JP2007069523A - Manufacturing method of biaxially stretched polyester film for twist wrapping - Google Patents

Manufacturing method of biaxially stretched polyester film for twist wrapping Download PDF

Info

Publication number
JP2007069523A
JP2007069523A JP2005260762A JP2005260762A JP2007069523A JP 2007069523 A JP2007069523 A JP 2007069523A JP 2005260762 A JP2005260762 A JP 2005260762A JP 2005260762 A JP2005260762 A JP 2005260762A JP 2007069523 A JP2007069523 A JP 2007069523A
Authority
JP
Japan
Prior art keywords
polyester
polyester film
biaxially stretched
yield point
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005260762A
Other languages
Japanese (ja)
Other versions
JP4887698B2 (en
Inventor
Kuniharu Mori
邦治 森
Katsushi Yamamoto
克史 山本
Sukeki Kada
祐基 加田
Yoshiharu Hashimoto
好春 橋本
Mikio Matsuoka
幹雄 松岡
Hiroshi Sumino
弘 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005260762A priority Critical patent/JP4887698B2/en
Publication of JP2007069523A publication Critical patent/JP2007069523A/en
Application granted granted Critical
Publication of JP4887698B2 publication Critical patent/JP4887698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an extremely useful biaxially stretched polyester film for twist wrapping excellent in film forming properties and thickness uniformity and having good twist properties. <P>SOLUTION: The biaxially stretched polyester film for twist wrapping is manufactured by a method wherein a sheet, which is obtained by cooling and solidifying a molten resin of a mixed polyester prepared by mixing a polyester mainly consisting of an ethylene terephthalate component and a polyester mainly consisting of a butylene terephthalate component in a mixing ratio of 100:0-50:50, is laterally stretched in a first stage and subsequently longitudinally stretched in a second stage, the biaxially stretched sheet is further heat-treated under tension and the product (M×T) of the stretching magnification [M×(-)] in the second stage and a tension heat-treatment temperature [T(°C)] is 200-600 and characterized that the average value of the values in the longitudinal and lateral directions of the yield point stress difference (the difference between upper yield point stress and lower yield point stress) in a stress-strain curve is 2 MPa or above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒネリ包装用二軸延伸ポリエステルフィルムに関し、さらに詳細には、製膜性と厚みの均一性に優れ、かつ優れたヒネリ適性を有する二軸延伸ポリエステルフィルムに関する。   TECHNICAL FIELD The present invention relates to a biaxially stretched polyester film for shining packaging, and more particularly, to a biaxially stretched polyester film having excellent film forming properties and uniformity in thickness, and having excellent heliness aptitude.

ヒネリ適性の優れたフィルムとして、透明性がよいセロハンが広く使用されてきた。しかしながら、セロハンは吸湿性を有するため特性が季節により変動し、一定の品質のものを常に供給することが困難であり、かつ厚みの不均一性に起因する加工性の悪さが欠点とされてきた。一方、ポリエチレンテレフタレートフィルムは強靱性、耐熱性、耐水性、透明性等の優れた特性の良さがある反面、ヒネリ適性が劣るためにヒネリ包装用に用いることができないという欠点があった。   Cellophane, which has good transparency, has been widely used as a film having excellent suitability. However, since cellophane has hygroscopicity, its characteristics fluctuate depending on the season, it is difficult to always supply a certain quality, and poor workability due to uneven thickness has been a drawback. . On the other hand, the polyethylene terephthalate film has excellent properties such as toughness, heat resistance, water resistance, and transparency, but has a disadvantage that it cannot be used for wrapping due to its poor heelability.

かかる欠点を解消する方法として、共重合ポリエステルを二軸延伸した後、比較的高温(140〜235℃、好ましくは150〜230℃)で緊張熱処理を行い、配向度を低減させた(未延伸フィルムの平均屈折率をN0、二軸延伸フィルムの平均屈折率をN1とした時、0.003≦N1−N0≦0.021を満足させた)ポリエステルフィルムが開示されている。(例えば、特許文献1参照)。また、ポリエチレンテレフタレートと35℃以上のガラス転移温度を有するポリエステルと34℃以下のガラス転移温度を有するポリエステルからなる混合ポリエステルを二軸延伸した後、比較的高温(210〜220℃)で緊張熱処理した下降伏点応力/上降伏点応力の比が0.95以下のポリエステルフィルムが開示されている。(例えば、特許文献2参照)。 As a method for eliminating such drawbacks, the copolyester was biaxially stretched and then subjected to tension heat treatment at a relatively high temperature (140 to 235 ° C., preferably 150 to 230 ° C.) to reduce the degree of orientation (unstretched film). the average refractive index of the N 0, when the average refractive index of biaxially oriented film was N 1, was satisfied 0.003 ≦ N 1 -N 0 ≦ 0.021 ) polyester film is disclosed. (For example, refer to Patent Document 1). In addition, a mixed polyester composed of polyethylene terephthalate, a polyester having a glass transition temperature of 35 ° C. or higher and a polyester having a glass transition temperature of 34 ° C. or lower is biaxially stretched, and then subjected to a tension heat treatment at a relatively high temperature (210 to 220 ° C.). A polyester film having a ratio of falling yield stress / upper yield stress of 0.95 or less is disclosed. (For example, refer to Patent Document 2).

