JP2007069270A - Inorganic nanoparticle with high dispersibility - Google Patents

Inorganic nanoparticle with high dispersibility Download PDF

Info

Publication number
JP2007069270A
JP2007069270A JP2005255383A JP2005255383A JP2007069270A JP 2007069270 A JP2007069270 A JP 2007069270A JP 2005255383 A JP2005255383 A JP 2005255383A JP 2005255383 A JP2005255383 A JP 2005255383A JP 2007069270 A JP2007069270 A JP 2007069270A
Authority
JP
Japan
Prior art keywords
organic
coated
coated inorganic
nanoparticles
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255383A
Other languages
Japanese (ja)
Inventor
Toyoki Kunitake
豊喜 国武
Shinya Onoe
慎弥 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Kyoritsu Chemical and Co Ltd
Original Assignee
RIKEN Institute of Physical and Chemical Research
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Kyoritsu Chemical and Co Ltd filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2005255383A priority Critical patent/JP2007069270A/en
Publication of JP2007069270A publication Critical patent/JP2007069270A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide organic substance-coated inorganic nanoparticles that can be dispersed with a high concentration in a liquid crystalline compound or other liquid medium. <P>SOLUTION: The organic substance-coated inorganic nanoparticles is coated with organic coating molecules having a hydrocarbon chain which may have an aromatic group, wherein the organic coating molecules have 2 to 5 functional groups capable of adsorbing to inorganic nanoparticles in one molecule, and when the functional groups adsorb to the surfaces of inorganic nanoparticles, the occupancy area of the organic coating molecule is 1.5 time or more as the maximum cross-sectional area of the hydrocarbon chain. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機ナノ粒子の技術分野に属し,特に無機ナノ粒子表面と親和性を有する官能基を持つ有機化合物によって被覆された無機ナノ粒子、ならびに液晶性化合物あるいは重合性溶媒中などの液状媒体中への分散性が向上された無機ナノ粒子、また無機ナノ粒子の凝集制御ならびにその無機ナノ粒子複合組織体またはその無機ナノ粒子複合樹脂材料に関する。   The present invention belongs to the technical field of inorganic nanoparticles, and in particular, inorganic nanoparticles coated with an organic compound having a functional group having an affinity for the surface of inorganic nanoparticles, and a liquid medium such as a liquid crystalline compound or a polymerizable solvent. The present invention relates to inorganic nanoparticles having improved dispersibility therein, control of aggregation of inorganic nanoparticles, and an inorganic nanoparticle composite structure or an inorganic nanoparticle composite resin material thereof.

ナノメートル領域の直径を有する無機ナノ粒子は、バルク状態にある金属や半導体とは異なる性質を示す。このようなナノ粒子は、非線形光学特性などの特異な性質を示すことから、光素子や超微細配線の作成材料、電子電導材料、電導性塗料、磁性材料やセンサー材料として優れた機能を提供できる。また電子一個で動作する単一電子トランジスタの候補として、物理および材料分野において注目されている。また低温で融解挙動を示すなど力学的物性、熱的物性などにおいても注目を集めている。   Inorganic nanoparticles having a diameter in the nanometer region exhibit different properties from metals and semiconductors in the bulk state. Since such nanoparticles exhibit unique properties such as nonlinear optical characteristics, they can provide excellent functions as materials for creating optical elements and ultrafine wiring, electronic conductive materials, conductive paints, magnetic materials, and sensor materials. . In addition, as a candidate for a single-electron transistor that operates with one electron, it has attracted attention in the physical and material fields. It is also attracting attention in terms of mechanical and thermal properties such as melting behavior at low temperatures.

このようにナノサイズの無機塊は、極めて小さいそのサイズに起因した特異的な機能性を有するので、次世代の機能性素材として大きく期待されている。しかし、その高い表面エネルギーのため、凝集しやすい特徴を持つ。そのため粒子を安定化させるために何らかの有機物によって被覆される必要がある。   As described above, the nano-sized inorganic block has a specific functionality due to its extremely small size, and thus is highly expected as a next-generation functional material. However, due to its high surface energy, it has a characteristic of being easily aggregated. Therefore, it is necessary to coat with some organic matter in order to stabilize the particles.

有機被覆無機ナノ粒子は、主として高分子鎖やミセルなどの分子集合体、表面電荷の反発を利用したもの、あるいは有機低分子によるものがある。特に低分子系有機被覆剤は、機能性発現のための分子設計が容易なこと、無機ナノ粒子表面における被覆構造が明確であるため、次代の有力な候補として考えられている。しかし、これを実材料として用いるためには、その有機被覆無機ナノ粒子を他の物質と組み合わせて使う必要があるが、その等方的な形状・性質から、他の無機材料や高分子材料、その他高塩濃度溶液などの分散媒に対する混和性・分散性はきわめて低い。このことは無機ナノ粒子機能を実用化するうえでの大きな課題とされている。   Organic-coated inorganic nanoparticles mainly include molecular aggregates such as polymer chains and micelles, those utilizing surface charge repulsion, and those based on small organic molecules. In particular, a low molecular weight organic coating agent is considered as a promising candidate for the next generation because of its easy molecular design for functional expression and a clear coating structure on the surface of inorganic nanoparticles. However, in order to use this as an actual material, it is necessary to use the organic-coated inorganic nanoparticles in combination with other substances, but because of its isotropic shape and properties, other inorganic materials and polymer materials, Other miscibility and dispersibility in dispersion media such as high salt concentration solutions This is regarded as a major issue in putting inorganic nanoparticle functions into practical use.

炭化水素鎖からなる低分子有機被覆剤によって周囲を被覆された無機ナノ粒子は、表面の官能基によってその分散性が支配されている事が多い。したがって混和させる媒体の性質を鑑みて、精密に被覆分子を設計する必要があった。また同時に安定化作用も考えて作成されなければならなかった。つまり材料に応じて、一つ一つ作り変えなければならなかった。例えば、硫黄化合物および窒素化合物などを無機ナノ粒子の被覆剤として用いる場合、モノアルキルチオールやモノアルキルアミンなど一つの吸着部位(硫黄原子や窒素原子)に対して炭化水素鎖が一つのものが用いられてきた(非特許文献1)。このような吸着部位は無機ナノ粒子表面に密に吸着する性質を持つため、被覆分子は、無機ナノ粒子表面において細密にパッキングされながら、無機ナノ粒子を覆っている。従って媒体の極性や粘性等を緻密に考えなければならなかった。媒体の極性を鑑みた例として、液状媒体を液晶分子とする場合に、被覆剤として液晶性を示す化合物も用いられてきた(非特許文献2)。しかし、これらの被覆剤で被覆した無機ナノ粒子においても、被覆分子が密集した状態で無機ナノ粒子表面を被覆した場合、分散媒に対する混和性・分散性は十分ではない事が多く、安定性の問題も多く抱えていた。さらに液晶分子をそのまま被覆剤かつ媒体として使うことも提唱されている。しかしながら金属種が限定され、また実際的に使用する際に不純物の混入を起こしやすくする恐れがある。(特許文献1,2,3)   Inorganic nanoparticles whose periphery is coated with a low-molecular organic coating composed of hydrocarbon chains are often controlled by the surface functional groups. Therefore, it was necessary to design the coating molecules precisely in view of the properties of the medium to be mixed. At the same time, it had to be created considering the stabilizing effect. In other words, it had to be remade one by one according to the material. For example, when using a sulfur compound or nitrogen compound as a coating agent for inorganic nanoparticles, one having one hydrocarbon chain for one adsorption site (sulfur atom or nitrogen atom) such as monoalkylthiol or monoalkylamine is used. (Non-Patent Document 1). Since such an adsorption site has a property of adsorbing densely on the surface of the inorganic nanoparticle, the covering molecule covers the inorganic nanoparticle while being densely packed on the surface of the inorganic nanoparticle. Therefore, it was necessary to carefully consider the polarity and viscosity of the medium. As an example in view of the polarity of the medium, a compound exhibiting liquid crystallinity has been used as a coating agent when the liquid medium is liquid crystal molecules (Non-patent Document 2). However, even in the case of inorganic nanoparticles coated with these coating agents, when the surface of the inorganic nanoparticles is coated in a state where the coating molecules are dense, the miscibility and dispersibility with respect to the dispersion medium are often insufficient, and the stability of I had many problems. It has also been proposed to use liquid crystal molecules as a coating and medium as they are. However, the metal species is limited, and there is a risk that impurities may be easily mixed during actual use. (Patent Documents 1, 2, 3)

また、樹脂中に無機ナノ粒子を混合させる試みはこれまで多くなされてきたが、十分な分散量は、得られていなかった。さらに、液状の樹脂中で無機ナノ粒子の分散を制御しようとする試みはなされていない。
D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart, J. Pys. Chem., 1995, 99, 7036 Chem. Commun., 2001, 2640-2641 特開2004−91328号 特開2003−149683号 特開2005−148705号
Further, many attempts have been made to mix inorganic nanoparticles in a resin, but a sufficient amount of dispersion has not been obtained. Furthermore, no attempt has been made to control the dispersion of inorganic nanoparticles in a liquid resin.
DV Leff, PC Ohara, JR Heath, and WM Gelbart, J. Pys. Chem., 1995, 99, 7036 Chem. Commun., 2001, 2640-2641 JP 2004-91328 A JP 2003-149683 A JP 2005-148705 A

したがって、本発明の目的は、無機材料、高分子材料、高塩濃度溶液などの分散媒に対する混和性・分散性に優れた無機ナノ粒子およびこれが各種媒体中に分散、凝集した分散体、凝集体等を提供することである。   Accordingly, an object of the present invention is to provide inorganic nanoparticles excellent in miscibility and dispersibility in dispersion media such as inorganic materials, polymer materials, and high salt concentration solutions, and dispersions and aggregates in which these are dispersed and aggregated in various media Etc. is to provide.

本発明者らは、上記の課題を解決するため、鋭意検討した結果、従来、無機ナノ粒子表面への吸着部位が一つに対して炭化水素鎖もしくは芳香族構造が一つである被覆剤による被覆がほとんどであったが、無機ナノ粒子表面吸着部位が二つ以上で炭化水素鎖もしくは芳香族構造が一つとした有機被覆剤を用いてナノ粒子を調製したところ、従来の有機被覆無機ナノ粒子に比べ、無機ナノ粒子表面の炭化水素鎖もしくは芳香族構造が少なくなった有機被覆無機ナノ粒子はきわめて高い分散性を多くの液状媒体に対して示すことを知見して本発明を達成した。   As a result of intensive studies to solve the above problems, the present inventors have heretofore been based on a coating agent having one hydrocarbon chain or one aromatic structure with respect to one adsorption site on the surface of the inorganic nanoparticles. Although most of the coatings were made, the nanoparticles were prepared using an organic coating agent with two or more adsorption sites on the surface of the inorganic nanoparticles and one hydrocarbon chain or aromatic structure. Compared to the above, the present invention has been achieved by finding that organic coated inorganic nanoparticles having a reduced number of hydrocarbon chains or aromatic structures on the surface of inorganic nanoparticles exhibit extremely high dispersibility in many liquid media.

すなわち、本発明は、
(1)無機ナノ粒子が芳香族基を含んでもよい炭化水素鎖を有する有機被覆分子によって被覆された有機被覆無機ナノ粒子であって、有機被覆分子が一分子中に2〜5個の無機ナノ粒子に吸着可能な官能基をもち、この官能基が無機ナノ粒子表面に吸着した際の有機被覆分子の占有面積が前記炭化水素鎖の最大断面積の1.5倍以上となる有機分子である、有機被覆無機ナノ粒子;
(2)有機被覆分子が1,2−ジチオラン誘導体又は1,2−ジチオレン誘導体である、上記(1)記載の有機被覆無機ナノ粒子;
(3)1,2−ジチオラン誘導体が一般式(I):
That is, the present invention
(1) An organic-coated inorganic nanoparticle coated with an organic-coated molecule having a hydrocarbon chain that may contain an aromatic group, wherein the organic-coated molecule has 2 to 5 inorganic nanoparticles in one molecule. It is an organic molecule having a functional group capable of adsorbing to particles, and the occupation area of the organic coating molecule when this functional group is adsorbed on the surface of the inorganic nanoparticle is 1.5 times or more the maximum cross-sectional area of the hydrocarbon chain. Organic coated inorganic nanoparticles;
(2) Organic-coated inorganic nanoparticles according to (1) above, wherein the organic-coated molecule is a 1,2-dithiolane derivative or a 1,2-dithiolene derivative;
(3) 1,2-dithiolane derivative is represented by the general formula (I):

