JP2007056214A - Titanium oxide composition and its forming method - Google Patents

Titanium oxide composition and its forming method Download PDF

Info

Publication number
JP2007056214A
JP2007056214A JP2005246395A JP2005246395A JP2007056214A JP 2007056214 A JP2007056214 A JP 2007056214A JP 2005246395 A JP2005246395 A JP 2005246395A JP 2005246395 A JP2005246395 A JP 2005246395A JP 2007056214 A JP2007056214 A JP 2007056214A
Authority
JP
Japan
Prior art keywords
titanium oxide
coating layer
composition
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246395A
Other languages
Japanese (ja)
Inventor
Akira Nishimura
彰 西村
Fukuji Suzuki
福二 鈴木
Masahiro Hashimoto
正博 橋本
Shingo Okubo
真吾 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOKEN KOGYO KK
Toyota Motor Corp
Original Assignee
NIPPON KOKEN KOGYO KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOKEN KOGYO KK, Toyota Motor Corp filed Critical NIPPON KOKEN KOGYO KK
Priority to JP2005246395A priority Critical patent/JP2007056214A/en
Publication of JP2007056214A publication Critical patent/JP2007056214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium composition which can combine good designability and good weatherability when applied as a pearl luster pigment. <P>SOLUTION: The titanium oxide composition comprises a scale-like base material composed of titanium oxide, a second titanium oxide coating layer formed onto the surface of the base material and composed of rutile-type titanium oxide, and a top layer formed onto the surface of the second titanium oxide coating layer and composed of alumina and/or zirconia. Where weatherability is improvable while retaining designability by forming the second titanium oxide coating layer with use of rutile-type titanium oxide having comparatively low photocatalytic activity and further by coating its surface with the top layer composed of alumina, zirconia and the like, giving small optical influence and enabling to decrease the photocatalytic activity by coating the titanium oxide. The second titanium oxide coating layer suitably has ≥20 nm and ≤100 nm thickness. When the half bandwidth of titanium oxide at a (111) peak measured by XRD is ≤0.59°, crystallinity of titanium oxide becomes high, bringing the level of the photocatalytic activity into out of problems in weatherability. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、顔料として用いた場合に高虹彩色を発現できる酸化チタン組成物及びその製造方法に関する。   The present invention relates to a titanium oxide composition capable of exhibiting a high iris color when used as a pigment, and a method for producing the same.

自動車などの外装色などとして、パール感を出すパール光沢顔料が用いられている。パール光沢顔料の光輝感を向上する目的で、70質量%〜95質量%のチタン組成物を含有する高虹彩色酸化チタン組成物が提案されている(特許文献1)。   A pearly luster pigment that gives a pearly feeling is used as an exterior color for automobiles. In order to improve the brightness of the pearly luster pigment, a high iris color titanium oxide composition containing 70% by mass to 95% by mass of a titanium composition has been proposed (Patent Document 1).

特許文献1は、干渉色による色彩が認められ得る新規で卓越した光輝感、色の鮮明度を発現し、しかも余色が濁らない高虹彩色酸化チタン組成物を提供する目的で、薄片状基質の表面上に被覆層を形成した被覆組成物であり、薄片状基質の板形の大きさが50〜800μmで且つ被覆層の厚さが0.05〜0.6μmであり、該被覆層は、70重量%〜95重量%のチタン組成物を含有する被覆組成物からチタン組成物の被覆層を剥離して形成される剥離組成物を高虹彩色酸化チタン組成物とすることを開示している。
特開2003−55574号公報
Patent Document 1 discloses a flaky substrate for the purpose of providing a high-irradiation titanium oxide composition that expresses a novel and excellent brilliant sensation in which a color due to an interference color can be recognized, color sharpness, and that does not turbidity. A coating composition in which a coating layer is formed on the surface of the substrate, wherein the plate-like size of the flaky substrate is 50 to 800 μm, and the thickness of the coating layer is 0.05 to 0.6 μm. , And discloses that a release composition formed by peeling a coating layer of a titanium composition from a coating composition containing 70% to 95% by weight of a titanium composition is a high iris titanium oxide composition. Yes.
JP 2003-55574 A

しかしながら、特許文献1に記載の酸化チタン組成物は塗料中に含有させた場合の耐候性が十分ではなかった。   However, the titanium oxide composition described in Patent Document 1 has insufficient weather resistance when it is contained in the paint.

本発明は上記実情に鑑み為されたものであり、パール光沢顔料として適用した場合に意匠性と耐候性とを両立できる酸化チタン組成物及びその製造方法を提供することを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it a subject which should be solved to provide the titanium oxide composition which can make designability and a weather resistance compatible, and its manufacturing method, when it applies as a pearl luster pigment. .

上記課題を解決する目的で本発明者らが鋭意検討を行った結果、従来技術における酸化チタン組成物が耐候性に優れない理由として酸化チタンによる光触媒能による影響が推測された。そこで、本発明者らは意匠性に影響を与えることなく光触媒能を低下させることを目指して検討した結果、以下の発明を完成した。   As a result of intensive studies by the present inventors for the purpose of solving the above-mentioned problems, the influence of the photocatalytic ability due to titanium oxide was presumed as the reason why the titanium oxide composition in the prior art is not excellent in weather resistance. Accordingly, as a result of studies aimed at reducing the photocatalytic ability without affecting the designability, the present inventors have completed the following invention.