しかしながら、これらのポリエステルフィルムはヒネリ適性には優れているが、比較的高温で緊張熱処理を行うため、厚みの均一性がよくなく、その結果、印刷や蒸着等の加工工程でシワが発生しやすいという欠点があった。   However, although these polyester films are excellent in the suitability, since the tension heat treatment is performed at a relatively high temperature, the thickness uniformity is not good, and as a result, wrinkles are likely to occur in processing steps such as printing and vapor deposition. There was a drawback.

かかる欠点を解消する方法として、ポリエチレンテレフタレートを二軸延伸しただけの結晶化度が40%以下のポリエステルフィルムが開示されている。(例えば、特許文献3参照)。   As a method for eliminating such drawbacks, a polyester film having a crystallinity of 40% or less obtained by biaxially stretching polyethylene terephthalate is disclosed. (For example, refer to Patent Document 3).

しかしながら、該ポリエステルフィルムはヒネリ適性と厚みの均一性に優れているが、二軸延伸後にタルミが発生しやすく、二軸延伸後にフィルムの両端を切断する際、または製品ロールに仕上げるために裁断する際に破断しやすく、かつ製品ロールに前記タルミに起因したシワが発生しやすいという欠点があり、いまだ満足されるものではなかった。
特許2505474号公報 特開2003−311828号公報 特表2005−513225号公報
However, the polyester film is excellent in the suitability and thickness uniformity, but it tends to generate tarmi after biaxial stretching, and it is cut when both ends of the film are cut after biaxial stretching or for finishing into a product roll. At the same time, the product roll has the disadvantages that it easily breaks and wrinkles due to the tarmi occur on the product roll, and it has not been satisfied yet.
Japanese Patent No. 2505474 JP 2003-31828 A JP 2005-513225 A

本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、製膜性と厚みの均一性に優れ、かつ優れたヒネリ適性を有する二軸延伸ポリエステルフィルムを提供するものである。   The object of the present invention is to solve the problems of the prior art. That is, the present invention provides a biaxially stretched polyester film that is excellent in film formability and thickness uniformity and has excellent shininess suitability.

本願の発明は、エチレンテレフタレート成分を主体とするポリエステルとブチレンテレフタレート成分を主体とするポリエステルの混合比が100:0〜50:50からなる混合ポリエステルの溶融樹脂を冷却固化したシートを横方向に第1段目延伸を行い、次いで縦方向に第2段目延伸を行い、さらに緊張下で熱処理を行い、かつ第2段目延伸倍率(M×(−))と緊張熱処理温度(T(℃))の積(M×・T)が200〜600である方法で製造されたヒネリ包装用二軸延伸ポリエステルフィルムであって、かつ応力−ひずみ曲線における降伏点応力差(上降伏点応力と下降伏点応力との差)の縦方向での値と横方向での値の平均値が2MPa以上であることを特徴とするヒネリ包装用二軸延伸ポリエステルフィルムである。   In the invention of the present application, a sheet obtained by cooling and solidifying a molten resin of a mixed polyester having a mixing ratio of 100: 0 to 50:50 of a polyester mainly composed of an ethylene terephthalate component and a polyester mainly composed of a butylene terephthalate component is The first stage is stretched, the second stage is then stretched in the machine direction, the heat treatment is performed under tension, and the second stage stretch ratio (M × (−)) and the tension heat treatment temperature (T (° C.)) ) Product (M × T) is a biaxially stretched polyester film produced by a method of 200 to 600, and the stress difference between the yield points (upper yield stress and lower yield stress) in the stress-strain curve A biaxially stretched polyester film for hinoki wrapping characterized in that the average value of the value in the vertical direction and the value in the horizontal direction (difference from point stress) is 2 MPa or more.

本発明のヒネリ包装用二軸延伸ポリエステルフィルムは、製膜性と厚みの均一性に優れ、かつ優れたヒネリ適性を有するため、極めて有用なポリエステルフィルムであるといえる。   The biaxially stretched polyester film for wrapping of the present invention is excellent in film forming property and uniformity in thickness, and has excellent heeling aptitude, so it can be said that it is an extremely useful polyester film.

