JP2007061537A - Radiographic apparatus - Google Patents

Radiographic apparatus Download PDF

Info

Publication number
JP2007061537A
JP2007061537A JP2005254767A JP2005254767A JP2007061537A JP 2007061537 A JP2007061537 A JP 2007061537A JP 2005254767 A JP2005254767 A JP 2005254767A JP 2005254767 A JP2005254767 A JP 2005254767A JP 2007061537 A JP2007061537 A JP 2007061537A
Authority
JP
Japan
Prior art keywords
radiation
radiation shape
shape restriction
radiation source
radiographic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254767A
Other languages
Japanese (ja)
Inventor
Yusuke Takeuchi
雄介 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005254767A priority Critical patent/JP2007061537A/en
Publication of JP2007061537A publication Critical patent/JP2007061537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a burden on an operator is increased because considerable skill is required for operating a radiation shape restraining means (compensating filter), possessed by a collimeter, etc. , so as to cover a direct radiation incidence area and a lung field area, while an operator observes an image. <P>SOLUTION: A control means computes an object position of a radiation shape restraining control means on the basis of an SID and coordinate data of an area in which secondary light and shade information of collected image data takes on a predetermined threshold or higher. The control means shifts the radiation shape restraining means to the computed object position. The provision of the control means automatizes the operation of shifting the radiation shape restraining means to the periphery of an area of interest. In addition to the above control, control is performed so that the radiation shape restraining means can be forcedly shifted in a predetermined cycle in the direction of getting away from the center of the image. Thus, even if the area of interest is shifted by a subject's body motion etc. , the radiation shape restraining means can be shifted to the periphery of the area of interest. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、医用もしくは非破壊検査の分野で使用される放射線透視撮影装置に関し、特に、被曝線量低減のためのコリメータ制御に関するものである。 The present invention relates to a radiographic imaging apparatus used in the field of medical or nondestructive inspection, and more particularly to collimator control for reducing exposure dose.

従来の放射線透視撮影装置は、図6に示すように、放射線源1と、放射線源1と対向配置され、放射線を電気信号9に変換する放射線検出手段2と、放射線源1と放射線検出手段2との間に配置され、放射線源1から放射された放射線を放射線形状制限手段5により所定の形状の放射線束31に絞るコリメータ6と、変換された電気信号9を2次元濃淡情報である画像データ10に変換するとともに画像データ10を画像表示手段12に表示する画像処理手段11と、放射線形状制限手段5を駆動する放射線形状制限制御手段7と、操作者の操作を受け付ける放射線形状制限手段操作スイッチ8とから構成されている。また、被検体21は、放射線形状制限手段5と放射線検出手段2との間に配置される。 As shown in FIG. 6, the conventional radiographic imaging apparatus includes a radiation source 1, a radiation detection means 2 that is disposed opposite to the radiation source 1 and converts radiation into an electric signal 9, and the radiation source 1 and the radiation detection means 2. And a collimator 6 that narrows the radiation emitted from the radiation source 1 into a radiation bundle 31 having a predetermined shape by the radiation shape limiting means 5 and the converted electrical signal 9 as image data that is two-dimensional density information. The image processing means 11 that converts the image data 10 into the image display means 12, and the radiation shape restriction control means 7 that drives the radiation shape restriction means 5, and the radiation shape restriction means operation switch that receives the operation of the operator. 8. The subject 21 is arranged between the radiation shape limiting means 5 and the radiation detection means 2.

放射線形状制限手段5により所定の形状に絞られた放射線束31は、放射線検出手段2により電気信号9に変換され、その電気信号9が画像処理手段11によって画像データ10に変換されて画像表示手段12に濃淡画像として表示される。特に、医用もしくは非破壊検査の分野で使用される放射線透視撮影装置においては、比較的低線量の放射線束31を被検体21に連続もしくは間欠に照射して、その透過放射線を画像データ10に変換し、動画として画像表示手段12に表示するいわゆる透視が頻繁に使用される。 The radiation bundle 31 narrowed down to a predetermined shape by the radiation shape restricting means 5 is converted into an electric signal 9 by the radiation detecting means 2, and the electric signal 9 is converted into image data 10 by the image processing means 11 and image display means. 12 is displayed as a grayscale image. In particular, in a radiographic imaging apparatus used in the field of medical or nondestructive inspection, a relatively low dose of a radiation bundle 31 is irradiated onto a subject 21 continuously or intermittently, and the transmitted radiation is converted into image data 10. In addition, so-called fluoroscopy that is displayed on the image display unit 12 as a moving image is frequently used.

また、コリメータ6は図7に示すように構成されている。ベース板50上には、回転リング51a、51bが回転可能に配置されている。回転リング51a、51b上には、平行駆動用モータ52a、52bと、平行駆動用ベルト53a、53bを介して伝達された平行駆動用モータ52a、52bの回転力により回転するボールねじ54a、54bとが配置されている。更に、ボールねじ54a、54b上には、ボールねじ54a、54bが回転することにより平行移動するように組み付けられた放射線形状制限手段保持部材55a、55bと、放射線形状制限手段保持部材55a、55bに固定された放射線形状制限手段5a、5bが配置されている。放射線形状制限手段5a、5bは、互いが衝突しないように高さを変えて設置されている。また、ベース板50には、回転駆動用モータ56a、56bが配置され、回転駆動用モータ56a、56bと回転リング51a、51bとは、回転駆動用ベルト57a、57bで接続されている。 The collimator 6 is configured as shown in FIG. On the base plate 50, rotating rings 51a and 51b are rotatably arranged. On the rotating rings 51a and 51b, parallel drive motors 52a and 52b, and ball screws 54a and 54b that rotate by the rotational force of the parallel drive motors 52a and 52b transmitted through the parallel drive belts 53a and 53b, Is arranged. Further, on the ball screws 54a and 54b, there are provided radiation shape restriction means holding members 55a and 55b and radiation shape restriction means holding members 55a and 55b which are assembled so as to move in parallel by the rotation of the ball screws 54a and 54b. Fixed radiation shape limiting means 5a and 5b are arranged. The radiation shape limiting means 5a and 5b are installed at different heights so that they do not collide with each other. The base plate 50 is provided with rotational drive motors 56a and 56b, and the rotational drive motors 56a and 56b and the rotational rings 51a and 51b are connected by rotational drive belts 57a and 57b.

