=0.7R−0.59G−0.11B
BY=0.3R−0.59G−0.89B
からL、RY、BY(L=Y(輝度)、RY=R−Y、BY=B−Y)を求め、下記式:H=tan-1(RY/BY)
S=√{RY^2+BY^2}
からH、Sを得る。これらの演算処理は図1のコンピュータ31の演算部で行われる。
The tristimulus values XYZ are obtained by the above, and matrix conversion is performed from the obtained tristimulus values XYZ to RGB values.
Then the following formula:
L = 0.3R + 0.5866G + 0.1B
RY = 0.7R-0.59G-0.11B
BY = 0.3R-0.59G-0.89B
L, RY, BY (L = Y (luminance), RY = RY, BY = BY) are obtained from the following formula: H = tan −1 (RY / BY)
S = √ {RY ^ 2 + BY ^ 2}
To obtain H and S. These calculation processes are performed by the calculation unit of the computer 31 in FIG.

このようにして二次元撮像領域の各画素についてHLS値を得ると共に、検査対象の青果物、撮像条件等に応じて、青果物の色、形状、大きさ等を判別するための有効画像領域を抽出するための閾値(上限および下限)をH値、L値、S値のそれぞれについて設定する。   In this way, an HLS value is obtained for each pixel in the two-dimensional imaging area, and an effective image area for discriminating the color, shape, size, and the like of the fruits and vegetables is extracted according to the fruits and vegetables to be examined, imaging conditions, and the like. Threshold values (upper and lower limits) are set for each of the H value, L value, and S value.

この閾値からコンピュータ31の演算部では図8のように二次元撮像領域51における青果物画像53の輪郭52内部を抽出する処理が行われる。色の判別に際して、青果物画像53の領域内においてHLS値が所定の閾値外である孤立点は必要に応じて除去する。また、青果物画像53の周縁部では、良好なスペクトルデータが得られないので、例えば1〜3画素程度この周縁部の画素点を除去する収縮処理を行う。   Based on this threshold, the computing unit of the computer 31 performs processing for extracting the inside of the contour 52 of the fruit and vegetable image 53 in the two-dimensional imaging region 51 as shown in FIG. At the time of color discrimination, isolated points whose HLS values are outside a predetermined threshold in the region of the fruit and vegetable image 53 are removed as necessary. In addition, since good spectral data cannot be obtained at the peripheral portion of the fruit and vegetable image 53, for example, a contraction process is performed to remove pixel points at the peripheral portion by about 1 to 3 pixels.

例えば林檎のヘタ付近の影など、照明の影となる部分は、色の判別に際して青果物画像53の有効画像領域に含めて全体を平均するとノイズになるので除去する(平均を得るための計算に使用しない)。この操作は、明度値Lの下限側閾値を必要に応じて上げ、暗い部分をこのL閾値で除くことで行うことができる。   For example, a portion that becomes a shadow of illumination, such as a shadow near the apple's spatula, is included in the effective image area of the fruits and vegetables image 53 when determining the color, and becomes a noise when it is averaged (the calculation is used to obtain the average). do not do). This operation can be performed by raising the lower limit side threshold value of the lightness value L as necessary and removing dark portions by this L threshold value.

色の判別に際して、青果物画像53にハレーションがある場合には、白色部分をS値の閾値で除くか、あるいはL値の上限側閾値を必要に応じて下げることによりL値で除去する。   When determining the color, if there is halation in the fruit and vegetable image 53, the white portion is removed with the threshold of the S value, or the upper limit side threshold of the L value is lowered as necessary to remove it with the L value.

このようにして得られた青果物の有効画像領域について、Hの平均値とLの平均値とを所定の係数をそれぞれに乗じて加算した計算値が、青果物の色の測定値となる。このように複数の画素の平均値として測定値を得ているので、良好な精度が得られる。   A calculated value obtained by multiplying the average value of H and the average value of L by a predetermined coefficient for the effective image area of the fruits and vegetables obtained in this way is the measured value of the color of the fruits and vegetables. Thus, since the measured value is obtained as an average value of a plurality of pixels, good accuracy can be obtained.

また、青果物画像53の輪郭52内の総画素数により青果物の大きさの測定値が得られ、輪郭52の形状により青果物の形状を判別できる。青果物画像53の内部においてHLS値が所定の閾値外である領域から青果物の傷が判別され、この閾値外の領域の総画素数から傷の大きさが得られる。   A measured value of the size of the fruit or vegetable is obtained from the total number of pixels in the contour 52 of the fruit and vegetable image 53, and the shape of the fruit or vegetable can be determined from the shape of the contour 52. A flaw in the fruit or vegetable is discriminated from the area where the HLS value is outside the predetermined threshold in the fruit and vegetable image 53, and the size of the flaw is obtained from the total number of pixels in the area outside the threshold.

