JP2007069251A - Wire rod cutting device - Google Patents

Wire rod cutting device Download PDF

Info

Publication number
JP2007069251A
JP2007069251A JP2005259626A JP2005259626A JP2007069251A JP 2007069251 A JP2007069251 A JP 2007069251A JP 2005259626 A JP2005259626 A JP 2005259626A JP 2005259626 A JP2005259626 A JP 2005259626A JP 2007069251 A JP2007069251 A JP 2007069251A
Authority
JP
Japan
Prior art keywords
tool
cutting
wire
resultant force
force transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259626A
Other languages
Japanese (ja)
Inventor
Sueyoshi Natsume
季佳 夏目
Eiji Obayashi
栄次 大林
Hiroshi Sugiyama
寛 杉山
Takanori Oshima
孝典 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Seiki Manufacturing Co Ltd
Original Assignee
Asahi Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Seiki Manufacturing Co Ltd filed Critical Asahi Seiki Manufacturing Co Ltd
Priority to JP2005259626A priority Critical patent/JP2007069251A/en
Publication of JP2007069251A publication Critical patent/JP2007069251A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shearing Machines (AREA)
  • Wire Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire rod cutting device capable of corresponding to the increase in cutting resistance, which is caused by the increase in the diameter of a wire rod, and capable of enhancing cutting speed compared with conventional wire rod cutting devices. <P>SOLUTION: The wire rod cutting device gives the resultant force of output torque of a plurality of tool driving motors 55 to a cutting tool 47 as axial force, so that the device copes with the increase in cutting resistance by increasing the number of the tool driving motors 55. Accordingly, each of the tool driving motors 55 is miniaturized compared with conventional ones to make rotor inertia small, so that responsiveness to an operation command is improved to enhance the operation speed. Further, the cutting resistance received by a resultant force transmitting shaft 50 is suppressed since the distance between the cutting tool 47 and a core bar 42 becomes a predetermined one, which is not larger than the diameter of the wire rod, at the bottom dead point of the cutting tool 47. Thereby, further miniaturization of the tool driving motors 55 and further speedup of the operation are attainable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ばね成形機によりばねに成形される線材を切断する線材切断装置に関する。   The present invention relates to a wire cutting device for cutting a wire formed into a spring by a spring forming machine.

従来、この種の線材切断装置は、ベース部材に対して直動するスライダと、その駆動源としてのモータとを備えている。また、モータとスライダとの間には、モータの回転動作をスライダの直動動作に変換する動作変換機構が設けられている。そして、スライダに固定された切断工具と、ベース部材に固定された心金工具との間で線材を切断する(例えば、特許文献1参照)。
特開2003−230926号公報(段落[0044],[0057]、第1図)
Conventionally, this type of wire rod cutting device includes a slider that moves linearly with respect to a base member, and a motor as a drive source thereof. In addition, an operation conversion mechanism is provided between the motor and the slider for converting the rotation operation of the motor into the linear operation of the slider. And a wire is cut | disconnected between the cutting tool fixed to the slider, and the mandrel tool fixed to the base member (for example, refer patent document 1).
JP 2003-230926 A (paragraphs [0044], [0057], FIG. 1)

ところで、線材の線径が大きくなると切断抵抗が増加する。この場合、従来は、モータの出力軸に取り付けられる減速機の減速比を大きくすることで、スライダへの直動力を増加させて対応していた。しかしながら、ばね成形機は生産効率を上げるために、線材切断装置による切断動作の高速化が強く要請されている。このため、減速比を大きくすることは逆に回転速度が小さくなり、高速化に逆行していた。一方、切断抵抗の増加に対してモータを大型化して対応すると、それに伴ってロータイナーシャも大きくなるので、動作指令に対する応答性が悪化し、結局、高速化の要請に応えることができない。   By the way, the cutting resistance increases as the wire diameter of the wire increases. In this case, conventionally, the direct power to the slider is increased by increasing the reduction ratio of the reduction gear attached to the output shaft of the motor. However, in order to increase the production efficiency of the spring forming machine, there is a strong demand for speeding up the cutting operation by the wire cutting device. For this reason, increasing the speed reduction ratio, on the contrary, decreases the rotational speed, and goes against speeding up. On the other hand, when the motor is increased in response to an increase in cutting resistance, the rotor inertia increases accordingly, so that the response to the operation command is deteriorated, so that it is impossible to meet the demand for higher speed.

本発明は、上記事情に鑑みてなされたもので、切断抵抗の増加に対応することができかつ従来より高速化可能な線材切断装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wire rod cutting apparatus that can cope with an increase in cutting resistance and can be speeded up compared to the conventional art.

上記目的を達成するためになされた請求項1の発明に係る線材切断装置は、ばね成形機によりばねに成形される線材を切断する線材切断装置であって、ベース部材と、ベース部材に固定された心金工具と、ベース部材に直動可能に係合して、心金工具に接離するスライダと、スライダに固定され、心金工具との間で線材を切断可能な切断工具と、ベース部材に回転可能に軸支された合力伝達シャフトと、合力伝達シャフトとスライダとの間に設けられ、合力伝達シャフトの回転動作をスライダの直動動作に変換する動作変換機構と、合力伝達シャフトに対して、ギヤ又はベルトにて並列に連結された複数の工具駆動モータとを備えたところに特徴を有する。   The wire rod cutting device according to the invention of claim 1 made to achieve the above object is a wire rod cutting device for cutting a wire rod formed into a spring by a spring molding machine, and is fixed to the base member and the base member. A mandrel tool, a slider that is movably engaged with the base member, and that is in contact with and away from the mandrel tool, a cutting tool that is fixed to the slider and can cut a wire between the mandrel tool, and a base A resultant force transmission shaft that is rotatably supported by the member, a motion conversion mechanism that is provided between the resultant force transmission shaft and the slider, and that converts the rotational motion of the resultant force transmission shaft into a linear motion of the slider; and the resultant force transmission shaft. On the other hand, it has a feature in that it has a plurality of tool drive motors connected in parallel by gears or belts.

請求項2の発明は、請求項1に記載の線材切断装置において、合力伝達シャフトと一体回転する合力伝達ギヤと、工具駆動モータのモータ出力軸と一体回転又は連動回転し、合力伝達ギヤの複数箇所に噛合した複数のモータ回転ギヤとを備えたところに特徴を有する。   According to a second aspect of the present invention, there is provided the wire rod cutting device according to the first aspect, wherein the resultant force transmission gear that rotates integrally with the resultant force transmission shaft and the motor output shaft of the tool drive motor rotate integrally or in conjunction with each other, and a plurality of resultant force transmission gears are provided. It is characterized by having a plurality of motor rotating gears meshed with each other.