図8に従来の放射線透視撮影装置で撮影した画像の一例を示す。図8は、被検体21の胸部を撮影した画像の一例であって、心臓付近を関心領域101とするものである。しかし、画像には、被検体21の肺野部分領域102および直接線入射部分領域103も含まれている。一般的に、肺野部には空気が充填されていることから、肺野部分領域102を透過した放射線は他の臓器を透過した放射線に比して15倍程度の放射線強度であるとされている。これだけのX線強度差を画質の劣化なしに放射線検出手段2のダイナミックレンジ内に収束させることは困難であるため、操作者は放射線形状制限手段操作スイッチ8を操作して、肺野部分領域102および直接線入射部分領域103に照射する放射線束31を放射線形状制限手段5a、5bにより遮蔽する。放射線形状制限手段操作スイッチ8は、放射線形状制限手段の駆動方向、たとえば回転・平行移動の方向を指示可能に構成されており、放射線形状制限制御手段7は当該指示に従って放射線形状制限手段5a、5bを駆動している。 FIG. 8 shows an example of an image captured by a conventional radiographic imaging apparatus. FIG. 8 is an example of an image obtained by photographing the chest of the subject 21, and the region near the heart is the region of interest 101. However, the image includes the lung field partial region 102 and the direct ray incident partial region 103 of the subject 21. In general, since the lung field is filled with air, the radiation transmitted through the lung field partial region 102 has a radiation intensity about 15 times that of the radiation transmitted through other organs. Yes. Since it is difficult to converge such an X-ray intensity difference within the dynamic range of the radiation detection means 2 without deterioration in image quality, the operator operates the radiation shape restriction means operation switch 8 to operate the lung field partial region 102. The radiation bundle 31 irradiated to the direct ray incident partial region 103 is shielded by the radiation shape limiting means 5a and 5b. The radiation shape restriction means operation switch 8 is configured to be able to instruct the driving direction of the radiation shape restriction means, for example, the direction of rotation / translation, and the radiation shape restriction control means 7 follows the instructions and the radiation shape restriction means 5a, 5b. Is driving.

しかし、従来の放射線透視撮影装置においては、以下のような問題点があった。すなわち、被検体を介さずに直接放射線検出手段に到達する放射線(以下直接線という)が存在する場合には、被検体の画像に含まれる関心領域の濃度は直接線に比して小さいために、相対的にコントラストが低下してしまうという課題が生じている。さらに、被検体以外の例えば被検者を搭載するベッドもしくは固定台部分にも余剰放射線が照射されることによって、散乱線が発生し、被検体および操作者の被曝線量が増大するという課題が生じている。 However, the conventional radiographic imaging apparatus has the following problems. That is, when there is radiation that directly reaches the radiation detection means without passing through the subject (hereinafter referred to as a direct line), the concentration of the region of interest included in the subject image is smaller than the direct line. However, there is a problem that the contrast is relatively lowered. In addition, the radiation other than the subject, for example, the bed or fixed base portion on which the subject is mounted, is irradiated with surplus radiation, which causes scattered radiation and increases the exposure dose of the subject and the operator. ing.

上記課題を解決する第一の手法は、ダイナミックレンジの広いフラットパネルディテクタ(以下FPDという)などを用いて透視を行い、関心領域のみをデータ上で抽出してダイナミックレンジ圧縮を行うことにより、関心領域の画質低下を見かけ上抑制することである(例えば、特許文献1参照)。かかる方法によれば、見かけの画質低下はある程度抑制できる。しかし、上記課題を解決する第一の手法によっては、被検者や操作者の被曝線量を低減させることはできない。そこで、上記課題を解決するために、操作者が画像を観察しながら、ハレーションを起こしている箇所がなくなるようにコリメータを操作している。 The first method to solve the above-mentioned problem is to perform the fluoroscopy using a flat panel detector (hereinafter referred to as FPD) having a wide dynamic range, extract only the region of interest on the data, and perform the dynamic range compression. This is to apparently suppress the degradation of the image quality of the area (see, for example, Patent Document 1). According to such a method, apparent image quality degradation can be suppressed to some extent. However, the first method for solving the above problem cannot reduce the exposure dose of the subject or the operator. Therefore, in order to solve the above-described problem, the collimator is operated so that the part causing halation disappears while the operator observes the image.

特開2004−261209号JP 2004-261209 A

しかし、上記課題を解決する手法は、その操作に相当の技能を要する上に、被検体の移動などを常に観察してコリメータを操作する必要があり、操作者の負担が増大するという新たな課題が生じている。 However, the technique for solving the above problem requires a considerable skill for the operation, and it is necessary to always operate the collimator while observing the movement of the subject, which is a new problem that increases the burden on the operator. Has occurred.

本発明は、操作者に過度の負担を強いることなく上記課題を解決しうる放射線透視撮影装置を提供することを目的とする。 An object of this invention is to provide the radiographic imaging apparatus which can solve the said subject, without forcing an operator an excessive burden.

本発明は、上記目的を達成するために次のような構成をとる。すなわち請求項1に記載の放射線透視撮影装置は、放射線源と、前記放射線源と対向配置され、放射線を電気信号に変換する放射線検出手段と、前記放射線源と前記放射線検出手段との間に配置され、前記放射線源から放射された放射線を所定の形状に絞る放射線形状制限手段と、前記放射線形状制限手段の位置を制御する放射線形状制限制御手段と、前記変換された電気信号を2次元濃淡情報である画像データに変換するとともに前記画像データを画像表示手段に表示する画像処理手段とから構成される放射線透視撮影装置において、収集された前記画像データの2次元濃淡情報が所定の閾値以上となる領域の座標データと、前記放射線源と前記放射線検出手段との距離とに基づいて放射線形状制限制御手段を制御する放射線形状制限制御指示手段を有することを特徴とする。 In order to achieve the above object, the present invention has the following configuration. That is, the radiographic imaging device according to claim 1 is disposed between a radiation source, a radiation detection unit that is disposed opposite to the radiation source, and converts radiation into an electrical signal, and is disposed between the radiation source and the radiation detection unit. Radiation shape limiting means for limiting the radiation emitted from the radiation source to a predetermined shape, radiation shape restriction control means for controlling the position of the radiation shape limiting means, and the converted electrical signal as two-dimensional grayscale information. In the radiographic imaging apparatus configured with image processing means for converting the image data into image data and displaying the image data on the image display means, the two-dimensional gray level information of the collected image data is equal to or greater than a predetermined threshold value. Radiation shape restriction control for controlling the radiation shape restriction control means based on the coordinate data of the region and the distance between the radiation source and the radiation detection means It characterized by having a shows means.