このようにして得られた画像処理結果から、青果物の色、形状、大きさ、傷の度合いを判別する。例えば、算出された測定値を、等級、階級、色合いの心理値などに応じた閾値と比較することにより判別を行い、その結果に基づいて青果物が選別される。   From the image processing results obtained in this way, the color, shape, size, and degree of damage of the fruits and vegetables are determined. For example, discrimination is performed by comparing the calculated measurement value with a threshold value corresponding to the psychological value of grade, class, hue, etc., and fruits and vegetables are selected based on the result.

なお、図9に示したように、複数の青果物53a,53b,53cを同時に撮像し、これらの各青果物について個別に検査することもできる。即ち、各青果物53a,53b,53cについてラベリングをして個別にその輪郭内を抽出し、それぞれについて同じ処理を行うようにすればよい。   In addition, as shown in FIG. 9, the some fruit and vegetables 53a, 53b, and 53c can be imaged simultaneously, and each of these fruit and vegetables can also be test | inspected separately. That is, the fruits and vegetables 53a, 53b, and 53c may be labeled to individually extract the contours, and the same processing may be performed for each.

画像処理に際して、二次元撮像領域の各位置に応じたオフセットをデータに加算したり、あるいは分光反射率を得る際に照明による明暗むらを予め記憶しておき、スペクトルデータからこの明暗むらを反映したデータを割り算したりする補正を行うことが好ましい。   At the time of image processing, an offset corresponding to each position of the two-dimensional imaging region is added to the data, or when obtaining spectral reflectance, the brightness unevenness due to illumination is stored in advance, and the brightness unevenness is reflected from the spectrum data. It is preferable to perform a correction to divide the data.

次に、二次元撮像領域のスペクトルデータによる青果物の内観検査について説明する。内観検査では、得られたスペクトルデータのうち、近赤外を主とする波長域(例えば700nm〜1000nm)におけるデータを使用する。最初に、回帰式を得るためのサンプルについて撮像を行い、白板を撮像した受光信号との比から分光反射率を算出し、この分光反射率の対数値を求め、この対数値、その1次微分値または2次微分値等から重回帰分析、主成分回帰分析、PLS回帰分析等による多変量解析を行い、青果物の糖度、酸度、熟度等のいずれかについての回帰式を算出する。   Next, the interior inspection of fruits and vegetables based on the spectrum data of the two-dimensional imaging region will be described. In the introspection inspection, data in a wavelength range mainly including near infrared (for example, 700 nm to 1000 nm) is used among the obtained spectral data. First, the sample for obtaining the regression equation is imaged, the spectral reflectance is calculated from the ratio with the received light signal obtained by imaging the white plate, and the logarithmic value of the spectral reflectance is obtained. Multivariate analysis by multiple regression analysis, principal component regression analysis, PLS regression analysis, etc. is performed from the value or second derivative value, etc., and a regression equation for any of sugar content, acidity, ripeness, etc. of fruits and vegetables is calculated.

例えば果実の糖度を計測する場合を例とすると、サンプルを撮像して得られた近赤外のスペクトルデータと、このサンプルについて他の方法で測定した糖度値との回帰式を図1のコンピュータ31で計算し、得られた回帰式を記憶させておく。回帰式には、上記した分光反射率の対数値、その1次微分値または2次微分値等が変数とされるが、例えばこれらのそれぞれを変数とした場合について実際に解析処理を行い、高精度の回帰式が得られるものを選択する。検査対象の果実を撮像して得られたスペクトルデータから、この回帰式を用いて糖度が測定される。   For example, taking the case of measuring the sugar content of a fruit as an example, a regression equation between the near-infrared spectrum data obtained by imaging the sample and the sugar content value measured by another method for the sample is shown in FIG. The regression equation obtained and calculated is stored. In the regression equation, the logarithmic value of the spectral reflectance, the first derivative value or the second derivative value thereof are variables. For example, when each of these is a variable, an analysis process is actually performed, Select one that provides a regression equation of accuracy. From the spectrum data obtained by imaging the fruit to be examined, the sugar content is measured using this regression equation.

例えば、果実のスペクトルにおいて糖度と相関のある2以上の特定波長を決め、下記式:
C=K0 +K1 λ1 +K2λ2 +・・・・+Knλn
(ここでλ1、λ2…λnは選択波長における分光反射率の対数値、その1次微分値または2次微分値であり、K0、K1、…Knは比例係数である。)から得られた推定値と、他の方法で測定された果実の糖度値との相関係数が最も高くなるように、通常用いられる多変量解析手法によりK0、K1、…Knの値を決定する。
For example, two or more specific wavelengths having a correlation with sugar content are determined in the fruit spectrum, and the following formula:
C = K 0 + K 1 λ 1 + K 2 λ 2 +... + K n λ n
(Where lambda 1, the lambda 2 ... lambda n logarithm of the spectral reflectance at a selected wavelength, is its first derivative or second derivative, K 0, K 1, is ... K n is a proportionality factor. ) and the estimated values obtained from, as the correlation coefficient between the sugar content values of fruits as measured by other methods is the highest, by the usual multivariate analysis technique used K 0, K 1, ... of K n Determine the value.