請求項3の発明は、請求項1又は2に記載の線材切断装置において、モータは、超低慣性モータであるところに特徴を有する。   The invention of claim 3 is characterized in that in the wire rod cutting device according to claim 1 or 2, the motor is an ultra-low inertia motor.

請求項4の発明は、請求項1乃至3の何れかに記載の線材切断装置において、動作変換機構は、合力伝達シャフトのうち回転中心から偏心した位置に設けられた第1回動支軸と、スライダに設けられた第2回動支軸と、それら第1及び第2の回動支軸の間を連結するリンク部材とを備えてなり、切断工具の下死点で、切断工具と心金工具との間が線材の線径未満の所定の間隔となるように構成したところに特徴を有する。   According to a fourth aspect of the present invention, in the wire rod cutting device according to any one of the first to third aspects, the motion conversion mechanism includes a first rotation support shaft provided at a position eccentric from the rotation center of the resultant force transmission shaft. And a second rotating support shaft provided on the slider and a link member for connecting the first and second rotating support shafts, and the cutting tool and the core at the bottom dead center of the cutting tool. It is characterized in that it is configured to have a predetermined distance less than the wire diameter of the wire rod between the metal tool.

請求項5の発明は、請求項4に記載の線材切断装置において、所定の間隔は、線材の線径に対して33〜75%であるところに特徴を有する。   The invention of claim 5 is characterized in that, in the wire rod cutting device according to claim 4, the predetermined interval is 33 to 75% with respect to the wire diameter of the wire rod.

請求項1の構成によれば、複数の工具駆動モータの出力トルクが合力伝達シャフトで合成され、その合力が動作変換機構を通して切断工具に直動力として付与される。従って、切断抵抗の増加に対して工具駆動モータの数を増加することで対応することができ、個々の工具駆動モータを小型化することが可能になる。これにより、工具駆動モータのロータイナーシャが小さくなり、動作指令に対する応答性が向上し、各サイクル毎に起動・停止を繰り返す線材切断装置において、従来より高速化が可能になる。   According to the structure of Claim 1, the output torque of a some tool drive motor is synthesize | combined by a resultant force transmission shaft, and the resultant force is given to a cutting tool as a direct power through an action conversion mechanism. Therefore, an increase in the cutting resistance can be dealt with by increasing the number of tool drive motors, and each tool drive motor can be downsized. As a result, the rotor inertia of the tool driving motor is reduced, the responsiveness to the operation command is improved, and the wire rod cutting device that repeatedly starts and stops every cycle can be made faster than before.

具体的には、請求項2の構成のように、合力伝達シャフトと一体回転する合力伝達ギヤと、工具駆動モータと一体回転又は連動回転し、合力伝達ギヤの複数箇所に噛合した複数のモータ回転ギヤとを備えることで、合力伝達シャフトに対して複数の工具駆動モータを並列に連結することができ、複数の工具駆動モータの出力トルクを、合力伝達シャフトで合成することが可能になる。   Specifically, as in the configuration of claim 2, a resultant force transmission gear that rotates integrally with the resultant force transmission shaft, and a plurality of motor rotations that rotate integrally or interlocked with the tool drive motor and mesh with a plurality of locations of the resultant force transmission gear. By providing the gear, a plurality of tool drive motors can be connected in parallel to the resultant force transmission shaft, and output torques of the plurality of tool drive motors can be synthesized by the resultant force transmission shaft.

請求項3の構成によれば、工具駆動モータを超低慣性モータで構成したので、工具駆動モータの起動・停止及び加減速を急峻に行うことが可能になり、線材切断装置の動作をより一層高速化することができる。   According to the configuration of the third aspect, since the tool drive motor is composed of an ultra-low inertia motor, it is possible to sharply start and stop the tool drive motor and accelerate / decelerate the operation of the wire rod cutting device. The speed can be increased.

請求項4の構成のように、切断工具が心金工具側に最も接近した下死点で、切断工具と心金工具との間が線材の線径未満の所定の間隔となるように構成すると、合力伝達シャフトに係る負荷トルクを抑えることができる。これにより、工具駆動モータが小型化されてロータイナーシャも小さくなり、従来の線材切断装置より高速化が可能になる。具体的には、切断工具が心金工具側に最も接近した下死点で、切断工具と心金工具との間隔は、線材の線径に対して33〜75%であることが好ましい(請求項5の発明)。   When configured so that the cutting tool is at the bottom dead center closest to the mandrel tool side, and the gap between the cutting tool and the mandrel tool is a predetermined interval less than the wire diameter of the wire, as in the configuration of claim 4. The load torque related to the resultant force transmission shaft can be suppressed. Thereby, a tool drive motor is reduced in size and a rotor inertia becomes small, and it becomes possible to speed up from the conventional wire rod cutting device. Specifically, at the bottom dead center at which the cutting tool is closest to the mandrel tool side, the distance between the cutting tool and the mandrel tool is preferably 33 to 75% with respect to the wire diameter of the wire (claim). Item 5).

以下、本発明に係る一実施形態を図1〜図8に基づいて説明する。
図1に示したばね成形機10は、鉛直に起立した基台11に、本発明に係る線材切断装置40の他、線材送給装置20、1対の成形工具直動装置30,30等を組み付けてなる。線材送給装置20は、4つの送給機構部20Aを水平方向に並べて備えている。各送給機構部20Aには、上下に並んだ1対のローラ21,21が設けられ、これらローラ21,21が基台11の前面から前方に突出している。線材90は、これら各送給機構部20Aのローラ21,21によって4箇所を挟持されている。そして、図示しない送給モータにより、上下のローラ21,21を対称的に回転させることで、線材90が基台11の前面に設けた成形空間Rに向けて送給される。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment according to the invention will be described with reference to FIGS.
A spring forming machine 10 shown in FIG. 1 is assembled with a base 11 standing upright, a wire cutting device 40 according to the present invention, a wire feeding device 20, a pair of forming tool linear motion devices 30, 30 and the like. It becomes. The wire feeding device 20 includes four feeding mechanisms 20A arranged in the horizontal direction. Each feeding mechanism portion 20 </ b> A is provided with a pair of rollers 21, 21 arranged vertically, and these rollers 21, 21 protrude forward from the front surface of the base 11. The wire 90 is clamped at four locations by the rollers 21 and 21 of each of the feeding mechanisms 20A. Then, the upper and lower rollers 21, 21 are rotated symmetrically by a feed motor (not shown), so that the wire 90 is fed toward the molding space R provided on the front surface of the base 11.