本発明のポリエステルフィルムは、エチレンテレフタレート成分を主体とするポリエステルとブチレンテレフタレート成分を主体とするポリエステルの混合比が100:0〜50:50からなる混合ポリエステルの溶融樹脂を冷却固化したシートを横方向に第1段目延伸を行い、次いで縦方向に第2段目延伸を行い、さらに緊張下で熱処理を行い、かつ第2段目延伸倍率(M×(−))と緊張熱処理温度(T(℃))の積(M×・T)が200〜600である方法で製造されたポリエステルフィルムであって、かつ応力−ひずみ曲線における降伏点応力差(上降伏点応力と下降伏点応力との差)の縦方向での値と横方向での値の平均値が2MPa以上であることを特徴とするポリエステルフィルムである。   The polyester film of the present invention is a sheet obtained by cooling and solidifying a molten resin of a mixed polyester having a mixing ratio of 100: 0 to 50:50 of a polyester mainly composed of an ethylene terephthalate component and a polyester mainly composed of a butylene terephthalate component. The first stage stretching is then performed, then the second stage stretching is performed in the longitudinal direction, and further heat treatment is performed under tension, and the second stage stretching ratio (M × (−)) and the tension heat treatment temperature (T ( ° C)) product (M × T) is a polyester film produced by a method of 200 to 600, and the stress difference between the yield point stress (the upper yield point stress and the lower yield point stress) in the stress-strain curve The polyester film is characterized in that the average value of the difference in the vertical direction and the value in the horizontal direction is 2 MPa or more.

本発明では、フィルムを構成するポリエステルは、エチレンテレフタレート成分を主体とするポリエステルとブチレンテレフタレート成分を主体とするポリエステルとの混合比が100:0〜50:50であることが得られたフィルムにおいて降伏点応力差を発現させ、さらに耐熱性、耐水性、透明性等と良好な製膜性を確保する点から必要である。   In the present invention, the polyester constituting the film yields in a film in which the mixing ratio of the polyester mainly composed of the ethylene terephthalate component and the polyester mainly composed of the butylene terephthalate component is 100: 0 to 50:50. This is necessary from the viewpoint of exhibiting a point stress difference and further ensuring good film forming properties such as heat resistance, water resistance and transparency.

ブチレンテレフタレート成分を主体とするポリエステルが50重量%を超える場合、降伏点応力差が発現しにくくなるばかりでなく、製膜性が悪くなるため好ましくない。   When the amount of the polyester having a butylene terephthalate component as a main component exceeds 50% by weight, not only the yield point stress difference is hardly exhibited but also the film forming property is deteriorated.

本発明では、フィルムを構成するポリエステルは、その目的を阻害しない範囲で他の共重合成分を含むことができる。使用できる他の共重合成分のうち、ジカルボン酸成分として、ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。また、グリコール成分として、プロパンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールAのエチレンオキサイド付加物,ビスフェノールSのエチレンオキサイド付加物等の芳香族グリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が使用できる。このほか少量のアミド結合、ウレタン結合、エーテル結合、カーボネート結合等を含有する化合物を含んでいてもよい。   In this invention, the polyester which comprises a film can contain another copolymerization component in the range which does not inhibit the objective. Among other copolymerizable components that can be used, aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, decane Aliphatic dicarboxylic acids such as dicarboxylic acid, maleic acid, fumaric acid and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. In addition, as glycol components, aliphatic glycols such as propanediol, pentanediol, hexanediol and neopentylglycol, alicyclic glycols such as cyclohexanedimethanol, ethylene oxide adducts of bisphenol A, ethylene oxide adducts of bisphenol S, etc. Aromatic glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like can be used. In addition, a small amount of a compound containing an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be included.

本発明では、公知の押出機で溶融押出したポリエステルを冷却固化したシートをポリエステルのガラス転移温度以上の温度で3.0〜4.5倍横方向に第1段目延伸を行い、次いで、ポリエステルのガラス転移温度以上の温度で2.0〜4.5倍縦方向に第2段目延伸を行い、さらに、公知の巾方向を一定長とした熱固定処理(例えば、フィルムの両端をクリップで把持して行う熱固定処理)を80〜130℃で1〜20秒間実施することが好ましい。   In the present invention, a sheet obtained by cooling and solidifying a polyester melt-extruded by a known extruder is subjected to first-stage stretching 3.0 to 4.5 times in the transverse direction at a temperature equal to or higher than the glass transition temperature of the polyester, 2nd stage stretching in the longitudinal direction 2.0 to 4.5 times at a temperature equal to or higher than the glass transition temperature of, and further, heat-fixing treatment with a certain length in the known width direction (for example, both ends of the film with clips It is preferable to carry out the heat setting treatment performed by gripping at 80 to 130 ° C. for 1 to 20 seconds.