図10は、図1の装置を用いて、載置台3にグルコース溶液を入れた容器を載せて、リニアスライダ2により当該容器を移動させながら撮像を行って得られたスペクトルと、スペクトルの各波長における相関係数と、特定波長を用いた回帰式から得られた値と糖度との関係と、を示したグラフである(吸光度、1次微分および2次微分を変数とした各場合について示している)。このように、1次微分および2次微分を変数としたデータでは、相関係数が+−1に極めて近い波長が複数存在していることがわかる。   FIG. 10 shows a spectrum obtained by performing imaging while placing a container in which a glucose solution is placed on the mounting table 3 using the apparatus of FIG. 1 and moving the container with the linear slider 2, and each wavelength of the spectrum. Is a graph showing the correlation coefficient in FIG. 4 and the relationship between the value obtained from the regression equation using a specific wavelength and the sugar content (shown for each case where the absorbance, first derivative and second derivative are variables). ) Thus, it can be seen that there are a plurality of wavelengths whose correlation coefficients are very close to + −1 in the data using the first and second derivatives as variables.

以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されることはなく、その要旨を逸脱しない範囲内において種々の変形、変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range which does not deviate from the summary.

図1は、本発明の青果物の品質評価装置の一実施形態を示した図である。FIG. 1 is a diagram showing an embodiment of a quality evaluation apparatus for fruits and vegetables according to the present invention. 図2は、被撮像領域からの反射光を分光装置で分光してCCDカメラの受光素子面へ入射させるまでの光学系を示した図である。FIG. 2 is a diagram showing an optical system from when the reflected light from the imaging region is split by the spectroscopic device to be incident on the light receiving element surface of the CCD camera. 図3は、CCDカメラの受光素子面に配列された画素を示した図である。FIG. 3 is a diagram showing the pixels arranged on the light receiving element surface of the CCD camera. 図4は、一次元の被撮像領域(CCDカメラの視野)の方向(x方向)と、青果物の移動方向(Y方向)とを軸とした二次元撮像領域の各点について、受光素子面の画素列方向(y方向)に展開されたスペクトルデータを得る構成を説明する図である。FIG. 4 shows the points on the surface of the light receiving element with respect to each point of the two-dimensional imaging region with the axis of the direction (x direction) of the one-dimensional imaging region (CCD camera field of view) and the moving direction of fruits and vegetables (Y direction) It is a figure explaining the structure which acquires the spectrum data expand | deployed in the pixel row direction (y direction). 図5は、分光装置の光学系を示した図である。FIG. 5 is a diagram showing an optical system of the spectroscopic device. 図6は、青果物を上方および下方から撮像するようにした撮像系を示した図である。FIG. 6 is a diagram showing an image pickup system that picks up fruits and vegetables from above and below. 図7は、青果物の側方に反射鏡を配置して青果物を多面方向から撮像するようにした構成を示した図である。FIG. 7 is a diagram showing a configuration in which a reflecting mirror is arranged on the side of the fruits and vegetables so that the fruits and vegetables are picked up from multiple directions. 図8は、青果物を含む二次元撮像領域の画像を示した図である。FIG. 8 is a diagram illustrating an image of a two-dimensional imaging region including fruits and vegetables. 図9は、複数の青果物を含む二次元撮像領域の画像を示した図である。FIG. 9 is a diagram illustrating an image of a two-dimensional imaging region including a plurality of fruits and vegetables. 図10は、図1の装置を用いて、載置台にグルコース溶液を入れた容器を載せて、リニアスライダにより当該容器を移動させながら撮像を行って得られたスペクトルと、スペクトルの各波長における相関係数と、特定波長を用いた回帰式から得られた値と糖度との関係と、を示したグラフであるFIG. 10 shows a spectrum obtained by performing imaging while placing a container in which a glucose solution is placed on a mounting table using the apparatus of FIG. 1 and moving the container with a linear slider, and a phase at each wavelength of the spectrum. It is the graph which showed the relationship number and the relationship between the value obtained from the regression equation using a specific wavelength, and sugar content. 図11は、CCDカメラのゲインとオフセットを調整するための調整板をCCDカメラの視野内に設置する例を示した図である。FIG. 11 is a diagram showing an example in which an adjustment plate for adjusting the gain and offset of the CCD camera is installed in the field of view of the CCD camera. 図12は、CCDカメラのゲインとオフセットを調整するための調整板をCCDカメラの視野内に設置する他の例を示した図である。FIG. 12 is a diagram showing another example in which an adjustment plate for adjusting the gain and offset of the CCD camera is installed in the field of view of the CCD camera. 図13は、CCDカメラのゲインとオフセットを調整するための調整板をCCDカメラの視野内に設置する他の例を示した図である。FIG. 13 is a diagram showing another example in which an adjustment plate for adjusting the gain and offset of the CCD camera is installed in the field of view of the CCD camera. 図14は、CCDカメラのゲインとオフセットを調整するための調整板をCCDカメラの視野内に設置する他の例を示した図である。FIG. 14 is a diagram showing another example in which an adjustment plate for adjusting the gain and offset of the CCD camera is installed in the field of view of the CCD camera. 図15は、光源からの照射光が青果物の内部を透過した透過光を撮像する構成を示した図である。FIG. 15 is a diagram showing a configuration for imaging the transmitted light that is transmitted from the light source through the inside of the fruits and vegetables.