かかる特徴に基づいて、請求項1に記載の発明は以下のような作用を奏する。すなわち、放射線源から放射された放射線は、放射線形状制限手段により所定の形状に絞られた後に被検体に照射される。被検体に照射された放射線は、一部被検体に吸収され、その残余分が透過する。透過した放射線は、放射線検出手段により検出され、電気信号に変換される。更に電気信号は、画像処理手段により2次元濃淡情報である画像データに変換されて記憶されると共に、画像データ表示手段に表示される。これら一連の動作を時系列に繰り返す過程において、放射線形状制限制御指示手段は、収集された画像データの2次元濃淡情報が所定の閾値以上となる領域の座標データと、放射線源と放射線検出手段との距離とに基づいて放射線形状制限手段の目的位置を算出すると共に、放射線形状制限手段がその目的位置へ移動するように放射線形状制限制御手段に対して指示を出す。指示を受けた放射線形状制限制御手段は、放射線形状制限手段の位置がその目的位置に合致するように制御する。 Based on such characteristics, the invention described in claim 1 has the following effects. That is, the radiation emitted from the radiation source is irradiated to the subject after being narrowed down to a predetermined shape by the radiation shape limiting means. Part of the radiation irradiated to the subject is absorbed by the subject, and the remainder is transmitted. The transmitted radiation is detected by the radiation detection means and converted into an electrical signal. Furthermore, the electrical signal is converted into image data which is two-dimensional shading information by the image processing means and stored, and also displayed on the image data display means. In the process of repeating these series of operations in time series, the radiation shape restriction control instruction means includes coordinate data of a region in which the two-dimensional shading information of the collected image data is equal to or greater than a predetermined threshold, a radiation source, a radiation detection means, The target position of the radiation shape limiting means is calculated based on the distance between the two and the radiation shape restriction control means is instructed to move to the target position. Upon receiving the instruction, the radiation shape restriction control means performs control so that the position of the radiation shape restriction means matches the target position.

また、請求項2に記載の放射線透視撮影装置は、請求項1に記載の放射線透視撮影装置であって、前記放射線形状制限制御指示手段は、放射線形状制限が一定時間間隔もしくは不定時間間隔で中心から離れる方向へ移動するように放射線形状制限制御手段に対して指示を出すことことを特徴とする。 The radiographic imaging apparatus according to claim 2 is the radiographic imaging apparatus according to claim 1, wherein the radiation shape restriction control instructing unit is configured to center the radiation shape restriction at a constant time interval or an indefinite time interval. An instruction is given to the radiation shape restriction control means so as to move away from the direction.

かかる特徴に基づいて、請求項2に記載の発明は以下のような作用を奏する。すなわち、放射線形状制限制御指示手段は、一定時間もしくは不定時間間隔で、放射線形状制限の現在位置より所定量外側が目的位置となるように放射線形状制限手段に対して指示を出す。指示を受けた放射線形状制限手段は、放射線形状制限手段の位置がその目的位置に合致するように制御する。 Based on such characteristics, the invention described in claim 2 has the following effects. That is, the radiation shape restriction control instruction means issues an instruction to the radiation shape restriction means so that a predetermined amount outside the current position of the radiation shape restriction becomes a target position at a fixed time or an indefinite time interval. Upon receiving the instruction, the radiation shape limiting means controls the position of the radiation shape limiting means so that it matches the target position.

また、請求項3に記載の放射線透視撮影装置は、請求項1または2記載の放射線透視撮影装置であって、前記放射線形状制限制御手段の機能の有効・無効を切り替えるための放射線形状制限制御切替手段を有することを特徴とする。 The radiographic imaging apparatus according to claim 3 is the radiographic imaging apparatus according to claim 1 or 2, wherein the radiographic shape restriction control switching is performed to switch the validity / invalidity of the function of the radiation shape restriction control means. It has the means.

かかる特徴に基づいて、請求項3に記載の発明は以下のような作用を奏する。すなわち、放射線形状制限制御切替手段が有効に設定されている場合にのみ、上述のような請求項1または2の特徴に基づく作用を奏する。 Based on such characteristics, the invention described in claim 3 has the following effects. That is, only when the radiation shape restriction control switching means is set to be effective, the action based on the above-described features of the first or second aspect is exhibited.

また、請求項4に記載の放射線透視撮影装置は、請求項1乃至3記載の放射線透視撮影装置であって、前記放射線源と前記放射線検出手段との距離を測定する放射線源検出器間距離測定手段を有することを特徴とする。 A radiographic imaging apparatus according to a fourth aspect is the radiographic imaging apparatus according to the first to third aspects, wherein the distance between the radiation source and the detector for measuring the distance between the radiation source and the radiation detection means is measured. It has the means.

かかる特徴に基づいて、請求項3に記載の発明は以下のような作用を奏する。すなわち、常に前記放射線源と前記放射線検出手段との距離が測定され、検出された前記放射線源と前記放射線検出手段との距離に基づいて、放射線形状制限手段の位置が制御される。 Based on such characteristics, the invention described in claim 3 has the following effects. That is, the distance between the radiation source and the radiation detection means is always measured, and the position of the radiation shape limiting means is controlled based on the detected distance between the radiation source and the radiation detection means.

本発明の効果は次の通りである。すなわち、請求項1に記載の発明は、画像データの濃淡情報が所定の閾値を越えた領域に基づいて放射線形状制限手段の位置を制御するので、放射線形状制限手段が直接線入射部分を覆うような位置へ移動され、不要な放射線照射による被検者及び操作者の被曝線量を低減させる効果を奏する。更に、放射線形状制限手段を頻繁に操作する必要がなく、操作者の負担が軽減される。 The effects of the present invention are as follows. That is, according to the first aspect of the present invention, since the position of the radiation shape limiting means is controlled based on the region where the density information of the image data exceeds a predetermined threshold value, the radiation shape limiting means covers the direct line incident portion. This is effective for reducing the exposure dose of the subject and the operator due to unnecessary radiation irradiation. Furthermore, it is not necessary to frequently operate the radiation shape limiting means, and the burden on the operator is reduced.

また、請求項2に記載の発明は請求項1の効果を奏することに加え、被検体の移動もしくはX線条件の変動に起因して画像データ上の関心領域が移動もしくは拡大した場合であっても、関心領域の近傍へ放射線形状制限手段を移動させることができるという効果を奏する。 The invention according to claim 2 is the case where the region of interest on the image data is moved or enlarged due to the movement of the subject or the fluctuation of the X-ray condition in addition to the effects of claim 1. Also, the radiation shape limiting means can be moved to the vicinity of the region of interest.