本発明では、上記の製膜方法において、第2段目延伸倍率(M×(−))と熱固定温度(T(℃))の積(M×・T)を200〜600に制御することが製膜性と厚みの均一性を良化させ、かつ製品ロールの外観を良化させ、さらに得られたフィルムにおいて降伏点応力差を発現させるために必要である。M×・Tが200未満の場合、得られたポリエステルフィルムの降伏点応力差は十分に発現するが、二軸延伸後にフィルムの両端を切断する際、または製品ロールに仕上げるために裁断する際に破断しやすく、かつ製品ロールに前記タルミに起因したシワが発生しやすいため好ましくない。逆に、M×・Tが600を越える場合、製膜性と製品ロール外観には優れているが、得られたポリエステルフィルムの降伏点応力差が発現しにくくなるため好ましくない。   In the present invention, in the film forming method described above, the product (M × · T) of the second stage draw ratio (M × (−)) and the heat setting temperature (T (° C.)) is controlled to 200 to 600. However, it is necessary to improve the film formability and uniformity of thickness, improve the appearance of the product roll, and develop a yield point stress difference in the obtained film. When Mx · T is less than 200, the yield stress difference of the obtained polyester film is sufficiently developed, but when cutting both ends of the film after biaxial stretching or when cutting to finish into a product roll It is not preferable because it is easy to break and wrinkles due to the above-mentioned tarmi are likely to occur in the product roll. On the contrary, when M × T exceeds 600, the film forming property and the product roll appearance are excellent, but it is not preferable because the yield point stress difference of the obtained polyester film becomes difficult to express.

本発明では、第3段目延伸としてポリエステルのガラス転移温度以上の温度で1.05〜1.4倍の再横延伸を行ってもよく、また、巾方向を一定長とした熱固定の後、巾方向に緩和処理(100〜140℃で巾方向に0.5〜8%緩和させる処理)を行ってもよい。   In the present invention, as the third stage stretching, re-stretching of 1.05 to 1.4 times may be performed at a temperature equal to or higher than the glass transition temperature of the polyester. Further, relaxation treatment (treatment of relaxing 0.5 to 8% in the width direction at 100 to 140 ° C.) may be performed in the width direction.

本発明では、ポリエステルの極限粘度は、0.5dl/g以上であることが好ましい。極限粘度が0.5dl/g未満の場合、ポリエステルフィルムを製膜する際、破断が発生しやすく好ましくない。   In the present invention, the intrinsic viscosity of the polyester is preferably 0.5 dl / g or more. When the intrinsic viscosity is less than 0.5 dl / g, breakage tends to occur when forming a polyester film, which is not preferable.

本発明では、ポリエステルフィルムの厚みは9〜25μmであることが好ましい。ポリエステルフィルムの厚みが9μm未満の場合、得られたフィルムをヒネリ包装に用いた場合、フィルムの腰感が劣るため好ましくない。逆に、25μmを超える場合、得られたフィルムのヒネリ適性が劣るため好ましくない。   In this invention, it is preferable that the thickness of a polyester film is 9-25 micrometers. When the thickness of the polyester film is less than 9 μm, when the obtained film is used for the wrapping packaging, it is not preferable because the film feels poor. On the other hand, when the thickness exceeds 25 μm, the obtained film is inferior in the swellability, which is not preferable.

以下、実施例をもとに本発明を説明する。   Hereinafter, the present invention will be described based on examples.