符号の説明Explanation of symbols

1 青果物
2 リニアスライダ
3 載置台
4 a,4b コンベア
5 照明光源
6 光源
11 CCDカメラ
12 受光素子面
13 画素
21 分光装置
22 集光レンズ
23 スリット
24 レンズ
25 光学系
26 プリズム
27 透過型回折格子
28 プリズム
29 レンズ
31 コンピュータ
41 被撮像領域
42 スペクトル
43 間隙
44 反射鏡
45 調整板
46 アーム
51 二次元撮像領域
52 輪郭
53 青果物画像

DESCRIPTION OF SYMBOLS 1 Fruits and vegetables 2 Linear slider 3 Mounting stand 4a, 4b Conveyor 5 Illumination light source 6 Light source 11 CCD camera 12 Light receiving element surface 13 Pixel 21 Spectrometer 22 Condensing lens 23 Slit 24 Lens 25 Optical system 26 Prism 27 Transmission type diffraction grating 28 Prism 29 Lens 31 Computer 41 Imaged region 42 Spectrum 43 Gap 44 Reflector 45 Adjusting plate 46 Arm 51 Two-dimensional imaged region 52 Outline 53 Fruit and vegetable image

Claims (9)

行列方向へ二次元状に画素が配列された受光素子面を有する固体撮像装置と、
一次元の被撮像領域からの光を集光レンズを介してスリットへ導き、該スリットを通過した一次元像を回折格子で波長毎に分散させ、前記固体撮像装置における受光素子面の画素行方向を前記一次元像の位置軸とし、画素列方向を波長軸として、前記一次元像の各位置に対応する画素行方向の各画素について画素列方向の各画素に波長分解したスペクトルを得るように、前記固体撮像装置の受光素子面に対して前記一次元像を入射させる分光装置と、
検査対象の青果物と前記分光装置とを、前記スリットの線方向と略垂直な方向へ相対移動させる移動手段と、
前記移動手段によって前記青果物と前記分光装置とを相対移動させながら、この相対移動方向と略垂直である一次元の被撮像領域からの光を前記分光装置のスリットへ順次入射させ、これにより、前記相対移動の方向へ連続した各位置における前記被撮像領域からの一次元像について、前記受光素子面の画素行方向の各画素について画素列方向の各画素に波長分解したスペクトルを得た後に、この前記青果物を含む二次元領域におけるスペクトルデータに基づいて、前記青果物の内観検査、外観検査またはこれら両方の検査を行う解析装置と、を備えることを特徴とする青果物の品質検査装置。
A solid-state imaging device having a light receiving element surface in which pixels are arranged two-dimensionally in a matrix direction;
The light from the one-dimensional imaging region is guided to the slit through the condenser lens, and the one-dimensional image passing through the slit is dispersed for each wavelength by the diffraction grating, and the pixel row direction of the light receiving element surface in the solid-state imaging device To obtain a spectrum that is wavelength-resolved into pixels in the pixel column direction for each pixel in the pixel row direction corresponding to each position of the one-dimensional image, with the pixel axis direction as the wavelength axis. A spectroscopic device that makes the one-dimensional image incident on a light receiving element surface of the solid-state imaging device;
A moving means for relatively moving the fruit and vegetable to be inspected and the spectroscopic device in a direction substantially perpendicular to the line direction of the slit;
While relatively moving the fruit and vegetables and the spectroscopic device by the moving means, light from a one-dimensional imaging region that is substantially perpendicular to the relative movement direction is sequentially incident on the slits of the spectroscopic device, thereby After obtaining a spectrum obtained by wavelength-resolving each pixel in the pixel row direction on the light receiving element surface into each pixel in the pixel column direction for a one-dimensional image from the imaging region at each position continuous in the direction of relative movement. An apparatus for quality inspection of fruits and vegetables, comprising: an analysis device that performs an inspection of the inside and / or appearance of the fruits and vegetables based on spectrum data in a two-dimensional region including the fruits and vegetables.