なお、隣り合った送給機構部20A,20Aの間には、線材90の送給経路に沿って中間ガイド12が設けられている。また、線材送給装置20のうち成形空間Rに最も近い送給機構部20Aから成形空間Rに向けてファイナルガイド13が延びている。そして、線材90は、これら中間ガイド12及びファイナルガイド13に貫通形成された案内路(図示せず)に挿通されている。   An intermediate guide 12 is provided between the adjacent feeding mechanism portions 20A and 20A along the feeding path of the wire 90. Further, the final guide 13 extends from the feeding mechanism portion 20 </ b> A closest to the molding space R in the wire rod feeding device 20 toward the molding space R. The wire 90 is inserted through a guide path (not shown) formed through the intermediate guide 12 and the final guide 13.

1対の成形工具直動装置30,30は、共に基台11の前面に固定された固定台31を備えている。一方の成形工具直動装置30の固定台31は、成形空間Rから斜め下方に延びており、他方の成形工具直動装置30の固定台31は、成形空間Rから斜め上方に延びている。これら各固定台31には、成形空間R側にスライダ32が直動可能に係合し、その反対側に成形用モータ34が備えられている。そして、これらスライダ32と成形用モータ34とがボールネジ機構33によって連結されている。また、各スライダ32には成形工具35がそれぞれ固定され、各成形用モータ34の駆動により、一方の成形工具35が成形空間Rに対して斜め下方から進退し、他方の成形工具35が成形空間Rに対して斜め上方から進退する。   Each of the pair of forming tool linear motion devices 30 and 30 includes a fixed base 31 fixed to the front surface of the base 11. The fixing base 31 of one forming tool linear motion device 30 extends obliquely downward from the forming space R, and the fixing base 31 of the other forming tool linear motion device 30 extends obliquely upward from the forming space R. Each of the fixed bases 31 is engaged with the slider 32 on the molding space R side so as to be linearly movable, and a molding motor 34 is provided on the opposite side. The slider 32 and the molding motor 34 are connected by a ball screw mechanism 33. Also, a molding tool 35 is fixed to each slider 32, and by driving each molding motor 34, one molding tool 35 advances and retreats from the diagonally lower side with respect to the molding space R, and the other molding tool 35 moves into the molding space. Advancing and retracting diagonally from above with respect to R.

図2に示すように各成形工具35,35の先端面には線材摺接溝35Z,35Zが形成されている。そして、ファイナルガイド13から排出された線材90が、円弧状に予め塑性変形された状態になって各成形工具35における線材摺接溝35Zの内面に押し付けられ、この状態で線材送給装置20が線材90を送給することにより、後続の線材90が円弧状に塑性変形される。このとき、線材90が線材摺接溝35Zによって基台11の前面から離れる方向に案内され、線材90からコイル状のばねが成形される。また、成形工具35,35を進退させることでばね径を変更することができる。   As shown in FIG. 2, wire rod sliding contact grooves 35 </ b> Z and 35 </ b> Z are formed on the tip surfaces of the forming tools 35 and 35. Then, the wire rod 90 discharged from the final guide 13 is preliminarily plastically deformed into an arc shape and is pressed against the inner surface of the wire sliding groove 35Z in each forming tool 35. In this state, the wire rod feeding device 20 is By feeding the wire 90, the subsequent wire 90 is plastically deformed into an arc shape. At this time, the wire 90 is guided in a direction away from the front surface of the base 11 by the wire sliding contact groove 35 </ b> Z, and a coiled spring is formed from the wire 90. Further, the spring diameter can be changed by moving the forming tools 35 and 35 back and forth.

図1に示すように、線材切断装置40は、基台11の一部を構成するベース部材41に、心金工具42、直動ガイドレール43等の各部品を組み付けてなる。具体的には、基台11の本体11Hには、前面に縦溝11Aが形成され、その縦溝11Aの両端に収容凹部11B,11Bが設けられている。これに対し、ベース部材41は、上下方向に延びた帯板部41Aの両端に略矩形のモータ固定部41B,41Bを備えた形状をなしている。そして、その帯板部41Aが縦溝11Aに嵌合されて、モータ固定部41B,41Bが収容凹部11B,11Bに収められている。また、ベース部材41の前面と本体11Hの前面とは面一になっており、基台11の一部としての帯板部41Aの前面に成形空間Rが備えられている。   As shown in FIG. 1, the wire rod cutting device 40 is configured by assembling each component such as a mandrel tool 42 and a linear motion guide rail 43 to a base member 41 constituting a part of the base 11. Specifically, a vertical groove 11A is formed on the front surface of the main body 11H of the base 11, and accommodation recesses 11B and 11B are provided at both ends of the vertical groove 11A. On the other hand, the base member 41 has a shape including substantially rectangular motor fixing portions 41B and 41B at both ends of a strip plate portion 41A extending in the vertical direction. Then, the belt plate portion 41A is fitted into the longitudinal groove 11A, and the motor fixing portions 41B and 41B are accommodated in the accommodating recesses 11B and 11B. Further, the front surface of the base member 41 and the front surface of the main body 11 </ b> H are flush with each other, and a molding space R is provided on the front surface of the band plate portion 41 </ b> A as a part of the base 11.

図3に示すようにベース部材41のうち長手方向の中央には、矩形孔41Cが貫通形成されている。また、矩形孔41C内には心金固定ブラケット44が収容されかつ図示しない固定手段によってベース部材41に固定されている。そして、心金工具42は心金固定ブラケット44に固定されて、成形空間R(図1参照)に向かって突出している。また、ばねは、この心金工具42の周りを囲むようにして成形される。   As shown in FIG. 3, a rectangular hole 41 </ b> C is formed through the center of the base member 41 in the longitudinal direction. A mandrel fixing bracket 44 is accommodated in the rectangular hole 41C and is fixed to the base member 41 by fixing means (not shown). The mandrel tool 42 is fixed to the mandrel fixing bracket 44 and protrudes toward the molding space R (see FIG. 1). The spring is formed so as to surround the mandrel tool 42.

ベース部材41のうち矩形孔41Cより上方には、直動ガイドレール43が図示しないボルトにて固定されている。直動ガイドレール43は鉛直方向に延びており、この直動ガイドレール43に対してスライダ45が鉛直方向に直動可能に係合している。   A linear motion guide rail 43 is fixed above the rectangular hole 41C in the base member 41 with a bolt (not shown). The linear motion guide rail 43 extends in the vertical direction, and a slider 45 is engaged with the linear motion guide rail 43 so as to be capable of linear motion in the vertical direction.