実施例および比較例に用いた評価方法について説明する。
(1)降伏点応力差(Δσ(MPa))
JIS C 2151により応力−ひずみ曲線を測定し(縦方向と横方向それぞれ5点)、縦方向と横方向の上降伏点応力と下降伏点応力の差(縦方向での値と横方向での値の平均値)を降伏点応力差とする。
(2)ポリエステルフィルムの厚みの均一性(TV(%))
ポリエステルフィルムの中央部から縦方向に巾4cm×長さ3mのフィルム片を切り出し、これを1mの長さに3分割したものを測定サンプルとする。該測定サンプルをアンリツ電気社製の連続厚み計(マイクロメーター:K306C、レコーダー:K310C)を用いて下記の条件で測定する。測定サンプル1m内の(最大値−最小値)を求め,3個の平均値(ΔT平均)を算出する。次いで、平均厚み(T平均:連続厚み測定後のフィルム片を3枚重ねて一方の端部から5cmのところを基準とし、5cmピッチでダイアルゲージを用いて18点測定し、18点の厚みの合計値を54で除した値)を算出する。次いで、TV=(ΔT平均/T平均)×100(%)を算出し、TVが8%以下を実用性ありと評価する。
[連続厚みの測定条件]
フィルムの送り速度:1.5m/分
マイクロメーターのスケール:±5μm
レコーダーのハイカット:5Hz
レコーダーのスケール:±2μm
レコーダーのチャート速度:2.5mm/秒
レコーダーの測定レンジ:×1
(3)ポリエステルの極限粘度
ポリエステル0.1gをフェノール/テトラクロロエタン(容積比で3/2)の混合溶媒25ml中に溶解させ、30℃でオストワルド粘度計を用いて測定する。
(4)ヒネリ適性
ポリエステルフィルムから10cm×10cmのサンプル片を切りだし、直径2cmの丸棒に5cmはみ出すように、長手方向に巻き付ける。次いで、はみ出した部分を360°ひねり、360°から戻った角度を測定する(n=100)。これらの平均値を求め、○を実用性ありと評価する。
○:ひねり戻り角度が75°以下
△:ひねり戻り角度が75〜85°
×:ひねり戻り角度が85°以上
The evaluation methods used in the examples and comparative examples will be described.
(1) Yield point stress difference (Δσ (MPa))
The stress-strain curve was measured according to JIS C 2151 (5 points each in the vertical and horizontal directions), and the difference between the upper and lower yield stresses in the vertical and horizontal directions (the value in the vertical direction and the value in the horizontal direction). (Average value) is the yield point stress difference.
(2) Uniformity of polyester film thickness (TV (%))
A piece of film having a width of 4 cm and a length of 3 m is cut out from the center of the polyester film in the vertical direction, and this is divided into three pieces each having a length of 1 m as a measurement sample. The measurement sample is measured under the following conditions using a continuous thickness meter (micrometer: K306C, recorder: K310C) manufactured by Anritsu Electric Co., Ltd. The (maximum value−minimum value) in the measurement sample 1m is obtained, and the average value of three (ΔT average) is calculated. Next, the average thickness (T average: three film pieces after continuous thickness measurement were stacked and measured at 18 points using a dial gauge at a 5 cm pitch on the basis of 5 cm from one end. The value obtained by dividing the total value by 54) is calculated. Next, TV = (ΔT average / T average) × 100 (%) is calculated, and TV is evaluated as practical if 8% or less.
[Conditions for continuous thickness measurement]
Film feed rate: 1.5 m / min Micrometer scale: ± 5 μm
Recorder high cut: 5Hz
Recorder scale: ± 2 μm
Recorder chart speed: 2.5 mm / sec Recorder measurement range: × 1
(3) Intrinsic viscosity of polyester 0.1 g of polyester is dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (3/2 by volume) and measured at 30 ° C. using an Ostwald viscometer.
(4) Hinel suitability A 10 cm × 10 cm sample piece is cut out from the polyester film and wound in the longitudinal direction so as to protrude 5 cm from a round bar having a diameter of 2 cm. Next, the protruding portion is twisted 360 °, and the angle returned from 360 ° is measured (n = 100). The average value of these is obtained, and ○ is evaluated as practical.
○: Twist return angle is 75 ° or less △: Twist return angle is 75 to 85 °
×: Twist return angle is 85 ° or more

実施例および比較例に用いたポリエステル原料、製膜条件、M×・T、厚みの均一性、降伏点応力差、ヒネリ適性を表1に示す。
(1)A:ポリエチレンテレフタレート(極限粘度:0.62dl/g、平均粒径:1.3μmの凝集シリカを1000ppm配合)
(2)B:ポリエチレンテレフタレート・イソフタレート(エチレンイソフタレートの繰り返し単位10モル%、極限粘度:0.62dl/g、平均粒径:1.3μmの凝集シリカを1000ppm配合)
(3)C:ポリブチレンテレフタレート(極限粘度:1.2dl/g)
Table 1 shows polyester raw materials, film forming conditions, M × T, thickness uniformity, yield point stress difference, and swellability used in Examples and Comparative Examples.
(1) A: Polyethylene terephthalate (Intrinsic viscosity: 0.62 dl / g, average particle diameter: 1.3 μm of agglomerated silica blended in 1000 ppm)
(2) B: Polyethylene terephthalate / isophthalate (containing 10 ppm of repeating unit of ethylene isophthalate, intrinsic viscosity: 0.62 dl / g, average particle size: 1.3 ppm of agglomerated silica of 1000 ppm)
(3) C: Polybutylene terephthalate (Intrinsic viscosity: 1.2 dl / g)