また、請求項3に記載の発明は請求項1または2の効果を奏することに加え、放射線形状制限手段の自動制御の有効・無効を切り替えることができるので、放射線形状制限手段を操作者の判断に基づき操作することが不可欠な場合にも対応することができる。 The invention according to claim 3 can switch the validity / invalidity of automatic control of the radiation shape restricting means in addition to the effects of claim 1 or 2, so that the operator can determine the radiation shape restricting means. It is possible to cope with the case where it is indispensable to operate based on the above.

また、請求項4に記載の発明は請求項1乃至3のいずれかの効果を奏することに加え、前記放射線源と前記放射線検出手段との距離を逐次変化させることができるような放射線透視撮影装置であっても、放射線形状制限手段を常に正確に制御することができるという効果を奏する。 In addition to the effects of any one of claims 1 to 3, the invention according to claim 4 is a radiographic imaging apparatus capable of sequentially changing the distance between the radiation source and the radiation detection means. Even so, there is an effect that the radiation shape limiting means can always be accurately controlled.

本願発明の放射線透視撮影装置は、図1に示すように、放射線源1と、放射線源1と対向配置され、放射線を電気信号9に変換する放射線検出手段2と、放射線源1と放射線検出手段2との距離(以下SIDという)を測定する放射線源検出器間距離測定手段3と、放射線源1と放射線検出手段2との間に配置され、放射線源1から放射された放射線を所定の形状に絞る放射線形状制限手段5と、放射線形状制限手段5の位置を制御する放射線形状制限制御手段7と、変換された電気信号9を2次元濃淡情報である画像データ10に変換する画像処理手段11と、画像データ10を表示する画像表示手段12と、収集された画像データ10の2次元濃淡情報が所定の閾値以上となる領域の座標データと、放射線源検出器間距離測定手段3により検出されたSIDに基づいて放射線形状制限制御手段7へ指令を送る放射線形状制限制御指示手段13と、操作者の操作を受け付ける放射線形状制限手段操作スイッチ8と、放射線形状制限自動制御切換スイッチ16と、放射線形状制限制御指示手段13もしくは放射線形状制限手段操作スイッチ8のいずれを有効とするかを放射線形状制限自動制御切替スイッチ16の状態に基づいて切り替える放射線形状制限制御切替手段15とから構成され、被検体21は、前記放射線検出手段2と放射線形状制限手段5との間に配置される。 As shown in FIG. 1, the radiographic imaging apparatus of the present invention includes a radiation source 1, a radiation detection means 2 that is disposed opposite to the radiation source 1 and converts radiation into an electrical signal 9, and the radiation source 1 and radiation detection means. The distance measurement means 3 between the radiation source detectors for measuring the distance (hereinafter referred to as SID) 2 and the radiation source 1 and the radiation detection means 2 are arranged between the radiation source 1 and the radiation detection means 2, and the radiation emitted from the radiation source 1 has a predetermined shape. Radiation shape restriction means 5 for limiting to the radiation shape, radiation shape restriction control means 7 for controlling the position of the radiation shape restriction means 5, and image processing means 11 for converting the converted electric signal 9 into image data 10 which is two-dimensional density information. The image display means 12 for displaying the image data 10, the coordinate data of the area where the two-dimensional shading information of the collected image data 10 is equal to or greater than a predetermined threshold, and the distance measurement means 3 between the radiation source detectors. Radiation shape restriction control instructing means 13 for sending a command to the radiation shape restriction control means 7 based on the detected SID, a radiation shape restriction means operating switch 8 for accepting an operator's operation, and a radiation shape restriction automatic control changeover switch 16 The radiation shape restriction control instructing means 13 or the radiation shape restriction means operating switch 8 is made up of a radiation shape restriction control switching means 15 for switching based on the state of the radiation shape restriction automatic control changeover switch 16. The subject 21 is disposed between the radiation detection means 2 and the radiation shape restriction means 5.

放射線源検出器間距離測定手段3は、例えば放射線源1が放射線検出手段2に対して遠近する方向に移動可能な装置である場合には、その可動部にラックを、固定部にピニオンを備えたポテンショを配置することにより、ポテンショの抵抗値の変化としてSIDを得るようにして構成される。また、前記固定部に一定間隔でリミットスイッチを配置し、可動部の一部に突起を配置することにより、リミットスイッチの状態の組み合わせによってSIDを測定するように構成してもよい。その他放射線源検出器間距離測定手段3の構成は、信号もしくはデータとしてSIDを測定する機能を有する限りにおいて、種々変更可能である。なお、放射線源検出器間距離測定手段3は本発明に必須の構成ではなく、SIDが変化しないような装置である場合には、SIDを固定値として取り扱えばよい。 For example, when the radiation source 1 is a device that can move in a direction in which the radiation source 1 is far from or closer to the radiation detection means 2, the radiation source detector-to-detector distance measuring means 3 includes a rack in the movable part and a pinion in the fixed part. By arranging the potentiometer, the SID is obtained as a change in the resistance value of the potentiometer. Further, the limit switch may be arranged at a fixed interval on the fixed part, and the protrusion may be arranged on a part of the movable part so that the SID is measured by a combination of the limit switch states. The configuration of the other radiation source detector distance measuring means 3 can be variously changed as long as it has a function of measuring SID as a signal or data. Note that the radiation source detector distance measuring means 3 is not an essential component of the present invention, and if the SID does not change, the SID may be handled as a fixed value.

放射線形状制限手段5は、従来技術で説明したとおり、図6に示すような機構としてコリメータ6に内蔵されている。放射線形状制限手段5として、コリメータ6の中心を基準として回転移動、および当該中心から遠近する方向に平行移動可能な放射線形状制限手段5a、5bを具備している。また、放射線源1の焦点、コリメータ6の回転中心、および、放射線検出手段2の中心は同一軸心上に配置されている。従って、画像データ10の中心と、放射線形状制限手段5a、5bの回転中心は一致している。 As described in the prior art, the radiation shape limiting means 5 is built in the collimator 6 as a mechanism as shown in FIG. The radiation shape restriction means 5 includes radiation shape restriction means 5a and 5b that can be rotated and moved in the direction far from and near the center of the collimator 6 as a reference. Further, the focal point of the radiation source 1, the rotation center of the collimator 6, and the center of the radiation detection means 2 are arranged on the same axis. Therefore, the center of the image data 10 coincides with the rotation center of the radiation shape limiting means 5a, 5b.