(1)すなわち、上記課題を解決する本発明の酸化チタン組成物は、酸化チタンからなる鱗片状の基材と、
該基材表面に形成され且つルチル型酸化チタンから構成される二次酸化チタン被覆層と、
該二次酸化チタン被覆層表面に形成され且つアルミナ及び/又はジルコニアから構成される表面層と、を有することを特徴とする。
(1) That is, the titanium oxide composition of the present invention that solves the above problems includes a scale-like base material made of titanium oxide,
A secondary titanium oxide coating layer formed on the substrate surface and composed of rutile-type titanium oxide;
And a surface layer formed on the surface of the secondary titanium oxide coating layer and composed of alumina and / or zirconia.

つまり、比較的光触媒能が低いルチル型酸化チタンからなる二次酸化チタン被覆層を酸化チタン(基材、二次酸化チタン被覆層)の表面に形成し、更に、その表面に光学的な影響が少なく、酸化チタンを被覆することができるアルミナ、ジルコニアなどから形成される表面層を設けることで、意匠性を保ったまま、耐候性を向上することに成功した。   That is, a secondary titanium oxide coating layer made of rutile type titanium oxide having a relatively low photocatalytic ability is formed on the surface of titanium oxide (base material, secondary titanium oxide coating layer), and the surface is optically affected. By providing a surface layer made of alumina, zirconia, or the like that can be coated with a small amount of titanium oxide, we have succeeded in improving the weather resistance while maintaining the design.

ここで、このような酸化チタン組成物は広がり方向の大きさが50μm以上800μm以下、厚みが0.05μm以上0.6μm以下である薄板乃至鱗片状の形状をもつことが望ましい。大きさを50μm以上にすることで製造が容易になり、800μm以下にすることで十分な機械的強度が得られる。   Here, it is desirable that such a titanium oxide composition has a thin plate or scale-like shape having a size in the spreading direction of 50 μm to 800 μm and a thickness of 0.05 μm to 0.6 μm. Manufacturing is facilitated by setting the size to 50 μm or more, and sufficient mechanical strength can be obtained by setting the size to 800 μm or less.

更に、前記二次酸化チタン被覆層の厚みは20nm以上、100nm以下であることが望ましい。20nm以上にすることで、十分な耐候性が実現でき、100nm以下にすることで、二次酸化チタン被覆層の基材からの剥離発生などが防止できる。   Furthermore, the thickness of the secondary titanium oxide coating layer is desirably 20 nm or more and 100 nm or less. When the thickness is 20 nm or more, sufficient weather resistance can be realized, and when the thickness is 100 nm or less, the occurrence of peeling of the secondary titanium oxide coating layer from the base material can be prevented.

そして、XRDにより測定した酸化チタンの(111)ピークの半値幅が0.59°以下であることが望ましい。半値幅を0.59°以下にすると、酸化チタンの結晶度が高くなり、耐候性が問題にならない程度の光触媒能になるからである。   And it is desirable that the half width of the (111) peak of titanium oxide measured by XRD is 0.59 ° or less. This is because, when the half width is 0.59 ° or less, the crystallinity of titanium oxide is increased, and the photocatalytic ability is such that the weather resistance does not become a problem.

ここで、前記基材はアナターゼ型酸化チタンから構成されることが望ましい。アナターゼ型の酸化チタンのほうが製造しやすいからである。   Here, it is preferable that the base material is composed of anatase-type titanium oxide. This is because anatase type titanium oxide is easier to manufacture.

(2)上記課題を解決する本発明の酸化チタン組成物の製造方法は、酸化チタンからなる鱗片状の基材の表面に酸化チタン又は水酸化チタンを含有する組成物を被覆する工程と、
その後、アルミナ及び/又はジルコニアから構成される表面層を形成する工程と、
前記被覆工程後に、700℃以上で処理し、被覆した前記組成物をルチル型酸化チタンとした二次酸化チタン被覆層を形成する熱処理工程と、を有することを特徴とする。
(2) The method for producing a titanium oxide composition of the present invention that solves the above-described problem includes a step of coating a surface of a scaly substrate made of titanium oxide with a composition containing titanium oxide or titanium hydroxide,
Thereafter, a step of forming a surface layer composed of alumina and / or zirconia;
And a heat treatment step of forming a secondary titanium oxide coating layer that is treated at 700 ° C. or higher after the coating step and the coated composition is made of rutile titanium oxide.

ここで、700℃以上で処理することにより、二次酸化チタン被覆層を構成する酸化チタンをルチル型にすることができる。ルチル型にすることで前述したように、塗料に適用した場合の耐候性が向上できる。   Here, the titanium oxide which comprises a secondary titanium oxide coating layer can be made into a rutile type by processing at 700 degreeC or more. By using a rutile type, as described above, the weather resistance when applied to a paint can be improved.

ここで、前記被覆工程における前記組成物の添加量は、前記基材の質量を100質量部とした場合に、前記二次酸化チタン被覆層が22質量部以上、24質量部以下となる量であることが望ましい。   Here, the amount of the composition added in the coating step is such that when the mass of the substrate is 100 parts by mass, the secondary titanium oxide coating layer is 22 parts by mass or more and 24 parts by mass or less. It is desirable to be.