[実施例1]
ポリエステル原料としてBとCの混合物(B/C:75/25重量%)を、120℃で24時間減圧乾燥(1.3hPa)し、単軸押出機を用いて280℃で溶融させた後、45cm幅のTダイより冷却ロール(周速50m/分)上へキャストして(冷却ロール周面に対向するように設置した直径が30μmのタングステンワイヤー電極から7.2kVの電圧を印加し、0.2mAの電流を流して静電密着させて)未延伸シートを得た。該未延伸シートをテンターで予熱温度95℃、延伸温度92℃で横方向に3.7倍延伸し(第1段目延伸)、予熱温度80℃、延伸温度95℃で縦方向に3.6倍延伸し(第2段目延伸)、さらに100℃で1.05倍再横延伸し(第3段目延伸)、その後100℃で定長巾熱固定処理して厚さ18μmのポリエステルフィルムを得た。
本実施例の方法は、表1からわかるように、降伏点応力差が4MPaであり、優れたヒネリ包装用二軸延伸ポリエステルフィルムであるといえる。
[Example 1]
A mixture of B and C (B / C: 75/25% by weight) as a polyester raw material was dried under reduced pressure (1.3 hPa) at 120 ° C. for 24 hours, and melted at 280 ° C. using a single screw extruder, Cast onto a cooling roll (peripheral speed 50 m / min) from a 45 cm wide T-die (applying a voltage of 7.2 kV from a tungsten wire electrode with a diameter of 30 μm placed so as to face the circumferential surface of the cooling roll, A non-stretched sheet was obtained by applying a current of 2 mA for electrostatic contact. The unstretched sheet was stretched 3.7 times in the transverse direction at a preheating temperature of 95 ° C. and a stretching temperature of 92 ° C. (first stage stretching), and preheated at 80 ° C. and stretched at 95 ° C. in the longitudinal direction of 3.6 °. The film was stretched twice (second-stage stretching), further re-stretched 1.05 times at 100 ° C. (third-stage stretching), and then heat-fixed at 100 ° C. to obtain a polyester film having a thickness of 18 μm. It was.
As can be seen from Table 1, the method of this example has a yield point stress difference of 4 MPa, and can be said to be an excellent biaxially stretched polyester film for velvet packaging.

[実施例2]
第2段目延伸倍率を4.2倍とし、定長巾熱固定処理温度を120℃とした以外は実施例1と同様にして厚さ18μmのポリエステルフィルムを得た。
本実施例の方法は、表1からわかるように、降伏点応力差が3MPaであり、優れたヒネリ包装用二軸延伸ポリエステルフィルムであるといえる。
[Example 2]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the second stage draw ratio was 4.2 times and the constant length width heat setting treatment temperature was 120 ° C.
As can be seen from Table 1, the method of this example has a yield point stress difference of 3 MPa, and can be said to be an excellent biaxially stretched polyester film for velvet packaging.

[実施例3]
第2段目延伸倍率を3.0倍とした以外は実施例1と同様にして厚さ18μmのポリエステルフィルムを得た。
本実施例の方法は、表1からわかるように、降伏点応力差が5MPaであり、優れたヒネリ包装用二軸延伸ポリエステルフィルムであるといえる。
[Example 3]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the second stage draw ratio was 3.0 times.
As can be seen from Table 1, the method of this example has a yield point stress difference of 5 MPa, and can be said to be an excellent biaxially stretched polyester film for velvet packaging.

[実施例4]
ポリエステル原料としてAを用いた以外は実施例3と同様にして厚さ18μmのポリエステルフィルムを得た。
本実施例の方法は、表1からわかるように、降伏点応力差が3MPaであり、優れたヒネリ包装用二軸延伸ポリエステルフィルムであるといえる。
[Example 4]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 3 except that A was used as the polyester raw material.
As can be seen from Table 1, the method of this example has a yield point stress difference of 3 MPa, and can be said to be an excellent biaxially stretched polyester film for velvet packaging.

[比較例1]
定長巾熱固定処理温度を170℃とした以外は実施例1と同様にして厚さ18μmのポリエステルフィルムを得た。
この方法は、表1からわかるように、降伏点応力差が0MPa(降伏点がなく応力が増加するのみ)であり、ヒネリ適性が劣るため、ヒネリ包装用二軸延伸ポリエステルフィルムとして好ましくない。
[Comparative Example 1]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the constant length width heat fixing treatment temperature was set to 170 ° C.
As can be seen from Table 1, this method has a yield point stress difference of 0 MPa (no yield point and only increases the stress) and is inferior in the formability, and thus is not preferable as a biaxially stretched polyester film for wrapping.

[比較例2]
ポリエステル原料としてBとCの混合物(B/C:40/60重量%)とし、周速30m/分の冷却ロールへキャストした以外は実施例1と同様にして厚さ18μmのポリエステルフィルムを得た。
この方法は、表1からわかるように、降伏点応力差が1MPa未満(上降伏点は認められるが、明確な下降伏点が認められない)であり、ヒネリ適性が劣るため、ヒネリ包装用二軸延伸ポリエステルフィルムとして好ましくない。
[Comparative Example 2]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the polyester raw material was a mixture of B and C (B / C: 40/60 wt%) and cast to a cooling roll at a peripheral speed of 30 m / min. .
As can be seen from Table 1, this method has a yield point stress difference of less than 1 MPa (an upper yield point is recognized, but a clear lower yield point is not recognized), and is less suitable for heliness. It is not preferable as an axially stretched polyester film.