本願発明の放射線透視撮影装置は、以下のように機能する。放射線源1から放射された放射線は、放射線形状制限手段5a、5bにより形状が制限されたうえで、被検体21上に照射される。被検体21上に照射された放射線は、被検体21により一部吸収されて、透過放射線が放射線検出手段2上に到達する。透過放射線は電気信号9に変換され、さらに画像処理手段11によって2次元濃淡情報である画像データ10に変換され、画像表示手段12に表示される。 The radiographic imaging apparatus of the present invention functions as follows. The radiation emitted from the radiation source 1 is irradiated onto the subject 21 after the shape is limited by the radiation shape limiting means 5a and 5b. The radiation irradiated onto the subject 21 is partially absorbed by the subject 21 and the transmitted radiation reaches the radiation detection means 2. The transmitted radiation is converted into an electrical signal 9, further converted into image data 10 that is two-dimensional shading information by the image processing unit 11, and displayed on the image display unit 12.

図2aは、画像表示手段12に表示された画像データ10である。画像データ10には、関心領域101が含まれているものの、被検体21の肺野部分領域102および被検体21に照射しない直接線入射部分領域103も含まれている。図2bは当該画像データ10の濃度ヒストグラムである。直接線入射部分領域103の濃度は関心領域101の濃度に比べて非常に大きいため、全体として画像データ10のダイナミックレンジが低下している。また、関心領域101以外の部分に放射線を照射しているため、被検体21を無用に被曝させるばかりか、散乱線の影響により、操作者にも過度の被曝を与えている。従って、放射線形状制限手段5a、5bを適切な位置へ移動させて放射線を絞り、関心領域101以外への放射線の照射を極力少なくすることが望ましい。 FIG. 2 a shows the image data 10 displayed on the image display means 12. Although the region of interest 101 is included in the image data 10, the lung field partial region 102 of the subject 21 and the direct ray incident partial region 103 that does not irradiate the subject 21 are also included. FIG. 2 b is a density histogram of the image data 10. Since the density of the direct ray incident partial region 103 is much larger than the density of the region of interest 101, the dynamic range of the image data 10 as a whole is lowered. In addition, since radiation is irradiated to portions other than the region of interest 101, not only the subject 21 is unnecessarily exposed, but also the operator is excessively exposed due to the influence of scattered radiation. Therefore, it is desirable that the radiation shape limiting means 5a, 5b is moved to an appropriate position to narrow down the radiation, and radiation other than the region of interest 101 is minimized.

本願発明の放射線透視撮影装置は、関心領域101以外への放射線の照射を極力少なくするために、以下のように機能する。 The radiographic imaging apparatus of the present invention functions as follows in order to minimize the irradiation of radiation other than the region of interest 101 as much as possible.

放射線形状制限制御指示手段13は、図3に示すように、画像処理手段11から画像データ10に基づいて、画像データ10の各画素の濃度値Pijと、予め設定された濃度の閾値Pth0およびPth1とを比較して、Pth1を超える領域の値を1、Pth0より小さい領域の値を0、それ以外の領域の値を−1とする評価値マップ14を作成する。 As shown in FIG. 3, the radiation shape restriction control instructing means 13 is based on the image data from the image processing means 11 and the density value P ij of each pixel of the image data 10 and a preset density threshold value P th0. And P th1 are compared to create an evaluation value map 14 in which the value of the region exceeding P th1 is 1, the value of the region smaller than P th0 is 0, and the value of the other region is -1.

なお、閾値Pth0、Pth1は数値を入力することにより設定しても良く、また画像表示手段12上で画像上の任意の領域を選択させてその領域の濃淡データの平均値を採用することにより設定しても良い。また、あらかじめ固定の値を装置に記憶させておく方法であってもよい。その他閾値を設定する機能を有する限りにおいて種々変更可能である。 The threshold values P th0 and P th1 may be set by inputting numerical values, or an arbitrary area on the image is selected on the image display means 12 and the average value of the grayscale data in that area is adopted. You may set by. Alternatively, a method may be used in which a fixed value is stored in advance in the apparatus. Various other changes can be made as long as it has a function of setting a threshold.

上述のようにして作成した評価値マップ14を元に、放射線形状制限手段5の目的位置を以下に例示する手法により算出する。 Based on the evaluation value map 14 created as described above, the target position of the radiation shape limiting means 5 is calculated by the method exemplified below.

(目的位置算出方法例1)まず、評価値マップ14の値の総和S1を計算しておく。次に、図4に示すように、評価値マップ14上における放射線形状制限手段5aの陰影の位置を算出し、放射線形状制限手段5aが評価値マップ14の中心を基準として回転(Δra)もしくは平行移動(ΔTa)した場合に、評価値マップ14上の放射線形状制限手段5aが位置すると推定される領域の値を0に置き換えるとともに、評価値マップ14の値の総和S2を計算する。ここで、評価値マップ14上の放射線形状制限手段5aが位置する領域を推定するには、予め放射線形状制限手段5aの形状を記憶しておき、放射線源検出器間距離測定手段3により検出されたSIDと、放射線源1と放射線形状制限手段5aとの距離(以下SSDという)との比により評価値マップ14上における拡大率を計算すればよい。また、評価値マップ14上の位置から、放射線形状制限手段5aの位置は、逆にSSDとSIDとの比により計算可能である。 (Target Position Calculation Method Example 1) First, the sum S1 of the values in the evaluation value map 14 is calculated. Next, as shown in FIG. 4, the position of the shadow of the radiation shape limiting means 5a on the evaluation value map 14 is calculated, and the radiation shape limiting means 5a is rotated (Δra) or parallel with the center of the evaluation value map 14 as a reference. When moved (ΔTa), the value of the region where the radiation shape limiting means 5a on the evaluation value map 14 is estimated to be located is replaced with 0, and the sum S2 of the values of the evaluation value map 14 is calculated. Here, in order to estimate the region where the radiation shape restriction means 5a is located on the evaluation value map 14, the shape of the radiation shape restriction means 5a is stored in advance and detected by the distance measuring means 3 between the radiation source detectors. The enlargement ratio on the evaluation value map 14 may be calculated based on the ratio between the SID and the distance between the radiation source 1 and the radiation shape limiting means 5a (hereinafter referred to as SSD). Further, from the position on the evaluation value map 14, the position of the radiation shape limiting means 5a can be calculated by the ratio of SSD and SID.