本発明の酸化チタン組成物は塗料組成物に適用した場合に、干渉色による色彩が認められ得る新規で卓越した光輝感、色の鮮明度を発現するとともに、高い耐候性を実現することができた。   When the titanium oxide composition of the present invention is applied to a coating composition, it exhibits a new and excellent radiance and color sharpness that can be recognized by interference colors, and can achieve high weather resistance. It was.

本発明の酸化チタン組成物は塗料組成物中に含有させることでパール光沢をする用途に好適な組成物であり、薄板乃至鱗片状の形状をもつ。好ましい広がり方向の大きさは50μm以上800μm以下、更に好ましくは100μm以上700μm以下程度である。好ましい厚みは0.1μm以上10μm以下、更に好ましくは0.3μm以上1.0μm以下程度である。広がり方向の大きさをこの範囲内にすることで製造が容易になるとともに、十分な機械的強度が得られる。この大きさは後述する基材の大きさを制御することで概ね制御できる。本酸化チタン組成物は基材と二次酸化チタン被覆層と表面層とから構成される。また、厚みは必要とされる干渉色に応じて選択される。干渉色を強調するためには厚みが揃っていることが望ましい。   The titanium oxide composition of the present invention is a composition suitable for the application of pearly luster by being contained in a coating composition, and has a thin plate or scale-like shape. The size in the spreading direction is preferably 50 μm or more and 800 μm or less, more preferably about 100 μm or more and 700 μm or less. The preferred thickness is about 0.1 μm to 10 μm, more preferably about 0.3 μm to 1.0 μm. By making the size in the spreading direction within this range, manufacturing becomes easy and sufficient mechanical strength can be obtained. This size can be generally controlled by controlling the size of the substrate described later. This titanium oxide composition is comprised from a base material, a secondary titanium oxide coating layer, and a surface layer. The thickness is selected according to the required interference color. In order to emphasize the interference color, it is desirable that the thickness is uniform.

基材は鱗片状の酸化チタンから構成されている。酸化チタンとしてはアナターゼ型、チタニア型のいずれの結晶構造であっても(が主であっても)構わない。特にアナターゼ型の方が製造が容易なので好ましい。基材を製造する方法は特に限定しない。例えば、目的とする基材と同程度の広がり方向の大きさをもつ薄片状基質の表面に酸化チタンからなる薄膜を形成した後、薄片状基質から剥離することで製造することができる。具体的に、この大きさの範囲に入りやすい薄片状基質としては、天然マイカ、合成マイカ、ガラスフレーク、シリカフレーク、アルミナフレーク、硫酸バリウム等が挙げられる。   The base material is composed of scaly titanium oxide. Titanium oxide may be an anatase type or titania type crystal structure (which is mainly). The anatase type is particularly preferable because it is easy to produce. The method for producing the substrate is not particularly limited. For example, it can be manufactured by forming a thin film made of titanium oxide on the surface of a flaky substrate having a size in the same extent as the target substrate and then peeling it from the flaky substrate. Specifically, examples of the flaky substrate that easily falls within this size range include natural mica, synthetic mica, glass flakes, silica flakes, alumina flakes, and barium sulfate.

シリカフレークは、その形状、及び表面の平滑性の度合いを制御することが比較的容易であり、更に、その表面に均一な酸化チタンを、光沢が得られる特定の厚さまで被覆させることも比較的容易である等の点において薄片状基質として選択するには好ましい素材である。   Silica flake is relatively easy to control its shape and the degree of smoothness of the surface, and it is also relatively easy to coat the surface with a uniform thickness of titanium oxide to obtain a gloss. It is a preferable material for selection as a flaky substrate in terms of ease.

薄片状基質の厚さは特に規定されないが、0.1μm〜10μmの範囲が好ましい。粒子の厚さが0.1μm以下の場合、薄片状基質の周辺が丸くカールし、被覆・形成した酸化チタンの形状もカールすることになり干渉光沢が十分に発揮できない。また、粒子の厚さが10μm以上になると、薄片状基質の厚み方向に被覆した酸化チタンにも干渉色が発現され、異なる2以上の干渉色が混在することになり、全体としての干渉色が十分でなくなるからである。   The thickness of the flaky substrate is not particularly limited, but is preferably in the range of 0.1 μm to 10 μm. When the particle thickness is 0.1 μm or less, the periphery of the flaky substrate is curled roundly, and the shape of the coated and formed titanium oxide is also curled, so that the interference gloss cannot be sufficiently exhibited. Further, when the particle thickness is 10 μm or more, an interference color is also expressed in the titanium oxide coated in the thickness direction of the flaky substrate, and two or more different interference colors are mixed. It is not enough.