前記解析装置は、可視領域から近赤外領域までの波長域において得られた前記スペクトルデータについて、可視領域における前記スペクトルデータに基づいて青果物の外観検査を行うとともに、近赤外領域における前記スペクトルデータに基づいて前記青果物の内観検査を行うことを特徴とする請求項1に記載の青果物の品質検査装置。   The analysis device performs appearance inspection of fruits and vegetables based on the spectrum data in the visible region with respect to the spectrum data obtained in the wavelength region from the visible region to the near infrared region, and the spectral data in the near infrared region. The fruit and vegetable quality inspection apparatus according to claim 1, wherein an introspection of the fruit and vegetables is performed based on the inspection. 前記外観検査が、青果物の色、形状、大きさ、または傷についての品質検査であることを特徴とする請求項1または2に記載の青果物の品質検査装置。   The quality inspection apparatus for fruits and vegetables according to claim 1 or 2, wherein the appearance inspection is a quality inspection for the color, shape, size, or scratches of the fruits and vegetables. 前記解析装置は、前記スペクトルデータを色相値、明度値、および彩度値に変換した後、これらの値について設定した閾値により前記青果物の有効画像領域を抽出する処理を含む画像処理によって前記外観検査を行うことを特徴とする請求項3に記載の青果物の品質検査装置。   The analysis apparatus converts the spectral data into a hue value, a lightness value, and a saturation value, and then performs the appearance inspection by image processing including a process of extracting an effective image area of the fruits and vegetables using a threshold set for these values. The quality inspection device for fruits and vegetables according to claim 3, wherein: 前記内観検査が、青果物の糖度、酸度、熟度、または障害果についての品質検査であることを特徴とする請求項1または2に記載の青果物の品質検査装置。   The quality inspection apparatus for fruits and vegetables according to claim 1 or 2, wherein the introspection is a quality inspection for sugar content, acidity, ripeness, or fruit of fruit and vegetables. 前記解析装置は、青果物の近赤外領域におけるスペクトルの多変量解析により得られた回帰式を用いて前記内観検査を行うことを特徴とする請求項5に記載の青果物の品質検査装置。   6. The quality inspection apparatus for fruits and vegetables according to claim 5, wherein the analysis apparatus performs the introspection using a regression equation obtained by multivariate analysis of spectra in the near-infrared region of the fruits and vegetables. 前記青果物に近赤外光を照射する近赤外光源を備え、該近赤外光源から前記青果物へ照射され該青果物の内部を散乱、透過した透過光を前記固体撮像装置で撮像するように構成し、前記解析装置は、近赤外領域における前記透過光のスペクトルデータに基づいて前記青果物の内観検査を行うことを特徴とする請求項5または6に記載の青果物の品質検査装置。   A near-infrared light source that irradiates the fruit and vegetables with near-infrared light, and is configured so that the solid-state imaging device captures the transmitted light that is irradiated from the near-infrared light source to the fruit and vegetables and is scattered and transmitted inside the fruit and vegetables. The quality inspection device for fruits and vegetables according to claim 5 or 6, wherein the analysis device performs an interior inspection of the fruits and vegetables based on spectrum data of the transmitted light in a near infrared region. 前記固体撮像装置のゲインおよびオフセットを調整するための少なくとも1つの調整板を備え、該調整板が、白色板、黒色板、またはハロン板であることを特徴とする請求項1〜7のいずれかに記載の青果物の品質検査装置。   8. The apparatus according to claim 1, further comprising at least one adjustment plate for adjusting a gain and an offset of the solid-state imaging device, wherein the adjustment plate is a white plate, a black plate, or a halon plate. The fruit and vegetable quality inspection apparatus described in 1. 青果物の撮像時に該青果物の近傍となる位置に少なくとも1つの反射鏡を設け、前記固
体撮像装置によって該青果物を直接撮像すると同時に、前記反射鏡からの該青果物の反射像も撮像するように構成したことを特徴とする請求項1〜8のいずれかに記載の青果物の品質検査装置。


At least one reflecting mirror is provided at a position in the vicinity of the fruits and vegetables when the fruits and vegetables are imaged, and the fruits and vegetables are directly imaged by the solid-state imaging device, and at the same time, a reflected image of the fruits and vegetables from the reflector is also captured. The quality inspection apparatus for fruits and vegetables according to any one of claims 1 to 8.