(式中、RはC以上の飽和炭化水素基、不飽和炭化水素基、またはアミド結合若しくはエステル結合を含むアルキル基若しくは脂環炭化水素基を示す。これらの基は芳香族基を含んでもよい。)で表される化合物である、上記(1)又は(2)記載の有機被覆無機ナノ粒子;
(4)無機ナノ粒子が、Au、Ag、Pd、Pt、Cu、Ni、Co、Fe及びMnから選択した1以上の金属からなる金属ナノ粒子であるか、CdS、CdSe、HgS、PbS、CuS、Inなどの金属イオウ化物又は金属カルコゲナイドからなるナノ粒子であるか、Fe、AgO、TiO、SiOなどの金属酸化物よりなるナノ粒子である、上記(1)〜(3)のいずれか1項記載の有機被覆無機ナノ粒子;
(5)有機被覆無機ナノ粒子が液状媒体中に分散した有機被覆無機ナノ粒子分散体;
(6)液状媒体が液晶性化合物又は重合性液状媒体である、上記(5)記載の有機被覆無機ナノ粒子分散体;
(7)加熱により有機被覆無機ナノ粒子を液状媒体中に分散させた後、冷却して得られる有機被覆無機ナノ粒子配列体又は凝集体;
(8)液状媒体が液晶性化合物である、上記(7)記載の有機被覆無機ナノ粒子配列体又は凝集体;
(9)液状媒体が重合性液状媒体である、上記(7)記載の有機被覆無機ナノ粒子凝集体;
(10)上記(9)記載の有機被覆無機ナノ粒子凝集体における重合性液状媒体を硬化して得られる有機被覆無機ナノ粒子凝集体−樹脂複合体;
(11)上記(1)〜(4)のいずれか1項記載の有機被覆無機ナノ粒子の製造方法であって、金属塩と有機被覆分子を溶媒中に溶解させ、還元剤を添加して有機被覆無機ナノ粒子を形成する工程、及び必要により、得られた有機被覆無機ナノ粒子を再沈澱法により沈澱させ、これを濾取して、余剰の有機被覆分子を取り除き、粉末として採取する工程を含む方法;
(12)上記(5)記載の有機被覆無機ナノ粒子分散体の製造方法であって、有機被覆無機ナノ粒子を液状媒体に分散させる工程を含む方法;
(13)上記(6)記載の有機被覆無機ナノ粒子分散体の製造方法であって、有機被覆無機ナノ粒子を液晶性化合物又は重合性液状媒体に分散させる工程を含む方法;
(14)上記(7)記載の有機被覆無機ナノ粒子配列体又は凝集体の製造方法であって、有機被覆無機ナノ粒子を液状媒体に分散させた後、これを冷却する工程を含む方法;
(15)上記(8)記載の有機被覆無機ナノ粒子配列体又は凝集体の製造方法であって、有機被覆無機ナノ粒子をアイソトロピック状態の液晶性化合物中に分散させた後、これを液晶相を示す温度領域にする工程を含む方法;
(16)上記(9)記載の有機被覆無機ナノ粒子凝集体の製造方法であって、有機被覆無機ナノ粒子を重合性液状媒体に分散させた後、これを冷却する工程を含む方法;
(17)上記(10)記載の有機被覆無機ナノ粒子凝集体−樹脂複合体の製造方法であって、有機被覆無機ナノ粒子を重合性液状媒体に一旦加熱分散させる工程、その冷却過程において形成される有機被覆無機ナノ粒子の凝集体のサイズを冷却温度により制御しながら、分散媒である重合性液状媒体を硬化して有機被覆無機ナノ粒子凝集体−樹脂複合体を得る工程を含む方法;及び
(18)無機ナノ粒子が有機被覆分子によって被覆された有機被覆無機ナノ粒子の液状媒体中での分散・凝集を制御する方法であって、有機被覆無機ナノ粒子を液状媒体に加熱して分散させた後、冷却温度を調整することにより有機被覆無機ナノ粒子の分散・凝集状態を制御することを含む方法;
である。
(In the formula, R 1 represents a C 2 or higher saturated hydrocarbon group, an unsaturated hydrocarbon group, or an alkyl group or alicyclic hydrocarbon group containing an amide bond or an ester bond. These groups include an aromatic group. The organic-coated inorganic nanoparticles according to the above (1) or (2), which is a compound represented by:
(4) The inorganic nanoparticles are metal nanoparticles composed of one or more metals selected from Au, Ag, Pd, Pt, Cu, Ni, Co, Fe and Mn, or CdS, CdSe, HgS, PbS, Cu 2 S, or nanoparticles comprising a metal sulfur compound or a metal chalcogenide such as an in 2 S 3, a Fe 2 O 3, Ag 2 O , nanoparticles of a metal oxide such as TiO 2, SiO 2, the Organic coated inorganic nanoparticles according to any one of (1) to (3);
(5) Organic coated inorganic nanoparticle dispersion in which organic coated inorganic nanoparticles are dispersed in a liquid medium;
(6) The organic coated inorganic nanoparticle dispersion according to (5) above, wherein the liquid medium is a liquid crystalline compound or a polymerizable liquid medium;
(7) Organic coated inorganic nanoparticle arrays or aggregates obtained by dispersing organic coated inorganic nanoparticles in a liquid medium by heating and then cooling;
(8) The organic coated inorganic nanoparticle array or aggregate according to (7) above, wherein the liquid medium is a liquid crystalline compound;
(9) The organic-coated inorganic nanoparticle aggregate according to (7) above, wherein the liquid medium is a polymerizable liquid medium;
(10) Organic-coated inorganic nanoparticle aggregate-resin composite obtained by curing a polymerizable liquid medium in the organic-coated inorganic nanoparticle aggregate according to (9) above;
(11) The method for producing organic coated inorganic nanoparticles according to any one of (1) to (4) above, wherein a metal salt and an organic coated molecule are dissolved in a solvent, and a reducing agent is added to form an organic A step of forming coated inorganic nanoparticles, and, if necessary, a step of precipitating the obtained organic coated inorganic nanoparticles by a reprecipitation method, filtering this to remove excess organic coated molecules, and collecting the powder as a powder Including methods;
(12) A method for producing an organic-coated inorganic nanoparticle dispersion according to (5) above, comprising a step of dispersing organic-coated inorganic nanoparticles in a liquid medium;
(13) A method for producing an organic-coated inorganic nanoparticle dispersion as described in (6) above, comprising a step of dispersing organic-coated inorganic nanoparticles in a liquid crystalline compound or a polymerizable liquid medium;
(14) The method for producing an organic-coated inorganic nanoparticle array or aggregate according to (7) above, which comprises a step of dispersing the organic-coated inorganic nanoparticles in a liquid medium and then cooling it.
(15) The method for producing an organic coated inorganic nanoparticle array or aggregate according to (8) above, wherein the organic coated inorganic nanoparticles are dispersed in a liquid crystalline compound in an isotropic state, and then the liquid crystal phase is dispersed. Including a step of bringing the temperature region into
(16) The method for producing an organic-coated inorganic nanoparticle aggregate described in (9) above, which comprises a step of cooling the organic-coated inorganic nanoparticle after dispersing the organic-coated inorganic nanoparticle in a polymerizable liquid medium;
(17) The method for producing an organic-coated inorganic nanoparticle aggregate-resin composite according to (10) above, wherein the organic-coated inorganic nanoparticle is once heated and dispersed in a polymerizable liquid medium, and formed in the cooling process. A method comprising a step of curing a polymerizable liquid medium as a dispersion medium to obtain an organic-coated inorganic nanoparticle aggregate-resin composite while controlling the size of the organic-coated inorganic nanoparticle aggregate by controlling the cooling temperature; (18) A method for controlling dispersion / aggregation of organic-coated inorganic nanoparticles in which inorganic nanoparticles are coated with organic-coated molecules in a liquid medium, wherein the organic-coated inorganic nanoparticles are heated and dispersed in the liquid medium. And then controlling the dispersion / aggregation state of the organic-coated inorganic nanoparticles by adjusting the cooling temperature;
It is.

本発明の有機被覆無機ナノ粒子は、無機材料、高分子材料、高塩濃度溶液などの分散媒に対する混和性・分散性に優れており、各種液状媒体中に極めて良好に混和、分散する。   The organic-coated inorganic nanoparticles of the present invention are excellent in miscibility and dispersibility with respect to a dispersion medium such as an inorganic material, a polymer material, and a high salt concentration solution, and are extremely well mixed and dispersed in various liquid media.

本発明の有機被覆無機ナノ粒子は、液晶性化合物中で効率的に無機ナノ粒子配列体又は凝集体を形成する。   The organic-coated inorganic nanoparticles of the present invention efficiently form inorganic nanoparticle arrays or aggregates in a liquid crystalline compound.

本発明の有機被覆無機ナノ粒子は、重合性液状媒体中に良好に分散する。   The organic-coated inorganic nanoparticles of the present invention are well dispersed in the polymerizable liquid medium.

本発明の有機被覆無機ナノ粒子は、重合性液状媒体を硬化した樹脂中で凝集状態で良好に存在する。   The organic-coated inorganic nanoparticles of the present invention are well present in an aggregated state in a resin obtained by curing a polymerizable liquid medium.

本発明によれば、有機被覆無機ナノ粒子の液状媒体中での分散・凝集状態を任意にかつ連続的に制御できる。   According to the present invention, it is possible to arbitrarily and continuously control the dispersion / aggregation state of organic-coated inorganic nanoparticles in a liquid medium.

本発明におけるナノ粒子は、0.5〜100nm、好ましくは1.0〜10nmの粒径を有する粒子を意味する。   The nanoparticle in the present invention means a particle having a particle size of 0.5 to 100 nm, preferably 1.0 to 10 nm.

本発明における無機ナノ粒子は、当業者に公知の無機ナノ粒子であれば良く、例えば、金属ナノ粒子、金属イオウ化物または金属カルコゲナイドからなるナノ粒子(半導体ナノ粒子)、金属酸化物よりなるナノ粒子があげられる。金属ナノ粒子としては、例えば、Au、Ag、Pd、Pt、Cu、Ni、Co、Fe及びMnから選択した金属からなる金属ナノ粒子又は前記金属から選択した2以上の金属からなる金属ナノ粒子があげられる。金属イオウ化物又は金属カルコゲナイドからなるナノ粒子としては、例えば、CdS、CdS、HgS、PbS、CuS、Inなどの金属イオウ化物又は金属カルコゲナイドからなるナノ粒子(半導体ナノ粒子)があげられる。金属酸化物よりなるナノ粒子としては、例えば、Fe、AgO、TiO、SiOなどの金属酸化物よりなるナノ粒子があげられる。 The inorganic nanoparticles in the present invention may be inorganic nanoparticles known to those skilled in the art, for example, nanoparticles composed of metal nanoparticles, metal sulfides or metal chalcogenides (semiconductor nanoparticles), and nanoparticles composed of metal oxides. Can be given. Examples of the metal nanoparticles include metal nanoparticles composed of a metal selected from Au, Ag, Pd, Pt, Cu, Ni, Co, Fe, and Mn, or metal nanoparticles composed of two or more metals selected from the metals. can give. Examples of the nanoparticles composed of metal sulfides or metal chalcogenides include nanoparticles composed of metal sulphides such as CdS, CdS, HgS, PbS, Cu 2 S, In 2 S 3 or metal chalcogenides (semiconductor nanoparticles). It is done. As nanoparticles of a metal oxide, for example, Fe 2 O 3, Ag 2 O, nanoparticles of a metal oxide such as TiO 2, SiO 2 and the like.

本発明における被覆とは、有機被覆分子の分子構造中に存在する無機ナノ粒子表面と高い親和性を持つ官能基をその表面に向け吸着し、無機ナノ粒子全体を覆うことを意味する。このことによって無機ナノ粒子間の凝集等を防ぐ役割を果す。また、液状媒体と直接接する部分となり分散性に大きく影響を与える。   The coating in the present invention means that a functional group having a high affinity with the surface of the inorganic nanoparticles present in the molecular structure of the organic coating molecule is adsorbed toward the surface to cover the entire inorganic nanoparticles. This plays a role in preventing aggregation between inorganic nanoparticles. Moreover, it becomes a part in direct contact with the liquid medium and greatly affects the dispersibility.

本発明における有機被覆分子は、芳香族基を含んでもよい炭化水素鎖を有し、一分子中に2〜5個の無機ナノ粒子に吸着可能な官能基をもち、この官能基が無機ナノ粒子表面に吸着した際の有機被覆分子の占有面積が前記炭化水素鎖の最大断面積の1.5倍以上となる有機分子である。   The organic coating molecule in the present invention has a hydrocarbon chain that may contain an aromatic group, and has a functional group that can be adsorbed to 2 to 5 inorganic nanoparticles in one molecule, and this functional group is an inorganic nanoparticle. It is an organic molecule in which the area occupied by organic coating molecules when adsorbed on the surface is 1.5 times or more the maximum cross-sectional area of the hydrocarbon chain.

無機ナノ粒子表面に親和性・配位性・結合性を有し、その表面に吸着可能な官能基としては、チオール・ジスルフィドなど硫黄を含むもの、アミンなど窒素原子を含むもの、水酸基、カルボキシル基、カチオン性基(例えば、アンモニウム基(ヒドロキシ基によって置換されていてもよい炭素数1〜6の直鎖もしくは分岐鎖状アルキル基によって置換されていてもよい)、ピリジニウム基およびホスホニウム基)、アニオン性基(例えば、あるいはカルボキシル基、スルホン酸エステル基、スルホン酸基、燐酸基、およびホスホン酸基およびその塩化合物)なども該当する。   Functional groups that have affinity / coordination / bonding on the surface of inorganic nanoparticles and can be adsorbed on the surface include those containing sulfur such as thiol and disulfide, those containing nitrogen atoms such as amines, hydroxyl groups and carboxyl groups A cationic group (for example, an ammonium group (which may be substituted with a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted with a hydroxy group), a pyridinium group or a phosphonium group), an anion Examples thereof also include a functional group (for example, a carboxyl group, a sulfonic acid ester group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, and a salt compound thereof).

例えば、硫黄原子又はアミン基を含む化合物が、それの硫黄又は窒素原子を介して、ナノメーターサイズの金や銀のような無機ナノ粒子表面と共有結合あるいは、配位結合しながら自己組織化して該無機ナノ粒子の周りに単分子膜を形成することはよく知られている。本発明で用いる有機被覆無機ナノ粒子もこのような現象を利用して形成されるものである。   For example, a compound containing a sulfur atom or an amine group self-assembles via the sulfur or nitrogen atom while covalently or coordinatively bonding with the surface of an inorganic nanoparticle such as gold or silver of nanometer size. It is well known to form a monomolecular film around the inorganic nanoparticles. The organic-coated inorganic nanoparticles used in the present invention are also formed using such a phenomenon.

本発明における無機ナノ粒子表面に吸着した際の有機被覆分子の占有面積は、無機ナノ粒子表面積を吸着した有機被覆分子の数で除したものを意味し、加熱重量減少率測定や元素分析測定などから得られる一粒子中の無機部分と有機部分の重量割合と無機ナノ粒子の透過型電子顕微鏡観察による粒子径測定から計算できる。   In the present invention, the area occupied by the organic coating molecules when adsorbed on the surface of the inorganic nanoparticles means the surface area of the inorganic nanoparticles divided by the number of organic coating molecules adsorbed. Can be calculated from the weight ratio of the inorganic part and the organic part in one particle obtained from the above and the particle diameter measurement of the inorganic nanoparticles by observation with a transmission electron microscope.

本発明における炭化水素鎖の最大断面積は、炭化水素鎖が結晶化もしくは規則配列した状態で得られる単位格子中における一分子あたりの占有する面積を意味し、密度測定やモデリングなどで測定又は計算できる。   The maximum cross-sectional area of a hydrocarbon chain in the present invention means an area occupied by one molecule in a unit cell obtained in a state where the hydrocarbon chain is crystallized or regularly arranged, and is measured or calculated by density measurement or modeling. it can.

本発明において、高分散を得るためには、前記占有面積が前記最大断面積の1.5倍〜5倍であることを要するが、好ましくは2.0倍〜5倍、更に好ましくは2.0倍〜3倍である。   In the present invention, in order to obtain high dispersion, the occupied area needs to be 1.5 to 5 times the maximum cross-sectional area, preferably 2.0 to 5 times, more preferably 2. 0 to 3 times.

本発明における有機被覆分子は、芳香族基を含み得る。芳香族基としては、フェニル、ナフチル等が例示できる。   The organic coating molecule in the present invention may contain an aromatic group. Examples of the aromatic group include phenyl and naphthyl.

本発明における有機被覆分子は、被覆分子内にひとつの吸着官能基と一本の炭化水素鎖を有するのとは異なり、分子内に複数の吸着官能基があり、吸着部位に依存して無機ナノ粒子表面にて有機被覆分子一分子が占有する面積を大きくできる分子構造であることを特徴とする。   Unlike the organic molecule having one adsorption functional group and one hydrocarbon chain in the coating molecule, the organic coating molecule in the present invention has a plurality of adsorption functional groups in the molecule and depends on the adsorption site. It is characterized by a molecular structure capable of increasing the area occupied by one molecule of the organic coating molecule on the particle surface.

本発明の有機被覆無機ナノ粒子は、これまで報告された低分子系有機被覆無機ナノ粒子の特徴である高い安定性を同様に有する。また、本発明の有機被覆分子の分子構造中に無機ナノ粒子表面への吸着サイトが複数存在するため、液状媒体の分子が無機ナノ粒子表面に吸着した有機被覆分子を取り囲めるようになる(図1)。したがって有機被覆分子が効果的に溶媒和され、液状媒体に対してより馴染み易い表面を形成し得る。すなわち被覆分子が効果的に溶媒和されることは、分子の運動性が確保され、被覆された無機ナノ粒子全体の分散性を向上させることに繋がり種々の媒体に対して有機被覆無機ナノ粒子が高い分散性を示すという特徴を有する。   The organic-coated inorganic nanoparticles of the present invention similarly have high stability, which is a feature of the low-molecular-weight organic-coated inorganic nanoparticles reported so far. In addition, since there are a plurality of adsorption sites on the surface of the inorganic nanoparticles in the molecular structure of the organic coating molecule of the present invention, the molecules of the liquid medium can surround the organic coating molecules adsorbed on the surface of the inorganic nanoparticles (Fig. 1). Thus, the organic coating molecules can be effectively solvated to form a surface that is more amenable to liquid media. In other words, the effective solvation of the coating molecules secures the mobility of the molecules and improves the dispersibility of the entire coated inorganic nanoparticles. It has the characteristic of exhibiting high dispersibility.

本発明における有機被覆分子として、1,2−ジチオラン誘導体又は1,2−ジチオレン誘導体が好ましく、これらは、分子末端に1,2−ジチオラン構造又は1,2−ジチオレン構造を有する化合物を意味する。有機被覆分子としては、特に1,2−ジチオラン誘導体が好ましい。   The organic coating molecule in the present invention is preferably a 1,2-dithiolane derivative or a 1,2-dithiolene derivative, which means a compound having a 1,2-dithiolane structure or a 1,2-dithiolene structure at the molecular end. As the organic coating molecule, a 1,2-dithiolane derivative is particularly preferable.