ベース部材41の各モータ固定部41Bには、中心部に貫通孔が形成されている。そして、その貫通孔内にベアリング49が嵌合され、そのベアリング49内に合力伝達シャフト50のベアリング支持部50Aが嵌合されている。合力伝達シャフト50のうちベアリング支持部50Aより前端側(ベース部材41の前面側)には、円板部50Bが設けらている。円板部50Bは、ベアリング支持部50Aと同心の円形をなしており、その円板部50Bのうち中心から偏心した位置に偏心支柱50C(本発明に係る「第1回動支軸」に相当する)が起立している。偏心支柱50Cは断面円形になっており、ベアリング支持部50Aの中心軸と平行な中心軸を有する。   Each motor fixing portion 41B of the base member 41 is formed with a through hole at the center. A bearing 49 is fitted into the through hole, and a bearing support portion 50 </ b> A of the resultant force transmission shaft 50 is fitted into the bearing 49. A disc portion 50B is provided on the front end side (front side of the base member 41) of the bearing support portion 50A in the resultant force transmission shaft 50. The disc portion 50B has a circular shape concentric with the bearing support portion 50A. The disc portion 50B has an eccentric column 50C (corresponding to the “first rotation support shaft” according to the present invention) at a position eccentric from the center. Is standing). The eccentric support 50C has a circular cross section and has a central axis parallel to the central axis of the bearing support portion 50A.

この偏心支柱50Cに対応させて、スライダ45には支持ピン48(本発明に係る「第2回動支軸」に相当する)が固定されている。具体的には、スライダ45のうち上下方向の中間部から支持壁45Aが起立して途中で上方に直角曲げされている。そして、対向したスライダ45の上端部と支持壁45Aの上端部との間に支持ピン48が差し渡され、その支持ピン48の軸心と偏心支柱50Cの軸心とが平行になっている。   A support pin 48 (corresponding to the “second rotating support shaft” according to the present invention) is fixed to the slider 45 in correspondence with the eccentric support 50C. Specifically, the support wall 45A rises from the middle portion in the vertical direction of the slider 45 and is bent at a right angle upward in the middle. And the support pin 48 is passed between the upper end part of the slider 45 which opposes, and the upper end part of 45 A of support walls, and the axial center of the support pin 48 and the axial center of the eccentric support | pillar 50C are parallel.

支持ピン48と偏心支柱50Cとの間はリンク部材51により連結されている。リンク部材51は、両端部に貫通孔を備え、一方の貫通孔内に嵌合されたベアリング51A内に偏心支柱50Cが嵌合され、他方の貫通孔内に嵌合されたメタル軸受51B内に支持ピン48が嵌合されている。そして、これらリンク部材51、偏心支柱50C、支持ピン48等によって本発明に係る動作変換機構52が構成され、この動作変換機構52により合力伝達シャフト50の回転動作がスライダ45の直動動作に変換される。   The support pin 48 and the eccentric support 50C are connected by a link member 51. The link member 51 has through holes at both ends, the eccentric support 50C is fitted in a bearing 51A fitted in one through hole, and the metal bearing 51B fitted in the other through hole. A support pin 48 is fitted. The link member 51, the eccentric support 50C, the support pin 48, and the like constitute the motion conversion mechanism 52 according to the present invention. The motion conversion mechanism 52 converts the rotation operation of the resultant force transmission shaft 50 into the linear motion operation of the slider 45. Is done.

合力伝達シャフト50のうちベアリング支持部50Aより後端側(ベース部材41の後面側)に備えたギヤ固定部50Dには、合力伝達ギヤ53が一体回転可能に固定されている。また、ベース部材41の後面には、合力伝達ギヤ53の周りに後方突壁54が形成され、その後方突壁54に5つの工具駆動モータ55(図4参照)が減速機60を介して取り付けられている。これら工具駆動モータ55は共に超低慣性モータであり、図4に示すようにモータ固定部41Bの4つの角部と、帯板部41Aの端部とに配置され、図3に示すように各工具駆動モータ55の回転軸は合力伝達シャフト50と平行になっている。また、各工具駆動モータ55の前端部には減速機60が固定され、その減速機60が後方突壁54に固定されている。さらに、減速機60の入力軸にモータ出力軸55Jが連結され、減速機60の出力軸60Jに、モータ回転ギヤ56が一体回転可能に固定されている。そして、これらモータ回転ギヤ56が合力伝達ギヤ53にそれぞれ噛合している。これにより、5つの工具駆動モータ55の出力トルクが合力伝達ギヤ53に加えられて、これら5つの工具駆動モータ55の合力で合力伝達シャフト50が回転駆動される。   A resultant force transmission gear 53 is fixed to a gear fixing portion 50D provided on the rear end side (rear surface side of the base member 41) of the bearing support portion 50A in the resultant force transmission shaft 50 so as to be integrally rotatable. Further, a rear projecting wall 54 is formed around the resultant force transmission gear 53 on the rear surface of the base member 41, and five tool drive motors 55 (see FIG. 4) are attached to the rear projecting wall 54 via the speed reducer 60. It has been. These tool drive motors 55 are both ultra-low inertia motors and are arranged at the four corners of the motor fixing portion 41B and the end portions of the band plate portion 41A as shown in FIG. The rotation axis of the tool drive motor 55 is parallel to the resultant force transmission shaft 50. A reduction gear 60 is fixed to the front end of each tool drive motor 55, and the reduction gear 60 is fixed to the rear protruding wall 54. Further, the motor output shaft 55J is connected to the input shaft of the speed reducer 60, and the motor rotation gear 56 is fixed to the output shaft 60J of the speed reducer 60 so as to be integrally rotatable. These motor rotation gears 56 mesh with the resultant force transmission gear 53, respectively. As a result, the output torque of the five tool drive motors 55 is applied to the resultant force transmission gear 53, and the resultant force transmission shaft 50 is rotationally driven by the resultant force of the five tool drive motors 55.

なお、モータ回転ギヤ56は、モータ回転ギヤ56のピッチ円直径が合力伝達ギヤ53のピッチ円直径の略1/3の大きさになっている。また、後方突壁54は、図5に示すように各モータ回転ギヤ56の周りを囲むように包囲している。さらに、ベース部材41は、上下方向で対称形状をなし、上下のモータ固定部41Bの何れか一方に選択的に、合力伝達シャフト50、工具駆動モータ55、直動ガイドレール43等が組み付けられる。図3及び図4には、参考のために上下両方のモータ固定部41B,41Bに工具駆動モータ55等を組み付けた状態が示されている。   In the motor rotation gear 56, the pitch circle diameter of the motor rotation gear 56 is approximately 1/3 of the pitch circle diameter of the resultant force transmission gear 53. Further, as shown in FIG. 5, the rear protruding wall 54 surrounds each motor rotating gear 56 so as to surround it. Further, the base member 41 has a symmetrical shape in the vertical direction, and the resultant force transmission shaft 50, the tool drive motor 55, the linear guide rail 43, and the like are selectively assembled to any one of the upper and lower motor fixing portions 41B. 3 and 4 show a state in which the tool drive motor 55 and the like are assembled to both the upper and lower motor fixing portions 41B and 41B for reference.