[比較例3]
ポリエステル原料としてBとCの混合物(B/C:20/80重量%)とし、周速30m/分の冷却ロールへキャストした以外は実施例1と同様にしてポリエステルフィルムを得ようとしたが、冷却ロールで冷却後にシートの両端部が割れることが多くポリエステルフィルムを安定して得られなかった。
この方法は、ヒネリ包装用二軸延伸ポリエステルフィルムとして好ましくない。
[Comparative Example 3]
A polyester film was obtained in the same manner as in Example 1 except that the polyester raw material was a mixture of B and C (B / C: 20/80% by weight) and cast to a cooling roll with a peripheral speed of 30 m / min. After cooling with a cooling roll, both ends of the sheet were often cracked, and a polyester film could not be obtained stably.
This method is not preferable as a biaxially stretched polyester film for shining packaging.

[比較例4]
定長巾熱固定処理温度を50℃とした以外は実施例1と同様にしてポリエステルフィルムを得ようとしたが、熱固定処理後でフィルムのタルミが著しく、フィルムの両端を切断する際、フィルムが破断しやすいためポリエステルフィルムを安定して得られなかった。 この方法は、ヒネリ包装用二軸延伸ポリエステルフィルムとして好ましくない。
[Comparative Example 4]
A polyester film was obtained in the same manner as in Example 1 except that the fixed length width heat fixing treatment temperature was set to 50 ° C., but the film was severely damaged after the heat fixing treatment. A polyester film could not be stably obtained because it was easily broken. This method is not preferable as a biaxially stretched polyester film for shining packaging.

[比較例5]
第2段目延伸倍率を1.6倍とした以外は実施例1と同様にして厚さ18μmのポリエステルフィルムを得た。
この方法は、表1からわかるように、降伏点応力差が6MPaであり、ヒネリ適性は良好であったが、厚みの均一性が悪いためヒネリ包装用二軸延伸ポリエステルフィルムとして好ましくない。
[Comparative Example 5]
A polyester film having a thickness of 18 μm was obtained in the same manner as in Example 1 except that the second stage draw ratio was 1.6 times.
As can be seen from Table 1, this method has a yield point stress difference of 6 MPa and good shining suitability, but is not preferable as a biaxially stretched polyester film for shining wrapping due to poor thickness uniformity.

Figure 2007069523
Figure 2007069523

本発明のポリエステルフィルムは、製膜性と製品ロールの外観に優れ、かつ得られたフィルムが十分な降伏点応力を有するためヒネリ適性に優れており、ヒネリ包装用二軸延伸ポリエステルフィルムとして極めて有用であるといえる。   The polyester film of the present invention is excellent in film formability and appearance of a product roll, and has excellent yield resistance because the obtained film has sufficient yield point stress, and is extremely useful as a biaxially stretched polyester film for hinelli packaging. You can say that.

Claims (1)

エチレンテレフタレート成分を主体とするポリエステルとブチレンテレフタレート成分を主体とするポリエステルの混合比が100:0〜50:50からなる混合ポリエステルの溶融樹脂を冷却固化したシートを横方向に第1段目延伸を行い、次いで縦方向に第2段目延伸を行い、さらに緊張下で熱処理を行い、かつ第2段目延伸倍率(M×(−))と緊張熱処理温度(T(℃))の積(M×・T)が200〜600である方法で製造されたヒネリ包装用二軸延伸ポリエステルフィルムであって、かつ応力−ひずみ曲線における降伏点応力差(上降伏点応力と下降伏点応力との差)の縦方向での値と横方向での値の平均値が2MPa以上であることを特徴とするヒネリ包装用二軸延伸ポリエステルフィルム。   First-stage stretching of a sheet obtained by cooling and solidifying a melted resin of a mixed polyester having a mixing ratio of 100: 0 to 50:50 of a polyester mainly composed of an ethylene terephthalate component and a polyester mainly composed of a butylene terephthalate component. And then the second stage stretching in the longitudinal direction, further heat treatment under tension, and the product of the second stage stretching ratio (M × (−)) and tension heat treatment temperature (T (° C.)) (M X · T) is a biaxially stretched polyester film produced by a method of 200 to 600, and the difference between the yield point stress (the difference between the upper yield point stress and the lower yield point stress) in the stress-strain curve. ) Is a biaxially stretched polyester film for wrapping, characterized in that the average value of the value in the vertical direction and the value in the horizontal direction is 2 MPa or more.
JP2005260762A 2005-09-08 2005-09-08 Biaxially stretched polyester film for shining packaging Active JP4887698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260762A JP4887698B2 (en) 2005-09-08 2005-09-08 Biaxially stretched polyester film for shining packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260762A JP4887698B2 (en) 2005-09-08 2005-09-08 Biaxially stretched polyester film for shining packaging