本発明における1,2−ジチオラン誘導体は、好ましくは、一般式(I):   The 1,2-dithiolane derivative in the present invention is preferably represented by the general formula (I):

(式中、RはC以上の飽和炭化水素基、不飽和炭化水素基、またはアミド結合若しくはエステル結合、あるいはエーテル結合を含むアルキル基若しくは脂環炭化水素基を示す。これらの基は芳香族基を含んでもよい。)で表される合物である。Rが表す炭素原子数2以上の飽和炭化水素基としては、好ましくは炭素原子数2〜30、より好ましくは炭素原子数6〜18の直鎖状のアルキル基、具体的には、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル、n−ドデシル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−オクタデシルなどの基を挙げることができる。Rが表す炭素原子数2以上の不飽和炭化水素基としては、好ましくは炭素原子数2〜30、より好ましくは炭素原子数6〜18の直鎖状のアルケニル基またはアルキニル基、具体的には、9−オクタデセニル基などを挙げることができる。Rが表すエーテル結合を含むアルキル基としては、好ましくは炭素数6〜18の、エーテル結合を含む直鎖状アルキル基を挙げることができ、具体的にはラウリルオキシプロピル基などの基を挙げることができる。Rが表すエーテル結合を含む脂環式炭化水素基としては、好ましくは炭素数4〜6の、エーテル結合を含むシクロアルキル基(例えば、シクロヘキシル基など)、炭素数4〜6の、エーテル結合を含むシクロアルケニル基など、具体的にはテトラヒドロフルフリル基などの基を挙げることができる。上記の基を置換または中断することができる芳香族基としては、具体的にはフェニル、ナフチルなどの基を挙げることができる。また上記の基を置換または中断することができる結合様式としては、アミド結合、エステル結合、エーテル結合が挙げられ、2級および3級アミンであってもよい。Rとしては、具体的には、n−ヘキサデシル、9−オクタデセニル基などの基を挙げることができるが、上記の組み合わせによって構成されるものであればよい。但し、分岐構造はあまり望ましくない。 (In the formula, R 1 represents a C 2 or higher saturated hydrocarbon group, an unsaturated hydrocarbon group, an amide bond or an ester bond, or an alkyl group or an alicyclic hydrocarbon group containing an ether bond. These groups are aromatic. A group may be included.). The saturated hydrocarbon group having 2 or more carbon atoms represented by R 1 is preferably a linear alkyl group having 2 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, specifically n- Examples include hexyl, n-heptyl, n-octyl, n-nonyl, n-dodecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-octadecyl and the like. The unsaturated hydrocarbon group having 2 or more carbon atoms represented by R 1 is preferably a linear alkenyl group or alkynyl group having 2 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, specifically, May include a 9-octadecenyl group. The alkyl group containing an ether bond represented by R 1 is preferably a linear alkyl group having 6 to 18 carbon atoms and containing an ether bond, specifically a group such as a lauryloxypropyl group. be able to. The alicyclic hydrocarbon group containing an ether bond represented by R 1 is preferably a cycloalkyl group having 4 to 6 carbon atoms (eg, a cyclohexyl group) or an ether bond having 4 to 6 carbon atoms. Specific examples include a cycloalkenyl group containing, such as a tetrahydrofurfuryl group. Specific examples of the aromatic group capable of substituting or interrupting the above group include phenyl and naphthyl groups. Moreover, as a coupling | bonding mode which can substitute or interrupt said group, an amide bond, an ester bond, and an ether bond are mentioned, A secondary and tertiary amine may be sufficient. Specific examples of R 1 include groups such as n-hexadecyl and 9-octadecenyl groups, but any combination of the above may be used. However, a branched structure is not very desirable.

本発明における有機被覆分子としては、1,2−ジチオラン誘導体又は1,2−ジチオレン誘導体のほかに、例えば、以下の構造を有する有機化合物が挙げられる。   Examples of the organic coating molecule in the present invention include organic compounds having the following structure in addition to the 1,2-dithiolane derivative or the 1,2-dithiolene derivative.

(式中、各Rは、それぞれ独立して、上述に記載のRと同様の群から選択される基を示す。) (In the formula, each R independently represents a group selected from the same group as R 1 described above.)

本発明の有機被覆無機ナノ粒子は、金属塩と有機被覆分子を溶媒中に溶解させ、還元剤を添加して有機被覆無機ナノ粒子を形成する工程、及び必要により、得られた有機被覆無機ナノ粒子を再沈澱法により沈澱させ、これを濾取して、余剰の有機被覆分子を取り除き、粉末として採取する工程を含む方法によって製造できる。   The organic-coated inorganic nanoparticles of the present invention are obtained by dissolving a metal salt and an organic-coated molecule in a solvent and adding a reducing agent to form organic-coated inorganic nanoparticles. The particles can be produced by a method including a step of precipitation by a reprecipitation method, which is collected by filtration to remove excess organic coating molecules and collected as a powder.

金属塩を例示する。金塩としては、塩化金酸四水和物(HAuCl4・(H2O)4)、塩化金酸三水和物(HAuCl4・(H2O)3)、銀の塩としては、酢酸銀(AgCOOCH)、硝酸銀(AgNO3)、パラジウム塩としては、塩化パラジウム酸ナトリウム(H2PdCl6、H2PdCl4およびそれらの塩化合物)、ロジウム塩としては塩化ロジウム(III)ナトリウム二水和物(Na〔RhCl〕・2HO)、白金塩としては、塩化白金酸誘導体(H2PtCl4、H2PtCl6およびそれらの塩化合物)が挙げられ、溶媒としては、低極性溶媒、例えばトルエン、メチルシクロヘキサンなどを用いることができる。溶媒中の該有機化合物の濃度は、溶媒に対する有機化合物の溶解性によって異なるが、例えば0.1〜50mMの濃度の溶液とすることができる。還元剤としては、水素化ホウ素ナトリウムなどのアルカリ金属水素化ホウ素酸塩類;アンモニウム水素化ホウ素酸塩類、ヒドラジン系化合物、ジメチルアミノエタノール、ジメチルエチルアミンなどの2級、3級アミン化合物などを用いることができる。また水素、またはジボランなどのガスを用いることもできる。還元剤の添加量は、特に規定されず、イオン性無機化合物の金属イオンを還元させる量が最低限あればよい。再沈殿は、有機被覆無機ナノ粒子に対して貧溶媒であり、有機被覆分子にとって良溶媒となる媒体を添加にする方法により行うことができる。余剰の有機被覆分子は、再沈殿精製により取り除くことができ、その結果として粉末の有機被覆無機ナノ粒子が得られる。 Illustrative metal salts. Examples of gold salts include chloroauric acid tetrahydrate (HAuCl 4 · (H 2 O) 4 ), chloroauric acid trihydrate (HAuCl 4 · (H 2 O) 3 ), and silver salts such as acetic acid. Silver (AgCOOCH 3 ), silver nitrate (AgNO 3 ), palladium salt as sodium chloropalladate (H 2 PdCl 6 , H 2 PdCl 4 and their salt compounds), rhodium chloride as sodium rhodium (III) dihydrate Examples of Japanese products (Na 3 [RhCl 6 ] · 2H 2 O) and platinum salts include chloroplatinic acid derivatives (H 2 PtCl 4 , H 2 PtCl 6 and their salt compounds), and solvents include low polarity Solvents such as toluene and methylcyclohexane can be used. The concentration of the organic compound in the solvent varies depending on the solubility of the organic compound in the solvent, but can be a solution having a concentration of 0.1 to 50 mM, for example. As the reducing agent, alkali metal borohydrides such as sodium borohydride; ammonium borohydrides, hydrazine compounds, secondary and tertiary amine compounds such as dimethylaminoethanol, dimethylethylamine, etc. may be used. it can. A gas such as hydrogen or diborane can also be used. The amount of the reducing agent added is not particularly limited, and it is sufficient that the amount of the metal ion of the ionic inorganic compound is reduced. Reprecipitation can be performed by a method of adding a medium that is a poor solvent for the organic-coated inorganic nanoparticles and a good solvent for the organic-coated molecules. Excess organic coated molecules can be removed by reprecipitation purification, resulting in powdered organic coated inorganic nanoparticles.

本発明の有機被覆無機ナノ粒子は、液状媒体中に良好に高濃度で分散する。ここで、液状媒体とは、液体又は流動性を有する媒体を意味し、例えば、液晶性化合物、重合性液状媒体、有機溶媒等を含む。   The organic-coated inorganic nanoparticles of the present invention are well dispersed at a high concentration in a liquid medium. Here, the liquid medium means a liquid or fluid medium, and includes, for example, a liquid crystal compound, a polymerizable liquid medium, an organic solvent, and the like.

本発明の有機被覆無機ナノ粒子は、アイソトロピック状態の液晶性化合物は液状であるため、これに良く分散し、さらに、液晶相まで冷却した際には、液晶の配向に誘起され、液晶中において有機被覆無機ナノ粒子が配列体又凝集体を形成する。液晶性化合物とは、ある温度(この温度は限定されないが、有機被覆無機ナノ粒子をこわさない温度)で液晶性を示す化合物をいう。従来公知の有機被覆無機ナノ粒子も、分散量は少ないものの、同様に液晶性化合物中に分散し、配列体又は凝集体を形成し得る。ここで、配列体とは、有機被覆無機ナノ粒子が規則的に配列して集積している状態を意味し、凝集体とは、配列体に比べ、集合形態がランダムであり、数個から数百個の集まりからなるものを意味する。   In the organic-coated inorganic nanoparticles of the present invention, since the liquid crystalline compound in the isotropic state is in a liquid state, it is well dispersed therein, and further, when cooled to the liquid crystal phase, it is induced by the orientation of the liquid crystal, Organic coated inorganic nanoparticles form arrays or aggregates. The liquid crystalline compound refers to a compound that exhibits liquid crystallinity at a certain temperature (this temperature is not limited, but does not break the organic-coated inorganic nanoparticles). Conventionally known organic-coated inorganic nanoparticles may also be dispersed in a liquid crystalline compound in the same manner, although the amount of dispersion is small, to form an array or an aggregate. Here, an array means a state in which organic-coated inorganic nanoparticles are regularly arranged and accumulated, and an aggregate is a random aggregate form compared to an array, and several to several Meaning a collection of hundreds.

液晶性化合物として、代表的なものを示す。例えば、ネマチック液晶性化合物として4−シアノ−4’−n−ペンチルビフェニル、4−シアノ−4’−n−ペンチルオキシビフェニル、4−シアノ−4’−n−ヘプチルビフェニル、4−シアノ−4’−n−ヘプチルオキシビフェニルなどのシアノビフェニル型液晶性化合物、n−アミル 4−(4−エトキシフェノキシカルボニル)フェニルカーボネート、ブチル 4−カルボキシフェニルカーボネート、n−ブチル 4−(4’−メトキシフェノキシカルボニル)フェニルカーボネート、4−カルボキシフェニル n−アミルカーボネート、エチル 4−(4’−エトキシフェノキシカルボニル)フェニルカーボネート、n−ヘプチル 4−(4’−エトキシフェノキシカルボニル)フェニルカーボネート、メチル 4−(4’−エトキシフェノキシカルボニル)フェニルカーボネートなどのフェニル炭酸エステル型液晶性化合物、4,4’−アゾキシジアニソール4,4’−アゾキシフェネトール、4,4’−ジ−n−アミルオキシアゾキシベンゼン、4,4’−ジ−n−ブトキシアゾキシベンゼン、4,4’−ジ−n−ドデシルオキシアゾキシベンゼン、4,4’−ジ−n−ヘキシルオキシアゾキシベンゼン、4,4’−ジ−n−ノニルオキシアゾキシベンゼン、4,4’−ジ−n−オクチルオキシアゾキシベンゼン、4,4’−ジ−n−プロポキシアゾキシベンゼンなどのアゾキシベンゼン型液晶性化合物、その他、4’−n−アミロキシベンジリデン−4−シアノアニリン、ベンジリデン−2−ナフチルアミン、4’−n−ブトキシベンジリデン−4−アセチルアニリン、4’−n−ブトキシベンジリデン−4−シアノアニリン、4−n−ブトキシベンジリデン−4’−ペンチルアニリン、4’−n−ブトキシカルボニルオキシベンジリデン−4−メトキシアニリン、4’−シアノベンジリデン−4−n−ブトキシアニリン、4’−シアノベンジリデン−4−エトキシアニリン、4’−シアノベンジリデン−4−n−ヘキシルオキシアニリン、4’−エトキシベンジリデン−4−アセチルアニリン、4’−エトキシベンジリデン−4−n−ブチルアニリン、4’−エトキシベンジリデン−4−シアノアニリン、4’−n−ヘキシルオキシベンジリデン−4−シアノアニリン、N−(4−メトキシベンジリデン)−4−アセトキシアニリン、4−[(4−メトキシベンジリデン)アミノ]アゾベンゼン、4−[(4−メトキシベンジリデン)アミノ]ベンゾニトリル、4−[(4−メトキシベンジリデン)アミノ]ビフェニル、4−[(4−メトキシベンジリデン)アミノ]桂皮酸、4−[(4−メトキシベンジリデン)アミノ]桂皮酸n−ブチルエステル、4−[(4−メトキシベンジリデン)アミノ]桂皮酸エチルエステル、4−[(メトキシベンジリデン)アミノ]スチルベンN−(4−メトキシベンジリデンアニリン、N−(4−メトキシベンジリデン)−4−n−ブチルアニリン、4−(4−メトキシベンジリデン)−4−ヒドロキシアニリン、N−(4−メトキシ−2−ヒドロキシベンジリデン)−4−n−ブチルアニリン、4’−n−プロポキシベンジリデン−4−シアノアニリン、テレフタルビス(4−フルオロアニリン)、テトラフタルビス(p−フェネチジン)、N,N’−ビスベンジリデンベンジジン、N,N’−ビスベンジリデン−3,3’−ジクロロベンジジンp−ジアニサル−3,3’−ジクロロベンジジンアゾキシベンゼン−4,4’−ジカルボン酸ジエチルエステルなどの棒状液晶性化合物があげられる。   Typical examples of liquid crystal compounds are shown below. For example, as a nematic liquid crystalline compound, 4-cyano-4′-n-pentylbiphenyl, 4-cyano-4′-n-pentyloxybiphenyl, 4-cyano-4′-n-heptylbiphenyl, 4-cyano-4 ′ Cyanobiphenyl type liquid crystalline compounds such as n-heptyloxybiphenyl, n-amyl 4- (4-ethoxyphenoxycarbonyl) phenyl carbonate, butyl 4-carboxyphenyl carbonate, n-butyl 4- (4′-methoxyphenoxycarbonyl) Phenyl carbonate, 4-carboxyphenyl n-amyl carbonate, ethyl 4- (4′-ethoxyphenoxycarbonyl) phenyl carbonate, n-heptyl 4- (4′-ethoxyphenoxycarbonyl) phenyl carbonate, methyl 4- (4′-ethoxy) Phenyl carbonate type liquid crystalline compounds such as phenoxycarbonyl) phenyl carbonate, 4,4′-azoxydianisole 4,4′-azoxyphenetole, 4,4′-di-n-amyloxyazoxybenzene, 4 4,4′-di-n-butoxyazoxybenzene, 4,4′-di-n-dodecyloxyazoxybenzene, 4,4′-di-n-hexyloxyazoxybenzene, 4,4′-di- Azoxybenzene-type liquid crystalline compounds such as n-nonyloxyazoxybenzene, 4,4′-di-n-octyloxyazoxybenzene, 4,4′-di-n-propoxyazoxybenzene, and other 4 ′ -N-amyloxybenzylidene-4-cyanoaniline, benzylidene-2-naphthylamine, 4'-n-butoxybenzylidene-4-acetylaniline 4'-n-butoxybenzylidene-4-cyanoaniline, 4-n-butoxybenzylidene-4'-pentylaniline, 4'-n-butoxycarbonyloxybenzylidene-4-methoxyaniline, 4'-cyanobenzylidene-4- n-butoxyaniline, 4′-cyanobenzylidene-4-ethoxyaniline, 4′-cyanobenzylidene-4-n-hexyloxyaniline, 4′-ethoxybenzylidene-4-acetylaniline, 4′-ethoxybenzylidene-4-n -Butylaniline, 4'-ethoxybenzylidene-4-cyanoaniline, 4'-n-hexyloxybenzylidene-4-cyanoaniline, N- (4-methoxybenzylidene) -4-acetoxyaniline, 4-[(4-methoxy Benzylidene) amino] azobenzene, 4-[( -Methoxybenzylidene) amino] benzonitrile, 4-[(4-methoxybenzylidene) amino] biphenyl, 4-[(4-methoxybenzylidene) amino] cinnamic acid, 4-[(4-methoxybenzylidene) amino] cinnamic acid n -Butyl ester, 4-[(4-methoxybenzylidene) amino] cinnamic acid ethyl ester, 4-[(methoxybenzylidene) amino] stilbene N- (4-methoxybenzylideneaniline, N- (4-methoxybenzylidene) -4- n-butylaniline, 4- (4-methoxybenzylidene) -4-hydroxyaniline, N- (4-methoxy-2-hydroxybenzylidene) -4-n-butylaniline, 4'-n-propoxybenzylidene-4-cyano Aniline, terephthalbis (4-fluoroaniline), tetraf Rubis (p-phenetidine), N, N′-bisbenzylidenebenzidine, N, N′-bisbenzylidene-3,3′-dichlorobenzidine p-dianisal-3,3′-dichlorobenzidineazoxybenzene-4,4 ′ -Rod-like liquid crystalline compounds such as dicarboxylic acid diethyl ester.