図3に示すようにスライダ45のうち成形空間R側の端部には工具固定ブラケット46が固定され、その工具固定ブラケット46に切断工具47が固定されている。図2に示すように切断工具47は角柱状をなし、工具固定ブラケット46から成形空間Rに向かって鉛直下方に延びている。そして、切断工具47は、スライダ45と共に直動して成形空間Rに進退し、成形空間R側に進入したときに切断工具47のエッジと心金工具42のエッジとの間で線材90の一部を切断(具体的には「剪断」)する。これにより、所定長のばねが後続の線材90から切り離される。   As shown in FIG. 3, a tool fixing bracket 46 is fixed to an end of the slider 45 on the molding space R side, and a cutting tool 47 is fixed to the tool fixing bracket 46. As shown in FIG. 2, the cutting tool 47 has a prismatic shape and extends vertically downward from the tool fixing bracket 46 toward the forming space R. Then, the cutting tool 47 moves linearly together with the slider 45 to advance and retreat into the forming space R, and when it enters the forming space R side, the wire 90 is moved between the edge of the cutting tool 47 and the edge of the mandrel tool 42. The part is cut (specifically, “shear”). As a result, the spring having a predetermined length is separated from the subsequent wire 90.

ここで、切断工具47は、リンク部材51に対して軸方向で位置調整可能となっている。そして、切断工具47が下死点に到達した際に、切断工具47と心金工具42との間が、上下方向において、線材90の線径未満の所定の間隔になっている。これにより、下死点で切断工具47のエッジが心金工具42のエッジと同位置になる構成に比べて、合力伝達シャフト50にかかる線材90の負荷トルクを抑えることができる。その理由を以下、図6〜図8を参照しつつ説明する。   Here, the position of the cutting tool 47 can be adjusted in the axial direction with respect to the link member 51. When the cutting tool 47 reaches the bottom dead center, the space between the cutting tool 47 and the mandrel tool 42 is a predetermined interval less than the wire diameter of the wire 90 in the vertical direction. Thereby, the load torque of the wire 90 applied to the resultant force transmission shaft 50 can be suppressed as compared with the configuration in which the edge of the cutting tool 47 is located at the same position as the edge of the mandrel tool 42 at the bottom dead center. The reason will be described below with reference to FIGS.

図6に示すように、合力伝達シャフト50の回転中心軸J1と支持ピン48との軸間を結ぶ直線を第1の直線C1とし、偏心支柱50Cと支持ピン48との軸間を結ぶ直線を第2の直線C2とし、合力伝達シャフト50の回転中心軸J1と偏心支柱50Cとの軸間を結ぶ直線を第3の直線C3とすると、これら第1〜第3の直線C1,C2,C3が一直線状に重なったときにスライダ45が下死点DPに到達する。そして、スライダ45が上死点から下死点DPに移動する途中の切断開始点TPで、切断工具47が線材90に当接して切断が開始される。   As shown in FIG. 6, a straight line connecting the rotation center axis J1 of the resultant force transmission shaft 50 and the support pin 48 is defined as a first straight line C1, and a straight line connecting the axes of the eccentric support column 50C and the support pin 48 is defined. Assuming that the second straight line C2 is a third straight line C3 that connects the rotation center axis J1 of the resultant force transmission shaft 50 and the eccentric support 50C, the first to third straight lines C1, C2, C3 are When they overlap in a straight line, the slider 45 reaches the bottom dead center DP. Then, the cutting tool 47 comes into contact with the wire 90 at the cutting start point TP while the slider 45 moves from the top dead center to the bottom dead center DP, and cutting is started.

ここで、例えば、第2の直線C2の長さをL2=465[mm]とし、第3の直線C3の長さをL3=35[mm]とし、線材90の線径をΦ12[mm]とし、さらに、線材90の材質をばね用シリコンクロム鋼とする。そして、下死点DPにおける切断工具47のエッジと心金工具42のエッジとの間の間隔L4(以下、「工具間隔L4」という)を、0,4,6,8,9[mm]に変更して設定した各場合に、線材90の切断開始点TPで、合力伝達シャフト50に係る負荷トルクを求めた値が下記表1に表示されている。   Here, for example, the length of the second straight line C2 is L2 = 465 [mm], the length of the third straight line C3 is L3 = 35 [mm], and the wire diameter of the wire 90 is Φ12 [mm]. Furthermore, the wire 90 is made of silicon chrome steel for springs. The distance L4 between the edge of the cutting tool 47 and the edge of the mandrel tool 42 at the bottom dead center DP (hereinafter referred to as “tool distance L4”) is 0, 4, 6, 8, 9 [mm]. Table 1 below shows the values obtained by calculating the load torque related to the resultant force transmission shaft 50 at the cutting start point TP of the wire 90 in each case set by changing.

Figure 2007069251
Figure 2007069251

表1における負荷トルクの欄の各値は以下のようにして求めることができる。即ち、線材90は、線径12[mm]のばね用シリコンクロム鋼であるから公知な式により、線材90を切断する際に必要な剪断力F1は164[kN]であり、この剪断力F1は切断工具47と心金工具42との対向方向、即ち第1の直線C1の方向を向く。そこで、第1の直線C1の方向にこの剪断力F1を発生させるために必要な第2の直線C2の方向の軸力F2、即ちリンク部材51の軸力F2を求める。   Each value in the column of load torque in Table 1 can be obtained as follows. That is, since the wire 90 is silicon chrome steel for springs having a wire diameter of 12 [mm], the shearing force F1 required to cut the wire 90 is 164 [kN] according to a known formula. This shearing force F1 Is directed in the opposite direction of the cutting tool 47 and the mandrel tool 42, that is, in the direction of the first straight line C1. Therefore, the axial force F2 in the direction of the second straight line C2, that is, the axial force F2 of the link member 51, which is necessary for generating the shearing force F1 in the direction of the first straight line C1, is obtained.