具体的に基材を製造する方法としては、硫酸チタニルや四塩化チタンの可溶性水溶液又はチタンアルコラートを含有する溶液などのような酸化チタン前駆体溶液に薄片状基質を混合した後、何らかの方法(例えば加熱や難溶性溶媒の添加)による沈殿生成によって、薄片状基質表面にチタン組成物を被覆する。更に、酸化乃至乾燥させることで薄片状基質表面に鱗片状の酸化チタンが形成できる。この鱗片状の酸化チタンはアルカリ雰囲気にするなどの化学的な手法や、超音波照射などの物理的な手法にて薄片状基質から剥離する。薄片状基質からの剥離は酸化チタンにした後に行うほか、酸化チタンに酸化する前の酸化チタン前駆体の状態でも同様に行うこともできる。好ましくは、300〜800℃で焼成し、アルカリ中(pH8以上)にて薄板状基質から被覆層を剥離することにより、カールが無く平滑性に優れた基材を得ることができる。   Specifically, as a method for producing a substrate, a flaky substrate is mixed with a titanium oxide precursor solution such as a soluble aqueous solution of titanyl sulfate or titanium tetrachloride or a solution containing titanium alcoholate, and then some method (for example, The surface of the flaky substrate is coated with the titanium composition by precipitation by heating or addition of a hardly soluble solvent. Furthermore, scaly titanium oxide can be formed on the surface of the flaky substrate by oxidation or drying. The scaly titanium oxide is peeled off from the flaky substrate by a chemical method such as an alkaline atmosphere or a physical method such as ultrasonic irradiation. The peeling from the flaky substrate can be performed after the titanium oxide is formed, or can be similarly performed in the state of the titanium oxide precursor before being oxidized to the titanium oxide. Preferably, a base material excellent in smoothness without curling can be obtained by baking at 300 to 800 ° C. and peeling the coating layer from the thin plate substrate in an alkali (pH 8 or more).

酸化チタン前駆体の状態で剥離した場合にはその後、加熱などにより酸化を行って酸化チタンを生成する。酸化チタンの結晶型として、アナターゼ型にとどめると剥離が容易になり好ましい。基材中にはシリカ、アルミナ、ジルコニア、酸化Ce、酸化Zn等の補強剤を含むことにより、耐光性・剥離組成物の粉砕強度を向上させることができる。   In the case where the titanium oxide is peeled off in the state of the titanium oxide precursor, after that, oxidation is performed by heating or the like to generate titanium oxide. If the crystal form of titanium oxide is limited to the anatase type, peeling is facilitated, which is preferable. By including a reinforcing agent such as silica, alumina, zirconia, Ce oxide, Zn oxide in the base material, the light resistance and the crushing strength of the release composition can be improved.

基材を生成後、更に二次酸化チタン被覆層を表面に形成する。二次酸化チタン被覆層の形成は、前述した薄片状基質表面への基質の積層と同様に行うことができる。つまり、前述の薄片状基質に代えて基材を用い、その表面に酸化チタンの被覆層を形成する。なお、基質からの剥離を行わない点は異なっている。ここで、二次酸化チタン被覆層の膜厚は10nm以上100nm以下にすることが望ましい。そして、基質表面に二次酸化チタン被覆層を形成した後、700℃以上に加熱することで、二次酸化チタン被覆層における酸化チタンの結晶構造をルチル型にすることができる。なお、700℃以上での加熱は後述の表面層を形成した後に行うこともできる。   After producing the substrate, a secondary titanium oxide coating layer is further formed on the surface. The formation of the secondary titanium oxide coating layer can be performed in the same manner as the above-described lamination of the substrate on the flaky substrate surface. That is, a base material is used in place of the above-mentioned flaky substrate, and a titanium oxide coating layer is formed on the surface thereof. The difference is that peeling from the substrate is not performed. Here, the film thickness of the secondary titanium oxide coating layer is desirably 10 nm or more and 100 nm or less. And after forming a secondary titanium oxide coating layer on the substrate surface, the crystal structure of the titanium oxide in the secondary titanium oxide coating layer can be made into a rutile type by heating to 700 ° C. or higher. The heating at 700 ° C. or higher can also be performed after the surface layer described later is formed.

表面層はアルミナ及び/又はジルコニアから構成される。二次酸化チタン被覆層を形成した基材の表面に対して、更に表面層を形成する方法としては、チタン化合物に代えてアルミニウム及び/又はジルコニウム化合物(アルミニウム及びジルコニウムの塩、アルコラートなど)を用いる以外は二次酸化チタン被覆層を形成する方法と同様である。表面層の厚みは10nm以上、100nm以下とすることが望ましく、30nm以上、70nm以下とすることが更に望ましい。この厚みとすることで、表面層の機能である酸化チタンの触媒能発現の抑制と、塗料中での分散性向上とを向上できる。   The surface layer is composed of alumina and / or zirconia. As a method for forming a surface layer on the surface of the base material on which the secondary titanium oxide coating layer is formed, aluminum and / or zirconium compounds (aluminum and zirconium salts, alcoholates, etc.) are used instead of titanium compounds. Except for this, the method is the same as the method of forming the secondary titanium oxide coating layer. The thickness of the surface layer is preferably 10 nm or more and 100 nm or less, and more preferably 30 nm or more and 70 nm or less. By setting it as this thickness, it is possible to improve the suppression of the catalytic ability of titanium oxide, which is a function of the surface layer, and the improvement of dispersibility in the paint.

(試験1)インド産のチップ状天然マイカ1.0kgを大気中800℃の温度で2時間燃成した。放冷後、このチップ状焼成天然マイカを上水10Lに浸漬させ、室温にて5日間放置した。このチップ状焼成天然マイカを間隔500μmの増幸産業社製マスコロイダーで2回通過、解砕した。解砕した焼成天然マイカを50L入りポリタンクに移し、これに0.02質量%のヘキサメタリン酸水溶液を加えて、全量を45Lとした。   (Test 1) 1.0 kg of Indian chip-like natural mica was combusted in the atmosphere at a temperature of 800 ° C. for 2 hours. After standing to cool, this chip-like baked natural mica was immersed in 10 L of clean water and left at room temperature for 5 days. The chip-like baked natural mica was passed and crushed twice with a mass collider manufactured by Masuko Sangyo Co., Ltd. having an interval of 500 μm. The crushed calcined natural mica was transferred to a 50 L plastic tank, and 0.02 mass% hexametaphosphoric acid aqueous solution was added thereto to make the total amount 45 L.