JP2004360361A 2004-12-13 2004-12-13 Quality inspection device of vegetables and fruits Pending JP2006170669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360361A JP2006170669A (en) 2004-12-13 2004-12-13 Quality inspection device of vegetables and fruits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360361A JP2006170669A (en) 2004-12-13 2004-12-13 Quality inspection device of vegetables and fruits

Publications (1)

Publication Number Publication Date
JP2006170669A true JP2006170669A (en) 2006-06-29

Family

ID=36671600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360361A Pending JP2006170669A (en) 2004-12-13 2004-12-13 Quality inspection device of vegetables and fruits

Country Status (1)

Country Link
JP (1) JP2006170669A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038206A1 (en) * 2007-09-21 2009-03-26 Suntory Holdings Limited Visible/near-infrared spectrum analyzing method and grape fermenting method
JP2010054342A (en) * 2008-08-28 2010-03-11 National Agriculture & Food Research Organization Method and apparatus for measuring quality of strawberry
JP2011090435A (en) * 2009-10-21 2011-05-06 Dainippon Printing Co Ltd Production place information confirmation system
WO2011055405A1 (en) 2009-11-04 2011-05-12 株式会社ニレコ Spectral information read device
WO2011118309A1 (en) * 2010-03-24 2011-09-29 Necシステムテクノロジー株式会社 Analysis device
JP2011191129A (en) * 2010-03-12 2011-09-29 Hitachi Information & Control Solutions Ltd Tablet inspection device, tablet packaging apparatus, tablet inspection method, and tablet packaging method
CN102539433A (en) * 2011-12-30 2012-07-04 华南农业大学 Nondestructive testing method for quality of leechee seed
JP2012147279A (en) * 2011-01-13 2012-08-02 Spectr Design Kk Near-infrared imaging apparatus
JP2014190913A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Light detector, printer, and image display unit
JP2015045593A (en) * 2013-08-29 2015-03-12 大和ハウス工業株式会社 Method of inspecting numeric value of color of exterior material, and correction tool therefor
JP2015154727A (en) * 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device
US9270898B2 (en) 2013-03-13 2016-02-23 Seiko Epson Corporation Camera and image processing method for spectroscopic analysis of captured image
WO2016035444A1 (en) * 2014-09-05 2016-03-10 住友電気工業株式会社 Microscope
KR20160084810A (en) * 2014-12-10 2016-07-14 가부시기가이샤니레꼬 Fish species determination device and fish species determination method
JP2016150289A (en) * 2015-02-17 2016-08-22 ヤンマー株式会社 Quality selector
JP2016156777A (en) * 2015-02-26 2016-09-01 住友電気工業株式会社 Spectroscopy measuring apparatus
WO2016174963A1 (en) * 2015-04-30 2016-11-03 住友電気工業株式会社 Microscope device
JP2016537646A (en) * 2013-11-01 2016-12-01 トムラ・ソーティング・エヌ・ヴィ Method and apparatus for detecting substances
JP2017015488A (en) * 2015-06-30 2017-01-19 株式会社ニコン Imaging device
JPWO2016158820A1 (en) * 2015-03-31 2017-05-25 三井金属計測機工株式会社 Fruit and vegetable inspection equipment
CN108760652A (en) * 2018-03-26 2018-11-06 南京农业大学 The more quality damage-free detection methods of grape based on Vis/NIR and device
CN108872085A (en) * 2018-05-09 2018-11-23 南京林业大学 The rotten heart lossless detection method of navel orange based on the detection of blue wave band transmission image
JP2019032266A (en) * 2017-08-09 2019-02-28 株式会社前川製作所 Inspection device
WO2019146152A1 (en) * 2018-01-24 2019-08-01 Ckd株式会社 Inspection device, ptp packaging machine, and calibration method of inspection device
EP3534151A1 (en) * 2018-03-02 2019-09-04 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method
JP2019194557A (en) * 2017-10-26 2019-11-07 ハインリヒ ゲオルク ゲーエムベーハー マシーネンファブリークHeinrich Georg GmbH Maschinenfabrik Inspection system and defect analysis method
WO2020075000A1 (en) * 2018-10-10 2020-04-16 株式会社半導体エネルギー研究所 Inspection device and method for operating inspection device
JP2020529844A (en) * 2017-08-07 2020-10-15 ファルマク・アクティーゼ・ルスカブ Live fish processing system and related methods
CN111835976A (en) * 2020-07-28 2020-10-27 Oppo广东移动通信有限公司 Displacement equipment, photographing data acquisition method and device and storage medium
CN112262311A (en) * 2018-05-30 2021-01-22 Ckd株式会社 Inspection device and PTP packaging machine
JP2021067557A (en) * 2019-10-24 2021-04-30 大塚電子株式会社 Optical measurement device and optical measurement method
WO2023206848A1 (en) * 2022-04-26 2023-11-02 浙江大学 Pomelo flesh quality edible rate measurement method based on x-ray image
CN117589696A (en) * 2023-10-31 2024-02-23 安徽唯嵩光电科技有限公司 Fruit and vegetable spectral data processing device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618329A (en) * 1992-07-01 1994-01-25 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Spectroscopic method for object image and its device
JPH0634525A (en) * 1992-07-21 1994-02-08 Olympus Optical Co Ltd High-speed spectrophotometer
JPH08313344A (en) * 1995-05-23 1996-11-29 Shimadzu Corp Spectrometric device
JPH09105673A (en) * 1995-10-11 1997-04-22 Yokogawa Electric Corp Spectral apparatus
JPH10124648A (en) * 1996-10-18 1998-05-15 Kubota Corp Image pickup system
JP2000348173A (en) * 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd Lip extraction method
JP2004004077A (en) * 2003-05-15 2004-01-08 Kubota Corp System for measuring internal quality of agricultural product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618329A (en) * 1992-07-01 1994-01-25 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Spectroscopic method for object image and its device
JPH0634525A (en) * 1992-07-21 1994-02-08 Olympus Optical Co Ltd High-speed spectrophotometer
JPH08313344A (en) * 1995-05-23 1996-11-29 Shimadzu Corp Spectrometric device
JPH09105673A (en) * 1995-10-11 1997-04-22 Yokogawa Electric Corp Spectral apparatus
JPH10124648A (en) * 1996-10-18 1998-05-15 Kubota Corp Image pickup system
JP2000348173A (en) * 1999-06-04 2000-12-15 Matsushita Electric Ind Co Ltd Lip extraction method
JP2004004077A (en) * 2003-05-15 2004-01-08 Kubota Corp System for measuring internal quality of agricultural product