具体的に工具間隔L4を4[mm]とした場合を例に挙げて説明すると、図7に示すように、切断開始点TPでは、線材90の線径12[mm]から工具間隔L4の4[mm]を引いた8[mm]だけ、切断工具47のエッジが下死点DPの上方に位置する。このとき、第1と第2の直線C1,C2の間の角度は2.67[度]になり、第1と第3の直線C1,C3の間の角度は38.2[度]になる。この状態で、第1の直線C1の方向に剪断力F1を発生させるために必要なリンク部材51の軸力F2は、例えば作図により、F2=1.0011・F1、として求められる。   Specifically, the case where the tool interval L4 is set to 4 [mm] will be described as an example. As shown in FIG. 7, at the cutting start point TP, from the wire diameter 12 [mm] of the wire 90 to 4 of the tool interval L4. The edge of the cutting tool 47 is positioned above the bottom dead center DP by 8 [mm] minus [mm]. At this time, the angle between the first and second straight lines C1 and C2 is 2.67 [degrees], and the angle between the first and third straight lines C1 and C3 is 38.2 [degrees]. . In this state, the axial force F2 of the link member 51 necessary for generating the shearing force F1 in the direction of the first straight line C1 is obtained as F2 = 1.0011 · F1, for example, by drawing.

ここで、合力伝達シャフト50の回転による偏心支柱50Cの軸心の軌跡円をE1とすると、リンク部材51の軸力F2を、F2=1.0011・F1、にするために必要な、偏心支柱50Cに対する軌跡円E1の接線方向の力F3は、例えば作図により、F3=0.6551・F1、として求められる。そして、このようにして求めた力F3に偏心支柱50Cの回動半径である軸間距離L3=35[mm]を掛けることで、表1に記した合力伝達シャフト50に必要な負荷トルクとして3760[Nm]の値を得る。上述した算出方法を繰り返して、工具間隔L4を適宜変更して表1における負荷トルクの各値が求められる。   Here, when the locus circle of the axis of the eccentric support 50C due to the rotation of the resultant force transmission shaft 50 is E1, the eccentric support required to make the axial force F2 of the link member 51 F2 = 1.0011 · F1. The force F3 in the tangential direction of the locus circle E1 with respect to 50C is obtained as F3 = 0.551551 · F1, for example, by drawing. Then, by multiplying the force F3 obtained in this way by the inter-axis distance L3 = 35 [mm] which is the turning radius of the eccentric support 50C, 3760 is obtained as a load torque necessary for the resultant force transmission shaft 50 shown in Table 1. Obtain the value of [Nm]. By repeating the calculation method described above, the tool spacing L4 is appropriately changed, and each value of the load torque in Table 1 is obtained.

さて、表1に示した結果から明らかなように、工具間隔L4を大きくするに従って合力伝達シャフト50に係る負荷トルクは小さくなる。このことに鑑み、本実施形態では、記したように工具間隔L4が例えば6[mm]に設定されている(図8参照)。   As is apparent from the results shown in Table 1, the load torque applied to the resultant force transmission shaft 50 decreases as the tool interval L4 increases. In view of this, in this embodiment, as described, the tool interval L4 is set to, for example, 6 [mm] (see FIG. 8).

次に、上記構成からなる本実施形態の作用・効果について説明する。ばね成形機10を起動すると、線材送給装置20が線材90を所定量ずつ間欠的に成形空間Rに向けて送給する。すると、送給された所定量の線材90が成形空間Rにおいて成形工具35,35に摺接してばねに成形される。そして、ばねが所定長になったところで線材切断装置40が切断工具47を降下させ、心金工具42との間で線材90の一部を切断する。具体的には、線材切断装置40の上端部に備えた5つの工具駆動モータ55が協調制御されて略同一のトルクを出力し、それら工具駆動モータ55の出力トルクが合力伝達ギヤ53及び合力伝達シャフト50で合成される。そして、その合力が動作変換機構52を通して切断工具47に直動力として付与され、切断工具47を線材90に押し付けて切断する。これにより、成形されたばねが後続の線材90から切り離される。このとき工具駆動モータ55はばね成形毎に起動・停止が繰り返される。そして、線材送給装置20、成形工具直動装置30及び線材切断装置40が上記動作を繰り返して順次ばねが製造される。
なお、実験した結果、切断工具47と心金工具42との間が線材90の線径未満の9[mm]以下にしても線材90の切断(剪断)が可能であった。
Next, the operation and effect of this embodiment configured as described above will be described. When the spring molding machine 10 is activated, the wire rod feeding device 20 feeds the wire rod 90 intermittently toward the molding space R by a predetermined amount. Then, a predetermined amount of the wire 90 fed is slidably contacted with the forming tools 35 and 35 in the forming space R and formed into a spring. When the spring reaches a predetermined length, the wire cutting device 40 lowers the cutting tool 47 and cuts a part of the wire 90 with the mandrel tool 42. Specifically, five tool drive motors 55 provided at the upper end portion of the wire rod cutting device 40 are cooperatively controlled to output substantially the same torque, and the output torques of these tool drive motors 55 are transmitted to the resultant force transmission gear 53 and the resultant force transmission. The shaft 50 is synthesized. Then, the resultant force is applied as direct power to the cutting tool 47 through the motion conversion mechanism 52, and the cutting tool 47 is pressed against the wire 90 and cut. As a result, the formed spring is separated from the subsequent wire 90. At this time, the tool drive motor 55 is repeatedly started and stopped every time the spring is formed. Then, the wire rod feeding device 20, the forming tool linear motion device 30 and the wire rod cutting device 40 repeat the above operations to sequentially manufacture springs.
As a result of the experiment, the wire 90 could be cut (sheared) even when the distance between the cutting tool 47 and the mandrel tool 42 was 9 mm or less, which is less than the wire diameter of the wire 90.