プロペラ撹拌機で撹拌し、5分間静置後、上澄液を別の容器に移す操作を3回繰返し、0.1mm以上の大粒子を分級した。得られた上澄液を標準篩10メッシュ(800μm)と65メッシュ(203μm)とを用いて篩分級し、10〜65メッシュの粒子径を有する薄片状基質としてのマイカ粉末を150g得た。   The mixture was stirred with a propeller stirrer and allowed to stand for 5 minutes, and then the operation of transferring the supernatant to another container was repeated 3 times to classify large particles of 0.1 mm or more. The obtained supernatant was sieve classified using standard sieves 10 mesh (800 μm) and 65 mesh (203 μm) to obtain 150 g of mica powder as a flaky substrate having a particle diameter of 10 to 65 mesh.

〔基質の製造〕:次に、分級したマイカ粉末150gに対して、硫酸チタニル400gと上水7.5Lとを加えて、プロペラ撹拌しながら硫酸チタニルを溶解した。硫酸チタニルの溶解後、撹拌しながら加熱し、90℃以上の温度で4時間加熱することで加水分解処理した。放冷後、水洗、ろ過し、150℃で乾燥した。更に、300℃で2時間焼成し、薄片状基質の表面に基質が形成された粉末組成物を得た。   [Production of Substrate]: Next, 400 g of titanyl sulfate and 7.5 L of fresh water were added to 150 g of classified mica powder, and the titanyl sulfate was dissolved while stirring with a propeller. After the dissolution of titanyl sulfate, it was heated with stirring and hydrolyzed by heating at a temperature of 90 ° C. or higher for 4 hours. After standing to cool, it was washed with water, filtered, and dried at 150 ° C. Furthermore, it baked at 300 degreeC for 2 hours, and obtained the powder composition in which the substrate was formed on the surface of the flaky substrate.

10質量%の荷性ソーダー水溶液を加えてpH11に調整した水中に、粉末組成物を浸漬し静置した。上澄に浮離した粉末をデカンテーション法で分級し、分級粉末をろ過、水洗した。得られた分級粉末(基質)は120gであった。この分級粉末は大きさの平均値が10μm、厚みの平均値が0.22μmであった(レーザー法にて測定)。   The powder composition was immersed in water adjusted to pH 11 by adding a 10% by mass cargo soda aqueous solution and allowed to stand. The powder floating in the supernatant was classified by a decantation method, and the classified powder was filtered and washed with water. The obtained classified powder (substrate) was 120 g. This classified powder had an average size of 10 μm and an average thickness of 0.22 μm (measured by a laser method).

〔被覆工程〕:基質100gに対して、硫酸チタニル400gと上水5Lとを加えて、プロペラ撹拌しながら硫酸チタニルを溶解した。硫酸チタニルの溶解後、撹拌しながら加熱し、90℃以上の温度で4時間加熱することで加水分解処理した。放冷後、水洗、ろ過し、150℃で乾燥した。   [Coating step]: 400 g of titanyl sulfate and 5 L of clean water were added to 100 g of the substrate, and the titanyl sulfate was dissolved while stirring with a propeller. After the dissolution of titanyl sulfate, it was heated with stirring and hydrolyzed by heating at a temperature of 90 ° C. or higher for 4 hours. After standing to cool, it was washed with water, filtered, and dried at 150 ° C.

〔熱処理工程〕:更に、種々の焼き付け温度(試験例1:850℃、試験例2:800℃、試験例3:750℃、試験例4:700℃、試験例5:650℃、試験例6:600℃)で2時間焼成し、薄片状基質の表面に基質が形成された粉末組成物を得た。熱処理を行わなかった粉末組成物を試験例7とした。基材の質量を100質量部とした場合に二次酸化チタン被覆層は58質量部に相当する酸化チタンの被膜が形成された。   [Heat Treatment Step]: Further, various baking temperatures (Test Example 1: 850 ° C., Test Example 2: 800 ° C., Test Example 3: 750 ° C., Test Example 4: 700 ° C., Test Example 5: 650 ° C., Test Example 6) : 600 ° C.) for 2 hours to obtain a powder composition in which the substrate was formed on the surface of the flaky substrate. The powder composition that was not heat-treated was designated as Test Example 7. When the mass of the substrate was 100 parts by mass, a titanium oxide film corresponding to 58 parts by mass of the secondary titanium oxide coating layer was formed.