またコレステリック液晶性化合物としてコレステロール n−アミルカーボネート、コレステロール n−ブチルカーボネート、コレステロール エチルカーボネート、コレステロール n−ヘプチルカーボネート、コレステロール n−ヘキシルカーボネート、コレステロール イソブチルカーボネート、コレステロール イソプロピルカーボネート、コレステロール メチルカーボネート、コレステロール n−ノニルカーボネート、コレステロール n−オクチルカーボネート、コレステロール オレイルカーボネート、コレステロールアセテート、コレステロールベンゾエート、コレステロールブチレート、コレステロール n−カプレート、コレステロール n−カプリレート、コレステロールクロロホルメート、コレステロールトランス桂皮酸、コレステロール 2,4−ジクロロベンゾエート、コレステロールエナンテート、コレステロールホルメート、コレステロール n−ヘキサノエート、コレステロールヒドロ桂皮酸、コレステロールフタル酸水素、コレステロール琥珀酸水素、コレステロールラウレート、コレステロールリノレエート、コレステロールミリステート、コレステロールオレエート、コレステロールパルミテート、コレステロールペラルゴネート、コレステロールフェニルアセテート、コレステロールプロピオネート、コレステロールステアレート、コレステロール n−吉草酸、コレステリルブロミド、コレステリルクロリドなどがあげられる。ディスコティック液晶性化合物として、ベンゼン、トリフェニレン、トルクセン、ポルフィリン、フタロシアニンなどの円盤状分子のアルキル誘導体があげられる。液晶性化合物は、これらの混合物であってもよい。特に好ましくは、4−シアノ−4’−n−ペンチルビフェニル、トリフェニレンのアルキル誘導体である。   Further, as a cholesteric liquid crystalline compound, cholesterol n-amyl carbonate, cholesterol n-butyl carbonate, cholesterol ethyl carbonate, cholesterol n-heptyl carbonate, cholesterol n-hexyl carbonate, cholesterol isobutyl carbonate, cholesterol isopropyl carbonate, cholesterol methyl carbonate, cholesterol n-nonyl Carbonate, cholesterol n-octyl carbonate, cholesterol oleyl carbonate, cholesterol acetate, cholesterol benzoate, cholesterol butyrate, cholesterol n-caprate, cholesterol n-caprylate, cholesterol chloroformate, cholesterol trans Cinnamic acid, cholesterol 2,4-dichlorobenzoate, cholesterol enanthate, cholesterol formate, cholesterol n-hexanoate, cholesterol hydrocinnamic acid, cholesterol hydrogen phthalate, cholesterol hydrogen succinate, cholesterol laurate, cholesterol linoleate, cholesterol milli State, cholesterol oleate, cholesterol palmitate, cholesterol pelargonate, cholesterol phenylacetate, cholesterol propionate, cholesterol stearate, cholesterol n-valeric acid, cholesteryl bromide, cholesteryl chloride and the like. Examples of discotic liquid crystalline compounds include alkyl derivatives of discotic molecules such as benzene, triphenylene, torquesen, porphyrin, and phthalocyanine. A mixture of these may be sufficient as a liquid crystalline compound. Particularly preferred are alkyl derivatives of 4-cyano-4'-n-pentylbiphenyl and triphenylene.

有機被覆無機ナノ粒子は、液晶性化合物中に0.001〜50重量%、好ましくは1〜20重量%の濃度で好ましくは粉末の形態で添加される。液晶性化合物中に添加した有機被覆無機ナノ粒子は、アイソトロピック状態の液晶性化合物中に均一に分散した後、液晶相を示す温度領域で比較的安定に存在しうる(従来公知の有機被覆無機ナノ粒子はあまり安定ではない)。ネマティック液晶性化合物のような構造秩序性の低い液晶性化合物の場合、有機被覆無機ナノ粒子は、例えば、一軸に配向した液晶中に独立に分散した形態をとることができる。この場合、有機被覆ナノ粒子の特別な集積体は形成されない。とりわけ相溶性が低い場合、球状のランダム集積体を形成する場合もあるが、この分散性は液晶性化合物の性質に大きく依存する。これに対してディスコティック液晶など長距離にわたり一次元的なカラム層を安定に形成するような液晶性化合物中においては、アイソトロピック相まで加熱させ、ゆっくりと液晶相温度領域まで温度を降下させることにより有機被覆無機ナノ粒子は液晶の配向にそってに配列するが、円盤状液晶分子のアルキル鎖の長さや液晶温度により高度な配向を促進できる。有機被覆無機ナノ粒子の配列体は、例えば、一次元的に配列した有機被覆無機ナノ粒子が同軸方向に並んだ形状をとることができる。これらの配列体又は凝集体は、表示素子としての液晶性化合物において、高視野角や電場に対する高速応答を付与する。またナノ粒子が高秩序に並んだカラーフィルターや二色性を示す。   The organic coated inorganic nanoparticles are added to the liquid crystalline compound at a concentration of 0.001 to 50% by weight, preferably 1 to 20% by weight, preferably in the form of a powder. The organic-coated inorganic nanoparticles added to the liquid crystal compound can be present relatively stably in the temperature range showing the liquid crystal phase after being uniformly dispersed in the liquid crystal compound in the isotropic state (the conventionally known organic-coated inorganic nanoparticles). Nanoparticles are not very stable). In the case of a liquid crystalline compound having a low structural order such as a nematic liquid crystalline compound, the organic-coated inorganic nanoparticles can take a form of being dispersed independently in a uniaxially oriented liquid crystal, for example. In this case, no special aggregate of organic coated nanoparticles is formed. In particular, when the compatibility is low, a spherical random aggregate may be formed, but this dispersibility largely depends on the properties of the liquid crystal compound. On the other hand, in a liquid crystalline compound that stably forms a one-dimensional column layer over a long distance such as a discotic liquid crystal, the temperature is slowly lowered to the temperature range of the liquid crystal phase by heating to the isotropic phase. Thus, the organic-coated inorganic nanoparticles are aligned along the alignment of the liquid crystal, but a high degree of alignment can be promoted by the length of the alkyl chain of the discotic liquid crystal molecule and the liquid crystal temperature. The array of organic-coated inorganic nanoparticles can take, for example, a shape in which organic-coated inorganic nanoparticles arranged one-dimensionally are arranged in the same direction. These arrays or aggregates impart a high viewing angle and a high-speed response to an electric field in a liquid crystal compound as a display element. In addition, it exhibits highly ordered color filters and dichroism.

液晶性化合物中での有機被覆無機ナノ粒子配列体又は凝集体は、有機被覆無機ナノ粒子をアイソトロピック状態の液晶性化合物中に分散させた後、これを液晶相を示す温度領域にすることによって得ることができる。   An organic coated inorganic nanoparticle array or aggregate in a liquid crystalline compound is obtained by dispersing the organic coated inorganic nanoparticles in a liquid crystalline compound in an isotropic state, and then making this into a temperature region showing a liquid crystal phase. Obtainable.

本発明の有機被覆無機ナノ粒子は、液晶性化合物以外の各種液状媒体中にも良好に分散し、分散体となる。従来公知の有機被覆無機ナノ粒子も、分散量は少ないものの、同様に分散する。ここで、分散体とは、有機被覆無機ナノ粒子が独立あるいは数百個の集合状態を形成しながら、分散し、沈殿を生じない分散液を意味する。液状媒体としては、液体又は液状であり、かつ有機被覆無機ナノ粒子を破壊しない媒体であれば限定されないが、例えば、有機溶媒、重合性液状媒体が挙げられる。有機溶媒として、エタノール、プロパノール、クロロホルム、トルエンなどが挙げられる。重合性液状媒体として、メチルアクリレート、エチルアクリレート、イソボルニルアクリレート(IB)、ベンジルアクリレート(Bz)、あるいはこれらのメタクリレート体などがあげられる。その他、重合性液状媒体としては、例えば、エポキシ化合物(エピクロロヒドリン:ECH)、オキセタン化合物などがあげられる。オキセタン化合物(OXT−221、OXT−211、OXT−212、OXT−101、CEL−2021P、CEL−2000、CEL−3000(東亞合成))は、たとえば以下の分子構造を有し得る。   The organic-coated inorganic nanoparticles of the present invention are well dispersed in various liquid media other than the liquid crystalline compound to form a dispersion. Conventionally known organic-coated inorganic nanoparticles are also dispersed in a similar manner although the amount of dispersion is small. Here, the dispersion means a dispersion in which the organic-coated inorganic nanoparticles are dispersed while forming independent or several hundred aggregated states, and no precipitation occurs. The liquid medium is not limited as long as it is a liquid or a liquid and does not destroy the organic-coated inorganic nanoparticles, and examples thereof include an organic solvent and a polymerizable liquid medium. Examples of the organic solvent include ethanol, propanol, chloroform, and toluene. Examples of the polymerizable liquid medium include methyl acrylate, ethyl acrylate, isobornyl acrylate (IB), benzyl acrylate (Bz), and methacrylates thereof. In addition, examples of the polymerizable liquid medium include an epoxy compound (epichlorohydrin: ECH) and an oxetane compound. An oxetane compound (OXT-221, OXT-211, OXT-212, OXT-101, CEL-2021P, CEL-2000, CEL-3000 (Toagosei)) may have the following molecular structure, for example.

重合性液状媒体として、さらに、光架橋性樹脂を挙げることができる。光架橋性樹脂としては、紫外線及び可視光の照射で硬化(架橋)が可能で、(メタ)アクリレート系オリゴマー、(メタ)アクリレート系モノマーまたはそれらの混合物と、これらのオリゴマー、モノマー、またはそれらの混合物を重合硬化させるのに十分な量の光重合開始剤(a)とを主成分としているもの、及びエポキシ基含有化合物、ビニル化合物、オキセタン環を有する化合物、脂環式エポキシ化合物またはそれらの混合物と、これら化合物又はその混合物を重合硬化させるのに十分な量の光重合開始剤(b)とを主成分としているものが用いられる。   Examples of the polymerizable liquid medium further include a photocrosslinkable resin. As the photocrosslinkable resin, curing (crosslinking) is possible by irradiation with ultraviolet rays and visible light, and (meth) acrylate oligomers, (meth) acrylate monomers or mixtures thereof, and these oligomers, monomers, or theirs Those having as a main component a photopolymerization initiator (a) in an amount sufficient to polymerize and cure the mixture, and epoxy group-containing compounds, vinyl compounds, compounds having an oxetane ring, alicyclic epoxy compounds, or mixtures thereof And a photopolymerization initiator (b) in an amount sufficient to polymerize and cure these compounds or a mixture thereof.

上記(メタ)アクリレート系オリゴマーは、(メタ)アクリレート基を分子末端または側鎖に1つ以上有するオリゴマーであり、例えば、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、メラミン(メタ)アクリレート等がある。これらを単独または2種類以上併用して用いることができる。   The (meth) acrylate-based oligomer is an oligomer having at least one (meth) acrylate group at the molecular end or side chain. For example, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, melamine (Meth) acrylate and the like. These can be used alone or in combination of two or more.

上記(メタ)アクリレート系モノマーは、(メタ)アクリレート基を分子末端または側鎖に1つ以上有するモノマーであり、例えば、ジシクロペンタジエンモノ(メタ)アクリレート、ジシクロペンタジエンエトキシ(メタ)アクリレート、イソボニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、N−ビニルピロリドン、ジエチレングリコールジ(メタ)アクリレート等がある。これらを単独または2種類以上併用して用いることができる。   The (meth) acrylate monomer is a monomer having one or more (meth) acrylate groups at the molecular end or side chain. For example, dicyclopentadiene mono (meth) acrylate, dicyclopentadieneethoxy (meth) acrylate, isobonyl There are (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-vinylpyrrolidone, diethylene glycol di (meth) acrylate and the like. These can be used alone or in combination of two or more.

上記光重合開始剤(a)は、波長200〜600nmの紫外線及び可視光領域の光を照射することで活性ラジカルを発生し重合反応を進行させるもので、ベンゾイン、ベンゾインエチルエーテルなどのベンゾイン系光重合開始剤、ジエトキシアセトフェノンなどのアセトフェノン系光重合開始剤、チオキサントン、ジエチルチオキサントンなどのチオキサントン計光重合開始剤等がある。これらを単独または2種類以上併用して用いることができる。光重合開始剤の添加量は、(メタ)アクリレート系オリゴマー、(メタ)アクリレート系モノマー、またはそれらの混合物100重量%に対して、0.01〜20重量%で使用される。   The photopolymerization initiator (a) generates an active radical by irradiating with ultraviolet light having a wavelength of 200 to 600 nm and light in the visible light region to advance a polymerization reaction. The benzoin light such as benzoin or benzoin ethyl ether is used. There are polymerization initiators, acetophenone photopolymerization initiators such as diethoxyacetophenone, and thioxanthone meter photopolymerization initiators such as thioxanthone and diethylthioxanthone. These can be used alone or in combination of two or more. The addition amount of the photopolymerization initiator is 0.01 to 20% by weight with respect to 100% by weight of the (meth) acrylate oligomer, (meth) acrylate monomer, or a mixture thereof.

上記エポキシ基含有化合物は、1分子中に1個以上のエポキシ基を有するオリゴマーであり、例えば、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリグリシジルエーテル、脂環式エポキサイド、ヒトダイン系エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ダイマー酸変性エポキシ樹脂、NBR変性エポキシ樹脂、CTBN変性エポキシ樹脂等がある。これらを単独または2種類以上併用して用いることができる。   The epoxy group-containing compound is an oligomer having one or more epoxy groups in one molecule. For example, bisphenol type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, polyglycidyl ether, alicyclic epoxide, human dyne Type epoxy resin, glycidylamine type epoxy resin, dimer acid modified epoxy resin, NBR modified epoxy resin, CTBN modified epoxy resin and the like. These can be used alone or in combination of two or more.

上記ビニル化合物は、例えば、アルキルビニルエーテル類、スチレン、アルキニルビニルエーテル類、アリールビニルエーテル類、ルキルジビニルエーテール類等がある。これらを単独または2種類以上併用して用いることができる。   Examples of the vinyl compound include alkyl vinyl ethers, styrene, alkynyl vinyl ethers, aryl vinyl ethers, and alkyl divinyl ethers. These can be used alone or in combination of two or more.

オキセタン環を有する化合物は、例えば、オキセタンアルコール、キシリレンジオキセタン、アリルオキセタン、オキセタニルシルセスオキサン、トリエトキシシリルプロポキシオキセタン等がある。これらを単独または2種類以上併用して用いることができる。   Examples of the compound having an oxetane ring include oxetane alcohol, xylylene oxetane, allyl oxetane, oxetanylsilsesoxane, triethoxysilylpropoxyoxetane, and the like. These can be used alone or in combination of two or more.

上記光重合開始剤(b)とは、波長200〜600nmの紫外線及び可視光領域の光を照射することで酸を発生し、発生した酸を触媒にすることで重合反応を進行させるもので、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、アジド化合物、スルホン酸エステル化合物等がある。例えばトリアリルスルホニウムヘキサフルオロアンチモン類縁体、トリアリルスルホニウムヘキサフルオロホスフェート類縁体、P,P−ジアルキルジアリルヨードニウム塩ヘキサフルオロアンチモン類縁体、P,P−ジアルキルジアリルヨードニウム塩ヘキサフルオロホスフェート類縁体等が挙げられる。これらを単独または2種類以上併用して用いることができる。光重合開始剤の添加量は、エポキシ基含有化合物、ビニル化合物オキセタン環を有する化合物またはそれらの混合物100重量%に対して、0.01〜20重量%使用される。   The photopolymerization initiator (b) is one that generates an acid by irradiating ultraviolet light having a wavelength of 200 to 600 nm and light in a visible light region, and causes the polymerization reaction to proceed by using the generated acid as a catalyst. There are sulfonium salts, iodonium salts, diazonium salts, azide compounds, sulfonic acid ester compounds, and the like. Examples include triallylsulfonium hexafluoroantimony analogs, triallylsulfonium hexafluorophosphate analogues, P, P-dialkyldiallyliodonium salt hexafluoroantimony analogues, P, P-dialkyldiallyliodonium salt hexafluorophosphate analogues, and the like. . These can be used alone or in combination of two or more. The addition amount of the photopolymerization initiator is 0.01 to 20% by weight based on 100% by weight of the epoxy group-containing compound, the compound having a vinyl compound oxetane ring, or a mixture thereof.