Publications (2)

Publication Number Publication Date
JP2007069523A true JP2007069523A (en) 2007-03-22
JP4887698B2 JP4887698B2 (en) 2012-02-29

Family

ID=37931397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260762A Active JP4887698B2 (en) 2005-09-08 2005-09-08 Biaxially stretched polyester film for shining packaging

Country Status (1)

Country Link
JP (1) JP4887698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408850A4 (en) * 2009-03-19 2015-10-21 Skc Co Ltd Heat-shrinkable polyester film and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102317A (en) * 1980-12-16 1982-06-25 Gunze Ltd Polyester based film for twist wrapping
JPS6411820A (en) * 1987-07-06 1989-01-17 Toray Industries Easily foldable polyester film
JPH0248926A (en) * 1988-08-11 1990-02-19 Toyobo Co Ltd Manufacture of high-tenacity polyester film
JPH044125A (en) * 1990-04-19 1992-01-08 Toyobo Co Ltd Manufacture of biaxially oriented polyester film
JPH06262677A (en) * 1992-05-18 1994-09-20 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate film
JPH0752237A (en) * 1992-05-18 1995-02-28 Toyobo Co Ltd Biaxially oriented polyethylene terephthalate film and manufacture thereof
JP2003311828A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film for twist packaging
JP2003313319A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially oriented polyester film
JP2005096386A (en) * 2003-08-22 2005-04-14 Toyobo Co Ltd Biaxially oriented polyester resin film for folding
JP2005513225A (en) * 2001-12-11 2005-05-12 エスケイシー リミテッド Biaxially stretched polyester film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102317A (en) * 1980-12-16 1982-06-25 Gunze Ltd Polyester based film for twist wrapping
JPS6411820A (en) * 1987-07-06 1989-01-17 Toray Industries Easily foldable polyester film
JPH0248926A (en) * 1988-08-11 1990-02-19 Toyobo Co Ltd Manufacture of high-tenacity polyester film
JPH044125A (en) * 1990-04-19 1992-01-08 Toyobo Co Ltd Manufacture of biaxially oriented polyester film
JPH06262677A (en) * 1992-05-18 1994-09-20 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate film
JPH0752237A (en) * 1992-05-18 1995-02-28 Toyobo Co Ltd Biaxially oriented polyethylene terephthalate film and manufacture thereof
JP2005513225A (en) * 2001-12-11 2005-05-12 エスケイシー リミテッド Biaxially stretched polyester film
JP2003311828A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially stretched polyester film for twist packaging
JP2003313319A (en) * 2002-04-24 2003-11-06 Toyobo Co Ltd Biaxially oriented polyester film
JP2005096386A (en) * 2003-08-22 2005-04-14 Toyobo Co Ltd Biaxially oriented polyester resin film for folding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408850A4 (en) * 2009-03-19 2015-10-21 Skc Co Ltd Heat-shrinkable polyester film and preparation method thereof

Also Published As

Publication number Publication date
JP4887698B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP6874277B2 (en) Biaxially stretched polyester film and its manufacturing method
JP2018095863A (en) Biaxially stretched polyamide resin film and laminate using the same
JP2007203652A (en) Biaxially-oriented polyester film and package
JP6274298B2 (en) Deposition polyester film
JP4887697B2 (en) Method for producing biaxially stretched polyester film for shining packaging
JP4887698B2 (en) Biaxially stretched polyester film for shining packaging
WO2020026972A1 (en) Copolyester raw material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package
JP2007069524A (en) Manufacturing method of biaxially stretched polyester film for twist wrapping
JP4935087B2 (en) Method for producing biaxially stretched polyester film for shining packaging
JP4502118B2 (en) Easy-bending biaxially stretched polyester film
JP6992259B2 (en) Laminated film and its manufacturing method
JP2004181653A (en) Stretched polyester film with excellent torsional properties
JPWO2020090552A1 (en) Metal plate coating film and resin coated metal plate
JP7248092B2 (en) polyester film.
JP4793073B2 (en) Method for producing biaxially stretched polyester film
JP2005096386A (en) Biaxially oriented polyester resin film for folding
JP2007069522A (en) Manufacturing method of biaxially stretched polyester film for twist wrapping
JP7302694B2 (en) Heat-shrinkable polyester film
JP2018184508A (en) Polyester film
JP2005335309A (en) Metal vapor deposition biaxially oriented polyester film
JP4576886B2 (en) Laminated polyester film for folding packaging
JP2005219212A (en) Biaxially stretched polyester resin film for twist packaging and its manufacturing method
JP2007091834A (en) Biaxially oriented polyester film for twist wrapping
JP2005335311A (en) Metal deposition polyester film for bending packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350