この計算を全ての回転方向および平行移動方向について行い、S2が最も小さくなる回転方向および平行移動方向の組み合わせを決定して、放射線形状制限手段5aの目的位置(回転角度,中心からの距離)を求める。ただし、全ての組み合わせにおいてS1<S2である場合には、目的位置として、放射線形状制限手段5aの現在位置を採用する。 This calculation is performed for all rotation directions and parallel movement directions, the combination of the rotation direction and the parallel movement direction that minimizes S2 is determined, and the target position (rotation angle, distance from the center) of the radiation shape limiting means 5a is determined. Ask. However, when S1 <S2 in all combinations, the current position of the radiation shape limiting means 5a is adopted as the target position.

かかる場合において、ΔTa及びΔraは、上述の一連の制御を行う周期と放射線形状制限手段5の移動速度により決定すればよい。例えば、制御周期が40ms、放射線形状制限手段5の移動速度が100mm/sであるとき、ΔTa=4mm程度にすればよい。 In such a case, ΔTa and Δra may be determined based on the above-described series of control periods and the moving speed of the radiation shape limiting means 5. For example, when the control period is 40 ms and the moving speed of the radiation shape limiting means 5 is 100 mm / s, ΔTa = 4 mm may be set.

放射線形状制限手段5bの目的位置についても同様に算出する。 The target position of the radiation shape limiting means 5b is calculated in the same way.

(目的位置算出方法例2)図5aに示すように、評価値マップ14上の0または1の領域を画像中心から検索して、ベクトルVo(φ){0≦φ≦2π}を生成する。ここで、φは、分解能Δφの離散値とする。 (Target Position Calculation Method Example 2) As shown in FIG. 5a, a region of 0 or 1 on the evaluation value map 14 is searched from the center of the image to generate a vector Vo (φ) {0 ≦ φ ≦ 2π}. Here, φ is a discrete value of resolution Δφ.

一方、図5bに示すように、放射線形状制限手段5aの陰影が、画像中心を基準として距離ta、回転角度φaに位置する場合のベクトルVa(ta,φ){φa−NaΔφ/2≦φ≦φa+NaΔφ/2}を求める。ここでNaは、分解能Δφである場合における画像中心から放射線形状制限手段5aへのベクトルの本数であって、放射線形状制限手段5aの形状とtaにより定まる。このとき、φa、taを変数として、Va(ta,φ){φa−NaΔφ/2≦φ≦φa+NaΔφ/2}と、Vo(φ) {φa−NaΔφ/2≦φ≦φa+NaΔφ/2}との最小距離を定義する以下の式に基づいて最適なta、φaを求め、放射線形状制限手段5aの陰影の目的位置とする。 On the other hand, as shown in FIG. 5b, the vector Va (ta, φ) {φa−NaΔφ / 2 ≦ φ ≦ when the shadow of the radiation shape limiting means 5a is located at the distance ta and the rotation angle φa with respect to the image center. φa + NaΔφ / 2} is obtained. Here, Na is the number of vectors from the image center to the radiation shape limiting means 5a when the resolution is Δφ, and is determined by the shape of the radiation shape limiting means 5a and ta. At this time, with φa and ta as variables, Va (ta, φ) {φa−NaΔφ / 2 ≦ φ ≦ φa + NaΔφ / 2} and Vo (φ) {φa−NaΔφ / 2 ≦ φ ≦ φa + NaΔφ / 2} Based on the following formula defining the minimum distance, optimum ta and φa are obtained and set as the target position of the shadow of the radiation shape limiting means 5a.

評価値マップ14上の値のうち、上記算出した(ta、φa)に位置する放射線形状制限手段5の陰影の領域を0に置き換える。 Of the values on the evaluation value map 14, the shadow area of the radiation shape limiting means 5 located at the calculated (ta, φa) is replaced with 0.

次に、前記置き換えられた評価値マップ14から、再度Voを求めた上で、放射線形状制限手段5bの陰影についても、同様の手順でtb,φbを求める。最後に、評価値マップ14上の放射線形状制限手段5a、5bの陰影の目的位置(ta、φa)、(tb、φb)を、SSDとSIDとの比に基づいて放射線形状制限手段5a、5bの目的位置に換算する。 Next, after obtaining Vo again from the replaced evaluation value map 14, tb and φb are obtained in the same procedure for the shadow of the radiation shape limiting means 5b. Finally, the target positions (ta, φa) and (tb, φb) of the shadows of the radiation shape restriction means 5a and 5b on the evaluation value map 14 are determined based on the ratio of SSD and SID. Convert to the target position.

以上放射線形状制限手段5a、5bの目的位置を算出する方法について例示したが、画像データ10および放射線源検出器間距離SIDとに基づいて放射線形状制限手段5a、5bの位置を算出する限りにおいて、算出方法を種々変更可能である。 As described above, the method for calculating the target position of the radiation shape limiting means 5a, 5b has been exemplified. However, as long as the position of the radiation shape limiting means 5a, 5b is calculated based on the image data 10 and the distance SID between the radiation source detectors, Various calculation methods can be changed.

放射線形状制限制御指示手段13は、上述の通り求めた放射線形状制限手段5a、5bの目的位置に基づいて、放射線形状制限制御手段7に動作指令を出力する。動作指令を受け取った放射線形状制限制御手段7は、モータを駆動して放射線形状制限手段5を指令された目的位置へ移動させる。 The radiation shape restriction control instruction means 13 outputs an operation command to the radiation shape restriction control means 7 based on the target positions of the radiation shape restriction means 5a and 5b obtained as described above. The radiation shape restriction control means 7 that has received the operation command drives the motor to move the radiation shape restriction means 5 to the commanded target position.

上述の手順を適切な制御周期で繰り返し行うことにより、放射線形状制限手段5は、関心領域101の周囲をカバーする位置へ移動し、直接線入射部分103や、被検体21の肺野部分領域102など、検査に不要な領域への放射線の照射を抑制することができる。 By repeatedly performing the above-described procedure at an appropriate control cycle, the radiation shape limiting means 5 moves to a position that covers the periphery of the region of interest 101, and the direct ray incident portion 103 or the lung field partial region 102 of the subject 21. For example, it is possible to suppress radiation irradiation to an area unnecessary for inspection.