有機被覆無機ナノ粒子は、液晶以外の液状媒体中に0.001〜50重量%、好ましくは1〜50重量%の濃度で添加する。有機被覆無機ナノ粒子は、加熱することでより多くの量を液状媒体中に分散できる。この分散は、液状媒体をより高温加熱することにより強化又は促進しうる。加熱温度は、液状媒体により変化するが、例えば、0〜150℃、好ましくは60℃〜各溶媒の沸点近くの温度である。この分散体は、冷却により凝集させて凝集体とすることができる。ここで、凝集体とは、数個から数百個の有機被覆無機ナノ粒子がランダム形状、主に球状に集積した塊を意味する。分散体又は凝集体は、加熱冷却の繰り返しによって、何度も分散と凝集を可逆的に繰り返し行うことができるという特性を有する。冷却温度又は加熱温度を変化することにより、有機被覆無機ナノ粒子の分散・凝集状態を任意かつ連続的に制御できる。従来公知の有機被覆無機ナノ粒子も、分散量は少ないものの、同様に分散・凝集させることができる。   The organic-coated inorganic nanoparticles are added in a liquid medium other than liquid crystal at a concentration of 0.001 to 50% by weight, preferably 1 to 50% by weight. A larger amount of the organic-coated inorganic nanoparticles can be dispersed in the liquid medium by heating. This dispersion can be enhanced or promoted by heating the liquid medium at a higher temperature. Although heating temperature changes with liquid media, it is 0-150 degreeC, for example, Preferably it is the temperature near the boiling point of each solvent-60 degreeC. This dispersion can be aggregated by cooling to form an aggregate. Here, the aggregate means a mass in which several to several hundred organic coated inorganic nanoparticles are accumulated in a random shape, mainly in a spherical shape. Dispersions or aggregates have the property that they can be reversibly and repeatedly dispersed many times by repeated heating and cooling. By changing the cooling temperature or the heating temperature, the dispersion / aggregation state of the organic-coated inorganic nanoparticles can be arbitrarily and continuously controlled. Conventionally known organic-coated inorganic nanoparticles can also be dispersed and agglomerated in the same manner although the amount of dispersion is small.

有機被覆無機ナノ粒子を重合性液状媒体に加熱して分散させることにより、重合性液状媒体中に分散した有機被覆無機ナノ粒子分散体を得ることができる。重合性液状媒体中に分散した有機被覆無機ナノ粒子分散体は、該重合性液状媒体を加熱、光の照射等により重合、硬化することにより、有機被覆無機ナノ粒子が重合性液状媒体の硬化物である樹脂中に分散した有機被覆無機ナノ粒子分散体−樹脂複合体とすることができる。重合、硬化は、各重合性液状媒体に応じて、当業者に公知の方法で行い得る。   An organic-coated inorganic nanoparticle dispersion dispersed in the polymerizable liquid medium can be obtained by heating and dispersing the organic-coated inorganic nanoparticles in the polymerizable liquid medium. An organic-coated inorganic nanoparticle dispersion dispersed in a polymerizable liquid medium is obtained by polymerizing and curing the polymerizable liquid medium by heating, irradiation with light, etc., so that the organic-coated inorganic nanoparticles are cured from the polymerizable liquid medium. It is possible to obtain an organic-coated inorganic nanoparticle dispersion-resin composite dispersed in a resin. Polymerization and curing can be performed by methods known to those skilled in the art according to each polymerizable liquid medium.

また、重合性液状媒体中に分散した有機被覆無機ナノ粒子分散体は、その冷却過程において形成される有機被覆無機ナノ粒子の凝集体のサイズを冷却温度により制御しながら、分散媒である重合性液状媒体を硬化して凝集状態の有機被覆無機ナノ粒子凝集体−樹脂複合体とすることができる。有機被覆無機ナノ粒子凝集体−樹脂複合体は、分散と凝集を制御しつつ硬化できるので、任意の分散・凝集状態の複合体が得られるという特性を有する。また、硬化により得られた複合体を硬化後により高温の加熱処理により無機ナノ粒子を融合させ、電気伝導性や熱伝導性を樹脂複合体に付与できる。   In addition, the organic-coated inorganic nanoparticle dispersion dispersed in the polymerizable liquid medium is controlled by controlling the size of the aggregate of the organic-coated inorganic nanoparticles formed in the cooling process by the cooling temperature, and the polymerizable polymer that is the dispersion medium. The liquid medium can be cured to form an aggregated organic-coated inorganic nanoparticle aggregate-resin composite. Since the organic-coated inorganic nanoparticle aggregate-resin composite can be cured while controlling dispersion and aggregation, it has a characteristic that a composite in an arbitrary dispersed / aggregated state can be obtained. In addition, the composite obtained by curing can be fused with inorganic nanoparticles by a high-temperature heat treatment after curing, thereby imparting electrical conductivity and thermal conductivity to the resin composite.

本発明は、さらに、有機被覆分子によって被覆された有機被覆無機ナノ粒子(従来公知の有機被覆無機ナノ粒子を含む)の液状媒体中での分散・凝集を制御する方法も含み、この方法は、有機被覆無機ナノ粒子を液状媒体に加熱して分散させた後、冷却温度を調整することにより有機被覆無機ナノ粒子の分散・凝集を制御することを含む。得られた凝集体の加熱温度を調整することにより、有機被覆無機ナノ粒子の分散・凝集を制御することも可能である。本発明の液状媒体中の有機被覆無機ナノ粒子は、分散体と凝集体の間を温度調節により相互に変換可能である。   The present invention further includes a method for controlling dispersion / aggregation in a liquid medium of organic-coated inorganic nanoparticles (including conventionally known organic-coated inorganic nanoparticles) coated with organic-coated molecules. It includes controlling the dispersion / aggregation of the organic coated inorganic nanoparticles by adjusting the cooling temperature after heating and dispersing the organic coated inorganic nanoparticles in the liquid medium. The dispersion / aggregation of the organic-coated inorganic nanoparticles can be controlled by adjusting the heating temperature of the obtained aggregate. The organic-coated inorganic nanoparticles in the liquid medium of the present invention can be mutually converted between the dispersion and the aggregate by adjusting the temperature.

以下の化合物を有機被覆剤として合成した。   The following compounds were synthesized as organic coatings.

実施例1 有機被覆分子1,2−ジチオラン−3−ペンタン酸 9−オクタデセニルアミド(II)とその他の誘導体(III)および(IV)の合成
500ml三角フラスコにα−DL−リポ酸(Mw:206.33)10g(48.4mmol)、N,N−ビス(2−オキソ−3−オキサゾリジニル)ホスフィン酸クロリド[東京化成Mw:254.57]12.3g(48.4mmol)を入れ、ジクロロメタン75mlを加え、さらにトリエチルアミン[関東化学Mw:101.19]10.19g(100mmol)を加え氷冷下で1時間攪拌した。次に、ジクロロメタン100mlにトリエチルアミン50.1g(50.0mmol)、蒸留精製した9−オクタデセニルアミン[Mw:267]12.9g(48.4mmol)を加えたものを滴下ロートにより90分かけて滴下した。その後、5時間攪拌し、イオン交換水100mlを加え塩酸水溶液によりpH5程度にして過剰のトリエチルアミンを水相に移した。分液漏斗により有機相を分取し、無水硫酸ナトリウムを加え乾燥させた。溶媒のジクロロメタンを減圧留去し、メタノールにより再結晶を行い、淡黄色粉末を得た。得られた生成物を同定するためFT−IR測定ならびにH−NMR、元素分析測定を行い、化合物(II)であることを確かめた。
Example 1 Synthesis of Organic Coated Molecule 1,2-dithiolane-3-pentanoic Acid 9-Octadecenylamide (II) and Other Derivatives (III) and (IV) α-DL-Lipoic Acid ( Mw: 206.33) 10 g (48.4 mmol), N, N-bis (2-oxo-3-oxazolidinyl) phosphinic acid chloride [Tokyo Kasei Mw: 254.57] 12.3 g (48.4 mmol) Dichloromethane (75 ml) was added, and further triethylamine [Kanto Chemical Mw: 101.19] (10.19 g, 100 mmol) was added, followed by stirring under ice cooling for 1 hour. Next, 50.1 g (50.0 mmol) of triethylamine and 12.9 g (48.4 mmol) of 9-octadecenylamine [Mw: 267] purified by distillation were added to 100 ml of dichloromethane over 90 minutes with a dropping funnel. It was dripped. Thereafter, the mixture was stirred for 5 hours, 100 ml of ion exchange water was added, the pH was adjusted to about 5 with an aqueous hydrochloric acid solution, and excess triethylamine was transferred to the aqueous phase. The organic phase was separated with a separatory funnel and dried over anhydrous sodium sulfate. The solvent dichloromethane was distilled off under reduced pressure, and recrystallization was performed with methanol to obtain a pale yellow powder. In order to identify the obtained product, FT-IR measurement, 1 H-NMR, and elemental analysis measurement were performed to confirm that it was the compound (II).

同様の手順に従い、原料アミンをオクタデシルアミン、ドデシルアミンに代えて(III)および(IV)を合成した。   According to the same procedure, (III) and (IV) were synthesized by replacing the starting amine with octadecylamine and dodecylamine.

実施例2 有機被覆分子1,2−ジチオラン−3−ペンタン酸 9−オクタデセニルエステル(V)とその他の誘導体(VI)および(VII)の合成
500ml三角フラスコにα−DL−リポ酸(Mw:206.33)10g(48.4mmol)、蒸留精製した9−オクタデセニルアルコール[Mw:268.48]13.0g(48.4mmol)、触媒量のp−トルエンスルホン酸・一水和物[Mw:190.22]を入れ、トルエン300mlを加え、この容器にディーンスタークトラップを付して6時間加熱還流攪拌した。溶媒を減圧留去した後、クロロホルムに溶解させ、5wt%炭酸水素ナトリウム水溶液200mlと3回振とうし、分液漏斗により有機相を分取した。クロロホルム相に無水硫酸ナトリウムを加え乾燥させた。これをろ過した後、溶媒のクロロホルムを減圧留去し、水−メタノール混合溶媒により再結晶を行い、淡黄色粉末を得た。得られた生成物を同定するためFT−IR測定ならびにH−NMR、元素分析測定を行い、化合物(V)であることを確かめた。
Example 2 Synthesis of organic coated molecule 1,2-dithiolane-3-pentanoic acid 9-octadecenyl ester (V) and other derivatives (VI) and (VII) α-DL-lipoic acid (Mw) in a 500 ml Erlenmeyer flask : 206.33) 10 g (48.4 mmol), distilled purified 9-octadecenyl alcohol [Mw: 268.48] 13.0 g (48.4 mmol), catalytic amount of p-toluenesulfonic acid monohydrate The product [Mw: 190.22] was added, 300 ml of toluene was added, and a Dean-Stark trap was attached to this container, and the mixture was heated to reflux with stirring for 6 hours. After distilling off the solvent under reduced pressure, the residue was dissolved in chloroform, shaken with 200 ml of 5 wt% aqueous sodium hydrogen carbonate solution three times, and the organic phase was separated by a separatory funnel. Anhydrous sodium sulfate was added to the chloroform phase and dried. After filtration, the solvent chloroform was distilled off under reduced pressure, and recrystallization was performed with a water-methanol mixed solvent to obtain a pale yellow powder. In order to identify the obtained product, FT-IR measurement, 1 H-NMR, and elemental analysis measurement were performed to confirm that it was the compound (V).

同様の手順に従い、原料アミンをオクタデシルアルコール、ドデシルアルコールに代えて(VI)および(VII)を合成した。   According to the same procedure, (VI) and (VII) were synthesized by replacing the starting amine with octadecyl alcohol and dodecyl alcohol.

実施例3 有機被覆剤分子ビス[9−オクタデセノイルアミノエチル]ジスルフィド(VIII)の合成
500ml三角フラスコに蒸留精製した1−カルボキシ−9−オクタデセン[Mw:296]5.8g(19.7mmol)、N,N−ビス(2−オキソ−3−オキサゾリジニル)ホスフィン酸クロリド[東京化成Mw:254.57]5.0g(19.7mmol)を入れ、ジクロロメタン75mlを加え、さらにトリエチルアミン[関東化学Mw:101.19]4.0g(40mmol)を加え氷冷下で1時間攪拌した。次に、ジクロロメタン100mlにシスタミン(Mw:152.04)3g(19.7mmol)、トリエチルアミン4.0g(40.0mmol)を加えたものを滴下ロートにより90分かけて滴下した。その後、5時間攪拌し、イオン交換水100mlを加え塩酸水溶液によりpH5程度にして過剰のトリエチルアミンを水相に移した。分液漏斗により有機相を分取し、無水硫酸ナトリウムを加え乾燥させた。溶媒のジクロロメタンを減圧留去し、メタノールにより再結晶を行い、淡黄色粉末を得た。得られた生成物を同定するためFT−IR測定ならびにH−NMR、元素分析測定を行い、化合物(VIII)であることを確かめた。
Example 3 Synthesis of organic coating molecule bis [9-octadecenoylaminoethyl] disulfide (VIII) 5.8 g (19.7 mmol) of 1-carboxy-9-octadecene [Mw: 296] purified by distillation in a 500 ml Erlenmeyer flask ), N, N-bis (2-oxo-3-oxazolidinyl) phosphinic chloride [Tokyo Kasei Mw: 254.57] 5.0 g (19.7 mmol) is added, 75 ml of dichloromethane is added, and further triethylamine [Kanto Chemical Mw. : 101.19] 4.0 g (40 mmol) was added, and the mixture was stirred for 1 hour under ice cooling. Next, a solution obtained by adding 3 g (19.7 mmol) of cystamine (Mw: 152.04) and 4.0 g (40.0 mmol) of triethylamine to 100 ml of dichloromethane was dropped by a dropping funnel over 90 minutes. Thereafter, the mixture was stirred for 5 hours, 100 ml of ion-exchanged water was added, the pH was adjusted to about 5 with an aqueous hydrochloric acid solution, and excess triethylamine was transferred to the aqueous phase. The organic phase was separated with a separatory funnel and dried over anhydrous sodium sulfate. The solvent dichloromethane was distilled off under reduced pressure, and recrystallization was performed with methanol to obtain a pale yellow powder. In order to identify the obtained product, FT-IR measurement, 1 H-NMR, and elemental analysis measurement were performed to confirm that it was the compound (VIII).

実施例4 有機被覆金ナノ粒子の調製
特に硫黄を吸着部位とする有機被覆剤に対して安定なナノ粒子を形成する金属種である金(塩化金酸)を用いて有機被覆無機ナノ粒子を作成した。
Example 4 Preparation of organic-coated gold nanoparticles Organic-coated inorganic nanoparticles were prepared using gold (chloroauric acid), a metal species that forms stable nanoparticles, especially for organic coatings that use sulfur as the adsorption site. did.