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038206A1 (en) * 2007-09-21 2009-03-26 Suntory Holdings Limited Visible/near-infrared spectrum analyzing method and grape fermenting method
JP2010054342A (en) * 2008-08-28 2010-03-11 National Agriculture & Food Research Organization Method and apparatus for measuring quality of strawberry
JP2011090435A (en) * 2009-10-21 2011-05-06 Dainippon Printing Co Ltd Production place information confirmation system
WO2011055405A1 (en) 2009-11-04 2011-05-12 株式会社ニレコ Spectral information read device
JP2011191129A (en) * 2010-03-12 2011-09-29 Hitachi Information & Control Solutions Ltd Tablet inspection device, tablet packaging apparatus, tablet inspection method, and tablet packaging method
JP2011202971A (en) * 2010-03-24 2011-10-13 Nec System Technologies Ltd Analysis device
CN102812346A (en) * 2010-03-24 2012-12-05 Nec软件***科技有限公司 Analysis device
WO2011118309A1 (en) * 2010-03-24 2011-09-29 Necシステムテクノロジー株式会社 Analysis device
US9279720B2 (en) 2010-03-24 2016-03-08 Nec Solution Innovators, Ltd. Analysis device
JP2012147279A (en) * 2011-01-13 2012-08-02 Spectr Design Kk Near-infrared imaging apparatus
CN102539433A (en) * 2011-12-30 2012-07-04 华南农业大学 Nondestructive testing method for quality of leechee seed
CN102539433B (en) * 2011-12-30 2013-09-11 华南农业大学 Nondestructive testing method for quality of leechee seed
US9270898B2 (en) 2013-03-13 2016-02-23 Seiko Epson Corporation Camera and image processing method for spectroscopic analysis of captured image
JP2014190913A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Light detector, printer, and image display unit
JP2015045593A (en) * 2013-08-29 2015-03-12 大和ハウス工業株式会社 Method of inspecting numeric value of color of exterior material, and correction tool therefor
US11724286B2 (en) 2013-11-01 2023-08-15 Tomra Sorting Nv Method and apparatus for detecting matter
JP2016537646A (en) * 2013-11-01 2016-12-01 トムラ・ソーティング・エヌ・ヴィ Method and apparatus for detecting substances
JP2015154727A (en) * 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device
WO2016035444A1 (en) * 2014-09-05 2016-03-10 住友電気工業株式会社 Microscope
KR20160084810A (en) * 2014-12-10 2016-07-14 가부시기가이샤니레꼬 Fish species determination device and fish species determination method
KR101656635B1 (en) * 2014-12-10 2016-09-09 가부시기가이샤니레꼬 Fish species determination device and fish species determination method
JP2016150289A (en) * 2015-02-17 2016-08-22 ヤンマー株式会社 Quality selector
JP2016156777A (en) * 2015-02-26 2016-09-01 住友電気工業株式会社 Spectroscopy measuring apparatus
JPWO2016158820A1 (en) * 2015-03-31 2017-05-25 三井金属計測機工株式会社 Fruit and vegetable inspection equipment
CN107533216A (en) * 2015-04-30 2018-01-02 住友电气工业株式会社 Microscopie unit
WO2016174963A1 (en) * 2015-04-30 2016-11-03 住友電気工業株式会社 Microscope device
JP2017015488A (en) * 2015-06-30 2017-01-19 株式会社ニコン Imaging device
JP2020529844A (en) * 2017-08-07 2020-10-15 ファルマク・アクティーゼ・ルスカブ Live fish processing system and related methods
JP2019032266A (en) * 2017-08-09 2019-02-28 株式会社前川製作所 Inspection device
JP2019194557A (en) * 2017-10-26 2019-11-07 ハインリヒ ゲオルク ゲーエムベーハー マシーネンファブリークHeinrich Georg GmbH Maschinenfabrik Inspection system and defect analysis method
EP3745113A4 (en) * 2018-01-24 2021-10-20 CKD Corporation Inspection device, ptp packaging machine, and calibration method of inspection device
WO2019146152A1 (en) * 2018-01-24 2019-08-01 Ckd株式会社 Inspection device, ptp packaging machine, and calibration method of inspection device
JP2019128250A (en) * 2018-01-24 2019-08-01 Ckd株式会社 Inspection device, ptp packaging machine and calibration method of inspection device
US10837831B2 (en) 2018-03-02 2020-11-17 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method
JP2019152518A (en) * 2018-03-02 2019-09-12 セイコーエプソン株式会社 Inspection device, inspection system, and method for inspection
EP3534151A1 (en) * 2018-03-02 2019-09-04 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method
US11209313B2 (en) 2018-03-02 2021-12-28 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method
CN108760652A (en) * 2018-03-26 2018-11-06 南京农业大学 The more quality damage-free detection methods of grape based on Vis/NIR and device
CN108872085A (en) * 2018-05-09 2018-11-23 南京林业大学 The rotten heart lossless detection method of navel orange based on the detection of blue wave band transmission image
CN108872085B (en) * 2018-05-09 2023-04-25 南京林业大学 Navel orange heart rot nondestructive testing method based on blue wave band transmission image detection
CN112262311A (en) * 2018-05-30 2021-01-22 Ckd株式会社 Inspection device and PTP packaging machine
US11900642B2 (en) 2018-10-10 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Inspection device and method for operating inspection device
JP7383629B2 (en) 2018-10-10 2023-11-20 株式会社半導体エネルギー研究所 Inspection equipment
JPWO2020075000A1 (en) * 2018-10-10 2021-10-14 株式会社半導体エネルギー研究所 Inspection device and operation method of inspection device
WO2020075000A1 (en) * 2018-10-10 2020-04-16 株式会社半導体エネルギー研究所 Inspection device and method for operating inspection device
JP7341849B2 (en) 2019-10-24 2023-09-11 大塚電子株式会社 Optical measurement device and optical measurement method
JP2021067557A (en) * 2019-10-24 2021-04-30 大塚電子株式会社 Optical measurement device and optical measurement method
CN111835976B (en) * 2020-07-28 2021-10-26 Oppo广东移动通信有限公司 Displacement equipment, photographing data acquisition method and device and storage medium
CN111835976A (en) * 2020-07-28 2020-10-27 Oppo广东移动通信有限公司 Displacement equipment, photographing data acquisition method and device and storage medium
WO2023206848A1 (en) * 2022-04-26 2023-11-02 浙江大学 Pomelo flesh quality edible rate measurement method based on x-ray image
CN117589696A (en) * 2023-10-31 2024-02-23 安徽唯嵩光电科技有限公司 Fruit and vegetable spectral data processing device and method