〔表面層形成工程〕:各試験例の粉末組成物50gに硫酸アルミニウム4.1gを2Lの水に溶解した水溶液を加え、更にオキシ塩化ジルコニウム2gと尿素9gと加えた。プロペラ撹拌しながら加熱し、80℃以上で5時間加水分解処理を行った。放冷後、水洗、ろ過し150℃で乾燥した。この乾燥粉末を大気中700℃2時間焼成することで、アルミナ及びジルコニアからなる表面層(Al:Zr=1:3(モル比))を形成した。得られた粉末(酸化チタン組成物)は60gであった。得られた酸化チタン組成物は大きさの平均値が10μm、厚みの平均値が0.25μmであった(レーザー法にて測定)。   [Surface layer forming step]: An aqueous solution in which 4.1 g of aluminum sulfate was dissolved in 2 L of water was added to 50 g of the powder composition of each test example, and further 2 g of zirconium oxychloride and 9 g of urea were added. The mixture was heated with propeller stirring and hydrolyzed at 80 ° C. or higher for 5 hours. After standing to cool, it was washed with water, filtered and dried at 150 ° C. The dried powder was fired in the atmosphere at 700 ° C. for 2 hours to form a surface layer (Al: Zr = 1: 3 (molar ratio)) made of alumina and zirconia. The obtained powder (titanium oxide composition) was 60 g. The obtained titanium oxide composition had an average size of 10 μm and an average thickness of 0.25 μm (measured by a laser method).

(試験2)
被覆工程における基質の量を100質量部とした場合に、被覆される酸化チタンの相当量が22質量部(試験例8)、24質量部(試験例9)、26質量部(試験例10)とし、焼き付け温度を750℃に統一した以外は、試験1と同様の方法にて、試験例8〜10の試験試料を調製した。なお、試験例3の試験試料(二次酸化チタン被覆層の質量が基材の質量を100質量部とした場合に22質量部とした試料)は試験例8の試験試料と同一である。
(Test 2)
When the amount of substrate in the coating step is 100 parts by mass, the equivalent amount of titanium oxide to be coated is 22 parts by mass (Test Example 8), 24 parts by mass (Test Example 9), and 26 parts by mass (Test Example 10). The test samples of Test Examples 8 to 10 were prepared in the same manner as in Test 1 except that the baking temperature was unified to 750 ° C. Note that the test sample of Test Example 3 (a sample in which the mass of the secondary titanium oxide coating layer is 22 parts by mass when the mass of the base material is 100 parts by mass) is the same as the test sample of Test Example 8.

(二次酸化チタン被覆層の膜厚測定)
試験例8〜10の試験試料について二次酸化チタン被覆層を測定した。二次酸化チタン被覆層の厚みは干渉色の測定により各試験試料である酸化チタン組成物の厚みを測定したうえで基材の厚みを減ずることで算出した。試験例8の試験試料における二次酸化チタン被覆層は20nm、試験例9の試験試料における二次酸化チタン被覆層は30nm、試験例10の試験試料における二次酸化チタン被覆層は40nmであった。ここで、試験例10の試験試料における二次酸化チタン被覆層の厚みが大きいのは二次酸化チタン被覆層の密着性が十分でなかったものと推測される。
(Measurement of film thickness of secondary titanium oxide coating layer)
The secondary titanium oxide coating layer was measured for the test samples of Test Examples 8 to 10. The thickness of the secondary titanium oxide coating layer was calculated by measuring the thickness of the titanium oxide composition as each test sample by measuring the interference color and then reducing the thickness of the substrate. The secondary titanium oxide coating layer in the test sample of Test Example 8 was 20 nm, the secondary titanium oxide coating layer in the test sample of Test Example 9 was 30 nm, and the secondary titanium oxide coating layer in the test sample of Test Example 10 was 40 nm. . Here, it is estimated that the thickness of the secondary titanium oxide coating layer in the test sample of Test Example 10 was large because the adhesion of the secondary titanium oxide coating layer was not sufficient.

(XRDの測定)
得られた試験例1〜10の試験試料について、理学電機社製X線回折装置ミニフレックスでXRDの測定測定を行った。得られたX線回折パターンから、酸化チタンの(111)面におけるピークの半値幅を算出した。結果を表1に示す。
(Measurement of XRD)
About the obtained test samples of Test Examples 1 to 10, XRD was measured and measured with an X-ray diffractometer miniflex manufactured by Rigaku Corporation. From the obtained X-ray diffraction pattern, the half width of the peak in the (111) plane of titanium oxide was calculated. The results are shown in Table 1.

Figure 2007056214
Figure 2007056214

(耐候性試験)
試験例1〜10の試験試料について塗料を調製して耐候性を評価した。塗料組成物は、各試験例の試験試料が5.5質量部に対して、アクリル樹脂が50質量部、トルエンが15質量部、酢酸ブチルが25質量部、高沸点溶剤が4.5質量部を混合することで調製した。
(Weather resistance test)
A paint was prepared for the test samples of Test Examples 1 to 10 and the weather resistance was evaluated. The coating composition is composed of 50 parts by mass of acrylic resin, 15 parts by mass of toluene, 25 parts by mass of butyl acetate, and 4.5 parts by mass of high-boiling solvent for the test sample of each test example. It was prepared by mixing.

各試験例の塗料組成物を0.8mm軟鋼板に膜厚が30〜35μmになるようにバーコーターで塗装し、常温で10分放置後、80℃、20分焼き付け処理し、各試験例の塗装試験片を得た。得られた塗装試験片上の塗膜は緑から青緑。青色と角度によって色が変わる鮮やかな干渉色を有していた。   The coating composition of each test example was coated on a 0.8 mm mild steel plate with a bar coater so that the film thickness was 30 to 35 μm, left at room temperature for 10 minutes, and then baked at 80 ° C. for 20 minutes. A painted specimen was obtained. The coating on the resulting paint specimen is green to blue-green. It had a bright interference color that changed its color depending on blue and angle.