500ml容三角フラスコにテトラ‐n‐オクチルアンモニウムブロミド(TOAB)のトルエン溶液(50mM、80ml)を取り、ホットスターラーを用いて20℃で撹拌しながらテトラクロロ金(III)酸四水和物水溶液(30mM、30ml)を加えた。有機層の液色が赤色を呈し、AuCl が有機層に移行したことを確認した後、さらに激しく撹拌しながら水素化ホウ素ナトリウム水溶液(0.4M、25ml)を少量ずつ加えた。液色は赤色から黒赤色へと変化した。次に化合物(II)191mg(MW:455.81、(II):Au:=:0.42mmol eq.)を加え撹拌を続けた。3時間以上撹拌した後、分液漏斗により有機層を分取した。さらにロータリーエバポレーターにより約10mlまで減圧濃縮した。エタノールを加えて沈澱を生成させ、これをメンブレンフィルターで濾過し、さらに温エタノール(50℃)にて3回洗浄し、黒色粉末を得た。 Take a toluene solution (50 mM, 80 ml) of tetra-n-octylammonium bromide (TOAB) in a 500 ml Erlenmeyer flask and stir at 20 ° C. using a hot stirrer with an aqueous tetrachloroauric (III) acid tetrahydrate solution ( 30 mM, 30 ml) was added. After confirming that the liquid color of the organic layer was red and that AuCl 4 was transferred to the organic layer, an aqueous sodium borohydride solution (0.4 M, 25 ml) was added little by little with vigorous stirring. The liquid color changed from red to black-red. Next, 191 mg of compound (II) (MW: 455.81, (II): Au: =: 0.42 mmol eq.) Was added and stirring was continued. After stirring for 3 hours or more, the organic layer was separated by a separatory funnel. Further, the mixture was concentrated under reduced pressure to about 10 ml by a rotary evaporator. Ethanol was added to form a precipitate, which was filtered through a membrane filter and further washed three times with warm ethanol (50 ° C.) to obtain a black powder.

この手順と全く同様な方法にて化合物(II)に代えて化合物(III)、(IV)、(V)、(VI)(VII)を用いて下表の条件で金ナノ粒子を作成した。この際、それぞれの被覆分子について20℃での調製と60度での調製を行った。   Gold nanoparticles were prepared under the conditions shown in the table below using compounds (III), (IV), (V), (VI) (VII) instead of compound (II) in the same manner as this procedure. At this time, each coating molecule was prepared at 20 ° C. and 60 ° C.

なお、金ナノ粒子表面に吸着した際の有機被覆分子の占有面積は、金ナノ粒子の粒子径や調製条件にもよるが、40〜70Å程度であり、各有機被覆分子の炭化水素鎖の最大断面積は、概ね19〜21Å程度であるため、該占有面積は、それぞれ、該最大断面積の約2倍以上であった。 In addition, the occupation area of the organic coating molecules when adsorbed on the gold nanoparticle surface is about 40 to 70 2 depending on the particle diameter and preparation conditions of the gold nanoparticles, and the hydrocarbon chain of each organic coating molecule maximum cross-sectional area are the generally 19~21A 2 about,該占chromatic area, respectively, were about 2-fold or more said maximum cross-sectional area.

参考例1
500ml容三角フラスコにテトラ‐n‐オクチルアンモニウムブロミド(TOAB)のトルエン溶液(50mM、80ml)を取り、マグネチックスターラーを用いて20℃および60℃で撹拌しながらテトラクロロ金(III)酸四水和物水溶液(30mM、30ml)を加えた。有機層の液色が赤色を呈し、AuCl が有機層に移行したことを確認した後、ドデカンチオール170mg(MW:202.46、0.84mmol)を加え撹拌を続けた。さらに激しく撹拌しながら水素化ホウ素ナトリウム水溶液(0.4M、25ml)を少量ずつ加えた。液色は赤色から黒赤色へと変化した。
Reference example 1
Take a toluene solution (50 mM, 80 ml) of tetra-n-octylammonium bromide (TOAB) in a 500 ml Erlenmeyer flask, and stir at 20 ° C. and 60 ° C. using a magnetic stirrer while stirring tetrachloroauric (III) acid tetrahydrate. A Japanese aqueous solution (30 mM, 30 ml) was added. After confirming that the liquid color of the organic layer was red and AuCl 4 was transferred to the organic layer, 170 mg of dodecanethiol (MW: 202.46, 0.84 mmol) was added and stirring was continued. With further vigorous stirring, an aqueous sodium borohydride solution (0.4M, 25 ml) was added in small portions. The liquid color changed from red to black-red.

3時間以上撹拌した後、分液漏斗により有機層を分取した。さらにロータリーエバポレーターにより約10mlまで減圧濃縮した。エタノールを加えて、沈澱を生成させ、これをメンブレンフィルターで濾過して回収した。   After stirring for 3 hours or more, the organic layer was separated by a separatory funnel. Further, the mixture was concentrated under reduced pressure to about 10 ml by a rotary evaporator. Ethanol was added to form a precipitate, which was collected by filtration through a membrane filter.

この手順と全く同様な方法にてドデカンチオール(DT)に代えてオクタデカンチオール(ODT)、(VIII)を用いて下表の条件で金ナノ粒子を作成した。この際、それぞれの被覆分子について20℃での調製と60℃での調製を行った。   Gold nanoparticles were prepared under the conditions shown in the table below using octadecanthiol (ODT) and (VIII) instead of dodecanethiol (DT) in the same manner as this procedure. At this time, each coating molecule was prepared at 20 ° C. and 60 ° C.

その結果は下表に示した。   The results are shown in the table below.

なお、金ナノ粒子表面に吸着した際の有機被覆分子の占有面積は、金ナノ粒子の粒子径や調製条件にもよるが、17〜20Å程度であり、各有機被覆分子の炭化水素鎖の最大断面積は、概ね19〜21Å程度であるため、該占有面積は、それぞれ、該最大断面積の約1.0倍程度であった。 In addition, the occupation area of the organic coating molecule when adsorbed on the gold nanoparticle surface is about 17 to 20 cm 2 depending on the particle size and preparation conditions of the gold nanoparticle, and the hydrocarbon chain of each organic coating molecule is maximum cross-sectional area are the generally 19~21A 2 about,該占chromatic area, respectively, it was about 1.0 times the said maximum cross-sectional area.

実施例5 液晶性化合物中の有機被覆金ナノ粒子配列体の製造
実施例2および参考例1にて作成した有機被覆金ナノ粒子の粉末をそれぞれ、所定量(液晶性化合物によるが概ね、1〜100mg)取り、液晶性化合物(50〜1000mg)中に添加し、一旦、各液晶性化合物がアイソトロピック状態を十分に示す温度まで加熱してよく撹拌し、一時間ほどその温度を保持した。さらに各液晶性化合物においてアイソトロピック温度と液晶状態の温度に一時間保持してで、上澄みを採取(場合によっては0.2ミクロンのミリポアフィルターによって濾液を採取)して、直接重量測定、またはTG測定により、金属含有量を算出した。
Example 5 Production of Organic Coated Gold Nanoparticle Array in Liquid Crystalline Compound Each of the organic coated gold nanoparticle powders prepared in Example 2 and Reference Example 1 was given a predetermined amount (depending on the liquid crystalline compound, 100 mg), added to a liquid crystal compound (50 to 1000 mg), and once heated to a temperature at which each liquid crystal compound sufficiently exhibits an isotropic state, the mixture was stirred well, and the temperature was maintained for about 1 hour. Further, each liquid crystalline compound is kept at the isotropic temperature and the liquid crystal state for one hour, and the supernatant is collected (in some cases, the filtrate is collected by a 0.2 micron Millipore filter) and directly weighed or TG The metal content was calculated by measurement.

用いた液晶性化合物は、次のとおりである。4−シアノ−4’−n−ペンチルビフェニル(5CB)、4−シアノ−4’−n−ペンチルオキシビフェニル(5OCB)、4−シアノ−4’−n−オクチルビフェニル(8CB)、4−シアノ−4’−n−ペンチルビフェニル、(8OCB)、コレステリルステアレート、コレステリルオレート、コレステリルペラルゴネート、2,3.6,7,10,11−ヘキサアルコキシトリフェニレン(アルコキシ基は、それぞれ−O(CH)nCHで表され、n=5,7,9,11,13,15,17である) The liquid crystal compounds used are as follows. 4-cyano-4′-n-pentylbiphenyl (5CB), 4-cyano-4′-n-pentyloxybiphenyl (5OCB), 4-cyano-4′-n-octylbiphenyl (8CB), 4-cyano- 4′-n-pentylbiphenyl, (8OCB), cholesteryl stearate, cholesteryl oleate, cholesteryl pelargonate, 2,3.6,7,10,11-hexaalkoxytriphenylene (the alkoxy group is —O (CH 2 ), respectively) (represented by nCH 3 and n = 5, 7, 9, 11, 13, 15, 17)

いずれの液晶性化合物に対しても、有機被覆金ナノ粒子は、通常の有機溶媒のように室温で直接的に高分散することは難しく(但し分散しないわけではない)、一旦加熱によりアイソトロピック状態にすることが不可欠であった(図2)。   For any liquid crystalline compound, organic coated gold nanoparticles are difficult to disperse directly at room temperature (but not disperse) like ordinary organic solvents. It was indispensable (Figure 2).

それぞれ上記の表に示したとおり、本発明の有機被覆金ナノ粒子は、従来よく用いられていた有機被覆分子中にある吸着官能基が一個に対して一本のアルキル鎖があるようなタイプに比べ、高い分散性を示した。また有機被覆無機ナノ粒子の分散性は、無機ナノ粒子の無機核径に大きく依存することが明らかとなった。コレステリック液晶性化合物に対しても同様な結果を得た。   As shown in the above table, the organic-coated gold nanoparticles of the present invention are of a type in which one adsorbing functional group in an organic-coated molecule, which has been conventionally used, has one alkyl chain for one. Compared with that, it showed high dispersibility. Moreover, it became clear that the dispersibility of the organic-coated inorganic nanoparticles greatly depends on the inorganic core diameter of the inorganic nanoparticles. Similar results were obtained for cholesteric liquid crystalline compounds.

液晶性化合物中で、本発明の有機被覆無機ナノ粒子が、どのような状態で分散しているかを確認するために、透過型電子顕微鏡による観察を行った。上記Au(II)60と数種の液晶性化合物との複合体の一例を示す。液晶性化合物として、4−シアノ−4’−n−ペンチルビフェニル(5CB)を用いた場合、この金ナノ粒子と混合させ(5wt%)、パスツールピペットでカーボン蒸着した電子顕微鏡測定用の銅グリッド(TEMグリッド)上に溶液を一滴滴下して、一旦アイソトロピック相まで加熱した。このときTEMグリッドおよびピペットは、あらかじめ乾燥器内で溶液と同じ温度に加熱しておいた。さらに、この溶液を室温まで冷却してTEM観察試料を作製した。これらを透過型電子顕微鏡で観察した。得られた観察結果を図3に示す。5CBはネマティック相を示す液晶性化合物で、マクロな配向を有するが、規則構造を特に持たない液晶性化合物である。従って、金ナノ粒子は、5CB中で特に配列することはなかったが、粒子一つ一つは独立に分散しており、集合体を形成しないことが分かった。特に今回用いたトリフェニレン誘導体液晶性化合物では、本発明の有機被覆無機ナノ粒子のみが分散した。   In order to confirm in what state the organic-coated inorganic nanoparticles of the present invention are dispersed in the liquid crystal compound, observation was performed with a transmission electron microscope. An example of the complex of Au (II) 60 and several liquid crystalline compounds will be shown. When 4-cyano-4′-n-pentylbiphenyl (5CB) is used as the liquid crystalline compound, it is mixed with this gold nanoparticle (5 wt%) and carbon-deposited with a Pasteur pipette for a copper grid for electron microscope measurement One drop of the solution was dropped on the (TEM grid) and once heated to the isotropic phase. At this time, the TEM grid and the pipette were previously heated in the dryer to the same temperature as the solution. Further, this solution was cooled to room temperature to prepare a TEM observation sample. These were observed with a transmission electron microscope. The obtained observation results are shown in FIG. 5CB is a liquid crystalline compound exhibiting a nematic phase, which is a liquid crystalline compound having a macro alignment but not having a regular structure. Therefore, the gold nanoparticles were not particularly arranged in 5CB, but it was found that the particles were dispersed independently and did not form an aggregate. In particular, in the triphenylene derivative liquid crystalline compound used this time, only the organic coated inorganic nanoparticles of the present invention were dispersed.

図4、5,6には2,3.6,7,10,11−ヘキサアルコキシトリフェニレン(n=5,11)を液晶性化合物分子として用いた場合を示した。試料作成法は、一旦加熱して混合させ、それを滴下して、もう一度グリッド上で加熱することで調製した。2,3.6,7,10,11−ヘキサドデシルオキシトリフェニレンを媒体とした場合、観察時は、温度をかけることができないため、結晶状態を観察することになる。しかしながら、結晶状態で、ナノ粒子は拡散できないと考えられるため、液晶状態が、冷却によってそのまま結晶状態になっており、液晶状態のナノ粒子の分散状態が保持されているものと考えられる。   FIGS. 4, 5 and 6 show the case where 2,3.6,7,10,11-hexaalkoxytriphenylene (n = 5, 11) is used as the liquid crystal compound molecule. The sample preparation method was prepared by once heating and mixing, dropping it, and heating on the grid once again. When 2,3.6,7,10,11-hexadodecyloxytriphenylene is used as the medium, the temperature cannot be applied during observation, and the crystal state is observed. However, since it is considered that the nanoparticles cannot be diffused in the crystalline state, the liquid crystal state is in the crystalline state as it is by cooling, and it is considered that the dispersed state of the nanoparticles in the liquid crystal state is maintained.

図4に10wt%で金ナノ粒子が分散した状態のものを示した。重なり合って液晶性化合物のカラム相の一本は観察できないものの、一軸配向して金ナノ粒子が配列していることが分かる。これをより鮮明に見るために、2wt%の試料を調製して観察したところ、やはりナノ粒子が一次元的に配列しているのが分かる。また液晶性化合物のドメインサイズに従って一次元配向しているドメインがナノ粒子の配列によって見て取ることができる(図5)。図6に示されるように2,3.6,7,10,11−ヘキサヘキシルオキシトリフェニレン中に分散した金ナノ粒子も一次元状に配列し、その一次元配列構造が束なっている様子が観察された。図7に示されるように、配向性の強いディスコティック液晶性化合物中では、アイソトロピック状態ではランダムに分散し、冷却時にはカラムにそってナノ粒子が配列するものと思われる。液晶性化合物も通常の液状媒体と同様に有機被覆無機ナノ粒子を高濃度に分散させうることが分かった。これは、液晶性化合物媒体でも被覆分子の効果的な溶媒和が大きく働いているものと考えられる(図8)。また(V)〜(VII)のエステル結合型の化合物においてもアミド結合型化合物(II)〜(IV)とほぼ同様の結果を得た。   FIG. 4 shows a state in which gold nanoparticles are dispersed at 10 wt%. Although one column phase of the liquid crystal compound cannot be observed by overlapping, it can be seen that the gold nanoparticles are aligned uniaxially. In order to see this more clearly, when a 2 wt% sample was prepared and observed, it can be seen that the nanoparticles were also one-dimensionally arranged. A domain that is one-dimensionally oriented according to the domain size of the liquid crystal compound can be seen by the arrangement of the nanoparticles (FIG. 5). As shown in FIG. 6, gold nanoparticles dispersed in 2,3.6,7,10,11-hexahexyloxytriphenylene are also arranged one-dimensionally, and the one-dimensional arrangement structure is bundled. Observed. As shown in FIG. 7, in the highly oriented discotic liquid crystal compound, it is considered that the isotropic dispersion is randomly dispersed, and the nanoparticles are arranged along the column during cooling. It was found that the liquid crystalline compound can disperse the organic coated inorganic nanoparticles at a high concentration as in the case of a normal liquid medium. This is considered to be because the effective solvation of the coating molecules is greatly acting even in the liquid crystalline compound medium (FIG. 8). In addition, in the ester bond type compounds (V) to (VII), almost the same results as in the amide bond type compounds (II) to (IV) were obtained.

実施例6 重合性液状媒体中の有機被覆金ナノ粒子分散体の製法
実施例2および参考例1と同様に調製した金ナノ粒子(4〜5nm平均粒子径)の粉末をそれぞれ、所定量(モノマーによるが概ね、1〜200mg)取り、各モノマー1ml中に添加し、ほぼ各モノマーの沸点達するまで加熱してよく撹拌し、加熱状態と20℃での状態にて保持して、それぞれの状態で上澄みを採取(場合によっては0.2ミクロンのミリポアフィルターによって濾液を採取)して、直接重量測定、またはTG測定により、金属含有量を算出した。
Example 6 Production Method of Organic Coated Gold Nanoparticle Dispersion in Polymerizable Liquid Medium A predetermined amount (monomer) of gold nanoparticles (4 to 5 nm average particle diameter) prepared in the same manner as in Example 2 and Reference Example 1 was used. 1 to 200 mg depending on the condition), added to 1 ml of each monomer, heated until the boiling point of each monomer is reached, stirred well, held in a heated state and at 20 ° C., in each state The supernatant was collected (in some cases, the filtrate was collected by a 0.2 micron Millipore filter), and the metal content was calculated by direct gravimetric measurement or TG measurement.