しかし、上述のように最適な位置に放射線形状制限手段5を移動させたとしても、装置と被検体21との相対位置が変化した場合には、放射線形状制限手段5の陰影が関心領域101の一部にかかってしまう可能性がある。そこで上述の制御に、上述の制御周期より長い期間ごとに、放射線形状制限手段5a、5bの目的位置を画像データ10の中心から遠ざかる位置に設定する制御を追加することにより、放射線形状制限手段5が関心領域101の一部にかかってしまうのを防ぐことができる。放射線形状制限手段5を強制的に中心から遠ざかる方向へ平行移動させた結果、直接線入射領域などが発生した場合には、評価値マップ14上に値1の領域が発生するので、その領域をカバーするように放射線形状制限手段5の位置が制御される。従って、放射線形状制限手段5の位置は、関心領域101の周囲の最適な位置に維持されることとなる。 However, even if the radiation shape restriction means 5 is moved to the optimum position as described above, if the relative position between the apparatus and the subject 21 changes, the shadow of the radiation shape restriction means 5 causes the region of interest 101 to be shaded. There is a possibility of some. Therefore, by adding control to the above-described control for setting the target position of the radiation shape limiting means 5a, 5b away from the center of the image data 10 every period longer than the above control cycle, the radiation shape limiting means 5 Can be prevented from being applied to a part of the region of interest 101. As a result of forcibly moving the radiation shape restricting means 5 in the direction away from the center, if a direct line incident region or the like is generated, a region of value 1 is generated on the evaluation value map 14. The position of the radiation shape limiting means 5 is controlled so as to cover. Therefore, the position of the radiation shape limiting means 5 is maintained at an optimum position around the region of interest 101.

なお、以上の機能は、放射線形状制限自動制御切替スイッチ16を有効に設定している場合においてのみ動作するように設計されており、放射線形状制限手段5の位置を固定したい場合や、関心領域の一部領域を更に放射線形状制限手段5によりカバーしたいような特別な場合には、放射線形状制限自動制御切替スイッチ16を無効にすればよい。放射線形状制限自動制御切替スイッチ16を無効にした状態では、放射線形状制限制御切替手段15により、放射線形状制限手段操作スイッチ8の入力が有効となり、操作者が放射線形状制限手段操作スイッチ8を操作することにより放射線形状制限手段5を移動させることができる。   The above function is designed to operate only when the radiation shape restriction automatic control changeover switch 16 is set to be effective. If the position of the radiation shape restriction means 5 is to be fixed, In a special case where it is desired to further cover a partial region with the radiation shape restriction means 5, the radiation shape restriction automatic control changeover switch 16 may be disabled. In a state in which the radiation shape restriction automatic control changeover switch 16 is disabled, the radiation shape restriction control switching means 15 enables the input of the radiation shape restriction means operation switch 8, and the operator operates the radiation shape restriction means operation switch 8. Thus, the radiation shape limiting means 5 can be moved.

また、画像データ10の中心すなわち、放射線束の中心を基準として関心領域101の外縁を定めて放射線形状制限手段5の目的位置を定めることとしたが、任意の方法で指定された関心領域の中心を基準としてもよい。   In addition, the outer edge of the region of interest 101 is determined based on the center of the image data 10, that is, the center of the radiation bundle, and the target position of the radiation shape limiting means 5 is determined, but the center of the region of interest designated by an arbitrary method is used. May be used as a reference.

また、評価値マップ14の生成時に各画素に割り当てる値を0,1,−1のいずれかとしたが、それぞれに重み付けをしてもよい。特に、被曝線量低減に重きを置く場合は、値1をより大きな値にすればよい。また、関心領域に放射線形状制限手段5が重ならないようにすることに重きを置く場合には、値−1をより小さい値にすればよい。また、これらの値を操作者に適宜変更させることとしてもよい。   Moreover, although the value assigned to each pixel at the time of generating the evaluation value map 14 is one of 0, 1, and -1, each may be weighted. In particular, when emphasizing the reduction of exposure dose, the value 1 may be set to a larger value. Further, when placing emphasis on preventing the radiation shape limiting means 5 from overlapping the region of interest, the value −1 may be set to a smaller value. Moreover, it is good also as making an operator change these values suitably.

本発明の放射線透視撮影装置の全体像を示す図である。It is a figure which shows the whole image of the radiographic imaging apparatus of this invention. 本発明の放射線制限手段の詳細な構造を示す図である。It is a figure which shows the detailed structure of the radiation limiting means of this invention. 本発明の評価値マップを示す図である。It is a figure which shows the evaluation value map of this invention. 本発明の評価値マップ上での放射線形状制限手段の陰影を示す図である。It is a figure which shows the shadow of the radiation shape restriction | limiting means on the evaluation value map of this invention. 本発明の評価値計算用のベクトルを示す図である。It is a figure which shows the vector for evaluation value calculation of this invention. 従来技術にかかる放射線透視撮影装置を示す図である。It is a figure which shows the radiographic imaging apparatus concerning a prior art. コリメータの詳細な構造を示す図である。It is a figure which shows the detailed structure of a collimator. 従来の放射線透視撮影装置で撮影した画像の一例を示す図である。It is a figure which shows an example of the image image | photographed with the conventional radiographic imaging apparatus.

符号の説明Explanation of symbols

1. 放射線源
2. 放射線検出手段
3. 放射線源検出器間距離測定手段
5、5a、5b. 放射線形状制限手段
6. コリメータ
7. 放射線形状制限制御手段
8. 放射線形状制限手段操作スイッチ
9. 電気信号
10. 画像データ
11. 画像処理手段
12. 画像表示手段
13. 放射線形状制限制御指示手段
14. 評価値マップ
15. 放射線形状制限制御切替手段
16. 放射線形状制限自動制御切替スイッチ16
21. 被検体
30. 放射線束
31. 形状が制限された放射線束
50. ベース版
51a、51b.回転リング
52a、52b.平行駆動用モータ
53a、53b.平行駆動用ベルト
54a、54b.ボールねじ
55a、55b.放射線形状制限手段保持部材
56a、56b.回転駆動用モータ
57a、57b.回転駆動用ベルト
101.関心領域
102.肺野部分領域
103.直接線入射部分領域
1. 1. Radiation source 2. Radiation detection means Radiation source detector distance measuring means 5, 5a, 5b. 5. Radiation shape limiting means Collimator 7. 7. Radiation shape restriction control means 8. Radiation shape limiting means operation switch Electrical signal10. Image data 11. Image processing means 12. Image display means 13. Radiation shape restriction control instruction means 14. Evaluation value map 15. Radiation shape restriction control switching means 16. Radiation shape restriction automatic control switch 16
21. Subject 30. Radiation bundle 31. Radiation bundle with limited shape 50. Base versions 51a, 51b. Rotating rings 52a, 52b. Parallel drive motors 53a, 53b. Parallel drive belts 54a, 54b. Ball screws 55a, 55b. Radiation shape restriction means holding members 56a, 56b. Rotation drive motors 57a, 57b. Rotation drive belt 101. Region of interest 102. Lung field partial region 103. Direct line incident partial area