上述したように、本実施形態の構成によれば、複数の工具駆動モータ55の出力トルクの合力が切断工具47に直動力として付与されるので、負荷トルクの増加に対して工具駆動モータ55の数を増加することで対応することができる。これにより、個々の工具駆動モータ55が小型化されてロータイナーシャが小さくなり、動作指令に対する応答性が向上し、動作の高速化が可能になる。また、工具駆動モータ55を超低慣性モータで構成したので急峻に工具駆動モータ55の起動・停止及び加減速を行うことができ、より一層の高速化が可能になる。しかも、切断工具47の下死点で、切断工具47と心金工具42との間が、線材の線径未満の所定の間隔となるように構成したので、前述したように、合力伝達シャフト50にかかる負荷トルクが抑えられ、これによりさらなる工具駆動モータ55が小型化及び高速化が可能になる。   As described above, according to the configuration of the present embodiment, the resultant force of the output torques of the plurality of tool drive motors 55 is applied to the cutting tool 47 as direct power, so This can be dealt with by increasing the number. As a result, the individual tool drive motors 55 are reduced in size, the rotor inertia is reduced, the response to the operation command is improved, and the operation speed can be increased. Further, since the tool drive motor 55 is composed of an ultra-low inertia motor, the tool drive motor 55 can be sharply started / stopped and accelerated / decelerated, thereby further increasing the speed. In addition, since the gap between the cutting tool 47 and the mandrel tool 42 is set at a predetermined distance less than the wire diameter at the bottom dead center of the cutting tool 47, as described above, the resultant force transmission shaft 50 is provided. Therefore, the tool drive motor 55 can be further reduced in size and speeded up.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態の動作変換機構52は、リンク部材51を備えた構造であったが、これに代えて例えばボールネジ機構によって本発明に係る「動作変換機構」を構成してもよい。   (1) Although the motion conversion mechanism 52 of the above-described embodiment has a structure including the link member 51, the “motion conversion mechanism” according to the present invention may be configured by, for example, a ball screw mechanism instead.

(2)前記実施形態では、本発明に係るベース部材41が本体11Hとは別部品になっていたが、基台11全体を本発明に係る「ベース部材」とし、その「ベース部材」に、線材送給装置20,成形工具直動装置30と共に本発明に係る「心金工具」、「直動ガイドレール」、「工具駆動モータ」等を取り付けた構成にしてもよい。   (2) In the above embodiment, the base member 41 according to the present invention is a separate part from the main body 11H. However, the entire base 11 is a “base member” according to the present invention, and the “base member” In addition to the wire feeding device 20 and the forming tool linear motion device 30, the “core metal tool”, “linear motion guide rail”, “tool drive motor” and the like according to the present invention may be attached.

(3)減速機60を備えていたが、工具駆動モータ55のモータ出力軸55Jにモータ回転ギヤ56を固定してもよい。   (3) Although the reduction gear 60 is provided, the motor rotation gear 56 may be fixed to the motor output shaft 55J of the tool drive motor 55.

(4)前記合力伝達ギヤ53及びモータ回転ギヤ56は平歯車であったが、図9に示すように、本発明に係る「合力伝達ギヤ」及び「モータ回転ギヤ」を傘歯車53K,56Kで構成してもよい。   (4) The resultant force transmission gear 53 and the motor rotation gear 56 are spur gears. However, as shown in FIG. 9, the “resulting force transmission gear” and the “motor rotation gear” according to the present invention are bevel gears 53K and 56K. It may be configured.

(5)また、本発明に係る「合力伝達シャフト」と「工具駆動モータ」との間を、ベルトで連結してもよい。   (5) Moreover, you may connect between "the resultant force transmission shaft" and "tool drive motor" which concern on this invention with a belt.

本発明の一実施形態に係るばね成形機の正面図1 is a front view of a spring forming machine according to an embodiment of the present invention. 切断工具、心金工具、成形工具等の斜視図Perspective view of cutting tools, mandrel tools, forming tools, etc. 線材切断装置の側断面図Side sectional view of wire cutting device 線材切断装置の背面図Rear view of wire cutting device 合力伝達ギヤとモータ回転ギヤの断面図Cross section of resultant force transmission gear and motor rotation gear 動作変換機構の概念図Conceptual diagram of motion conversion mechanism 動作変換機構の概念図Conceptual diagram of motion conversion mechanism 動作変換機構の概念図Conceptual diagram of motion conversion mechanism 他の実施形態(4)に係る合力伝達ギヤ及びモータ回転ギヤを傘歯車にした概念図The conceptual diagram which made the resultant force transmission gear and motor rotation gear which concern on other embodiment (4) the bevel gear.

符号の説明Explanation of symbols

10 成形機
40 線材切断装置
41 ベース部材
42 心金工具
45 スライダ
47 切断工具
48 支持ピン(第2回動支軸)
50 合力伝達シャフト
50C 偏心支柱(第1回動支軸)
51 リンク部材
52 動作変換機構
53 合力伝達ギヤ
55 工具駆動モータ
55J モータ出力軸
56 モータ回転ギヤ
90 線材
DESCRIPTION OF SYMBOLS 10 Forming machine 40 Wire rod cutting device 41 Base member 42 Mandrel tool 45 Slider 47 Cutting tool 48 Support pin (2nd rotation spindle)
50 Combined force transmission shaft 50C Eccentric support (first rotation support shaft)
51 link member 52 motion conversion mechanism 53 resultant force transmission gear 55 tool drive motor 55J motor output shaft 56 motor rotation gear 90 wire rod

Claims (5)

ばね成形機によりばねに成形される線材を切断する線材切断装置であって、
ベース部材と、
前記ベース部材に固定された心金工具と、
前記ベース部材に直動可能に係合して、前記心金工具に接離するスライダと、
前記スライダに固定され、前記心金工具との間で前記線材を切断可能な切断工具と、
前記ベース部材に回転可能に軸支された合力伝達シャフトと、
前記合力伝達シャフトと前記スライダとの間に設けられ、前記合力伝達シャフトの回転動作を前記スライダの直動動作に変換する動作変換機構と、
前記合力伝達シャフトに対して、ギヤ又はベルトにて並列に連結された複数の工具駆動モータとを備えたことを特徴とする線材切断装置。
A wire cutting device for cutting a wire formed into a spring by a spring forming machine,
A base member;
A mandrel tool fixed to the base member;
A slider that is movably engaged with the base member and that contacts and separates from the mandrel tool;
A cutting tool fixed to the slider and capable of cutting the wire with the mandrel tool;
A resultant force transmission shaft rotatably supported by the base member;
An operation conversion mechanism that is provided between the resultant force transmission shaft and the slider, and that converts a rotational operation of the resultant force transmission shaft into a linear motion operation of the slider;
A wire rod cutting device comprising: a plurality of tool drive motors connected in parallel by gears or belts to the resultant force transmission shaft.
前記合力伝達シャフトと一体回転する合力伝達ギヤと、
前記工具駆動モータのモータ出力軸と一体回転又は連動回転し、前記合力伝達ギヤの複数箇所に噛合した複数のモータ回転ギヤとを備えたことを特徴とする請求項1に記載の線材切断装置。
A resultant force transmission gear that rotates integrally with the resultant force transmission shaft;
The wire cutting apparatus according to claim 1, further comprising: a plurality of motor rotation gears that rotate integrally or interlocked with a motor output shaft of the tool drive motor and mesh with a plurality of positions of the resultant force transmission gear.
前記モータは、超低慣性モータであることを特徴とする請求項1又は2に記載の線材切断装置。   The wire cutting apparatus according to claim 1, wherein the motor is an ultra-low inertia motor. 前記動作変換機構は、前記合力伝達シャフトのうち回転中心から偏心した位置に設けられた第1回動支軸と、前記スライダに設けられた第2回動支軸と、それら第1及び第2の回動支軸の間を連結するリンク部材とを備えてなり、
前記切断工具の下死点で、前記切断工具と前記心金工具との間が前記線材の線径未満の所定の間隔となるように構成したことを特徴とする請求項1乃至3の何れかに記載の線材切断装置。
The motion conversion mechanism includes a first rotation support shaft provided at a position eccentric from a rotation center of the resultant force transmission shaft, a second rotation support shaft provided on the slider, and the first and second rotation shafts. A link member that connects between the rotation support shafts of
4. The apparatus according to claim 1, wherein the cutting tool and the mandrel tool have a predetermined distance less than a wire diameter at the bottom dead center of the cutting tool. Wire rod cutting device according to.
前記所定の間隔は、前記線材の線径に対して33〜75%であることを特徴とする請求項4に記載の線材切断装置。