モノマーとして、メチルアクリレート(MA)、エチルアクリレート(EA)、イソボルニルアクリレート(IB)、ベンジルアクリレート(Bz)、ヒドロキシエチルアクリレート(OH)、メチルメタクリレート(MM)及びエチルメタクリレート(EM)を用いた。   As monomers, methyl acrylate (MA), ethyl acrylate (EA), isobornyl acrylate (IB), benzyl acrylate (Bz), hydroxyethyl acrylate (OH), methyl methacrylate (MM) and ethyl methacrylate (EM) were used. .

上表にモノマーに関する分散量を示した。OHのように両末端に極性基を持つようなモノマーに関しては、従来型、本発明の有機被覆無機ナノ粒子ともに分散しなかったが、そのほかのモノマーに対しては、上述の液晶性化合物と同様に本発明の有機被覆無機ナノ粒子のほうが、高い分散性を示した。一例として、Au(ODT)室温とAu(II)室温のエチルメタクリレート分散液室温での状態概観写真を示した(図9)。室温においてAu(ODT)は全く分散性を示さなかったのに対して、Au(II)では5mg/ml以上の高い分散性を示した。エポキシ化合物においても同様の結果が得られた。また(V)〜(VII)のエステル結合型の化合物においてもアミド結合型化合物(II)〜(IV)とほぼ同様の結果を得た。   The above table shows the amount of dispersion for the monomer. For OH and other monomers having polar groups at both ends, both the conventional type and the organic-coated inorganic nanoparticles of the present invention were not dispersed, but other monomers were the same as the above-mentioned liquid crystalline compounds. In addition, the organic coated inorganic nanoparticles of the present invention showed higher dispersibility. As an example, an overview photograph of the state of the ethyl methacrylate dispersion at room temperature of Au (ODT) and Au (II) at room temperature is shown (FIG. 9). Au (ODT) showed no dispersibility at room temperature, whereas Au (II) showed a high dispersibility of 5 mg / ml or more. Similar results were obtained with epoxy compounds. In addition, in the ester bond type compounds (V) to (VII), almost the same results as in the amide bond type compounds (II) to (IV) were obtained.

実施例7 有機被覆無機ナノ粒子−樹脂複合体の製造及び有機被覆無機ナノ粒子の集合・凝集状態の制御
本発明の特徴の一つは、有機被覆無機ナノ粒子と樹脂との複合体の作成が可能なことである。これは本発明の有機被覆無機ナノ粒子はもとより、従来型の有機被覆無機ナノ粒子にも適用が可能である。また実施例6の知見から、室温で分散せずに、加熱時に分散し、加熱冷却の繰り返しにより何度も分散と凝集を繰り返すことができることがわかった。
Example 7 Production of Organic Coated Inorganic Nanoparticle-Resin Composite and Control of Aggregation / Agglomeration State of Organic Coated Inorganic Nanoparticle One of the features of the present invention is that the composite of organic coated inorganic nanoparticle and resin It is possible. This is applicable not only to the organic-coated inorganic nanoparticles of the present invention but also to conventional organic-coated inorganic nanoparticles. Further, from the knowledge of Example 6, it was found that the dispersion can be performed during heating without being dispersed at room temperature, and the dispersion and aggregation can be repeated many times by repeated heating and cooling.

一例として、Au(ODT)の樹脂中における凝集状態の制御、固定化を示す。エチルメタクリレートを液状分散媒として、Au(ODT)2g/lの濃度に調節した分散液を作成した。まず、温度によってどのような集合状態を示すかを検討するために、UV−Visスペクトル測定を行った。これをあらかじめ100℃程度で加熱しておいた、紫外可視吸収(UV−Vis)スペクトル用のセル(光路長10mm)に移し、自然冷却させた。この試料の時間変化、各段階のUV−Visスペクトル測定を行い、金ナノ粒子のプラズモン吸収の変化を観測した(図10)。有機被覆金ナノ粒子の凝集状態は、おおよそこのプラズモン吸収の変化により議論することができる。分散媒の沸点近くまで加熱することにより、有機被覆金ナノ粒子は、独自に分散し、赤色を呈した。放冷により温度が下がってくるに従って、プラズモン吸収は、長波長側へシフトして、一旦吸収増大を起した。これらの現象は、有機被覆無機ナノ粒子が集合体を形成していることを意味する。また図11では、その概観図を示した。赤色だった分散液は、少しずつ懸濁して、青みを帯びた色へと変化して行き、最終的には沈殿を生じてきた。これは、時間が経過したことにより温度が変化し、集合状態が変化していることを表している。   As an example, control of the aggregation state of Au (ODT) in a resin and immobilization are shown. Using ethyl methacrylate as a liquid dispersion medium, a dispersion liquid adjusted to a concentration of 2 g / l of Au (ODT) was prepared. First, UV-Vis spectrum measurement was performed in order to examine what aggregation state the temperature shows. The sample was transferred to a cell for ultraviolet-visible absorption (UV-Vis) spectrum (optical path length 10 mm), which had been heated at about 100 ° C. in advance, and allowed to cool naturally. The time change of this sample and the UV-Vis spectrum measurement of each step were performed, and the change of the plasmon absorption of the gold nanoparticle was observed (FIG. 10). The aggregation state of the organic-coated gold nanoparticles can be roughly discussed by this change in plasmon absorption. By heating to near the boiling point of the dispersion medium, the organic-coated gold nanoparticles were uniquely dispersed and exhibited a red color. As the temperature decreased due to cooling, plasmon absorption shifted to the longer wavelength side, and once increased absorption. These phenomena mean that the organic-coated inorganic nanoparticles form an aggregate. Moreover, in FIG. 11, the outline figure was shown. The dispersion which was red was suspended little by little and changed to a bluish color, and finally, precipitation occurred. This indicates that the temperature has changed due to the passage of time, and the aggregated state has changed.

さらにその状態を透過型電子顕微鏡により観察した。図12に、加熱後、0分、10分、60分経過時の状態を示した。0分ではほとんど独立状態にあった有機被覆金ナノ粒子が、徐々に二次粒子を形成して行き(10分)、二次粒子が成長・凝集している(60分)ことが明らかである。   Furthermore, the state was observed with a transmission electron microscope. FIG. 12 shows the state after 0 minutes, 10 minutes, and 60 minutes after heating. It is clear that organic coated gold nanoparticles that were almost independent at 0 minutes gradually form secondary particles (10 minutes), and secondary particles grow and aggregate (60 minutes). .

この凝集の過渡的状態を固定化(固体化)するために、EM/光重合開始剤(1−ヒドロキシ−シクロヘキシル−フェニルケトン)/架橋剤(ヘキサメチレンジアクリレート)をそれぞれ100/3/3の重量比で加え、UV照射によって重合した。固定化した様子を図13に示した。無機ナノ粒子が全く入っていないもの、加熱後すぐに硬化したもの、10分経過したもの、2時間経過したものを示した。時間の経過とともに赤みを失い、紫・青色を呈し、さらには沈殿を生じて色味がなくなっていることが分かる。これは分光学測定や、透過型電子顕微鏡観察に対応したものである。   In order to fix (solidify) the transient state of this aggregation, 100/3/3 of EM / photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl ketone) / crosslinking agent (hexamethylene diacrylate) was used. Added in weight ratio and polymerized by UV irradiation. FIG. 13 shows the state of immobilization. The ones containing no inorganic nanoparticles, those cured immediately after heating, those after 10 minutes, those after 2 hours are shown. It turns out that it loses redness with the passage of time, becomes purple / blue, and further precipitates and loses its color. This corresponds to spectroscopic measurement and transmission electron microscope observation.

このように分散液中での有機被覆無機ナノ粒子の様々な集合状態を加熱分散後の冷却条件により作り出すことが可能で、さらにそれらを光硬化によって樹脂中に固定化できた。   As described above, various aggregated states of the organic-coated inorganic nanoparticles in the dispersion liquid can be created by the cooling conditions after the heat dispersion, and they can be fixed in the resin by photocuring.

本発明の有機被覆無機ナノ粒子は、種々の液状又は固体媒体に対して高い分散性や良好な凝集性を示すため、各媒体との複合体は、実材料として用いることができる。本発明の有機被覆無機ナノ粒子複合材料は、たとえば、光素子や超微細配線の作成材料、電子電導材料、電導性塗料、導電性接着材料、放熱材料、高熱伝導性材料、薄型液晶性化合物素子用の材料、ゲルアクチュエーター用材料、非線形光学材料、磁性材料、触媒材料、センサー材料や単一電子トランジスタ用材料として優れた特性を有する。特に、超微細配線の作成材料としては、薄型表示素子などの作製、電池分野への応用も期待できる。また、本発明の有機被覆無機ナノ粒子凝集体−樹脂複合体は、電極基材上にキャストフィルムを作製することができるため、金属電極の中間層用材料、薄型表示素子用の材料等への応用の可能性を有している。   Since the organic-coated inorganic nanoparticles of the present invention exhibit high dispersibility and good cohesiveness with respect to various liquid or solid media, the composite with each medium can be used as an actual material. The organic-coated inorganic nanoparticle composite material of the present invention is, for example, an optical element or a material for forming ultrafine wiring, an electronic conductive material, a conductive paint, a conductive adhesive material, a heat dissipation material, a high thermal conductive material, a thin liquid crystalline compound element It has excellent properties as a material for gels, a material for gel actuators, a nonlinear optical material, a magnetic material, a catalyst material, a sensor material and a material for a single electron transistor. In particular, as a material for forming ultrafine wiring, production of a thin display element or the like and application to the battery field can be expected. In addition, since the organic-coated inorganic nanoparticle aggregate-resin composite of the present invention can produce a cast film on an electrode substrate, it can be applied to a material for an intermediate layer of a metal electrode, a material for a thin display element, etc. It has potential for application.

従来の有機被覆無機ナノ粒子(左側)及び本発明の有機被覆無機ナノ粒子(右側)の模式図である。It is a schematic diagram of the conventional organic coating inorganic nanoparticle (left side) and the organic coating inorganic nanoparticle (right side) of this invention. 液晶性化合物中での本発明の有機被覆無機ナノ粒子の分散状態の変化を示す写真である。右側は、25℃の液晶性化合物中での有機被覆ナノ粒子の状態を示し、これをアイソトロピック相まで加熱すると左側のように分散し、液晶性化合物相に冷却すると配列する(真中)。右側の25℃の液晶性化合物中での有機被覆ナノ粒子から真中の状態にすることはできない。It is a photograph which shows the change of the dispersion state of the organic coating inorganic nanoparticle of this invention in a liquid crystalline compound. The right side shows the state of the organic coated nanoparticles in the liquid crystalline compound at 25 ° C., and when this is heated to the isotropic phase, it is dispersed as shown on the left side, and is aligned when cooled to the liquid crystalline compound phase (middle). It cannot be brought into the middle state from the organic coated nanoparticles in the liquid crystal compound at 25 ° C. on the right side. 液晶性化合物中での本発明の有機被覆無機ナノ粒子の分散を示す電子顕微鏡写真である。It is an electron micrograph which shows dispersion | distribution of the organic coating inorganic nanoparticle of this invention in a liquid crystalline compound. 液晶性化合物中での本発明の有機被覆無機ナノ粒子(10重量%)の配列体を示す電子顕微鏡写真である。It is an electron micrograph which shows the array body of the organic coating inorganic nanoparticle (10 weight%) of this invention in a liquid crystalline compound. 液晶性化合物中での本発明の有機被覆無機ナノ粒子(2重量%)の配列体を示す電子顕微鏡写真である。液晶性化合物の配向に応じた配列体となる。It is an electron micrograph which shows the array body of the organic coating inorganic nanoparticle (2 weight%) of this invention in a liquid crystalline compound. It becomes an array according to the orientation of the liquid crystal compound. 液晶性化合物中での本発明の有機被覆無機ナノ粒子の配列体を示す電子顕微鏡写真である。It is an electron micrograph which shows the array body of the organic coating inorganic nanoparticle of this invention in a liquid crystalline compound. 液晶状態(下側)及びアイソトロピック状態(上側)の液晶性化合物中での有機被覆無機ナノ粒子の分散又は配列状態を示す模式図である。It is a schematic diagram which shows the dispersion | distribution or arrangement | sequence state of the organic coating inorganic nanoparticle in the liquid crystalline compound of a liquid crystal state (lower side) and an isotropic state (upper side). 液状媒体中での有機被覆分子の溶媒和効果を示す模式図である。左側が従来の有機被覆無機ナノ粒子であり、右側が本発明の有機被覆無機ナノ粒子である。より多くの媒体分子によって当該被覆分子が取り囲まれている。It is a schematic diagram which shows the solvation effect of the organic covering molecule | numerator in a liquid medium. The left side is conventional organic-coated inorganic nanoparticles, and the right side is organic-coated inorganic nanoparticles of the present invention. More coating molecules surround the coating molecules. 重合性液状媒体中での本発明の有機被覆無機ナノ粒子(右側)及び従来の有機被覆ナノ粒子(左側)の分散状態を示す写真である。It is a photograph which shows the dispersion state of the organic coating inorganic nanoparticle (right side) of this invention and the conventional organic coating nanoparticle (left side) in a polymerizable liquid medium. 重合性液状媒体中の有機被覆無機ナノ粒子の冷却過程における紫外・可視可吸スペクトルの変化を示す図である。It is a figure which shows the change of the ultraviolet and visible resorbable spectrum in the cooling process of the organic coating inorganic nanoparticle in a polymeric liquid medium. 重合性液状媒体中の有機被覆無機ナノ粒子の冷却過程における分散・凝集状態を示す写真である。左側から、加熱後、0分、10分、60分、120分及び240分経過時の状態であり、右側の加熱すると左側に向かって可逆的に変化する。It is a photograph which shows the dispersion | distribution / aggregation state in the cooling process of the organic coating inorganic nanoparticle in a polymeric liquid medium. From the left side, after heating, 0 minutes, 10 minutes, 60 minutes, 120 minutes and 240 minutes have passed, and when the right side is heated, it changes reversibly toward the left side. 重合性液状媒体中の有機被覆無機ナノ粒子の冷却過程における分散・凝集状態を示す電子顕微鏡写真である。左上が加熱後0分経過時の一次粒子での分散を示し、中上下は、加熱後10分経過時の二次粒子での分散を示し、右上下は、加熱後60分経過時の二次粒子の成長・凝集を示す。凝集が進むと沈殿する。It is an electron micrograph which shows the dispersion | distribution / aggregation state in the cooling process of the organic coating inorganic nanoparticle in a polymeric liquid medium. The upper left shows the dispersion in the primary particles after the elapse of 0 minutes after heating, the middle and upper shows the dispersion in the secondary particles after the elapse of 10 minutes after the heating, and the upper and lower right shows the secondary in the case of 60 minutes after the heating. Shows particle growth and aggregation. It precipitates as the aggregation proceeds. 重合性液状媒体中の有機被覆無機ナノ粒子の冷却過程における分散・凝集状態を重合性液状媒体の硬化により固定して得たフィルムの写真である。ナノ粒子の入っていないフィルム(左上)、加熱後すぐに硬化したもの(右上)、加熱後10分経過したもの(左下)及び加熱後2時間経過したもの(右下)を示す。It is the photograph of the film obtained by fixing the dispersion | distribution / aggregation state in the cooling process of the organic coating inorganic nanoparticle in polymeric liquid medium by hardening of polymeric liquid medium. A film without nanoparticles (upper left), a film cured immediately after heating (upper right), 10 minutes after heating (lower left), and 2 hours after heating (lower right) are shown.