Claims (4)

放射線源と、前記放射線源と対向配置され、放射線を電気信号に変換する放射線検出手段と、前記放射線源と前記放射線検出手段との間に配置され、前記放射線源から放射された放射線を所定の形状に絞る放射線形状制限手段と、前記放射線形状制限手段の位置を制御する放射線形状制限制御手段と、前記変換された電気信号を2次元濃淡情報である画像データに変換するとともに前記画像データを画像表示手段に表示する画像処理手段とから構成される放射線透視撮影装置において、収集された前記画像データの2次元濃淡情報が所定の閾値以上となる領域の座標データと、前記放射線源と前記放射線検出手段との距離とに基づいて放射線形状制限制御手段を制御する放射線形状制限制御指示手段を有することを特徴とする放射線透視撮影装置。 A radiation source, a radiation detection means arranged opposite to the radiation source, for converting radiation into an electrical signal, and disposed between the radiation source and the radiation detection means, and the radiation emitted from the radiation source Radiation shape restriction means for narrowing down to a shape, radiation shape restriction control means for controlling the position of the radiation shape restriction means, the converted electrical signal is converted into image data that is two-dimensional grayscale information, and the image data is converted into an image. In a radiographic imaging apparatus comprising image processing means for displaying on a display means, coordinate data of a region where the two-dimensional gray level information of the collected image data is a predetermined threshold value, the radiation source, and the radiation detection Radiographic imaging having radiation shape restriction control instruction means for controlling the radiation shape restriction control means based on the distance to the means Location. 前記放射線形状制限制御手段は、一定時間間隔もしくは不定時間間隔で中心から離れる方向へ移動する動作を伴うことを特徴とする請求項1に記載の放射線透視撮影装置。 The radiographic imaging apparatus according to claim 1, wherein the radiation shape restriction control unit is accompanied by an operation of moving in a direction away from the center at a constant time interval or an indefinite time interval. 前記放射線形状制限制御手段の機能の有効・無効を切り替えるための放射線形状制限制御切替手段を有することを特徴とする請求項1または2に記載の放射線透視撮影装置。 The radiographic imaging apparatus according to claim 1, further comprising a radiation shape restriction control switching unit configured to switch the function of the radiation shape restriction control unit between valid and invalid. 前記放射線源と前記放射線検出手段との距離を測定する放射線源検出器間距離測定手段を有することを特徴とする請求項1乃至3に記載の放射線透視撮影装置。
4. The radiographic imaging apparatus according to claim 1, further comprising a radiation source detector distance measuring unit that measures a distance between the radiation source and the radiation detecting unit. 5.
JP2005254767A 2005-09-02 2005-09-02 Radiographic apparatus Pending JP2007061537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254767A JP2007061537A (en) 2005-09-02 2005-09-02 Radiographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254767A JP2007061537A (en) 2005-09-02 2005-09-02 Radiographic apparatus

Publications (1)

Publication Number Publication Date
JP2007061537A true JP2007061537A (en) 2007-03-15

Family

ID=37924410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254767A Pending JP2007061537A (en) 2005-09-02 2005-09-02 Radiographic apparatus

Country Status (1)

Country Link
JP (1) JP2007061537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213704A (en) * 2008-03-11 2009-09-24 Toshiba Corp X-ray diagnostic apparatus and aperture movement control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428613U (en) * 1987-08-13 1989-02-20
JPH10200816A (en) * 1997-01-13 1998-07-31 Shimadzu Corp X-ray photographing device
JP2005027823A (en) * 2003-07-11 2005-02-03 Canon Inc Roentgenography apparatus
JP2005198975A (en) * 2004-01-19 2005-07-28 Toshiba Corp X-ray diagnostic apparatus and its method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428613U (en) * 1987-08-13 1989-02-20
JPH10200816A (en) * 1997-01-13 1998-07-31 Shimadzu Corp X-ray photographing device
JP2005027823A (en) * 2003-07-11 2005-02-03 Canon Inc Roentgenography apparatus
JP2005198975A (en) * 2004-01-19 2005-07-28 Toshiba Corp X-ray diagnostic apparatus and its method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213704A (en) * 2008-03-11 2009-09-24 Toshiba Corp X-ray diagnostic apparatus and aperture movement control program

Similar Documents

Publication Publication Date Title
JP4937927B2 (en) X-ray CT apparatus and imaging condition determination method in X-ray CT apparatus
KR102372165B1 (en) X-ray imaging apparatus, image processing apparatus and method for image processing
US9848840B2 (en) X-ray diagnostic apparatus comprising an X-ray filter movable along an imaging axis of X-rays
CN104783820B (en) Method of tracking region of interest, radiographic apparatus, and control method thereof
JP2012110710A (en) Region of interest determination for x-ray imaging
JP6906905B2 (en) X-ray diagnostic equipment
JP2010269048A (en) X-ray ct system
US9265471B2 (en) Determination of a multi-energy image
US20220330911A1 (en) Geometric calibration marker detection in spectral tomosynthesis system
JPWO2015020072A1 (en) X-ray CT apparatus and correction processing apparatus
US7835485B2 (en) Method for scattered radiation correction in x-ray imaging devices
US7502439B2 (en) Radiographic apparatus and method of using the same
US20220071573A1 (en) Upright advanced imaging apparatus, system and method for the same
JP4943221B2 (en) Radiation imaging apparatus and tomographic image generation method
JP4095091B2 (en) Computer tomography apparatus and method and program for determining rotational center position
JP2007061537A (en) Radiographic apparatus
JP2006288719A (en) X-ray ct photographing method and device
JP5068604B2 (en) Radiation CT system
JP2008125610A (en) Radiographic x-ray equipment
JP2022547410A (en) Multispectral X-ray image using conventional equipment
WO2018002281A2 (en) A cabinet x-ray system for imaging a specimen and associated method
WO2016051996A1 (en) Fluoroscopy device and multi-energy imaging method
JP6815209B2 (en) X-ray CT device
JP2021029742A (en) X-ray image diagnostic apparatus
JP4758747B2 (en) X-ray measuring apparatus, X-ray measuring method and X-ray measuring program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130