The wire cutting apparatus according to claim 4, wherein the predetermined interval is 33 to 75% with respect to a wire diameter of the wire.

JP2005259626A 2005-09-07 2005-09-07 Wire rod cutting device Pending JP2007069251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259626A JP2007069251A (en) 2005-09-07 2005-09-07 Wire rod cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259626A JP2007069251A (en) 2005-09-07 2005-09-07 Wire rod cutting device

Publications (1)

Publication Number Publication Date
JP2007069251A true JP2007069251A (en) 2007-03-22

Family

ID=37931161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259626A Pending JP2007069251A (en) 2005-09-07 2005-09-07 Wire rod cutting device

Country Status (1)

Country Link
JP (1) JP2007069251A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255902A2 (en) 2009-05-28 2010-12-01 WAFIOS Aktiengesellschaft Cutting system for wire working machines
CN102233398A (en) * 2010-04-20 2011-11-09 盐城海旭数控装备有限公司 Central shaft cutting-off mechanism for eight-shaft spring forming machine
KR101123611B1 (en) * 2009-09-15 2012-03-20 목기수 Continuously cutting type automatic cutting apparatus for wire rod
CN102489635A (en) * 2011-12-06 2012-06-13 绍兴市家度弹簧机械有限公司 Inlet and outlet moving mechanism of core cutter of spring machine
CN111299473A (en) * 2020-05-11 2020-06-19 杭州圣埃蒂机械科技有限公司 Automatic load reinforcing bar cutting device of adjustable shearing length
CN117317766A (en) * 2023-11-28 2023-12-29 福建亚达隆电机有限公司 Full-automatic forming machine for motor terminal shorting stub

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315732A (en) * 1993-05-10 1994-11-15 Itaya Seisakusho:Kk Spring cutting mechanism
JPH09192890A (en) * 1995-12-15 1997-07-29 Amada Mfg America Inc Ram elevating and lowering device and press
JP2003290986A (en) * 2002-04-03 2003-10-14 Komatsu Ltd Slide driver for servo press

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315732A (en) * 1993-05-10 1994-11-15 Itaya Seisakusho:Kk Spring cutting mechanism
JPH09192890A (en) * 1995-12-15 1997-07-29 Amada Mfg America Inc Ram elevating and lowering device and press
JP2003290986A (en) * 2002-04-03 2003-10-14 Komatsu Ltd Slide driver for servo press

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255902A2 (en) 2009-05-28 2010-12-01 WAFIOS Aktiengesellschaft Cutting system for wire working machines
DE102009022969A1 (en) 2009-05-28 2010-12-02 Wafios Ag Cutting system for wire processing machines
DE102009022969B4 (en) * 2009-05-28 2016-08-04 Wafios Ag Cutting system for wire processing machines
KR101123611B1 (en) * 2009-09-15 2012-03-20 목기수 Continuously cutting type automatic cutting apparatus for wire rod
CN102233398A (en) * 2010-04-20 2011-11-09 盐城海旭数控装备有限公司 Central shaft cutting-off mechanism for eight-shaft spring forming machine
CN102489635A (en) * 2011-12-06 2012-06-13 绍兴市家度弹簧机械有限公司 Inlet and outlet moving mechanism of core cutter of spring machine
CN111299473A (en) * 2020-05-11 2020-06-19 杭州圣埃蒂机械科技有限公司 Automatic load reinforcing bar cutting device of adjustable shearing length
CN111299473B (en) * 2020-05-11 2020-11-03 淮南泰隆机械制造有限公司 Automatic load reinforcing bar cutting device of adjustable shearing length
CN117317766A (en) * 2023-11-28 2023-12-29 福建亚达隆电机有限公司 Full-automatic forming machine for motor terminal shorting stub
CN117317766B (en) * 2023-11-28 2024-01-30 福建亚达隆电机有限公司 Full-automatic forming machine for motor terminal shorting stub

Similar Documents

Publication Publication Date Title
JP2007069251A (en) Wire rod cutting device
US11103912B2 (en) Punching apparatus
JPH1110240A (en) Bending machine
CN102834231B (en) Pocket Machining device
US8015850B2 (en) Spring manufacturing machine
JP2006326825A (en) Method for precisely machining gear section, and machine tool having measuring instrument
JPS5939263B2 (en) Equipment for manufacturing spiral lace
JP3329692B2 (en) Spring forming equipment
JP5413908B2 (en) Forming machine
JP2008080386A (en) Coil spring manufacturing machine and coil spring manufacturing method
JP2001514088A (en) Method of meshing gear member and pinion member with each other
TWI836416B (en) Connected driven forming device
JP2007111701A (en) Worm form-rolling device and worm form-rolling method
JP4847825B2 (en) MANUFACTURING METHOD FOR STRIP PLATE MATERIAL
CN213671563U (en) 3D metal wire bending equipment
JP4822361B2 (en) Slide drive device
US4058865A (en) Automatic high-speed cold heading machine
JP3537422B2 (en) Header and work
GB2268109A (en) Machine tool cutter head
KR20090041233A (en) Structure head for steel wire bending machine
US20020148267A1 (en) Spring manufacturing device
CA2475831A1 (en) Drive mechanism for power tool
CN202387897U (en) Driving machine coordination device for dual-servo motor of press
JP2001071194A (en) Pressurizing device
JP2003071634A (en) Tap machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111019

Free format text: JAPANESE INTERMEDIATE CODE: A02