各試験例の塗装試験片をキセノン灯(スガ試験機、照度180(W/m2、300〜400nm)を用い、照射120分+(照射+降雨18分間)のサイクルを計1200時間、ブラックパネル温度63℃、湿度50%にて耐候性試験を行った。耐候性試験前後のそれぞれの試験試料について色彩計(コニカミノルタ社製、型番:CM512−M3)にて塗板を測定し色差を算出することで耐候性を評価した。 Using a xenon lamp (suga test machine, illuminance of 180 (W / m 2 , 300 to 400 nm) for the coating test piece of each test example, the cycle of irradiation 120 minutes + (irradiation + rainfall 18 minutes) is 1200 hours in total, black panel A weather resistance test was performed at a temperature of 63 ° C. and a humidity of 50%, and the color difference was calculated by measuring the coated plate with a color meter (manufactured by Konica Minolta, model number: CM512-M3) for each test sample before and after the weather resistance test. The weather resistance was evaluated.

その結果、色差はXRDにて測定した(111)面における半値幅の値に依存して変化することが明らかとなった。具体的には、半値幅が0.494°(試験例2)の場合にΔEが1.05、0.541°(試験例3)の場合に1.98、0.588°(試験例4)の場合に2.85、0.612°(試験例5及び6)の場合に4.76であった。その他の試験例の試験試料についても半値幅の値に応じた色差を示した。   As a result, it became clear that the color difference changes depending on the value of the half width on the (111) plane measured by XRD. Specifically, when the half-value width is 0.494 ° (Test Example 2), ΔE is 1.05, and when it is 0.541 ° (Test Example 3), 1.98 and 0.588 ° (Test Example 4). ) Was 2.85, 0.612 ° (Test Examples 5 and 6) and 4.76. The test samples of other test examples also showed a color difference according to the half-value width.

従って、半値幅が0.612°未満(より望ましくは0.588°以下、更に望ましくは0.588°未満や、0.541°以下)である場合にほぼ満足のいく色差(耐候性)が得られることが判った。   Accordingly, when the half width is less than 0.612 ° (more desirably 0.588 ° or less, and further desirably less than 0.588 ° or 0.541 ° or less), the color difference (weather resistance) is almost satisfactory. It turns out that it is obtained.

以上の結果から、(1)焼き付け温度としては700℃以上(更には750℃以上)が好ましいこと、(2)二次酸化チタン被覆層の質量が基材の質量を100質量部とした場合に22質量部以上24質量部以下が好ましいこと、(3)二次酸化チタン被覆層の膜厚としては20nm以上100nm以下が好ましいことがそれぞれ明らかとなった。   From the above results, (1) the baking temperature is preferably 700 ° C. or higher (more preferably 750 ° C. or higher), and (2) the mass of the secondary titanium oxide coating layer is 100 parts by mass of the base material. It became clear that 22 parts by mass or more and 24 parts by mass or less are preferable, and (3) the film thickness of the secondary titanium oxide coating layer is preferably 20 nm or more and 100 nm or less.

本発明の酸化チタン組成物は塗料組成物に含有される顔料などに好適に使用できる。   The titanium oxide composition of the present invention can be suitably used for pigments contained in a coating composition.

Claims (7)

酸化チタンからなる鱗片状の基材と、
該基材表面に形成され且つルチル型酸化チタンから構成される二次酸化チタン被覆層と、
該二次酸化チタン被覆層表面に形成され且つアルミナ及び/又はジルコニアから構成される表面層と、を有することを特徴とする酸化チタン組成物。
A scaly substrate made of titanium oxide;
A secondary titanium oxide coating layer formed on the substrate surface and composed of rutile-type titanium oxide;
And a surface layer formed of alumina and / or zirconia on the surface of the secondary titanium oxide coating layer.
広がり方向の大きさが50μm以上800μm以下、厚みが0.05μm以上0.6μm以下である請求項1に記載の酸化チタン組成物。   The titanium oxide composition according to claim 1, wherein the size in the spreading direction is 50 µm or more and 800 µm or less, and the thickness is 0.05 µm or more and 0.6 µm or less. 前記二次酸化チタン被覆層の厚みは20nm以上、100nm以下である請求項1又は2に記載の酸化チタン組成物。   The titanium oxide composition according to claim 1 or 2, wherein the thickness of the secondary titanium oxide coating layer is 20 nm or more and 100 nm or less. XRDにより測定した酸化チタンの(111)ピークの半値幅が0.59°以下である請求項1〜3のいずれかに記載の酸化チタン組成物。   The titanium oxide composition according to any one of claims 1 to 3, wherein a half width of a (111) peak of titanium oxide measured by XRD is 0.59 ° or less. 前記基材はアナターゼ型酸化チタンから構成される請求項1〜4のいずれかに記載の酸化チタン組成物。   The said base material is a titanium oxide composition in any one of Claims 1-4 comprised from anatase type titanium oxide. 酸化チタンからなる鱗片状の基材の表面に酸化チタン又は水酸化チタンを含有する組成物を被覆する工程と、
その後、アルミナ及び/又はジルコニアから構成される表面層を形成する工程と、
前記被覆工程後に、700℃以上で処理し、被覆した前記組成物をルチル型酸化チタンとした二次酸化チタン被覆層を形成する熱処理工程と、を有することを特徴とする酸化チタン組成物の製造方法。
Coating the composition containing titanium oxide or titanium hydroxide on the surface of a scaly substrate made of titanium oxide;
Thereafter, a step of forming a surface layer composed of alumina and / or zirconia;
And a heat treatment step of forming a secondary titanium oxide coating layer obtained by treating the coated composition at a temperature of 700 ° C. or higher and using the coated composition as rutile titanium oxide. Method.
前記被覆工程における前記組成物の添加量は、前記基材の質量を100質量部とした場合に、前記二次酸化チタン被覆層が22質量部以上、24質量部以下となる量である請求項6に記載の酸化チタン組成物の製造方法。   The amount of the composition added in the coating step is an amount such that the secondary titanium oxide coating layer is 22 parts by mass or more and 24 parts by mass or less when the mass of the base material is 100 parts by mass. 6. A method for producing a titanium oxide composition according to 6.
JP2005246395A 2005-08-26 2005-08-26 Titanium oxide composition and its forming method Pending JP2007056214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246395A JP2007056214A (en) 2005-08-26 2005-08-26 Titanium oxide composition and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246395A JP2007056214A (en) 2005-08-26 2005-08-26 Titanium oxide composition and its forming method