Claims (18)

無機ナノ粒子が芳香族基を含んでもよい炭化水素鎖を有する有機被覆分子によって被覆された有機被覆無機ナノ粒子であって、有機被覆分子が一分子中に2〜5個の無機ナノ粒子に吸着可能な官能基をもち、この官能基が無機ナノ粒子表面に吸着した際の有機被覆分子の占有面積が前記炭化水素鎖の最大断面積の1.5倍以上となる有機分子である、有機被覆無機ナノ粒子。   An organic coated inorganic nanoparticle coated with an organic coated molecule having a hydrocarbon chain which may contain an aromatic group, and the organic coated molecule is adsorbed on 2 to 5 inorganic nanoparticles in one molecule Organic coating having a functional group capable of being occupied by the organic coating molecule when the functional group is adsorbed on the surface of the inorganic nanoparticle is 1.5 times or more the maximum cross-sectional area of the hydrocarbon chain. Inorganic nanoparticles. 有機被覆分子が1,2−ジチオラン誘導体又は1,2−ジチオレン誘導体である、請求項1記載の有機被覆無機ナノ粒子。   The organic-coated inorganic nanoparticles according to claim 1, wherein the organic-coated molecule is a 1,2-dithiolane derivative or a 1,2-dithiolene derivative. 1,2−ジチオラン誘導体が一般式(I):

(式中,RはC以上の飽和炭化水素基、不飽和炭化水素基、またはアミド結合若しくはエステル結合を含むアルキル基若しくは脂環炭化水素基を示す。これらの基は芳香族基を含んでもよい。)で表される化合物である、請求項1又は2記載の有機被覆無機ナノ粒子。
1,2-dithiolane derivatives are represented by the general formula (I):

(Wherein R 1 represents a C 2 or higher saturated hydrocarbon group, an unsaturated hydrocarbon group, or an alkyl group or alicyclic hydrocarbon group containing an amide bond or an ester bond. These groups include an aromatic group. The organic-coated inorganic nanoparticles according to claim 1 or 2, which is a compound represented by:
無機ナノ粒子が、Au、Ag、Pd、Pt、Cu、Ni、Co、Fe及びMnから選択した1以上の金属からなる金属ナノ粒子であるか、CdS、CdSe、HgS、PbS、CuS、Inなどの金属イオウ化物又は金属カルコゲナイドからなるナノ粒子であるか、Fe、AgO、TiO、SiOなどの金属酸化物よりなるナノ粒子である、請求項1〜3のいずれか1項記載の有機被覆無機ナノ粒子。 The inorganic nanoparticles are metal nanoparticles composed of one or more metals selected from Au, Ag, Pd, Pt, Cu, Ni, Co, Fe and Mn, or CdS, CdSe, HgS, PbS, Cu 2 S, It is a nanoparticle made of a metal sulfide such as In 2 S 3 or a metal chalcogenide, or a nanoparticle made of a metal oxide such as Fe 2 O 3 , Ag 2 O, TiO 2 , or SiO 2 . 4. The organic-coated inorganic nanoparticles according to any one of 3 above. 有機被覆無機ナノ粒子が液状媒体中に分散した有機被覆無機ナノ粒子分散体。   An organic-coated inorganic nanoparticle dispersion in which organic-coated inorganic nanoparticles are dispersed in a liquid medium. 液状媒体が液晶性化合物又は重合性液状媒体である、請求項5記載の有機被覆無機ナノ粒子分散体。   The organic-coated inorganic nanoparticle dispersion according to claim 5, wherein the liquid medium is a liquid crystalline compound or a polymerizable liquid medium. 加熱により有機被覆無機ナノ粒子を液状媒体中に分散させた後、冷却して得られる有機被覆無機ナノ粒子配列体又は凝集体。   An organic coated inorganic nanoparticle array or aggregate obtained by dispersing organic coated inorganic nanoparticles in a liquid medium by heating and then cooling. 液状媒体が液晶性化合物である、請求項7記載の有機被覆無機ナノ粒子配列体又は凝集体。   The organic-coated inorganic nanoparticle array or aggregate according to claim 7, wherein the liquid medium is a liquid crystalline compound. 液状媒体が重合性液状媒体である、請求項7記載の有機被覆無機ナノ粒子凝集体。   The organic-coated inorganic nanoparticle aggregate according to claim 7, wherein the liquid medium is a polymerizable liquid medium. 請求項9記載の有機被覆無機ナノ粒子凝集体における重合性液状媒体を硬化して得られる有機被覆無機ナノ粒子凝集体−樹脂複合体。   The organic coating inorganic nanoparticle aggregate-resin composite obtained by hardening | curing the polymeric liquid medium in the organic coating inorganic nanoparticle aggregate of Claim 9. 請求項1〜4のいずれか1項記載の有機被覆無機ナノ粒子の製造方法であって、金属塩と有機被覆分子を溶媒中に溶解させ、還元剤を添加して有機被覆無機ナノ粒子を形成する工程、及び必要により、得られた有機被覆無機ナノ粒子を再沈澱法により沈澱させ、これを濾取して、余剰の有機被覆分子を取り除き、粉末として採取する工程を含む方法。   It is a manufacturing method of the organic covering inorganic nanoparticle of any one of Claims 1-4, Comprising: A metal salt and an organic covering molecule | numerator are dissolved in a solvent, A reducing agent is added and organic covering inorganic nanoparticle is formed. And, if necessary, a method comprising precipitating the obtained organic-coated inorganic nanoparticles by a reprecipitation method, filtering this to remove excess organic-coated molecules, and collecting as a powder. 請求項5記載の有機被覆無機ナノ粒子分散体の製造方法であって、有機被覆無機ナノ粒子を液状媒体に分散させる工程を含む方法。   The method for producing an organic coated inorganic nanoparticle dispersion according to claim 5, comprising a step of dispersing the organic coated inorganic nanoparticle in a liquid medium. 請求項6記載の有機被覆無機ナノ粒子分散体の製造方法であって、有機被覆無機ナノ粒子を液晶性化合物又は重合性液状媒体に分散させる工程を含む方法。   The method for producing an organic coated inorganic nanoparticle dispersion according to claim 6, comprising a step of dispersing the organic coated inorganic nanoparticle in a liquid crystalline compound or a polymerizable liquid medium. 請求項7記載の有機被覆無機ナノ粒子配列体又は凝集体の製造方法であって、有機被覆無機ナノ粒子を液状媒体に分散させた後、これを冷却する工程を含む方法。   A method for producing an organic coated inorganic nanoparticle array or aggregate according to claim 7, comprising the step of dispersing the organic coated inorganic nanoparticles in a liquid medium and then cooling it. 請求項8記載の有機被覆無機ナノ粒子配列体又は凝集体の製造方法であって、有機被覆無機ナノ粒子をアイソトロピック状態の液晶性化合物中に分散させた後、これを液晶相を示す温度領域にする工程を含む方法。   The method for producing an organic coated inorganic nanoparticle array or aggregate according to claim 8, wherein the organic coated inorganic nanoparticles are dispersed in a liquid crystalline compound in an isotropic state, and then the temperature region exhibits a liquid crystal phase. A method comprising the step of: 請求項9記載の有機被覆無機ナノ粒子凝集体の製造方法であって、有機被覆無機ナノ粒子を重合性液状媒体に分散させた後、これを冷却する工程を含む方法。   The method for producing an organic-coated inorganic nanoparticle aggregate according to claim 9, comprising a step of cooling the organic-coated inorganic nanoparticle after dispersing the organic-coated inorganic nanoparticle in a polymerizable liquid medium. 請求項10記載の有機被覆無機ナノ粒子凝集体−樹脂複合体の製造方法であって、有機被覆無機ナノ粒子を重合性液状媒体に一旦加熱分散させる工程、その冷却過程において形成される有機被覆無機ナノ粒子の凝集体のサイズを冷却温度により制御しながら、分散媒である重合性液状媒体を硬化して有機被覆無機ナノ粒子凝集体−樹脂複合体を得る工程を含む方法。   The method for producing an organic-coated inorganic nanoparticle aggregate-resin composite according to claim 10, wherein the organic-coated inorganic nanoparticle is formed in a process in which the organic-coated inorganic nanoparticles are once heated and dispersed in a polymerizable liquid medium, and in the cooling process. A method comprising a step of obtaining an organic-coated inorganic nanoparticle aggregate-resin composite by curing a polymerizable liquid medium as a dispersion medium while controlling a size of the nanoparticle aggregate by a cooling temperature. 無機ナノ粒子が有機被覆分子によって被覆された有機被覆無機ナノ粒子の液状媒体中での分散・凝集を制御する方法であって、有機被覆無機ナノ粒子を液状媒体に加熱して分散させた後、冷却温度を調整することにより有機被覆無機ナノ粒子の分散・凝集状態を制御することを含む方法。
A method for controlling dispersion / aggregation of organic-coated inorganic nanoparticles in which organic nanoparticles are coated with organic-coated molecules in a liquid medium, after the organic-coated inorganic nanoparticles are heated and dispersed in a liquid medium, A method comprising controlling a dispersion / aggregation state of organic-coated inorganic nanoparticles by adjusting a cooling temperature.
JP2005255383A 2005-09-02 2005-09-02 Inorganic nanoparticle with high dispersibility Pending JP2007069270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255383A JP2007069270A (en) 2005-09-02 2005-09-02 Inorganic nanoparticle with high dispersibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255383A JP2007069270A (en) 2005-09-02 2005-09-02 Inorganic nanoparticle with high dispersibility

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011246066A Division JP5598796B2 (en) 2011-11-10 2011-11-10 Inorganic nanoparticle dispersion

Publications (1)

Publication Number Publication Date
JP2007069270A true JP2007069270A (en) 2007-03-22

Family

ID=37931177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255383A Pending JP2007069270A (en) 2005-09-02 2005-09-02 Inorganic nanoparticle with high dispersibility

Country Status (1)

Country Link
JP (1) JP2007069270A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280404A (en) * 2007-05-09 2008-11-20 Fujifilm Corp Composition, film and retardation controlling agent
JP2009221504A (en) * 2008-03-14 2009-10-01 Toshiba Corp Nanoparticle and nanoparticle thin film
JP2010150332A (en) * 2008-12-24 2010-07-08 Teijin Ltd Polymerizable compound-metal nanoparticle dispersion, and method for producing the same
JP2010150348A (en) * 2008-12-24 2010-07-08 Teijin Ltd Polymer-metal nanoparticle complex and method for producing the same
JP2010287406A (en) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Silver nanowire compound having polymer and metal nano structured compound having polymer
JP2011225489A (en) * 2010-04-21 2011-11-10 Shofu Inc Sulfur-containing polymerizable compound and adhesive composition containing the same
RU2513332C1 (en) * 2013-03-15 2014-04-20 Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" Method of production of modified iron nanoparticles
JP2015502869A (en) * 2011-10-24 2015-01-29 テラ‐バリア フィルムズ プライベート リミテッド Encapsulated barrier stack
CN111421136A (en) * 2019-11-11 2020-07-17 殷柳 Preparation method of high-purity high-activity nano powder
CN112723421A (en) * 2021-02-03 2021-04-30 江西理工大学 FeMnSxNanosheet cluster and preparation method thereof
US20210230435A1 (en) * 2018-04-30 2021-07-29 Korea University Research And Business Foundation Method for preparing silver nanoparticles stabilized with tetraoctylammonium, and method for producing electrically conductive thin film by using silver nanoparticles prepared by same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218055A (en) * 2003-01-17 2004-08-05 Harima Chem Inc Method of depositing conductive gold film substituted for electroless gold plating film using conductive gold paste
JP2005175000A (en) * 2003-12-08 2005-06-30 Fuji Photo Film Co Ltd Extraction method of hard magnetic alloy nano particle and magnetic recording material
JP2005213648A (en) * 2003-12-02 2005-08-11 Commiss Energ Atom Inorganic nanocrystal having organic coating layer, its manufacturing method and material composed of the nanocrystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218055A (en) * 2003-01-17 2004-08-05 Harima Chem Inc Method of depositing conductive gold film substituted for electroless gold plating film using conductive gold paste
JP2005213648A (en) * 2003-12-02 2005-08-11 Commiss Energ Atom Inorganic nanocrystal having organic coating layer, its manufacturing method and material composed of the nanocrystal
JP2005175000A (en) * 2003-12-08 2005-06-30 Fuji Photo Film Co Ltd Extraction method of hard magnetic alloy nano particle and magnetic recording material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011048247; 白石幸英: '新規金属ナノ粒子の創製とナノ光学材料への応用' Japan Nanonet Bulletin 第29号, 20030805 *
JPN6012030327; S.Berchmans et,al: '"Novel Effects of Metal Ion Chelation on the Properties of Lipoic Acid-Capped Ag and Au Nanoparticle' J.Phys.Chem.B 106(18), 20020411, pp4647-4651, American Chemical Society *
JPN6012030395; Jose M. Abad et.al: 'Functionalization of Thioctic Acid-Capped Gold Nanoparticles for Specific Immobilization of Histidin' J. Am. Chem. Soc. 127(15), 20050319, pp5689-5694, American Chemical Society *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280404A (en) * 2007-05-09 2008-11-20 Fujifilm Corp Composition, film and retardation controlling agent
JP2009221504A (en) * 2008-03-14 2009-10-01 Toshiba Corp Nanoparticle and nanoparticle thin film
JP2010150332A (en) * 2008-12-24 2010-07-08 Teijin Ltd Polymerizable compound-metal nanoparticle dispersion, and method for producing the same
JP2010150348A (en) * 2008-12-24 2010-07-08 Teijin Ltd Polymer-metal nanoparticle complex and method for producing the same
JP2010287406A (en) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense Silver nanowire compound having polymer and metal nano structured compound having polymer
JP2011225489A (en) * 2010-04-21 2011-11-10 Shofu Inc Sulfur-containing polymerizable compound and adhesive composition containing the same
JP2015502869A (en) * 2011-10-24 2015-01-29 テラ‐バリア フィルムズ プライベート リミテッド Encapsulated barrier stack
RU2513332C1 (en) * 2013-03-15 2014-04-20 Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" Method of production of modified iron nanoparticles
US20210230435A1 (en) * 2018-04-30 2021-07-29 Korea University Research And Business Foundation Method for preparing silver nanoparticles stabilized with tetraoctylammonium, and method for producing electrically conductive thin film by using silver nanoparticles prepared by same
CN111421136A (en) * 2019-11-11 2020-07-17 殷柳 Preparation method of high-purity high-activity nano powder
CN111421136B (en) * 2019-11-11 2022-02-01 殷柳 Preparation method of high-purity high-activity nano powder
CN112723421A (en) * 2021-02-03 2021-04-30 江西理工大学 FeMnSxNanosheet cluster and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007069270A (en) Inorganic nanoparticle with high dispersibility
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Zhou et al. Functionalized gold nanoparticles: synthesis, structure and colloid stability
JP4665499B2 (en) Metal fine particles, production method thereof, composition containing the same, and use thereof
Xue et al. Novel pearl-necklace porous CdS nanofiber templated by organogel
KR101125491B1 (en) Method for producing metal fine particle, metal fine particle produced thereby, composition containing same, light absorbing material, and application thereof
Zhu et al. Microwave-assisted one-step synthesis of polyacrylamide− metal (M= Ag, Pt, Cu) nanocomposites in ethylene glycol
Han et al. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles
Song et al. Size control in the synthesis of 1–6 nm gold nanoparticles via solvent-controlled nucleation
Nimmala et al. Au36 (SPh) 23 Nanomolecules
Lee et al. Structure and thermal behavior of a layered silver carboxylate
Takano et al. Slow-reduction synthesis of a thiolate-protected one-dimensional gold cluster showing an intense near-infrared absorption
Morita et al. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing
JP2012006834A (en) Ultrafine particle of prussian blue type metal complex, dispersion liquid thereof, and their production methods
JP4529160B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE SAME, COMPOSITION CONTAINING THE SAME AND USE THEREOF
JP2005220435A (en) Method of producing metal nanoparticle and dispersion of metal nanoparticle
JP2006256954A (en) Prussian blue-type metal complex ultrafine particle, and its dispersion liquid, and manufacturing method thereof
JP2007138250A (en) Method for producing silver grain, silver grain-containing composition comprising the obtained silver grain and its use
Liu et al. Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods
KR101927766B1 (en) Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing the same
Yang et al. In situ synthesis of highly monodispersed nonaqueous small-sized silver nano-colloids and silver/polymer nanocomposites by ultraviolet photopolymerization
Nguyen et al. Synergistic effect of the oleic acid and oleylamine mixed-liquid matrix on particle size and stability of sputtered metal nanoparticles
WO2004108598A1 (en) A method of preparing metal chalcogenide particles
JP5598796B2 (en) Inorganic nanoparticle dispersion
Bagiński et al. Achieving Highly Stable, Reversibly Reconfigurable Plasmonic Nanocrystal Superlattices through the Use of Semifluorinated Surface Ligands

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219