Similar Documents

Publication Publication Date Title
JP2006170669A (en) Quality inspection device of vegetables and fruits
Femenias et al. Use of hyperspectral imaging as a tool for Fusarium and deoxynivalenol risk management in cereals: A review
Li et al. Application of hyperspectral imaging for nondestructive measurement of plum quality attributes
Wu et al. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals
Ariana et al. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging
Qin et al. Hyperspectral and multispectral imaging for evaluating food safety and quality
ElMasry et al. Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging
Mahendran et al. Application of computer vision technique on sorting and grading of fruits and vegetables
US6847447B2 (en) Apparatus and method and techniques for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
Xing et al. Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands
Saldaña et al. Computer vision applied to the inspection and quality control of fruits and vegetables
Li et al. Comparative analysis of models for robust and accurate evaluation of soluble solids content in ‘Pinggu’peaches by hyperspectral imaging
JP5206335B2 (en) Principal component analysis method, principal component analysis apparatus, heterogeneous product detection apparatus, principal component analysis program, and recording medium on which principal component analysis program is recorded
US9091643B2 (en) Device and method for analyzing kernel component
Li et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging
AU2001245710A1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
WO2001069191A1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
Bensaeed et al. Oil palm fruit grading using a hyperspectral device and machine learning algorithm
Chao et al. Chicken heart disease characterization by multi-spectral imaging
Peirs et al. Starch index determination of apple fruit by means of a hyperspectral near infrared reflectance imaging system
Wang et al. Quantitative determination of onion internal quality using reflectance, interactance, and transmittance modes of hyperspectral imaging
JP2002174592A (en) Evaluation apparatus
JP2005201636A (en) Method and device for judging putrid part
JP2000111473A (en) Inspection system for vegetables and fruits
Nguyen-Do-Trong et al. Cross-polarised VNIR hyperspectral reflectance imaging system for agrifood products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601