Publications (1)

Publication Number Publication Date
JP2007056214A true JP2007056214A (en) 2007-03-08

Family

ID=37919972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246395A Pending JP2007056214A (en) 2005-08-26 2005-08-26 Titanium oxide composition and its forming method

Country Status (1)

Country Link
JP (1) JP2007056214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505634A (en) * 2016-01-08 2019-02-28 クローノス インターナショナル インコーポレイテッドKronos International, Inc. Method for coating the surface of a substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949173B1 (en) * 1969-11-29 1974-12-25
JPS63254169A (en) * 1987-04-10 1988-10-20 Kanebo Ltd Coating pigment and production thereof
JPH05230395A (en) * 1992-02-20 1993-09-07 Teika Corp Scaly pigment composition, its production and cosmetic blended with the same
WO1999049834A1 (en) * 1998-04-01 1999-10-07 Catalysts & Chemicals Industries Co., Ltd. Inorganic composite powder and cosmetic comprising the same
JP2002053770A (en) * 2000-08-09 2002-02-19 Catalysts & Chem Ind Co Ltd Composite inorganic powder
JP2002104923A (en) * 2000-09-25 2002-04-10 Kao Corp Cosmetic
JP2004224964A (en) * 2003-01-24 2004-08-12 Toyota Motor Corp Luster pigment and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949173B1 (en) * 1969-11-29 1974-12-25
JPS63254169A (en) * 1987-04-10 1988-10-20 Kanebo Ltd Coating pigment and production thereof
JPH05230395A (en) * 1992-02-20 1993-09-07 Teika Corp Scaly pigment composition, its production and cosmetic blended with the same
WO1999049834A1 (en) * 1998-04-01 1999-10-07 Catalysts & Chemicals Industries Co., Ltd. Inorganic composite powder and cosmetic comprising the same
JP2002053770A (en) * 2000-08-09 2002-02-19 Catalysts & Chem Ind Co Ltd Composite inorganic powder
JP2002104923A (en) * 2000-09-25 2002-04-10 Kao Corp Cosmetic
JP2004224964A (en) * 2003-01-24 2004-08-12 Toyota Motor Corp Luster pigment and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505634A (en) * 2016-01-08 2019-02-28 クローノス インターナショナル インコーポレイテッドKronos International, Inc. Method for coating the surface of a substrate
JP7191693B2 (en) 2016-01-08 2022-12-19 クローノス インターナショナル インコーポレイテッド Coating method for substrate surface

Similar Documents

Publication Publication Date Title
JP2585128B2 (en) Colored fine particle inorganic pigment
JP5395662B2 (en) Synthetic mica-based ferrite-containing pearlescent pigments
JP2006526041A (en) Interference pigment with high hiding power
WO1997040118A1 (en) Ultraviolet absorber composition and process for production thereof
CN102951849A (en) Interference color glass bead and preparation method thereof
JP4981033B2 (en) Bright pigment and method for producing the same, and cosmetic, paint, ink or resin composition containing the bright pigment
US5228911A (en) Oxidized graphite flaky particles and pigments based thereon
JP4153066B2 (en) Method for producing strongly cohesive titanium oxide
JP4276448B2 (en) Brilliant pigment and method for producing the same
JPH1081837A (en) High-weather-resistant metallic pigment
CN1117125C (en) high-chroma orange pearl pigment
JP4190174B2 (en) High iris color titanium oxide and its manufacturing method
JP2007056214A (en) Titanium oxide composition and its forming method
JP4789508B2 (en) Method for producing silver-colored pearlescent pigment
JP2872903B2 (en) Method for producing green pearlescent pigment
JP4271425B2 (en) Yellow pigment
JP2003327430A (en) Rutile type titanium dioxide fine grain and production method thereof
JP2739227B2 (en) Titanium dioxide pigment and method for producing the same
JP2872902B2 (en) Green pearlescent pigment
US3450550A (en) Inorganic blue to green pigments
JP3601759B2 (en) Composite oxide green pigment and method for producing the same
EP0509352B1 (en) Flaky pigments based on oxidized graphite flaky particles
JP6249313B2 (en) Method for producing plate-like α-alumina pearlescent pigment having a large aspect ratio and nanometal-coated pearlescent pigment
JP3346650B2 (en) Paint composition
JP2704524B2 (en) Heat-resistant tabular tan pigment powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080521

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110310